1
|
Li T, Jia W, Li L, Xu S, Xu R. GhCNGC31 is critical for conferring resistance to Verticillium wilt in cotton. PLANT MOLECULAR BIOLOGY 2024; 115:2. [PMID: 39666136 DOI: 10.1007/s11103-024-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
In the past decades, cyclic nucleotide-gated ion channels (CNGCs) have been extensively studied in diploid species Arabidopsis thaliana. However, the functional diversification of CNGCs in crop plants, mostly polyploid, remains poorly understood. In allotetraploid Upland cotton (Gossypium hirsutum), GhCNGC31 is one of the multiple orthologs of AtCNGC2, being present in the plasma membrane, capable of interacting with itself and binding to calmodulins and cyclic nucleotides. GhCNGC31 knockdown plants exhibited slight growth inhibition, and became more susceptible to Verticillium dahliae infection, which was associated with the reduced lignin and flavonoid accumulation, impaired ROS (reactive oxygen species) burst, and down-regulation of defense-related genes PR1, JAZ2, LOX2, and RBOH10. RNA-Seq analysis identified 1817 differentially expressed genes from GhCNGC31 knockdown, of which 1184 (65%) were responsive to V. dahliae infection and accounted for 57% among a total of 2065 V. dahliae-responsive genes identified in this study. These GhCNGC31-regulated genes mainly function with cell wall organization and biogenesis, cellular carbohydrate metabolic or biosynthetic process, cellular component macromolecule biosynthetic process, and rhythmic process. They are significantly enriched in the pathways of plant MAPK signaling, plant-pathogen interaction, phenylpropanoid biosynthesis, and plant hormone signal transduction. A set of transcription factors (TFs) and resistance (R) genes are among the GhCNGC31-regulated genes, which are significantly over-represented with the TCP and WRKY TFs families, as well as with the R genes of T (TIR) and TNL (TIR-NB-LRR) classes. Together, our results unraveled a critical role of GhCNGC31 for conferring resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Tianming Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Jia
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shi Xu
- Henan Seed Industry Development Center, Zhengzhou, 450000, China
| | - Ruqiang Xu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Yuan S, Leng P, Feng Y, Jin F, Zhang H, Zhang C, Huang Y, Shan Z, Yang Z, Hao Q, Chen S, Chen L, Cao D, Guo W, Yang H, Chen H, Zhou X. Comparative genomic and transcriptomic analyses provide new insight into symbiotic host specificity. iScience 2024; 27:110207. [PMID: 38984200 PMCID: PMC11231455 DOI: 10.1016/j.isci.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Host specificity plays important roles in expanding the host range of rhizobia, while the genetic information responsible for host specificity remains largely unexplored. In this report, the roots of four symbiotic systems with notable different symbiotic phenotypes and the control were studied at four different post-inoculation time points by RNA sequencning (RNA-seq). The differentially expressed genes (DEGs) were divided into "found only in soybean or Lotus," "only expressed in soybean or Lotus," and "expressed in both hosts" according to the comparative genomic analysis. The distributions of enriched function ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways vary significantly in different symbiotic systems. Host specific genes account for the majority of the DEGs involved in response to stimulus, associated with plant-pathogen interaction pathways, and encoding resistance (R) proteins, the symbiotic nitrogen fixation (SNF) proteins and the target proteins in the SNF-related modules. Our findings provided molecular candidates for better understanding the mechanisms of symbiotic host-specificity.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Fuxiao Jin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
3
|
Ye D, Zhang S, Gao X, Li X, Jin X, Shi M, Kai G, Zhou W. Mining of disease-resistance genes in Crocus sativus based on transcriptome sequencing. Front Genet 2024; 15:1349626. [PMID: 38370513 PMCID: PMC10869511 DOI: 10.3389/fgene.2024.1349626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction: Crocus sativus L. has an important medicinal and economic value in traditional perennial Chinese medicine. However, due to its unique growth characteristics, during cultivation it is highly susceptible to disease. The absence of effective resistance genes restricts us to breed new resistant varieties of C. sativus. Methods: In present study, comprehensive transcriptome sequencing was introduced to explore the disease resistance of the candidate gene in healthy and corm rot-infected C. sativus. Results and discussion: Totally, 43.72 Gb of clean data was obtained from the assembly to generate 65,337 unigenes. By comparing the gene expression levels, 7,575 differentially expressed genes (DEGs) were primarily screened. A majority of the DEGs were completely in charge of defense and metabolism, and 152 of them were annotated as pathogen recognition genes (PRGs) based on the PGRdb dataset. The expression of some transcription factors including NAC, MYB, and WRKY members, changed significantly based on the dataset of transcriptome sequencing. Therefore, this study provides us some valuable information for exploring candidate genes involved in the disease resistance in C. sativus.
Collapse
Affiliation(s)
- Dongdong Ye
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Zhang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiankui Gao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Min Shi
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Zhou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
He X, Zhang W, Sabir IA, Jiao C, Li G, Wang Y, Zhu F, Dai J, Liu L, Chen C, Zhang Y, Song C. The spatiotemporal profile of Dendrobium huoshanense and functional identification of bHLH genes under exogenous MeJA using comparative transcriptomics and genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1169386. [PMID: 37235024 PMCID: PMC10206334 DOI: 10.3389/fpls.2023.1169386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Alkaloids are one of the main medicinal components of Dendrobium species. Dendrobium alkaloids are mainly composed of terpene alkaloids. Jasmonic acid (JA) induce the biosynthesis of such alkaloids, mainly by enhancing the expression of JA-responsive genes to increase plant resistance and increase the content of alkaloids. Many JA-responsive genes are the target genes of bHLH transcription factors (TFs), especially the MYC2 transcription factor. Methods In this study, the differentially expressed genes involved in the JA signaling pathway were screened out from Dendrobium huoshanense using comparative transcriptomics approaches, revealing the critical roles of basic helix-loop-helix (bHLH) family, particularly the MYC2 subfamily. Results and discussion Microsynteny-based comparative genomics demonstrated that whole genome duplication (WGD) and segmental duplication events drove bHLH genes expansion and functional divergence. Tandem duplication accelerated the generation of bHLH paralogs. Multiple sequence alignments showed that all bHLH proteins included bHLH-zip and ACT-like conserved domains. The MYC2 subfamily had a typical bHLH-MYC_N domain. The phylogenetic tree revealed the classification and putative roles of bHLHs. The analysis of cis-acting elements revealed that promoter of the majority of bHLH genes contain multiple regulatory elements relevant to light response, hormone responses, and abiotic stresses, and the bHLH genes could be activated by binding these elements. The expression profiling and qRT-PCR results indicated that bHLH subgroups IIIe and IIId may have an antagonistic role in JA-mediated expression of stress-related genes. DhbHLH20 and DhbHLH21 were considered to be the positive regulators in the early response of JA signaling, while DhbHLH24 and DhbHLH25 might be the negative regulators. Our findings may provide a practical reference for the functional study of DhbHLH genes and the regulation of secondary metabolites.
Collapse
Affiliation(s)
- Xiaomei He
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenwu Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Guohui Li
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yan Wang
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jun Dai
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Longyun Liu
- School of Bioengineering, Hefei Technology College, Hefei, China
| | - Cunwu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cheng Song
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
5
|
Li M, Dong H, Li J, Dai X, Lin J, Li S, Zhou C, Chiang VL, Li W. PtrVCS2 Regulates Drought Resistance by Changing Vessel Morphology and Stomatal Closure in Populus trichocarpa. Int J Mol Sci 2023; 24:ijms24054458. [PMID: 36901889 PMCID: PMC10003473 DOI: 10.3390/ijms24054458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Drought has severe effects on plant growth, forest productivity, and survival throughout the world. Understanding the molecular regulation of drought resistance in forest trees can enable effective strategic engineering of novel drought-resistant genotypes of tree species. In this study, we identified a gene, PtrVCS2, encoding a zinc finger (ZF) protein of the ZF-homeodomain transcription factor in Populus trichocarpa (Black Cottonwood) Torr. & A. Gray. ex Hook. Overexpression of PtrVCS2 (OE-PtrVCS2) in P. trichocarpa resulted in reduced growth, a higher proportion of smaller stem vessels, and strong drought-resistance phenotypes. Stomatal movement experiments revealed that the OE-PtrVCS2 transgenics showed lower stomata apertures than wild-type plants under drought conditions. RNA-seq analysis of the OE-PtrVCS2 transgenics showed that PtrVCS2 regulates the expression of multiple genes involved in regulation of stomatal opening and closing, particularly the PtrSULTR3;1-1 gene, and several genes related to cell wall biosynthesis, such as PtrFLA11-12 and PtrPR3-3. Moreover, we found that the water use efficiency of the OE-PtrVCS2 transgenic plants was consistently higher than that of wild type plants when subjected to chronic drought stress. Taken together, our results suggest that PtrVCS2 plays a positive role in improving drought adaptability and resistance in P. trichocarpa.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hao Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiaojiao Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
6
|
Effect of Shading on the Morphological, Physiological, and Biochemical Characteristics as Well as the Transcriptome of Matcha Green Tea. Int J Mol Sci 2022; 23:ijms232214169. [PMID: 36430647 PMCID: PMC9696345 DOI: 10.3390/ijms232214169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
High-quality tea leaves are required for matcha production. Shading is one of the key agronomic practices that can increase the quality of green tea. The objectives among matcha tea producers include increasing the ammonia and chlorophyll contents of tea buds, decreasing tea polyphenol contents, and enhancing tea aroma formation. In this study, Fuding white tea plants were cultivated under open-air conditions (control) as well as under 85% (S85) and 95% (S95) shade. The chlorophyll contents were highest for the S85 treatment, followed by the S95 and control treatments. Moreover, shading increased the theanine and caffeine contents, while decreasing the polyphenol (epicatechin and epigallocatechin) contents, thereby optimizing matcha tea flavors. A total of 2788 differentially expressed genes (DEGs) were identified, of which 1151 and 1637 were respectively upregulated and downregulated in response to shading. The GO and KEGG enrichment analyses indicated that most of the DEGs were associated with metabolic processes (e.g., MAPK signaling, plant-pathogen interactions, and phenylpropanoid biosynthesis). Therefore, shading may modulate tea plant metabolism, signaling, biosynthetic activities, and environment-related changes to gene transcription. The expression of amino acid permeases (APP) encoding genes was downregulated in tea plants. Thus, shading influences theanine biosynthesis and the AAP-mediated distribution of theanine in tea plants.
