1
|
Khuu A, Verreault M, Colin P, Tran H, Idbaih A. Clinical Applications of Antisense Oligonucleotides in Cancer: A Focus on Glioblastoma. Cells 2024; 13:1869. [PMID: 39594617 PMCID: PMC11592788 DOI: 10.3390/cells13221869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are promising drugs capable of modulating the protein expression of virtually any target with high specificity and high affinity through complementary base pairing. However, this requires a deep understanding of the target sequence and significant effort in designing the correct complementary drug. In addition, ASOs have been demonstrated to be well tolerated during their clinical use. Indeed, they are already used in many diseases due to pathogenic RNAs of known sequences and in several neurodegenerative diseases and metabolic diseases, for which they were given marketing authorizations (MAs) in Europe and the United States. Their use in oncology is gaining momentum with several identified targets, promising preclinical and clinical results, and recent market authorizations in the US. However, many challenges remain for their clinical use in cancer. It seems necessary to take a step back and review our knowledge of ASOs and their therapeutic uses in oncology. The objectives of this review are (i) to summarize the current state of the art of ASOs; (ii) to discuss the therapeutic use of ASOs in cancer; and (iii) to focus on ASO usage in glioblastoma, the challenges, and the perspective ahead.
Collapse
Affiliation(s)
- Alexandre Khuu
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Maïté Verreault
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| | - Philippe Colin
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Helene Tran
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| |
Collapse
|
2
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
3
|
Takakusa H, Iwazaki N, Nishikawa M, Yoshida T, Obika S, Inoue T. Drug Metabolism and Pharmacokinetics of Antisense Oligonucleotide Therapeutics: Typical Profiles, Evaluation Approaches, and Points to Consider Compared with Small Molecule Drugs. Nucleic Acid Ther 2023; 33:83-94. [PMID: 36735616 PMCID: PMC10066781 DOI: 10.1089/nat.2022.0054] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oligonucleotide therapeutics are attracting attention as a new treatment modality for a range of diseases that have been difficult to target using conventional approaches. Technical advances in chemical modification and drug delivery systems have led to the generation of compounds with excellent profiles as pharmaceuticals, and 16 oligonucleotide therapeutics have been marketed to date. There is a growing need to develop optimal and efficient approaches to evaluate drug metabolism and pharmacokinetics (DMPK) and drug-drug interactions (DDIs) of oligonucleotide therapeutics. The DMPK/DDI profiles of small molecule drugs are highly diverse depending on their structural and physicochemical characteristics, whereas oligonucleotide therapeutics share similar DMPK profiles within each chemistry type. Most importantly, the mechanisms and molecules involved in the distribution and metabolism of oligonucleotides differ from those of small molecules. In addition, there are considerations regarding experimental approaches in the evaluation of oligonucleotides, such as bioanalytical challenges, the use of radiolabeled tracers, materials for in vitro metabolism/DDI studies, and methods to study biodistribution. In this review, we attempt to summarize the DMPK characteristics of antisense oligonucleotide (ASO) therapeutics and discuss some of the issues regarding how to optimize the evaluation and prediction of the DMPK and DDI of ASOs.
Collapse
Affiliation(s)
- Hideo Takakusa
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Norihiko Iwazaki
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Tokuyuki Yoshida
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
5
|
Kreda SM. Oligonucleotide-based therapies for cystic fibrosis. Curr Opin Pharmacol 2022; 66:102271. [PMID: 35988291 DOI: 10.1016/j.coph.2022.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
In the clinically successful era of CFTR modulators and Theratyping, 10-20% of individuals with cystic fibrosis (CF) may develop disease due to CFTR mutations that remain undruggable. These individuals produce low levels of CFTR mRNA and/or not enough protein to be rescued with modulator drugs. Alternative therapeutic approaches to correct the CFTR defect at the mRNA level using nucleic acid technologies are currently feasible; e.g., oligonucleotides platforms, which are being rapidly developed to correct genetic disorders. Drug-like properties, great specificity, and predictable off-target effects by design make oligonucleotides a valuable approach with fewer clinical and ethical challenges than genomic editing strategies. Together with personalized and precision medicine approaches, oligonucleotides are ideal therapeutics to target CF-causing mutations that affect only a few individuals resilient to modulator therapies.