Collapse
|
7
|
Martin EC, Ion CF, Ifrimescu F, Spiridon L, Bakker J, Goverse A, Petrescu AJ. NLRscape: an atlas of plant NLR proteins. Nucleic Acids Res 2022; 51:D1470-D1482. [PMID: 36350627 PMCID: PMC9825502 DOI: 10.1093/nar/gkac1014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
NLRscape is a webserver that curates a collection of over 80 000 plant protein sequences identified in UniProtKB to contain NOD-like receptor signatures, and hosts in addition a number of tools aimed at the exploration of the complex sequence landscape of this class of plant proteins. Each entry gathers sequence information, domain and motif annotations from multiple third-party sources but also in-house advanced annotations aimed at addressing caveats of the existing broad-based annotations. NLRscape provides a top-down perspective of the NLR sequence landscape but also services for assisting a bottom-up approach starting from a given input sequence. Sequences are clustered by their domain organization layout, global homology and taxonomic spread-in order to allow analysis of how particular traits of an NLR family are scattered within the plant kingdom. Tools are provided for users to locate their own protein of interest in the overall NLR landscape, generate custom clusters centered around it and perform a large number of sequence and structural analyses using included interactive online instruments. Amongst these, we mention: taxonomy distribution plots, homology cluster graphs, identity matrices and interactive MSA synchronizing secondary structure and motif predictions. NLRscape can be found at: https://nlrscape.biochim.ro/.
Collapse
Affiliation(s)
- Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Catalin F Ion
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Florin Ifrimescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Laurentiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6700ES, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6700ES, The Netherlands
| | | |
Collapse
|
8
|
Biniaz Y, Tahmasebi A, Tahmasebi A, Albrectsen BR, Poczai P, Afsharifar A. Transcriptome Meta-Analysis Identifies Candidate Hub Genes and Pathways of Pathogen Stress Responses in Arabidopsis thaliana. BIOLOGY 2022; 11:1155. [PMID: 36009782 PMCID: PMC9404733 DOI: 10.3390/biology11081155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Following a pathogen attack, plants defend themselves using multiple defense mechanisms to prevent infections. We used a meta-analysis and systems-biology analysis to search for general molecular plant defense responses from transcriptomic data reported from different pathogen attacks in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis and plant-pathogen interactions. Using network analysis, we highlight the importance of WRKY40, WRKY46 and STZ, and suggest that they serve as major points in protein-protein interactions. This is especially true regarding networks of composite-metabolic responses by pathogens. In summary, this research provides a new approach that illuminates how different mechanisms of transcriptome responses can be activated in plants under pathogen infection and indicates that common genes vary in their ability to regulate plant responses to the pathogens studied herein.
Collapse
Affiliation(s)
- Yaser Biniaz
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| | - Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas 7916193145, Iran;
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Benedicte Riber Albrectsen
- Department of Plant Physiology, Faculty of Science and Technology, Umeå University, 901 87 Umeå, Sweden;
| | - Péter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00065 Helsinki, Finland
- Institute of Advanced Studies Kőszeg (iASK), P.O. Box 4, H-9731 Kőszeg, Hungary
| | - Alireza Afsharifar
- Plant Virology Research Center, Faculty of Agriculture, Shiraz University, Shiraz 7194685115, Iran;
| |
Collapse
|
9
|
Tan YC, Kumar AU, Wong YP, Ling APK. Bioinformatics approaches and applications in plant biotechnology. J Genet Eng Biotechnol 2022; 20:106. [PMID: 35838847 PMCID: PMC9287518 DOI: 10.1186/s43141-022-00394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In recent years, major advance in molecular biology and genomic technologies have led to an exponential growth in biological information. As the deluge of genomic information, there is a parallel growth in the demands of tools in the storage and management of data, and the development of software for analysis, visualization, modelling, and prediction of large data set. MAIN BODY Particularly in plant biotechnology, the amount of information has multiplied exponentially with a large number of databases available from many individual plant species. Efficient bioinformatics tools and methodologies are also developed to allow rapid genome sequence and the study of plant genome in the 'omics' approach. This review focuses on the various bioinformatic applications in plant biotechnology, and their advantages in improving the outcome in agriculture. The challenges or limitations faced in plant biotechnology in the aspect of bioinformatics approach that explained the low progression in plant genomics than in animal genomics are also reviewed and assessed. CONCLUSION There is a critical need for effective bioinformatic tools, which are able to provide longer reads with unbiased coverage in order to overcome the complexity of the plant's genome. The advancement in bioinformatics is not only beneficial to the field of plant biotechnology and agriculture sectors, but will also contribute enormously to the future of humanity.
Collapse
Affiliation(s)
- Yung Cheng Tan
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Asqwin Uthaya Kumar
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Zehra A, Raytekar NA, Meena M, Swapnil P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100054. [PMID: 34841345 PMCID: PMC8610294 DOI: 10.1016/j.crmicr.2021.100054] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous harmful microorganisms and insect pests have the ability to cause plant infections or damage, which is mostly controlled by toxic chemical agents. These chemical compounds and their derivatives exhibit hazardous effects on habitats and human life too. Hence, there's a need to develop novel, more effective and safe bio-control agents. A variety of microbes such as viruses, bacteria, and fungi possess a great potential to fight against phytopathogens and thus can be used as bio-control agents instead of harmful chemical compounds. These naturally occurring microorganisms are applied to the plants in order to control phytopathogens. Moreover, practicing them appropriately for agriculture management can be a way towards a sustainable approach. The MBCAs follow various modes of action and act as elicitors where they induce a signal to activate plant defense mechanisms against a variety of pathogens. MBCAs control phytopathogens and help in disease suppression through the production of enzymes, antimicrobial compounds, antagonist activity involving hyper-parasitism, induced resistance, competitive inhibition, etc. Efficient recognition of pathogens and prompt defensive response are key factors of induced resistance in plants. This resistance phenomenon is pertaining to a complex cascade that involves an increased amount of defensive proteins, salicylic acid (SA), or induction of signaling pathways dependent on plant hormones. Although, there's a dearth of information about the exact mechanism of plant-induced resistance, the studies conducted at the physiological, biochemical and genetic levels. These studies tried to explain a series of plant defensive responses triggered by bio-control agents that may enhance the defensive capacity of plants. Several natural and recombinant microorganisms are commercially available as bio-control agents that mainly include strains of Bacillus, Pseudomonads and Trichoderma. However, the complete understanding of microbial bio-control agents and their interactions at cellular and molecular levels will facilitate the screening of effective and eco-friendly bio-agents, thereby increasing the scope of MBCAs. This article is a comprehensive review that highlights the importance of microbial agents as elicitors in the activation and regulation of plant defense mechanisms in response to a variety of pathogens.
Collapse
Key Words
- ABA, Abscisic acid
- BABA, β-Aminobutyric acid
- BTH, Benzothiadiazole
- CKRI, Cross kingdom RNA interference
- DAMPs, Damage-associated molecular patterns
- Defense mechanism
- ET, Ethylene
- ETI, Effector-triggered immunity
- Elicitors
- Fe, Iron
- GSH, Glutathione
- HAMP, Herbivore-associated molecular patterns
- HG, Heptaglucan
- HIR, Herbivore induced resistance
- HRs, Hormonal receptors
- ISR, Induced systemic resistance
- ISS, Induced systemic susceptibility
- Induced resistance
- JA, Jasmonic acid
- LAR, Local acquired resistance
- LPS, Lipopolysaccharides
- MAMPs, Microbe-associated molecular patterns
- MBCAs, Microbial biological control agents
- Microbiological bio-control agent
- N, Nitrogen
- NO, Nitric oxide
- P, Phosphorous
- PAMPs, Pathogen-associated molecular patterns
- PGP, Plant growth promotion
- PGPB, Plant growth promoting bacteria
- PGPF, Plant growth promoting fungi
- PGPR, Plant growth promoting rhizobacteria
- PRPs, Pathogenesis-related proteins
- PRRs, Pattern recognition receptors
- PTI, Pattern triggered immunity
- Plant defense
- Plant disease
- RLKs, Receptor-like-kinases
- RLPs, Receptor-like-proteins
- ROS, Reactive oxygen species
- SA, Salicylic acid
- SAR, Systemic acquired resistance
- TFs, Transcription factors
- TMV, Tobacco mosaic virus
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi – 221005, India
| | | | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur – 313001, Rajasthan, India
| | - Prashant Swapnil
- Department of Botany, University of Delhi, New Delhi – 110007, India
| |
Collapse
|
11
|
Calle García J, Guadagno A, Paytuvi-Gallart A, Saera-Vila A, Amoroso CG, D'Esposito D, Andolfo G, Aiese Cigliano R, Sanseverino W, Ercolano MR. PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process. Nucleic Acids Res 2021; 50:D1483-D1490. [PMID: 34850118 PMCID: PMC8729912 DOI: 10.1093/nar/gkab1087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
The Plant Resistance Genes database (PRGdb; http://prgdb.org/prgdb4/) has been greatly expanded, keeping pace with the increasing amount of available knowledge and data (sequenced proteomes, cloned genes, public analysis data, etc.). The easy-to-use style of the database website has been maintained, while an updated prediction tool, more data and a new section have been added. This new section will contain plant resistance transcriptomic experiments, providing additional easy-to-access experimental information. DRAGO3, the tool for automatic annotation and prediction of plant resistance genes behind PRGdb, has been improved in both accuracy and sensitivity, leading to more reliable predictions. PRGdb offers 199 reference resistance genes and 586.652 putative resistance genes from 182 sequenced proteomes. Compared to the previous release, PRGdb 4.0 has increased the number of reference resistance genes from 153 to 199, the number of putative resistance genes from 177K from 76 proteomes to 586K from 182 sequenced proteomes. A new section has been created that collects plant-pathogen transcriptomic data for five species of agricultural interest. Thereby, with these improvements and data expansions, PRGdb 4.0 aims to serve as a reference to the plant scientific community and breeders worldwide, helping to further study plant resistance mechanisms that contribute to fighting pathogens.