Collapse
Affiliation(s)
- Silvia M Kreda
- Marsico Lung Institute / Cystic Fibrosis Center, University of North Carolina at Chapel Hill, 6009 Thurston Bowles Bldg, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina at Chapel Hill, NC, 27599-7248, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
6
|
Kay E, Stulz R, Becquart C, Lovric J, Tängemo C, Thomen A, Baždarević D, Najafinobar N, Dahlén A, Pielach A, Fernandez-Rodriguez J, Strömberg R, Ämmälä C, Andersson S, Kurczy M. NanoSIMS Imaging Reveals the Impact of Ligand-ASO Conjugate Stability on ASO Subcellular Distribution. Pharmaceutics 2022; 14:pharmaceutics14020463. [PMID: 35214195 PMCID: PMC8876276 DOI: 10.3390/pharmaceutics14020463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
The delivery of antisense oligonucleotides (ASOs) to specific cell types via targeted endocytosis is challenging due to the low cell surface expression of target receptors and inefficient escape of ASOs from the endosomal pathway. Conjugating ASOs to glucagon-like peptide 1 (GLP1) leads to efficient target knockdown, specifically in pancreatic β-cells. It is presumed that ASOs dissociate from GLP1 intracellularly to enable an ASO interaction with its target RNA. It is unknown where or when this happens following GLP1-ASO binding to GLP1R and endocytosis. Here, we use correlative nanoscale secondary ion mass spectroscopy (NanoSIMS) and transmission electron microscopy to explore GLP1-ASO subcellular trafficking in GLP1R overexpressing HEK293 cells. We isotopically label both eGLP1 and ASO, which do not affect the eGLP1-ASO conjugate function. We found that the eGLP1 peptide and ASO are not detected at the same level in the same endosomes, within 30 min of GLP1R-HEK293 cell exposure to eGLP1-ASO. When we utilized different linker chemistry to stabilize the GLP1-ASO conjugate, we observed more ASO located with GLP1 compared to cell incubation with the less stable conjugate. Overall, our work suggests that the ASO separates from GLP1 relatively early in the endocytic pathway, and that linker chemistry might impact the GLP1-ASO function.
Collapse
Affiliation(s)
- Emma Kay
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Rouven Stulz
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (R.S.); (R.S.)
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
| | - Cécile Becquart
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 412 96 Gothenburg, Sweden;
| | - Jelena Lovric
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
| | - Carolina Tängemo
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Aurélien Thomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE 412 96 Gothenburg, Sweden;
| | - Dženita Baždarević
- Bioscience, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Neda Najafinobar
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
| | - Anna Pielach
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (A.P.); (J.F.-R.)
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (A.P.); (J.F.-R.)
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Huddinge, Sweden; (R.S.); (R.S.)
| | - Carina Ämmälä
- Bioscience, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden;
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (A.D.); (S.A.)
| | - Michael Kurczy
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden; (C.B.); (J.L.)
- Correspondence:
| |
Collapse
|
7
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Liczner C, Hanna CC, Payne RJ, Wilds CJ. Generation of oligonucleotide conjugates via one-pot diselenide-selenoester ligation-deselenization/alkylation. Chem Sci 2022; 13:410-420. [PMID: 35126973 PMCID: PMC8729807 DOI: 10.1039/d1sc04937b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
A breadth of strategies are needed to efficiently modify oligonucleotides with peptides or lipids to capitalize on their therapeutic and diagnostic potential, including the modulation of in vivo chemical stability and for applications in cell-targeting and cell-permeability. The chemical linkages typically used in peptide oligonucleotide conjugates (POCs) have limitations in terms of stability and/or ease of synthesis. Herein, we report an efficient method for POC synthesis using a diselenide-selenoester ligation (DSL)-deselenization strategy that rapidly generates a stable amide linkage between the two biomolecules. This conjugation strategy is underpinned by a novel selenide phosphoramidite building block that can be incorporated into an oligonucleotide by solid-phase synthesis to generate diselenide dimer molecules. These can be rapidly ligated with peptide selenoesters and, following in situ deselenization, lead to the efficient generation of POCs. The diselenide within the oligonucleotide also serves as a flexible functionalisation handle that can be leveraged for fluorescent labelling, as well as for alkylation to generate micelles.