Collapse
Affiliation(s)
- Joan Calle García
- Sequentia Biotech SL, Calle Comte D'Urgell 240, 08036 Barcelona, Spain
| | - Anna Guadagno
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | | | | | - Ciro Gianmaria Amoroso
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - Daniela D'Esposito
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - Giuseppe Andolfo
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | | | | | - Maria Raffaella Ercolano
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| |
Collapse
|
12
|
He W, Zhu Y, Leng Y, Yang L, Zhang B, Yang J, Zhang X, Lan H, Tang H, Chen J, Gao S, Tan J, Kang J, Deng L, Li Y, He Y, Rong T, Cao M. Transcriptomic Analysis Reveals Candidate Genes Responding Maize Gray Leaf Spot Caused by Cercospora zeina. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112257. [PMID: 34834621 PMCID: PMC8625984 DOI: 10.3390/plants10112257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Gray leaf spot (GLS), caused by the fungal pathogen Cercospora zeina (C. zeina), is one of the most destructive soil-borne diseases in maize (Zea mays L.), and severely reduces maize production in Southwest China. However, the mechanism of resistance to GLS is not clear and few resistant alleles have been identified. Two maize inbred lines, which were shown to be resistant (R6) and susceptible (S8) to GLS, were injected by C. zeina spore suspensions. Transcriptome analysis was carried out with leaf tissue at 0, 6, 24, 144, and 240 h after inoculation. Compared with 0 h of inoculation, a total of 667 and 419 stable common differentially expressed genes (DEGs) were found in the resistant and susceptible lines across the four timepoints, respectively. The DEGs were usually enriched in 'response to stimulus' and 'response to stress' in GO term analysis, and 'plant-pathogen interaction', 'MAPK signaling pathways', and 'plant hormone signal transduction' pathways, which were related to maize's response to GLS, were enriched in KEGG analysis. Weighted-Genes Co-expression Network Analysis (WGCNA) identified two modules, while twenty hub genes identified from these indicated that plant hormone signaling, calcium signaling pathways, and transcription factors played a central role in GLS sensing and response. Combing DEGs and QTL mapping, five genes were identified as the consensus genes for the resistance of GLS. Two genes, were both putative Leucine-rich repeat protein kinase family proteins, specifically expressed in R6. In summary, our results can provide resources for gene mining and exploring the mechanism of resistance to GLS in maize.
Collapse
Affiliation(s)
- Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Yonghui Zhu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yifeng Leng
- College of Agricultural Sciences, Xichang University, Xichang 615000, China;
| | - Lin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Biao Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Junpin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Haitao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jie Chen
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Jun Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Jiwei Kang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Luchang Deng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yan Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Yuanyuan He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.Z.); (L.Y.); (B.Z.); (J.Y.); (H.T.); (J.C.); (J.T.); (J.K.); (L.D.); (Y.L.); (Y.H.)
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.); (H.L.); (S.G.); (T.R.)
| |
Collapse
|
13
|
Mahesh HB, Prasannakumar MK, Manasa KG, Perumal S, Khedikar Y, Kagale S, Soolanayakanahally RY, Lohithaswa HC, Rao AM, Hittalmani S. Genome, Transcriptome, and Germplasm Sequencing Uncovers Functional Variation in the Warm-Season Grain Legume Horsegram Macrotyloma uniflorum (Lam.) Verdc. FRONTIERS IN PLANT SCIENCE 2021; 12:758119. [PMID: 34733308 PMCID: PMC8558620 DOI: 10.3389/fpls.2021.758119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 06/07/2023]
Abstract
Horsegram is a grain legume with excellent nutritional and remedial properties and good climate resilience, able to adapt to harsh environmental conditions. Here, we used a combination of short- and long-read sequencing technologies to generate a genome sequence of 279.12Mb, covering 83.53% of the estimated total size of the horsegram genome, and we annotated 24,521 genes. De novo prediction of DNA repeats showed that approximately 25.04% of the horsegram genome was made up of repetitive sequences, the lowest among the legume genomes sequenced so far. The major transcription factors identified in the horsegram genome were bHLH, ERF, C2H2, WRKY, NAC, MYB, and bZIP, suggesting that horsegram is resistant to drought. Interestingly, the genome is abundant in Bowman-Birk protease inhibitors (BBIs), which can be used as a functional food ingredient. The results of maximum likelihood phylogenetic and estimated synonymous substitution analyses suggested that horsegram is closely related to the common bean and diverged approximately 10.17 million years ago. The double-digested restriction associated DNA (ddRAD) sequencing of 40 germplasms allowed us to identify 3,942 high-quality SNPs in the horsegram genome. A genome-wide association study with powdery mildew identified 10 significant associations similar to the MLO and RPW8.2 genes. The reference genome and other genomic information presented in this study will be of great value to horsegram breeding programs. In addition, keeping the increasing demand for food with nutraceutical values in view, these genomic data provide opportunities to explore the possibility of horsegram for use as a source of food and nutraceuticals.
Collapse
Affiliation(s)
- H. B. Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - M. K. Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - K. G. Manasa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Sampath Perumal
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yogendra Khedikar
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | | | - H. C. Lohithaswa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Annabathula Mohan Rao
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Shailaja Hittalmani
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
14
|
Dong Y, Ye X, Xiong A, Zhu N, Jiang L, Qu S. The regulatory role of gibberellin related genes DKGA2ox1 and MIR171f_3 in persimmon dwarfism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110958. [PMID: 34315584 DOI: 10.1016/j.plantsci.2021.110958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
'Nantongxiaofangshi' (Diospyros kaki Thunb., D. kaki Thunb.) is a local cultivar of persimmon with dwarf-like traits in Jiangsu, China. Closely spaced planting afforded by dwarfism is usually one of the most important ways to promote fruit cultivation and production. However, the understanding of dwarfism in D. kaki Thunb. is very limited at the molecular level, which hinders the further increase of the fruit production. In this work, a persimmon transgenic system was successfully established, and the field experiments of grafting phenotype were carried out. The results showed that D. kaki Thunb. could be used as an interstock to induce dwarfing in grafted scions, and the dwarf character was better when interstock lengths were between 20 and 25 cm. Furthermore, the key genes related to dwarfism in D. kaki Thunb. were screened and verified, and subsequently, the regulatory role of related genes in persimmon dwarfism was figured out. It was found that the gene encoding gibberellin 2-oxidase-1 (DkGA2ox1) involved in GA biosynthesis was associated with the dwarfing in D. kaki Thunb. Overexpression of DkGA2ox1 in Diospyros lotus resulted in a typical dwarf phenotype. Meanwhile, the microRNA data showed that the miR171f_3 demonstrated the active involvement in GA pathway response in persimmon dwarfism. DkGA2ox1 and MIR171f_3, as two highly expressed genes in D. kaki Thunb. interstock, could be used as stimulus signals to affect the content of GA in scion, however, the specific transmission mechanism still needs to be further explored. Ultimately, the bioactive GA level was decreased, resulting in the scion dwarfism.
Collapse
Affiliation(s)
- Yuhan Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xialin Ye
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ning Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Luping Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
15
|
Structural and Functional Genomics of the Resistance of Cacao to Phytophthora palmivora. Pathogens 2021; 10:pathogens10080961. [PMID: 34451425 PMCID: PMC8398157 DOI: 10.3390/pathogens10080961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022] Open
Abstract
Black pod disease, caused by Phytophthora spp., is one of the main diseases that attack cocoa plantations. This study validated, by association mapping, 29 SSR molecular markers flanking to QTL (Quantitative Trait Loci) associated with Phytophthora palmivora Butler (Butler) (PP) resistance, in three local ancient varieties of the Bahia (Comum, Pará, and Maranhão), varieties that have a high potential in the production of gourmet chocolate. Four SSR loci associated with resistance to PP were detected, two on chromosome 8, explaining 7.43% and 3.72% of the Phenotypic Variation (%PV), one on chromosome 2 explaining 2.71%PV and one on chromosome 3 explaining 1.93%PV. A functional domains-based annotation was carried out, in two Theobroma cacao (CRIOLLO and MATINA) reference genomes, of 20 QTL regions associated with cocoa resistance to the pathogen. It was identified 164 (genome CRIOLLO) and 160 (genome MATINA) candidate genes, hypothetically involved in the recognition and activation of responses in the interaction with the pathogen. Genomic regions rich in genes with Coiled-coils (CC), nucleotide binding sites (NBS) and Leucine-rich repeat (LRR) domains were identified on chromosomes 1, 3, 6, 8, and 10, likewise, regions rich in Receptor-like Kinase domain (RLK) and Ginkbilobin2 (GNK2) domains were identified in chromosomes 4 and 6.
Collapse
|
16
|
Zhang X, Cao H, Wang H, Zhang R, Jia H, Huang J, Zhao J, Yao J. Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots. PLoS One 2021; 16:e0253812. [PMID: 34237067 PMCID: PMC8266090 DOI: 10.1371/journal.pone.0253812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Graphene has shown great potential for improving growth of many plants, but its effect on woody plants remains essentially unstudied. In this work, Pinus tabuliformis Carr. bare-rooted seedlings grown outdoors in pots were irrigated with a graphene solution over a concentration range of 0-50 mg/L for six months. Graphene was found to stimulate root growth, with a maximal effect at 25 mg/L. We then investigated root microstructure and carried out transcript profiling of root materials treated with 0 and 25 mg/L graphene. Graphene treatment resulted in plasma-wall separation and destruction of membrane integrity in root cells. More than 50 thousand of differentially expressed genes (DEGs) were obtained by RNA sequencing, among which 6477 could be annotated using other plant databases. The GO enrichment analysis and KEGG pathway analysis of the annotated DEGs indicated that abiotic stress responses, which resemble salt stress, were induced by graphene treatment in roots, while responses to biotic stimuli were inhibited. Numerous metabolic processes and hormone signal transduction pathways were altered by the treatment. The growth promotion effects of graphene may be mediated by encouraging proline synthesis, and suppression of the expression of the auxin response gene SMALL AUXIN UP-REGULATED RNA 41 (SAUR41), PYL genes which encode ABA receptors, and GSK3 homologs.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Huifen Cao
- College of Life Science, Shanxi Datong University, Datong, Shanxi Province, PR China
| | - Haiyan Wang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Runxuan Zhang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
| | - Haikuan Jia
- National Fine Variety Base of Pinus sylvestris var. in Honghuaerji Forestry Bureau, Hulunbeir Inner Mongolia, PR China
| | - Jingting Huang
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Jianguo Zhao
- Key Laboratory of National Forest and Grass Administration for the Application of Graphene in Forestry, Institute of Carbon Materials Science, Shanxi Datong University, Datong, P.R. China
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, P.R. China
| | - Jianzhong Yao
- Shanxi Poplar High-yield Forest Bureau, Datong, Shanxi Province, PR China
| |
Collapse
|
17
|
Draft genome sequence of the pulse crop blackgram [Vigna mungo (L.) Hepper] reveals potential R-genes. Sci Rep 2021; 11:11247. [PMID: 34045617 PMCID: PMC8160138 DOI: 10.1038/s41598-021-90683-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Blackgram [Vigna mungo (L.) Hepper] (2n = 2x = 22), an important Asiatic legume crop, is a major source of dietary protein for the predominantly vegetarian population. Here we construct a draft genome sequence of blackgram, for the first time, by employing hybrid genome assembly with Illumina reads and third generation Oxford Nanopore sequencing technology. The final de novo whole genome of blackgram is ~ 475 Mb (82% of the genome) and has maximum scaffold length of 6.3 Mb with scaffold N50 of 1.42 Mb. Genome analysis identified 42,115 genes with mean coding sequence length of 1131 bp. Around 80.6% of predicted genes were annotated. Nearly half of the assembled sequence is composed of repetitive elements with retrotransposons as major (47.3% of genome) transposable elements, whereas, DNA transposons made up only 2.29% of the genome. A total of 166,014 SSRs, including 65,180 compound SSRs, were identified and primer pairs for 34,816 SSRs were designed. Out of the 33,959 proteins, 1659 proteins showed presence of R-gene related domains. KIN class was found in majority of the proteins (905) followed by RLK (239) and RLP (188). The genome sequence of blackgram will facilitate identification of agronomically important genes and accelerate the genetic improvement of blackgram.
Collapse
|
18
|
Yan Y, Wang P, Wei Y, Bai Y, Lu Y, Zeng H, Liu G, Reiter RJ, He C, Shi H. The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:785-800. [PMID: 33128298 PMCID: PMC8051611 DOI: 10.1111/pbi.13505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 09/27/2020] [Indexed: 05/05/2023]
Abstract
Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Nitrate reductase (NR) plays an important role in plant nitrogen metabolism in plants. However, the in vivo role of NR and the corresponding signalling pathway remain unclear in cassava. In this study, we isolated MeNR1/2 and revealed their novel upstream transcription factor MeRAV5. We also identified MeCatalase1 (MeCAT1) as the interacting protein of MeRAV5. In addition, we investigated the role of MeCatalase1 and MeRAV5-MeNR1/2 module in cassava defence response. MeNRs positively regulates cassava disease resistance against CBB through modulation of nitric oxide (NO) and extensive transcriptional reprogramming especially in mitogen-activated protein kinase (MAPK) signalling. Notably, MeRAV5 positively regulates cassava disease resistance through the coordination of NO and hydrogen peroxide (H2 O2 ) level. On the one hand, MeRAV5 directly activates the transcripts of MeNRs and NO level by binding to CAACA motif in the promoters of MeNRs. On the other hand, MeRAV5 interacts with MeCAT1 to inhibit its activity, so as to negatively regulate endogenous H2 O2 level. This study highlights the precise coordination of NR activity and CAT activity by MeRAV5 through directly activating MeNRs and interacting with MeCAT1 in plant immunity.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Russel J. Reiter
- Department of Anatomy and Cell SystemUT Health San AntonioSan AntonioTXUSA
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| |
Collapse
|
19
|
Kaushal M, Mahuku G, Swennen R. Comparative Transcriptome and Expression Profiling of Resistant and Susceptible Banana Cultivars during Infection by Fusarium oxysporum. Int J Mol Sci 2021; 22:3002. [PMID: 33809411 PMCID: PMC7999991 DOI: 10.3390/ijms22063002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive diseases of banana. Methods to control the disease are still inadequate. The present investigation targeted expression of defense-related genes in tissue cultured banana plantlets of Fusarium resistant and susceptible cultivars after infection with biological control agents (BCAs) and Fusarium (Foc race 1). In total 3034 differentially expressed genes were identified which annotated to 58 transcriptional families (TF). TF families such as MYB, bHLH and NAC TFs were mostly up-regulated in response to pathogen stress, whereas AP2/EREBP were mostly down-regulated. Most genes were associated with plant-pathogen response, plant hormone signal transduction, starch and sucrose metabolism, cysteine and methionine metabolism, flavonoid biosynthesis, selenocompound metabolism, phenylpropanoid biosynthesis, mRNA surveillance pathway, mannose type O-glycan biosynthesis, amino acid and nucleotide sugar metabolism, cyanoamino acid metabolism, and hormone signal transduction. Our results showed that the defense mechanisms of resistant and susceptible banana cultivars treated with BCAs, were regulated by differentially expressed genes in various categories of defense pathways. Furthermore, the association with different resistant levels might serve as a strong foundation for the control of Fusarium wilt of banana.
Collapse
Affiliation(s)
- Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam 34441, Tanzania
| | - George Mahuku
- International Institute of Tropical Agriculture (IITA), Kampala 7878, Uganda;
| | - Rony Swennen
- International Institute of Tropical Agriculture (IITA), Arusha 447, Tanzania;
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
20
|
Serfraz S, Sharma V, Maumus F, Aubriot X, Geering ADW, Teycheney PY. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant ( Solanum melongena). FRONTIERS IN PLANT SCIENCE 2021; 12:683681. [PMID: 34367211 PMCID: PMC8346255 DOI: 10.3389/fpls.2021.683681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/30/2021] [Indexed: 05/20/2023]
Abstract
Endogenous viral elements (EVEs) are widespread in plant genomes. They result from the random integration of viral sequences into host plant genomes by horizontal DNA transfer and have the potential to alter host gene expression. We performed a large-scale search for co-transcripts including caulimovirid and plant sequences in 1,678 plant and 230 algal species and characterized 50 co-transcripts in 45 distinct plant species belonging to lycophytes, ferns, gymnosperms and angiosperms. We found that insertion of badnavirus EVEs along with Ty-1 copia mobile elements occurred into a late blight resistance gene (R1) of brinjal eggplant (Solanum melongena) and wild relatives in genus Solanum and disrupted R1 orthologs. EVEs of two previously unreported badnaviruses were identified in the genome of S. melongena, whereas EVEs from an additional novel badnavirus were identified in the genome of S. aethiopicum, the cultivated scarlet eggplant. Insertion of these viruses in the ancestral lineages of the direct wild relatives of the eggplant would have occurred during the last 3 Myr, further supporting the distinctiveness of the group of the eggplant within the giant genus Solanum.
Collapse
Affiliation(s)
- Saad Serfraz
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Vikas Sharma
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Florian Maumus
- URGI, INRAE, Université Paris-Saclay, Versailles, France
| | - Xavier Aubriot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Andrew D. W. Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Pierre-Yves Teycheney
- CIRAD, UMR AGAP Institut, F-97130, Capesterre-Belle-Eau, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Capesterre-Belle-Eau, France
- *Correspondence: Pierre-Yves Teycheney,
| |
Collapse
|
21
|
Bian W, Liu X, Zhang Z, Zhang H. Transcriptome analysis of diploid and triploid Populus tomentosa. PeerJ 2020; 8:e10204. [PMID: 33194408 PMCID: PMC7602689 DOI: 10.7717/peerj.10204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Triploid Chinese white poplar (Populus tomentosa Carr., Salicaceae) has stronger advantages in growth and better stress resistance and wood quality than diploid P. tomentosa. Using transcriptome sequencing technology to identify candidate transcriptome-based markers for growth vigor in young tree tissue is of great significance for the breeding of P. tomentosa varieties in the future. In this study, the cuttings of diploid and triploid P. tomentosa were used as plant materials, transcriptome sequencing was carried out, and their tissue culture materials were used for RT-qPCR verification of the expression of genes. The results showed that 12,240 differentially expressed genes in diploid and triploid P. tomentosa transcripts were annotated and enriched into 135 metabolic pathways. The top six pathways that enriched the most significantly different genes were plant-pathogen interaction, phenylpropanoid biosynthesis, MAPK signalling pathway-plant, ascorbate and aldarate metabolism, diterpenoid biosynthesis, and the betalain biosynthesis pathway. Ten growth-related genes were selected from pathways of plant hormone signal transduction and carbon fixation in photosynthetic organisms for RT-qPCR verification. The expression levels of MDH and CYCD3 in tissue-cultured and greenhouse planted triploid P. tomentosa were higher than those in tissue-cultured diploid P. tomentosa, which was consist ent with the TMM values calculated by transcriptome.
Collapse
Affiliation(s)
- Wen Bian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Xiaozhen Liu
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhiming Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan, China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
22
|
Wang Y, Huang L, Luo W, Jin Y, Gong F, He J, Liu D, Zheng Y, Wu B. Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust. Gene 2020; 768:145290. [PMID: 33157204 DOI: 10.1016/j.gene.2020.145290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive fungal disease of wheat globally. Breeding resistance cultivars is one of the most cost-effective methods to control Pst. Shumai126 (SM126), a high-yielding commercial wheat cultivar, showed strong stripe rust resistance for more than ten years. However, the molecular mechanisms and the responsive genes underlying the SM126 resistance to Pst have not been explored yet. In the present study, RNA-seq was used to analyze changes in the transcriptome at different time points of Pst infection in seedling leaves of SM126. In total, 520, 148 and 1439 differentially expressed genes (DEGs) were found to be up- or down-regulated after Pst infection at 1, 3, and 7 days post inoculation, respectively. The majority of DEGs exhibited transient expression patterns during Pst infection at different time points. GO and KEGG enrichment analysis revealed that many biological processes, such as photosynthesis, flavonoid biosynthesis, oxidative phosphorylation, MAPK signaling pathway, and phenylalanine metabolism are involved in SM126 response to Pst. Expression of genes involved in the plant-pathogen interaction pathway was detected and some key genes showed differential expression. DEGs encoded R proteins and transcription factors were also identified. Our study suggests the gene resources in SM126 related to stripe rust response could be valuable for understanding the mechanisms involved in stripe rust resistance and improvement of wheat resistance to Pst.