Collapse
Affiliation(s)
- Christopher Liczner
- Department of Chemistry and Biochemistry, Concordia University 7141 Rue Sherbrooke Ouest Montréal Québec H4B 1R6 Canada
| | - Cameron C Hanna
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney Sydney NSW 2006 Australia
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University 7141 Rue Sherbrooke Ouest Montréal Québec H4B 1R6 Canada
| |
Collapse
|
9
|
Ohyagi M, Nagata T, Ihara K, Yoshida-Tanaka K, Nishi R, Miyata H, Abe A, Mabuchi Y, Akazawa C, Yokota T. DNA/RNA heteroduplex oligonucleotide technology for regulating lymphocytes in vivo. Nat Commun 2021; 12:7344. [PMID: 34937876 PMCID: PMC8695577 DOI: 10.1038/s41467-021-26902-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.
Collapse
MESH Headings
- Administration, Intravenous
- Adoptive Transfer
- Animals
- Demyelinating Diseases/genetics
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Endocytosis/drug effects
- Female
- Gene Expression Regulation
- Gene Silencing
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Humans
- Integrin alpha4/genetics
- Integrin alpha4/metabolism
- Jurkat Cells
- Lymphocytes/metabolism
- Male
- Mice, Inbred C57BL
- Nucleic Acid Heteroduplexes/administration & dosage
- Nucleic Acid Heteroduplexes/metabolism
- Nucleic Acid Heteroduplexes/pharmacokinetics
- Nucleic Acid Heteroduplexes/pharmacology
- Oligonucleotides/administration & dosage
- Oligonucleotides/metabolism
- Oligonucleotides/pharmacokinetics
- Oligonucleotides/pharmacology
- RNA/metabolism
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/pathology
- Tissue Distribution/drug effects
- Mice
Collapse
Affiliation(s)
- Masaki Ohyagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rieko Nishi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruka Miyata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aya Abe
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
10
|
Peptide-Pegylated Lipid Conjugation Via Copper-Catalyzed Alkyne-Azide 1,3-Dipolar Cycloaddition. Methods Mol Biol 2021. [PMID: 34386950 DOI: 10.1007/978-1-0716-1617-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Targeted drug delivery is an important strategy in the treatment of many diseases. However, cancer cells are very difficult to target, making this a substantial obstacle in chemotherapy treatment. Bombesin fragment (BBN(6-14)) has been found to target gastrin-releasing peptide receptor (GRPR), which is overexpressed in many cancer cells. In this chapter, BBN peptide was used as a targeting moiety on the surface of polymeric-based nanoparticles to deliver its payload into prostate cancer PC-3 cell lines. Copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) click reaction was utilized to link the BBN peptide with an alkyne derivative of Pegylated lipid.
Collapse
|
11
|
Shigdar S, Schrand B, Giangrande PH, de Franciscis V. Aptamers: Cutting edge of cancer therapies. Mol Ther 2021; 29:2396-2411. [PMID: 34146729 PMCID: PMC8353241 DOI: 10.1016/j.ymthe.2021.06.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The development of an aptamer-based therapeutic has rapidly progressed following the first two reports in the 1990s, underscoring the advantages of aptamer drugs associated with their unique binding properties. In 2004, the US Food and Drug Administration (FDA) approved the first therapeutic aptamer for the treatment of neovascular age-related macular degeneration, Macugen developed by NeXstar. Since then, eleven aptamers have successfully entered clinical trials for various therapeutic indications. Despite some of the pre-clinical and clinical successes of aptamers as therapeutics, no aptamer has been approved by the FDA for the treatment of cancer. This review highlights the most recent and cutting-edge approaches in the development of aptamers for the treatment of cancer types most refractory to conventional therapies. Herein, we will review (1) the development of aptamers to enhance anti-cancer immunity and as delivery tools for inducing the expression of immunogenic neoantigens; (2) the development of the most promising therapeutic aptamers designed to target the hard-to-treat cancers such as brain tumors; and (3) the development of "carrier" aptamers able to target and penetrate tumors and metastasis, delivering RNA therapeutics to the cytosol and nucleus.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - Brett Schrand
- TCR(2) Therapeutics, Inc., 100 Binney Street, Cambridge, MA 02142, USA
| | - Paloma H Giangrande
- Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; VP Platform Discovery Sciences, Biology, Wave Life Sciences, Cambridge, MA 02138, USA
| | - Vittorio de Franciscis
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy; Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Tan DJY, Cheong VV, Lim KW, Phan AT. A modular approach to enzymatic ligation of peptides and proteins with oligonucleotides. Chem Commun (Camb) 2021; 57:5507-5510. [PMID: 34036975 DOI: 10.1039/d1cc01348c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Joining peptides and oligonucleotides offers potential benefits, but current methods remain laborious. Here we present a novel approach towards enzymatic ligation of the two modalities through the development of tag phosphoramidites as adaptors that can be readily incorporated onto oligonucleotides. This simple and highly efficient approach paves the way towards streamlined development and production of peptide/protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Derrick Jing Yang Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | | | | | | |
Collapse
|
13
|
Chemical Manipulation of the Endosome Trafficking Machinery: Implications for Oligonucleotide Delivery. Biomedicines 2021; 9:biomedicines9050512. [PMID: 34063104 PMCID: PMC8148136 DOI: 10.3390/biomedicines9050512] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs), siRNA and splice switching oligonucleotides (SSOs) all have immense potential as therapeutic agents, potential that is now being validated as oligonucleotides enter the clinic. However, progress in oligonucleotide-based therapeutics has been limited by the difficulty in delivering these complex molecules to their sites of action in the cytosol or nucleus of cells within specific tissues. There are two aspects to the delivery problem. The first is that most types of oligonucleotides have poor uptake into non-hepatic tissues. The second is that much of the oligonucleotide that is taken up by cells is entrapped in endosomes where it is pharmacologically inert. It has become increasingly recognized that endosomal trapping is a key constraint on oligonucleotide therapeutics. Thus, many approaches have been devised to address this problem, primarily ones based on various nanoparticle technologies. However, recently an alternative approach has emerged that employs small molecules to manipulate intracellular trafficking processes so as to enhance oligonucleotide actions. This review presents the current status of this chemical biology approach to oligonucleotide delivery and seeks to point out possible paths for future development.
Collapse
|
14
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
15
|
Patil NA. Conjugation Approaches for Peptide-Mediated Delivery of Oligonucleotides Therapeutics. Aust J Chem 2021. [DOI: 10.1071/ch21131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Silva AC, Lobo DD, Martins IM, Lopes SM, Henriques C, Duarte SP, Dodart JC, Nobre RJ, Pereira de Almeida L. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders. Brain 2020; 143:407-429. [PMID: 31738395 DOI: 10.1093/brain/awz328] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.
Collapse
Affiliation(s)
- Ana C Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês M Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sara M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Sónia P Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal
| | - Luis Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,ViraVector, Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Li Q. Nusinersen as a Therapeutic Agent for Spinal Muscular Atrophy. Yonsei Med J 2020; 61:273-283. [PMID: 32233169 PMCID: PMC7105407 DOI: 10.3349/ymj.2020.61.4.273] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023] Open
Abstract
The reduction of survival motor neuron (SMN) protein causes spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease. Nusinersen is an antisense oligonucleotide, approved by the FDA, which specifically binds to the repressor within SMN2 exon 7 to enhance exon 7 inclusion and augment production of functional SMN protein. Nusinersen is the first new oligonucleotide-based drug targeting the central nervous system for the treatment of SMA. This review of nusinersen will discuss its action mechanism, cellular uptake, trafficking mechanisms, and administration approaches to cross the blood-brain barrier. Furthermore, nusinersen clinical trials will be assessed in terms of pharmacokinetics, tolerability and safety, the clinical outcomes of multiple intrathecal doses, and a discussion on the primary and secondary endpoints.