Collapse
Affiliation(s)
- Yufan Wang
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China.
| | - Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Yarong Jin
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Fangyi Gong
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130 Chengdu, Sichuan, China.
| |
Collapse
|
23
|
Stump SM, Marden JH, Beckman NG, Mangan SA, Comita LS. Resistance Genes Affect How Pathogens Maintain Plant Abundance and Diversity. Am Nat 2020; 196:472-486. [PMID: 32970465 DOI: 10.1086/710486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSpecialized pathogens are thought to maintain plant community diversity; however, most ecological studies treat pathogens as a black box. Here we develop a theoretical model to test how the impact of specialized pathogens changes when plant resistance genes (R-genes) mediate susceptibility. This work synthesizes two major hypotheses: the gene-for-gene model of pathogen resistance and the Janzen-Connell hypothesis of pathogen-mediated coexistence. We examine three scenarios. First, R-genes do not affect seedling survival; in this case, pathogens promote diversity. Second, seedlings are protected from pathogens when their R-gene alleles and susceptibility differ from those of nearby conspecific adults, thereby reducing transmission. If resistance is not costly, pathogens are less able to promote diversity because populations with low R-gene diversity suffer higher mortality, putting those populations at a disadvantage and potentially causing their exclusion. R-gene diversity may also be reduced during population bottlenecks, creating a priority effect. Third, when R-genes affect survival but resistance is costly, populations can avoid extinction by losing resistance alleles, as they cease paying a cost that is unneeded. Thus, the impact pathogens can have on tree diversity depends on the mechanism of plant-pathogen interactions. Future empirical studies should examine which of these scenarios most closely reflects the real world.
Collapse
|
24
|
Restrepo-Montoya D, Brueggeman R, McClean PE, Osorno JM. Computational identification of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2020; 21:459. [PMID: 32620079 PMCID: PMC7333395 DOI: 10.1186/s12864-020-06844-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background In plants, the plasma membrane is enclosed by the cell wall and anchors RLK and RLP proteins, which play a fundamental role in perception of developmental and environmental cues and are crucial in plant development and immunity. These plasma membrane receptors belong to large gene/protein families that are not easily classified computationally. This detailed analysis of these plasma membrane proteins brings a new source of information to the legume genetic, physiology and breeding research communities. Results A computational approach to identify and classify RLK and RLP proteins is presented. The strategy was evaluated using experimentally-validated RLK and RLP proteins and was determined to have a sensitivity of over 0.85, a specificity of 1.00, and a Matthews correlation coefficient of 0.91. The computational approach can be used to develop a detailed catalog of plasma membrane receptors (by type and domains) in several legume/crop species. The exclusive domains identified in legumes for RLKs are WaaY, APH Pkinase_C, LRR_2, and EGF, and for RLP are L-lectin LPRY and PAN_4. The RLK-nonRD and RLCK subclasses are also discovered by the methodology. In both classes, less than 20% of the total RLK predicted for each species belong to this class. Among the 10-species evaluated ~ 40% of the proteins in the kinome are RLKs. The exclusive legume domain combinations identified are B-Lectin/PR5K domains in G. max, M. truncatula, V. angularis, and V. unguiculata and a three-domain combination B-lectin/S-locus/WAK in C. cajan, M. truncatula, P. vulgaris, V. angularis. and V. unguiculata. Conclusions The analysis suggests that about 2% of the proteins of each genome belong to the RLK family and less than 1% belong to RLP family. Domain diversity combinations are greater for RLKs compared with the RLP proteins and LRR domains, and the dual domain combination LRR/Malectin were the most frequent domain for both groups of plasma membrane receptors among legume and non-legume species. Legumes exclusively show Pkinase extracellular domains, and atypical domain combinations in RLK and RLP compared with the non-legumes evaluated. The computational logic approach is statistically well supported and can be used with the proteomes of other plant species.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, PO Box 6050, Dept. 7660, Fargo, ND, 58108, USA
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
25
|
Santana Silva RJ, Micheli F. RRGPredictor, a set-theory-based tool for predicting pathogen-associated molecular pattern receptors (PRRs) and resistance (R) proteins from plants. Genomics 2020; 112:2666-2676. [DOI: 10.1016/j.ygeno.2020.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 03/01/2020] [Indexed: 12/22/2022]
|
26
|
Luo H, Pandey MK, Zhi Y, Zhang H, Xu S, Guo J, Wu B, Chen H, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Sudini HK, Varshney RK, Lei Y, Liao B, Jiang H. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1133-1148. [PMID: 31980836 PMCID: PMC7064456 DOI: 10.1007/s00122-020-03537-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/03/2020] [Indexed: 05/09/2023]
Abstract
Two novel and adjacent genomics and candidate genes for bacterial wilt resistance were identified on chromosome B02 in peanut variety Zhonghua 6 using both traditional QTL mapping and QTL-seq methods. Peanut (Arachis hypogaea) is an important oilseed crop worldwide. Utilization of genetic resistance is the most economic and effective approach to control bacterial wilt, one of the most devastating plant diseases, in peanut production. To accelerate the genetic improvement of bacterial wilt resistance (BWR) in peanut breeding programs, quantitative trait locus (QTL) mapping has been conducted for two resistant varieties. In this context, we deployed linkage mapping as well as sequencing-based mapping approach, QTL-seq, to identify genomic regions and candidate genes for BWR in another highly resistant variety Zhonghua 6. The recombination inbred line population (268 progenies) from the cross Xuhua 13 × Zhonghua 6 was used in BWR evaluation across five environments. QTL mapping using both SSR- and SNP-based genetic maps identified a stable QTL (qBWRB02-1) on chromosome B02 with 37.79-78.86% phenotypic variation explained (PVE) across five environments. The QTL-seq facilitated further dissection of qBWRB02-1 into two adjacent genomic regions, qBWRB02-1-1 (2.81-4.24 Mb) and qBWRB02-1-2 (6.54-8.75 Mb). Mapping of newly developed Kompetitive allele-specific PCR (KASP) markers on the genetic map confirmed their stable expressions across five environments. The effects of qBWRB02-1-1 (49.43-68.86% PVE) were much higher than qBWRB02-1-2 (3.96-6.48% PVE) and other previously reported QTLs. Nineteen putative candidate genes affected by 49 non-synonymous SNPs were identified for qBWRB02-1-1, and ten of them were predicted to code for disease resistance proteins. The major and stable QTL qBWRB02-1-1 and validated KASP markers could be deployed in genomics-assisted breeding (GAB) to develop improved peanut varieties with enhanced BWR.
Collapse
Affiliation(s)
- Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Ye Zhi
- Angel Yeast Co., Ltd, Yichang, 443003, Hubei, China
| | - Huan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Siliang Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Bei Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Haiwen Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
27
|
Shi W, Zhao SL, Liu K, Sun YB, Ni ZB, Zhang GY, Tang HS, Zhu JW, Wan BJ, Sun HQ, Dai JY, Sun MF, Yan GH, Wang AM, Zhu GY. Comparison of leaf transcriptome in response to Rhizoctonia solani infection between resistant and susceptible rice cultivars. BMC Genomics 2020; 21:245. [PMID: 32188400 PMCID: PMC7081601 DOI: 10.1186/s12864-020-6645-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background Sheath blight (SB), caused by Rhizoctonia solani, is a common rice disease worldwide. Currently, rice cultivars with robust resistance to R. solani are still lacking. To provide theoretic basis for molecular breeding of R. solani-resistant rice cultivars, the changes of transcriptome profiles in response to R. solani infection were compared between a moderate resistant cultivar (Yanhui-888, YH) and a susceptible cultivar (Jingang-30, JG). Results In the present study, 3085 differentially express genes (DEGs) were detected between the infected leaves and the control in JG, with 2853 DEGs in YH. A total of 4091 unigenes were significantly upregulated in YH than in JG before infection, while 3192 were significantly upregulated after infection. Further analysis revealed that YH and JG showed similar molecular responses to R. solani infection, but the responses were earlier in JG than in YH. Expression levels of trans-cinnamate 4-monooxygenase (C4H), ethylene-insensitive protein 2 (EIN2), transcriptome factor WRKY33 and the KEGG pathway plant-pathogen interaction were significantly affected by R. solani infection. More importantly, these components were all over-represented in YH cultivar than in JG cultivar before and/or after infection. Conclusions These genes possibly contribute to the higher resistance of YH to R. solani than JG and were potential target genes to molecularly breed R. solani-resistant rice cultivar.
Collapse
Affiliation(s)
- Wei Shi
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Shao-Lu Zhao
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Kai Liu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Yi-Biao Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Zheng-Bin Ni
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Gui-Yun Zhang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Hong-Sheng Tang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Jing-Wen Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Bai-Jie Wan
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Hong-Qin Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Jin-Ying Dai
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China
| | - Ming-Fa Sun
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Guo-Hong Yan
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Ai-Min Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| | - Guo-Yong Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, 224002, P. R. China.
| |
Collapse
|
28
|
Liu B, Lin R, Jiang Y, Jiang S, Xiong Y, Lian H, Zeng Q, Liu X, Liu ZJ, Chen S. Transcriptome Analysis and Identification of Genes Associated with Starch Metabolism in Castanea henryi Seed (Fagaceae). Int J Mol Sci 2020; 21:E1431. [PMID: 32093295 PMCID: PMC7073145 DOI: 10.3390/ijms21041431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022] Open
Abstract
Starch is the most important form of carbohydrate storage and is the major energy reserve in some seeds, especially Castanea henryi. Seed germination is the beginning of the plant's life cycle, and starch metabolism is important for seed germination. As a complex metabolic pathway, the regulation of starch metabolism in C. henryi is still poorly understood. To explore the mechanism of starch metabolism during the germination of C. henryi, we conducted a comparative gene expression analysis at the transcriptional level using RNA-seq across four different germination stages, and analyzed the changes in the starch and soluble sugar contents. The results showed that the starch content increased in 0-10 days and decreased in 10-35 days, while the soluble sugar content continuously decreased in 0-30 days and increased in 30-35 days. We identified 49 candidate genes that may be associated with starch and sucrose metabolism. Three ADP-glucose pyrophosphorylase (AGPase) genes, two nucleotide pyrophosphatase/phosphodiesterases (NPPS) genes and three starch synthases (SS) genes may be related to starch accumulation. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expression levels of these genes. Our study combined transcriptome data with physiological and biochemical data, revealing potential candidate genes that affect starch metabolism during seed germination, and provides important data about starch metabolism and seed germination in seed plants.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Ruqiang Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuting Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shuzhen Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yuanfang Xiong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Lian
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Qinmeng Zeng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xuedie Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.L.); (R.L.); (Y.J.); (S.J.); (Y.X.); (H.L.); (Q.Z.); (X.L.)