Collapse
Affiliation(s)
- Qing Li
- Department of Function, ShiJiaZhuang Traditional Chinese Medical Hospital, ShiJiaZhuang, HeBei, China.
| |
Collapse
|
18
|
Begum AA, Toth I, Hussein WM, Moyle PM. Advances in Targeted Gene Delivery. Curr Drug Deliv 2020; 16:588-608. [PMID: 31142250 DOI: 10.2174/1567201816666190529072914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Gene therapy has the potential to treat both acquired and inherited genetic diseases. Generally, two types of gene delivery vectors are used - viral vectors and non-viral vectors. Non-viral gene delivery systems have attracted significant interest (e.g. 115 gene therapies approved for clinical trials in 2018; clinicaltrials.gov) due to their lower toxicity, lack of immunogenicity and ease of production compared to viral vectors. To achieve the goal of maximal therapeutic efficacy with minimal adverse effects, the cell-specific targeting of non-viral gene delivery systems has attracted research interest. Targeting through cell surface receptors; the enhanced permeability and retention effect, or pH differences are potential means to target genes to specific organs, tissues, or cells. As for targeting moieties, receptorspecific ligand peptides, antibodies, aptamers and affibodies have been incorporated into synthetic nonviral gene delivery vectors to fulfill the requirement of active targeting. This review provides an overview of different potential targets and targeting moieties to target specific gene delivery systems.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia, St Lucia 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| |
Collapse
|
19
|
Wang S, Allen N, Vickers TA, Revenko AS, Sun H, Liang XH, Crooke ST. Cellular uptake mediated by epidermal growth factor receptor facilitates the intracellular activity of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2019. [PMID: 29514240 PMCID: PMC5909429 DOI: 10.1093/nar/gky145] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Nickolas Allen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alexey S Revenko
- Department of Antisense Drug, Discovery, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
20
|
Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019; 30:366-383. [PMID: 30608140 PMCID: PMC6766081 DOI: 10.1021/acs.bioconjchem.8b00761] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this Review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)-followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, α-tocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.
Collapse
Affiliation(s)
- Sebastien Benizri
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Arnaud Gissot
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Andrew Martin
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Brune Vialet
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Philippe Barthélémy
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| |
Collapse
|
21
|
Patil NA, Karas JA, Turner BJ, Shabanpoor F. Thiol-Cyanobenzothiazole Ligation for the Efficient Preparation of Peptide-PNA Conjugates. Bioconjug Chem 2019; 30:793-799. [PMID: 30645945 DOI: 10.1021/acs.bioconjchem.8b00908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antisense oligonucleotide (ASO)-based drugs are emerging with great potential as therapeutic compounds for diseases with unmet medical needs. However, for ASOs to be effective as clinical entities, they should reach their intracellular RNA and DNA targets at pharmacologically relevant concentrations. Over the past decades, various covalently attached delivery vehicles have been utilized for intracellular delivery of ASOs. One such approach is the use of biocompatible cell-penetrating peptides (CPPs) covalently conjugated to ASOs. The stability of the linkage is of paramount importance for maximal intracellular delivery to achieve the desired therapeutic effect. In this study, we have investigated the efficiency and stability of four different bioorthogonal and nonreductive linkages including triazole, thioether, thiosuccinimide thioether and thiazole moieties. Here we have shown that thiazole and thiosuccinimide are the two most efficient and facile approaches for the preparation of peptide-ASO conjugates. The thiazole linkage had a higher stability compared to the thiosuccinimide thioether at physiological conditions (pH 7.4, 37 °C) in the presence of a biologically relevant concentration of glutathione. We have also shown that the peptide-ASO conjugate with a thiosuccinimide linkage has a significantly lower antisense activity compared to the peptide-ASO with the thiazole linkage, which maintains its antisense activity after 24 h of exposure to glutathione. In summary, we have demonstrated that the bioorthogonal thiazole linkage offers the benefits of mild reaction conditions, fast reaction kinetics, absence of any byproducts, and higher stability compared to other conjugation approaches. This facile ligation can be used for the synthesis of a variety of bioconjugates where a stable linkage is required.
Collapse
|
22
|
Akbar MJ, Lukasewicz Ferreira PC, Giorgetti M, Stokes L, Morris CJ. Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2553-2562. [PMID: 31921534 PMCID: PMC6941431 DOI: 10.3762/bjnano.10.246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2019] [Indexed: 05/09/2023]
Abstract
Background: Gastrin-releasing peptide is a member of the bombesin family of peptides. Its cognate receptor, gastrin releasing peptide receptor (GRPR), is widely expressed in cancers of the lung, pancreas and ovaries. Gastrin releasing peptide (GRP) is an autocrine growth factor in small cell lung cancer, which has very poor patient outcomes. High affinity antagonist peptides have been developed for in vivo cancer imaging. In this report we decorated pegylated liposomes with a GRPR antagonist peptide and studied its interaction with, and accumulation within, lung cancer cells. Results: An N-terminally cysteine modified GRPR antagonist (termed cystabn) was synthesised and shown to inhibit cell growth in vitro. Cystabn was used to prepare a targeted 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) lipid conjugate that was formulated into liposomes. The liposomes displayed desirable colloidal properties and good stability under storage conditions. Flow cytometric and microscopic studies showed that fluorescently labelled cystabn-decorated liposomes accumulated more extensively in GRPR over-expressing cells than matched liposomes that contained no cystabn targeting motif. Conclusion: The use of GRPR antagonistic peptides for nanoparticle targeting has potential for enhancing drug accumulation in resistant cancer cells.
Collapse
Affiliation(s)
| | | | | | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | |
Collapse
|
23
|
Ämmälä C, Drury WJ, Knerr L, Ahlstedt I, Stillemark-Billton P, Wennberg-Huldt C, Andersson EM, Valeur E, Jansson-Löfmark R, Janzén D, Sundström L, Meuller J, Claesson J, Andersson P, Johansson C, Lee RG, Prakash TP, Seth PP, Monia BP, Andersson S. Targeted delivery of antisense oligonucleotides to pancreatic β-cells. SCIENCE ADVANCES 2018; 4:eaat3386. [PMID: 30345352 PMCID: PMC6192685 DOI: 10.1126/sciadv.aat3386] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/12/2018] [Indexed: 05/03/2023]
Abstract
Antisense oligonucleotide (ASO) silencing of the expression of disease-associated genes is an attractive novel therapeutic approach, but treatments are limited by the ability to deliver ASOs to cells and tissues. Following systemic administration, ASOs preferentially accumulate in liver and kidney. Among the cell types refractory to ASO uptake is the pancreatic insulin-secreting β-cell. Here, we show that conjugation of ASOs to a ligand of the glucagon-like peptide-1 receptor (GLP1R) can productively deliver ASO cargo to pancreatic β-cells both in vitro and in vivo. Ligand-conjugated ASOs silenced target genes in pancreatic islets at doses that did not affect target gene expression in liver or other tissues, indicating enhanced tissue and cell type specificity. This finding has potential to broaden the use of ASO technology, opening up novel therapeutic opportunities, and presents an innovative approach for targeted delivery of ASOs to additional cell types.
Collapse
Affiliation(s)
- C. Ämmälä
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Corresponding author. (C.Ä.); (P.P.S.)
| | - W. J. Drury
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - L. Knerr
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - I. Ahlstedt
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - P. Stillemark-Billton
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - C. Wennberg-Huldt
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - E.-M. Andersson
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - E. Valeur
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - R. Jansson-Löfmark
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - D. Janzén
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - L. Sundström
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - J. Meuller
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - J. Claesson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - P. Andersson
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - C. Johansson
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - R. G. Lee
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - T. P. Prakash
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - P. P. Seth
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
- Corresponding author. (C.Ä.); (P.P.S.)