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
29
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|
30
|
Tareke Woldegiorgis S, Wang S, He Y, Xu Z, Chen L, Tao H, Zhang Y, Zou Y, Harrison A, Zhang L, Ai Y, Liu W, He H. Rice Stress-Resistant SNP Database. RICE (NEW YORK, N.Y.) 2019; 12:97. [PMID: 31872320 PMCID: PMC6928182 DOI: 10.1186/s12284-019-0356-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/06/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) yield is limited inherently by environmental stresses, including biotic and abiotic stresses. Thus, it is of great importance to perform in-depth explorations on the genes that are closely associated with the stress-resistant traits in rice. The existing rice SNP databases have made considerable contributions to rice genomic variation information but none of them have a particular focus on integrating stress-resistant variation and related phenotype data into one web resource. RESULTS Rice Stress-Resistant SNP database (http://bioinformatics.fafu.edu.cn/RSRS) mainly focuses on SNPs specific to biotic and abiotic stress-resistant ability in rice, and presents them in a unified web resource platform. The Rice Stress-Resistant SNP (RSRS) database contains over 9.5 million stress-resistant SNPs and 797 stress-resistant candidate genes in rice, which were detected from more than 400 stress-resistant rice varieties. We incorporated the SNPs function, genome annotation and phenotype information into this database. Besides, the database has a user-friendly web interface for users to query, browse and visualize a specific SNP efficiently. RSRS database allows users to query the SNP information and their relevant annotations for individual variety or more varieties. The search results can be visualized graphically in a genome browser or displayed in formatted tables. Users can also align SNPs between two or more rice accessions. CONCLUSION RSRS database shows great utility for scientists to further characterize the function of variants related to environmental stress-resistant ability in rice.
Collapse
Affiliation(s)
| | - Shaobo Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yiruo He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhenhua Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lijuan Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huan Tao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Zou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, Colchester, UK
| | - Lina Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yufang Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
31
|
Luo H, Pandey MK, Khan AW, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Lei Y, Liao B, Varshney RK, Jiang H. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2356-2369. [PMID: 31087470 PMCID: PMC6835129 DOI: 10.1111/pbi.13153] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/01/2019] [Accepted: 05/12/2019] [Indexed: 05/24/2023]
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, is a devastating disease affecting over 350 plant species. A few peanut cultivars were found to possess stable and durable bacterial wilt resistance (BWR). Genomics-assisted breeding can accelerate the process of developing resistant cultivars by using diagnostic markers. Here, we deployed sequencing-based trait mapping approach, QTL-seq, to discover genomic regions, candidate genes and diagnostic markers for BWR in a recombination inbred line population (195 progenies) of peanut. The QTL-seq analysis identified one candidate genomic region on chromosome B02 significantly associated with BWR. Mapping of newly developed single nucleotide polymorphism (SNP) markers narrowed down the region to 2.07 Mb and confirmed its major effects and stable expressions across three environments. This candidate genomic region had 49 nonsynonymous SNPs affecting 19 putative candidate genes including seven putative resistance genes (R-genes). Two diagnostic markers were successfully validated in diverse breeding lines and cultivars and could be deployed in genomics-assisted breeding of varieties with enhanced BWR.
Collapse
Affiliation(s)
- Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Aamir W. Khan
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Bei Wu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiaoping Ren
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| |
Collapse
|
32
|
Rody HVS, Bombardelli RGH, Creste S, Camargo LEA, Van Sluys MA, Monteiro-Vitorello CB. Genome survey of resistance gene analogs in sugarcane: genomic features and differential expression of the innate immune system from a smut-resistant genotype. BMC Genomics 2019; 20:809. [PMID: 31694536 PMCID: PMC6836459 DOI: 10.1186/s12864-019-6207-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Resistance genes composing the two-layer immune system of plants are thought as important markers for breeding pathogen-resistant crops. Many have been the attempts to establish relationships between the genomic content of Resistance Gene Analogs (RGAs) of modern sugarcane cultivars to its degrees of resistance to diseases such as smut. However, due to the highly polyploid and heterozygous nature of sugarcane genome, large scale RGA predictions is challenging. RESULTS We predicted, searched for orthologs, and investigated the genomic features of RGAs within a recently released sugarcane elite cultivar genome, alongside the genomes of sorghum, one sugarcane ancestor (Saccharum spontaneum), and a collection of de novo transcripts generated for six modern cultivars. In addition, transcriptomes from two sugarcane genotypes were obtained to investigate the roles of RGAs differentially expressed (RGADE) in their distinct degrees of resistance to smut. Sugarcane references lack RGAs from the TNL class (Toll-Interleukin receptor (TIR) domain associated to nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains) and harbor elevated content of membrane-associated RGAs. Up to 39% of RGAs were organized in clusters, and 40% of those clusters shared synteny. Basically, 79% of predicted NBS-encoding genes are located in a few chromosomes. S. spontaneum chromosome 5 harbors most RGADE orthologs responsive to smut in modern sugarcane. Resistant sugarcane had an increased number of RGAs differentially expressed from both classes of RLK (receptor-like kinase) and RLP (receptor-like protein) as compared to the smut-susceptible. Tandem duplications have largely contributed to the expansion of both RGA clusters and the predicted clades of RGADEs. CONCLUSIONS Most of smut-responsive RGAs in modern sugarcane were potentially originated in chromosome 5 of the ancestral S. spontaneum genotype. Smut resistant and susceptible genotypes of sugarcane have a distinct pattern of RGADE. TM-LRR (transmembrane domains followed by LRR) family was the most responsive to the early moment of pathogen infection in the resistant genotype, suggesting the relevance of an innate immune system. This work can help to outline strategies for further understanding of allele and paralog expression of RGAs in sugarcane, and the results should help to develop a more applied procedure for the selection of resistant plants in sugarcane.
Collapse
Affiliation(s)
- Hugo V S Rody
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Renato G H Bombardelli
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Silvana Creste
- Centro de Cana, IAC-Apta, Ribeirão Preto, Av. Pádua Dias n11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Luís E A Camargo
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânia, Universidade de São Paulo, Instituto de Biociências, São Paulo, Brazil
| | - Claudia B Monteiro-Vitorello
- Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
33
|
Silva JCF, Teixeira RM, Silva FF, Brommonschenkel SH, Fontes EPB. Machine learning approaches and their current application in plant molecular biology: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:37-47. [PMID: 31084877 DOI: 10.1016/j.plantsci.2019.03.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 03/26/2019] [Indexed: 05/19/2023]
Abstract
Machine learning (ML) is a field of artificial intelligence that has rapidly emerged in molecular biology, thus allowing the exploitation of Big Data concepts in plant genomics. In this context, the main challenges are given in terms of how to analyze massive datasets and extract new knowledge in all levels of cellular systems research. In summary, ML techniques allow complex interactions to be inferred in several biological systems. Despite its potential, ML has been underused due to complex computational algorithms and definition terms. Therefore, a systematic review to disentangle ML approaches is relevant for plant scientists and has been considered in this study. We presented the main steps for ML development (from data selection to evaluation of classification/prediction models) with a respective discussion approaching functional genomics mainly in terms of pathogen effector genes in plant immunity. Additionally, we also considered how to access public source databases under an ML framework towards advancing plant molecular biology and introduced novel powerful tools, such as deep learning.
Collapse
Affiliation(s)
- Jose Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Centro, Viçosa, MG, 36570-000, Brazil; Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Ruan M Teixeira
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Centro, Viçosa, MG, 36570-000, Brazil; Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Fabyano F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Sergio H Brommonschenkel
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Centro, Viçosa, MG, 36570-000, Brazil; Plant Pathology Department /Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Centro, Viçosa, MG, 36570-000, Brazil; Department of Biochemistry and Molecular Biology/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
34
|
Wang D, Sha Y, Hu J, Yang T, Piao X, Zhang X. Genetic signatures of plant resistance genes with known function within and between species. Genetica 2018; 146:517-528. [PMID: 30315424 DOI: 10.1007/s10709-018-0044-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Abstract
Plant disease resistance (R) genes have undergone significant evolutionary divergence to cope with rapid changes in pathogens. These highly variable evolutionary patterns may have contributed to diversity in R gene protein families or structures. Here, the evolutionary patterns of 76 identified R genes and their homologs were investigated within and between plant species. Results demonstrated that nucleotide binding sites and leucine-rich-repeat genes located in loci with complex evolutionary histories tended to evolve rapidly, have high variation in copy numbers, exhibit high levels of nucleotide variation and frequent gene conversion events, and also exhibit high non-synonymous to synonymous substitution ratios in LRR regions. However, non-NBS-LRR R genes are relatively well conserved with constrained variation and are more likely to participate in the basic defense system of hosts. In addition, both conserved and highly divergent evolutionary patterns were observed for the same R genes and were consistent with inter- and intra-specific distributions of some R genes. These results thus indicate either continuous or altered evolutionary patterns between and within species. The present investigation is the first attempt to investigate evolutionary patterns among all clearly functional R genes. The results reported here thus provide a foundation for future plant disease studies.
Collapse
Affiliation(s)
- Dan Wang
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Yan Sha
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China.
| | - Junfeng Hu
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Ting Yang
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Xue Piao
- School of Medical Informatics, Xuzhou Medical University, 221004, Xuzhou, P.R. China
| | - Xiaohui Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210093, Nanjing, P.R. China
| |
Collapse
|
35
|
Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney RK, Chen X, Liang X. Genome Sequencing and Analysis of the Peanut B-Genome Progenitor ( Arachis ipaensis). FRONTIERS IN PLANT SCIENCE 2018; 9:604. [PMID: 29774047 PMCID: PMC5943715 DOI: 10.3389/fpls.2018.00604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 05/21/2023]
Abstract
Peanut (Arachis hypogaea L.), an important leguminous crop, is widely cultivated in tropical and subtropical regions. Peanut is an allotetraploid, having A and B subgenomes that maybe have originated in its diploid progenitors Arachis duranensis (A-genome) and Arachis ipaensis (B-genome), respectively. We previously sequenced the former and here present the draft genome of the latter, expanding our knowledge of the unique biology of Arachis. The assembled genome of A. ipaensis is ~1.39 Gb with 39,704 predicted protein-encoding genes. A gene family analysis revealed that the FAR1 family may be involved in regulating peanut special fruit development. Genomic evolutionary analyses estimated that the two progenitors diverged ~3.3 million years ago and suggested that A. ipaensis experienced a whole-genome duplication event after the divergence of Glycine max. We identified a set of disease resistance-related genes and candidate genes for biological nitrogen fixation. In particular, two and four homologous genes that may be involved in the regulation of nodule development were obtained from A. ipaensis and A. duranensis, respectively. We outline a comprehensive network involved in drought adaptation. Additionally, we analyzed the metabolic pathways involved in oil biosynthesis and found genes related to fatty acid and triacylglycerol synthesis. Importantly, three new FAD2 homologous genes were identified from A. ipaensis and one was completely homologous at the amino acid level with FAD2 from A. hypogaea. The availability of the A. ipaensis and A. duranensis genomic assemblies will advance our knowledge of the peanut genome.
Collapse
Affiliation(s)
- Qing Lu
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haifen Li
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanbin Hong
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guoqiang Zhang
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Shijie Wen
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xingyu Li
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiyuan Zhou
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shaoxiong Li
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Liu
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haiyan Liu
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhongjian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen, China
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- School of Plant Biology, The Institute of Agriculture, University of Western Australia, University of Western Australia, Crawley, WA, Australia
| | - Xiaoping Chen
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoping Chen
| | - Xuanqiang Liang
- South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Xuanqiang Liang
| |
Collapse
|
36
|
Red rot resistant gene characterization using RGAP markers among sugarcane cultivars resistant and susceptible to the red rot disease. 3 Biotech 2017; 7:306. [PMID: 28955603 DOI: 10.1007/s13205-017-0941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/03/2017] [Indexed: 10/18/2022] Open
Abstract
Sugarcane is the major source of sugar in Asia and Europe, grown primarily in the tropical and sub-tropical zones of the world. The main disease responsible for its low yield is red rot. Therefore, in the present study, characterization of red rot disease was performed among 55 different sugarcane cultivars varying in red rot resistance level. 18 fragments were found to be associated with red rot resistance and were identified as resistant specific markers. The resistant specific fragments were amplified by RGA169, RGA396, RGA129, RGA231, RGA251, RGA057, RGA118, RGA152, RGA327, RGA542, RGA012, RGA173, RGA184, RGA275, RGA019, RGA267, RGA281 and RGA533. 7 fragments were found to be associated with red rot susceptibility and were considered as susceptible specific markers amplified by RGA088, RGA162, RGA396, RGA231, RGA251, RGA087 and RGA275. Sequencing of five resistant fragments, viz., RGA169, RGA231, RGA251, RGA267 and RGA533 was performed and the data thus obtained showed 80-99% similarity when compared with other resistant gene sequences previously submitted in NCBI database.
Collapse
|
37
|
Qin G, Xu C, Ming R, Tang H, Guyot R, Kramer EM, Hu Y, Yi X, Qi Y, Xu X, Gao Z, Pan H, Jian J, Tian Y, Yue Z, Xu Y. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1108-1128. [PMID: 28654223 DOI: 10.1111/tpj.13625] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 05/21/2023]
Abstract
Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound.
Collapse
Affiliation(s)
- Gaihua Qin
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ray Ming
- Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Haibao Tang
- Fujian Agriculture and Forestry University and University of Illinois at Urbana-Champaign School of Integrative Biology Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Romain Guyot
- Institut de Recherche pour le Développement, Diversité, Adaptation et Développement des Plantes, Montpellier, 34394, France
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yudong Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xingkai Yi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Yongjie Qi
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Xiangyang Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhenghui Gao
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Haifa Pan
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yinping Tian
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhen Yue
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yiliu Xu
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, Anhui Province, 230031, China
| |
Collapse
|
38
|
Shi Y, Niu K, Huang B, Liu W, Ma H. Transcriptional Responses of Creeping Bentgrass to 2,3-Butanediol, a Bacterial Volatile Compound (BVC) Analogue. Molecules 2017; 22:molecules22081318. [PMID: 28813015 PMCID: PMC6152298 DOI: 10.3390/molecules22081318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial volatile compounds (BVCs) have been reported to enhance plant growth and elicit plant defenses against fungal infection and insect damage. The objective of this study was to determine transcriptomic changes in response to synthetic BVC that could be associated with plant resistance to Rhizoctonia solani in creeping bentgrass. The 2,3-butanediol (BD) (250 µM) was sprayed on creeping bentgrass leaves grown in jam jars. The result showed that synthetic BD induced plant defense against R. solani for creeping bentgrass. Transcriptomic analysis demonstrated that more genes were repressed by BD while less showed up-regulation. BD suppressed the expression of some regular stress-related genes in creeping bentgrass, such as pheromone activity, calcium channel activity, photosystem II oxygen evolving complex, and hydrolase activity, while up-regulated defense related transcription factors (TFs), such as basic helix-loop-helix (bHLH) TFs, cysteine2-cysteine2-contans-like (C2C2-CO) and no apical meristem TFs (NAC). Other genes related to disease resistance, such as jasmonic acid (JA) signaling, leucine rich repeats (LRR)-transmembrane protein kinase, pathogen-related (PR) gene 5 receptor kinase and nucleotide binding site-leucine rich repeats (NBS-LRR) domain containing plant resistance gene (R-gene) were also significantly up-regulated. These results suggest that BD may induce changes to the plant transcriptome in induced systemic resistance (ISR) pathways.
Collapse
Affiliation(s)
- Yi Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining 810016, China.
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou 730070, China.
| |
Collapse
|
39
|
Upasani ML, Limaye BM, Gurjar GS, Kasibhatla SM, Joshi RR, Kadoo NY, Gupta VS. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci Rep 2017; 7:7746. [PMID: 28798320 PMCID: PMC5552786 DOI: 10.1038/s41598-017-07114-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
Fusarium wilt is one of the major biotic stresses reducing chickpea productivity. The use of wilt-resistant cultivars is the most appropriate means to combat the disease and secure productivity. As a step towards understanding the molecular basis of wilt resistance in chickpea, we investigated the transcriptomes of wilt-susceptible and wilt-resistant cultivars under both Fusarium oxysporum f.sp. ciceri (Foc) challenged and unchallenged conditions. Transcriptome profiling using LongSAGE provided a valuable insight into the molecular interactions between chickpea and Foc, which revealed several known as well as novel genes with differential or unique expression patterns in chickpea contributing to lignification, hormonal homeostasis, plant defense signaling, ROS homeostasis, R-gene mediated defense, etc. Similarly, several Foc genes characteristically required for survival and growth of the pathogen were expressed only in the susceptible cultivar with null expression of most of these genes in the resistant cultivar. This study provides a rich resource for functional characterization of the genes involved in resistance mechanism and their use in breeding for sustainable wilt-resistance. Additionally, it provides pathogen targets facilitating the development of novel control strategies.
Collapse
Affiliation(s)
- Medha L Upasani
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Bhakti M Limaye
- HPC-Medical and Bioinformatics Applications Group, Center for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Gayatri S Gurjar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sunitha M Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Center for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Rajendra R Joshi
- HPC-Medical and Bioinformatics Applications Group, Center for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Narendra Y Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| | - Vidya S Gupta
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
40
|
Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci Rep 2017; 7:5617. [PMID: 28717205 PMCID: PMC5514137 DOI: 10.1038/s41598-017-05085-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/24/2017] [Indexed: 11/12/2022] Open
Abstract
The genome sequence of globe artichoke (Cynara cardunculus L. var. scolymus, 2n = 2x = 34) is now available for use. A survey of C. cardunculus genetic resources is essential for understanding the evolution of the species, carrying out genetic studies and for application of breeding strategies. We report on the resequencing analyses (~35×) of four globe artichoke genotypes, representative of the core varietal types, as well as a genotype of the related taxa cultivated cardoon. The genomes were reconstructed at a chromosomal scale and structurally/functionally annotated. Gene prediction indicated a similar number of genes, while distinctive variations in miRNAs and resistance gene analogues (RGAs) were detected. Overall, 23,5 M SNP/indel were discovered (range 6,34 M –14,50 M). The impact of some missense SNPs on the biological functions of genes involved in the biosynthesis of phenylpropanoid and sesquiterpene lactone secondary metabolites was predicted. The identified variants contribute to infer on globe artichoke domestication of the different varietal types, and represent key tools for dissecting the path from sequence variation to phenotype. The new genomic sequences are fully searchable through independent Jbrowse interfaces (www.artichokegenome.unito.it), which allow the analysis of collinearity and the discovery of genomic variants, thus representing a one-stop resource for C. cardunculus genomics.
Collapse
|
41
|
Chandra S, Kazmi AZ, Ahmed Z, Roychowdhury G, Kumari V, Kumar M, Mukhopadhyay K. Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection. PLANT CELL REPORTS 2017; 36:1097-1112. [PMID: 28401336 DOI: 10.1007/s00299-017-2141-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/04/2017] [Indexed: 05/06/2023]
Abstract
NB-ARC domain-containing resistance genes from the wheat genome were identified, characterized and localized on chromosome arms that displayed differential yet positive response during incompatible and compatible leaf rust interactions. Wheat (Triticum aestivum L.) is an important cereal crop; however, its production is affected severely by numerous diseases including rusts. An efficient, cost-effective and ecologically viable approach to control pathogens is through host resistance. In wheat, high numbers of resistance loci are present but only few have been identified and cloned. A comprehensive analysis of the NB-ARC-containing genes in complete wheat genome was accomplished in this study. Complete NB-ARC encoding genes were mined from the Ensembl Plants database to predict 604 NB-ARC containing sequences using the HMM approach. Genome-wide analysis of orthologous clusters in the NB-ARC-containing sequences of wheat and other members of the Poaceae family revealed maximum homology with Oryza sativa indica and Brachypodium distachyon. The identification of overlap between orthologous clusters enabled the elucidation of the function and evolution of resistance proteins. The distributions of the NB-ARC domain-containing sequences were found to be balanced among the three wheat sub-genomes. Wheat chromosome arms 4AL and 7BL had the most NB-ARC domain-containing contigs. The spatio-temporal expression profiling studies exemplified the positive role of these genes in resistant and susceptible wheat plants during incompatible and compatible interaction in response to the leaf rust pathogen Puccinia triticina. Two NB-ARC domain-containing sequences were modelled in silico, cloned and sequenced to analyze their fine structures. The data obtained in this study will augment isolation, characterization and application NB-ARC resistance genes in marker-assisted selection based breeding programs for improving rust resistance in wheat.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Andaleeb Z Kazmi
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Zainab Ahmed
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Gargi Roychowdhury
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Veena Kumari
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
42
|
Morata J, Puigdomènech P. Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes. BMC Genomics 2017; 18:138. [PMID: 28178932 PMCID: PMC5299730 DOI: 10.1186/s12864-017-3529-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cucurbitaceae species contain a significantly lower number of genes coding for proteins with similarity to plant resistance genes belonging to the NBS-LRR family than other plant species of similar genome size. A large proportion of these genes are organized in clusters that appear to be hotspots of variability. The genomes of the Cucurbitaceae species measured until now are intermediate in size (between 350 and 450 Mb) and they apparently have not undergone any genome duplications beside those at the origin of eudicots. The cluster containing the largest number of NBS-LRR genes has previously been analyzed in melon and related species and showed a high degree of interspecific and intraspecific variability. It was of interest to study whether similar behavior occurred in other cluster of the same family of genes. RESULTS The cluster of NBS-LRR genes located in melon chromosome 9 was analyzed and compared with the syntenic regions in other cucurbit genomes. This is the second cluster in number within this species and it contains nine sequences with a NBS-LRR annotation including two genes, Fom1 and Prv, providing resistance against Fusarium and Ppapaya ring-spot virus (PRSV). The variability within the melon species appears to consist essentially of single nucleotide polymorphisms. Clusters of similar genes are present in the syntenic regions of the two species of Cucurbitaceae that were sequenced, cucumber and watermelon. Most of the genes in the syntenic clusters can be aligned between species and a hypothesis of generation of the cluster is proposed. The number of genes in the watermelon cluster is similar to that in melon while a higher number of genes (12) is present in cucumber, a species with a smaller genome than melon. After comparing genome resequencing data of 115 cucumber varieties, deletion of a group of genes is observed in a group of varieties of Indian origin. CONCLUSIONS Clusters of genes coding for NBS-LRR proteins in cucurbits appear to have specific variability in different regions of the genome and between different species. This observation is in favour of considering that the adaptation of plant species to changing environments is based upon the variability that may occur at any location in the genome and that has been produced by specific mechanisms of sequence variation acting on plant genomes. This information could be useful both to understand the evolution of species and for plant breeding.