| | - B. P. Monia
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - S. Andersson
- Cardiovascular Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
24
|
Catuogno S, Esposito CL, Condorelli G, de Franciscis V. Nucleic acids delivering nucleic acids. Adv Drug Deliv Rev 2018; 134:79-93. [PMID: 29630917 DOI: 10.1016/j.addr.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
Abstract
Nucleic acid therapeutics, including siRNAs, miRNAs/antimiRs, gRNAs and ASO, represent innovative and highly promising molecules for the safe treatment of a wide range of pathologies. The efficiency of systemic treatments is impeded by 1) the need to overcome physical and functional barriers in the organism, and 2) to accumulate in the intracellular active site at therapeutic concentrations. Although oligonucleotides either as modified naked molecules or complexed with delivery carriers have revealed to be effectively delivered to the affected target cells, this is restricted to topic treatments or to a few highly vascularized tissues. Therefore, the development of effective strategies for therapeutic nucleic acid selective delivery to target tissues is of primary importance in order to reduce the occurrence of undesired effects on non-target healthy tissues and to permit their translation to clinic. Due to their high affinity for specific ligands, high tissue penetration and chemical flexibility, short single-stranded nucleic acid aptamers are emerging as very attractive carriers for various therapeutic oligonucleotides. Yet, different aptamer-based bioconjugates, able to provide accumulation into target tissues, as well as efficient processing of therapeutic oligonucleotides, have been developed. In this respect, nucleic acid aptamer-mediated delivery strategies represent a powerful approach able to increase the therapeutic efficacy also highly reducing the overall toxicity. In this review, we will summarize recent progress in the field and discuss achieved objectives and optimization of aptamers as delivery carriers of short oligonucleotides.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Carla Lucia Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Gerolama Condorelli
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Vittorio de Franciscis
- Istituto di Endocrinologia ed Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|
25
|
Nakamoto K, Akao Y, Furuichi Y, Ueno Y. Enhanced Intercellular Delivery of cRGD-siRNA Conjugates by an Additional Oligospermine Modification. ACS OMEGA 2018; 3:8226-8232. [PMID: 30087937 PMCID: PMC6072241 DOI: 10.1021/acsomega.8b00850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/07/2018] [Indexed: 05/07/2023]
Abstract
Small interfering RNA (siRNA), consisting a 21-mer duplex molecule, is often modified by conjugation with specific ligands to enhance its capacity for tissue-specific delivery. However, these attempts are hampered by the low permeability of negatively charged RNA molecules to enter the cell membrane. In this study, we designed and synthesized siRNA conjugates modified with cationic oligospermine and cyclic RGD (cRGD) to overcome the low-membrane permeability of siRNA. The siRNA conjugate, which contains 15 spermines and a cRGD peptide, showed sufficient gene-silencing activity at 250 nM final concentration without a transfection reagent. Under these conditions, the cationic oligospermine and cRGD-siRNA conjugate did not show any cytotoxicity.
Collapse
Affiliation(s)
- Kosuke Nakamoto
- United
Graduate School of Agricultural Science, United Graduate School of Drug
Discovery and Medical Information Sciences, and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yukihiro Akao
- United
Graduate School of Agricultural Science, United Graduate School of Drug
Discovery and Medical Information Sciences, and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Furuichi
- GeneCare
Research Institute Co., Ltd., 19-2 Kajiwara, Kamakura 247-0063, Japan
| | - Yoshihito Ueno
- United
Graduate School of Agricultural Science, United Graduate School of Drug
Discovery and Medical Information Sciences, and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center
of Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
- E-mail: . Phone: +81-58-293-2919. Fax: +81-58-293-2919 (Y.U.)
| |
Collapse
|
26
|
Juliano RL. Intracellular Trafficking and Endosomal Release of Oligonucleotides: What We Know and What We Don't. Nucleic Acid Ther 2018; 28:166-177. [PMID: 29708838 DOI: 10.1089/nat.2018.0727] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding the cellular uptake and intracellular trafficking of oligonucleotides provides an important basic underpinning for the developing field of oligonucleotide-based therapeutics. Whether delivered as "free" oligonucleotides, as ligand-oligonucleotide conjugates, or in association with various nanocarriers, all forms of oligonucleotide enter cells by endocytosis and are initially ensconced within membrane-limited vesicles. Accordingly, the locus and extent of release to the cytosol and nucleus are key determinants of the pharmacological actions of oligonucleotides. A number of recent studies have explored the intracellular trafficking of various forms of oligonucleotides and their release from endomembrane compartments. These studies reveal a surprising convergence on an early-intermediate compartment in the trafficking pathway as the key locus of release for oligonucleotides administered in "free" form as well as those delivered with lipid complexes. Thus, oligonucleotide release from multivesicular bodies or from late endosomes seems to be the crucial endogenous process for attaining pharmacological effects. This intrinsic process of oligonucleotide release may be amplified by delivery agents such as lipid complexes or small molecule enhancers.