Collapse
Affiliation(s)
- Jordi Morata
- Molecular Genetics Department, Center for Research in Agricultural Genomics, (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain
| | - Pere Puigdomènech
- Molecular Genetics Department, Center for Research in Agricultural Genomics, (CSIC-IRTA-UAB-UB), Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), Barcelona, 08193, Spain.
| |
Collapse
|
43
|
Li P, Quan X, Jia G, Xiao J, Cloutier S, You FM. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 2016; 17:852. [PMID: 27806688 PMCID: PMC5093994 DOI: 10.1186/s12864-016-3197-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Resistance gene analogs (RGAs), such as NBS-encoding proteins, receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs), are potential R-genes that contain specific conserved domains and motifs. Thus, RGAs can be predicted based on their conserved structural features using bioinformatics tools. Computer programs have been developed for the identification of individual domains and motifs from the protein sequences of RGAs but none offer a systematic assessment of the different types of RGAs. A user-friendly and efficient pipeline is needed for large-scale genome-wide RGA predictions of the growing number of sequenced plant genomes. Results An integrative pipeline, named RGAugury, was developed to automate RGA prediction. The pipeline first identifies RGA-related protein domains and motifs, namely nucleotide binding site (NB-ARC), leucine rich repeat (LRR), transmembrane (TM), serine/threonine and tyrosine kinase (STTK), lysin motif (LysM), coiled-coil (CC) and Toll/Interleukin-1 receptor (TIR). RGA candidates are identified and classified into four major families based on the presence of combinations of these RGA domains and motifs: NBS-encoding, TM-CC, and membrane associated RLP and RLK. All time-consuming analyses of the pipeline are paralleled to improve performance. The pipeline was evaluated using the well-annotated Arabidopsis genome. A total of 98.5, 85.2, and 100 % of the reported NBS-encoding genes, membrane associated RLPs and RLKs were validated, respectively. The pipeline was also successfully applied to predict RGAs for 50 sequenced plant genomes. A user-friendly web interface was implemented to ease command line operations, facilitate visualization and simplify result management for multiple datasets. Conclusions RGAugury is an efficiently integrative bioinformatics tool for large scale genome-wide identification of RGAs. It is freely available at Bitbucket: https://bitbucket.org/yaanlpc/rgaugury. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Xiande Quan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Gaofeng Jia
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.,University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Jin Xiao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.,National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Frank M You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada.
| |
Collapse
|
44
|
Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection. PLoS One 2016; 11:e0148453. [PMID: 26840746 PMCID: PMC4739524 DOI: 10.1371/journal.pone.0148453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/17/2016] [Indexed: 11/20/2022] Open
Abstract
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Dharmendra Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Jyoti Pathak
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Supriya Kumari
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Puspendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Kumble Vinod Prabhu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
45
|
Abstract
In pathogen resistant plants, solvent-exposed residues in the leucine-rich repeat (LRR) proteins are thought to mediate resistance by recognizing plant pathogen elicitors. In potato, the gene Gro1-4 confers resistance to Globodera rostochiensis. The investigation of variability in different copies of this gene represents a good model for the verification of positive selection mechanisms. Two datasets of Gro1 LRR sequences were constructed, one derived from the Gro1-4 gene, belonging to different cultivated and wild Solanum species, and the other belonging to paralogues of a resistant genotype. Analysis of nonsynonymous to synonymous substitution rates (K(a)/K(s)) highlighted 14 and six amino acids with K(a)/K(s) >1 in orthologue and paralogue datasets, respectively. Selection analysis revealed that the leucine-rich regions accumulate variability in a very specific way, and we found that some combinations of amino acids in these sites might be involved in pathogen recognition. The results confirm previous studies on positive selection in the LRR domain of R protein in Arabidopsis and other model plants and extend these to wild Solanum species. Moreover, positively selected sites in the Gro1 LRR domain show that coevolution mainly occurred in two regions on the internal surface of the three-dimensional horseshoe structure of the domain, albeit with different evolutionary forces between paralogues and orthologues.
Collapse
|
46
|
Sekhwal MK, Li P, Lam I, Wang X, Cloutier S, You FM. Disease Resistance Gene Analogs (RGAs) in Plants. Int J Mol Sci 2015; 16:19248-90. [PMID: 26287177 PMCID: PMC4581296 DOI: 10.3390/ijms160819248] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/01/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022] Open
Abstract
Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.
Collapse
Affiliation(s)
- Manoj Kumar Sekhwal
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Pingchuan Li
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Irene Lam
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Xiue Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sylvie Cloutier
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Frank M You
- Cereal Research Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Plant Science Department, University of Manitoba, Winnipeg, MB R3T 2N6, Canada.
| |
Collapse
|
47
|
Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 2015; 5:12806. [PMID: 26259924 PMCID: PMC4531285 DOI: 10.1038/srep12806] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/06/2015] [Indexed: 11/09/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.
Collapse
Affiliation(s)
- Sabiha Parween
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kashif Nawaz
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Riti Roy
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anil K. Pole
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - B. Venkata Suresh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gopal Misra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
48
|
Abstract
Tomato (Solanum lycopersicum), along with many other economically valuable species, belongs to the Solanaceae family. Understanding how plants in this family defend themselves against pathogens offers the opportunity of improving yield and quality of their edible products. The use of functional genomics has contributed to this purpose through both traditional and recently developed techniques that allow determination of changes in transcript abundance during pathogen attack. Such changes can implicate the affected gene as participating in plant defense. Testing the involvement of these candidate genes in defense has relied largely on posttranscriptional gene silencing, particularly virus-induced gene silencing. We discuss how functional genomics has played a key role in our current understanding of the defense response in tomato and related species and what are the challenges and opportunities for the future.
Collapse
|
49
|
Postnikova OA, Hult M, Shao J, Skantar A, Nemchinov LG. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS One 2015; 10:e0118269. [PMID: 25710378 PMCID: PMC4339843 DOI: 10.1371/journal.pone.0118269] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/12/2015] [Indexed: 12/02/2022] Open
Abstract
Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with respect to resistance are discussed.
Collapse
Affiliation(s)
- Olga A. Postnikova
- USDA-ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Maria Hult
- USDA-ARS, Beltsville Agricultural Research Center, Nematology Laboratory, Beltsville, Maryland, United States of America
| | - Jonathan Shao
- USDA-ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Andrea Skantar
- USDA-ARS, Beltsville Agricultural Research Center, Nematology Laboratory, Beltsville, Maryland, United States of America
| | - Lev G. Nemchinov
- USDA-ARS, Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Weng K, Li ZQ, Liu RQ, Wang L, Wang YJ, Xu Y. Transcriptome of Erysiphe necator-infected Vitis pseudoreticulata leaves provides insight into grapevine resistance to powdery mildew. HORTICULTURE RESEARCH 2014; 1:14049. [PMID: 26504551 PMCID: PMC4596327 DOI: 10.1038/hortres.2014.49] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/11/2014] [Accepted: 08/06/2014] [Indexed: 05/23/2023]
Abstract
Powdery mildew (PM), which is caused by the pathogen Erysiphe necator (Schw.) Burr., is the single most damaging disease of cultivated grapes (Vitis vinifera) worldwide. However, little is known about the transcriptional response of grapes to infection with PM. RNA-seq analysis was used for deep sequencing of the leaf transcriptome to study PM resistance in Chinese wild grapes (V. pseudoreticulata Baihe 35-1) to better understand the interaction between host and pathogen. Greater than 100 million (M) 90-nt cDNA reads were sequenced from a cDNA library derived from PM-infected leaves. Among the sequences obtained, 6541 genes were differentially expressed (DEG) and were annotated with Gene Ontology terms and by pathway enrichment. The significant categories that were identified included the following: defense, salicylic acid (SA) and jasmonic acid (JA) responses; systemic acquired resistance (SAR); hypersensitive response; plant-pathogen interaction; flavonoid biosynthesis; and plant hormone signal transduction. Various putative secretory proteins were identified, indicating potential defense responses to PM infection. In all, 318 putative R-genes and 183 putative secreted proteins were identified, including the defense-related R-genes BAK1, MRH1 and MLO3 and the defense-related secreted proteins GLP and PR5. The expression patterns of 16 genes were further illuminated by RT-qPCR. The present study identified several candidate genes and pathways that may contribute to PM resistance in grapes and illustrated that RNA-seq is a powerful tool for studying gene expression. The RT-qPCR results reveal that effective resistance responses of grapes to PM include enhancement of JA and SAR responses and accumulation of phytoalexins.
Collapse
Affiliation(s)
- Kai Weng
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Zhi-Qian Li
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Lan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas (Northwest A&F University), Yangling, shanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, shanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, shanxi 712100, China.
| |
Collapse
|