Collapse
Affiliation(s)
- R L Juliano
- Initos Pharmaceuticals LLC, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
27
|
Begum AA, Wan Y, Toth I, Moyle PM. Bombesin/oligoarginine fusion peptides for gastrin releasing peptide receptor (GRPR) targeted gene delivery. Bioorg Med Chem 2018; 26:516-526. [DOI: 10.1016/j.bmc.2017.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
|
28
|
Wang S, Sun H, Tanowitz M, Liang XH, Crooke ST. Intra-endosomal trafficking mediated by lysobisphosphatidic acid contributes to intracellular release of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2017; 45:5309-5322. [PMID: 28379543 PMCID: PMC5605259 DOI: 10.1093/nar/gkx231] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages are broadly used as research tools and therapeutic agents. Chemically modified PS-ASOs can mediate efficient target reduction by site-specific cleavage of RNA through RNase H1. PS-ASOs are known to be internalized via a number of endocytotic pathways and are released from membrane-enclosed endocytotic organelles, mainly late endosomes (LEs). This study was focused on the details of PS-ASO trafficking through endocytic pathways. It was found that lysobisphosphatidic acid (LBPA) is required for release of PS-ASOs from LEs. PS-ASOs exited early endosomes (EEs) rapidly after internalization and became co-localized with LBPA by 2 hours in LEs. Inside LEs, PS-ASOs and LBPA were co-localized in punctate, dot-like structures, likely intraluminal vesicles (ILVs). Deactivation of LBPA using anti-LBPA antibody significantly decreased PS-ASO activities without affecting total PS-ASO uptake. Reduction of Alix also substantially decreased PS-ASO activities without affecting total PS-ASO uptake. Furthermore, Alix reduction decreased LBPA levels and limited co-localization of LBPA with PS-ASOs at ILVs inside LEs. Thus, the fusion properties of ILVs, which are supported by LBPA, contribute to PS-ASO intracellular release from LEs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Tanowitz
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
29
|
Li F, Zhao Y, Mao C, Kong Y, Ming X. RGD-Modified Albumin Nanoconjugates for Targeted Delivery of a Porphyrin Photosensitizer. Mol Pharm 2017; 14:2793-2804. [PMID: 28700237 DOI: 10.1021/acs.molpharmaceut.7b00321] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in photodynamic therapy of cancer have been restrained by lack of cancer specificity and side effects to normal tissues. Molecularly targeted photodynamic therapy can achieve higher cancer specificity by combination of active cancer targeting and localized laser activation. We aimed to use albumin as a carrier to prepare targeted nanoconjugates that are selective to cancer cells and smaller than conventional nanoparticles for superior tumor penetration. IRDye 700DX (IR700), a porphyrin photosensitizer, was covalently conjugated to human serum albumin that was also linked with tumor-targeting RGD peptides. With multiple IR700 and RGD molecules in a single albumin molecule, the resultant nanoconjugates demonstrated monodispersed and uniform size distribution with a diameter of 10.9 nm. These targeted nanoconjugates showed 121-fold increase in cellular delivery of IR700 into TOV21G ovarian cancer cells compared to control nanoconjugates. Mechanistic studies revealed that the integrin specific cellular delivery was achieved through dynamin-mediated caveolae-dependent endocytosis pathways. They produced massive cell killing in TOV21G cells at low nanomolar concentrations upon light irradiation, while NIH/3T3 cells that do not express integrin αvβ3 were not affected. Because of their small size, targeted albumin nanoconjugates could penetrate tumor spheroids of SKOV-3 ovarian cancer cells and produced strong phototoxicity in this 3-D model. Owing to their cancer-specific delivery and small size, these targeted nanoconjugates may become an effective drug delivery system for enabling molecularly targeted photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Fang Li
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States.,School of Pharmacy, Jiangsu Vocational College of Medicine , Yancheng 224005, China
| | - Yan Zhao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine , Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
30
|
Taskova M, Mantsiou A, Astakhova K. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates. Chembiochem 2017; 18:1671-1682. [PMID: 28614621 DOI: 10.1002/cbic.201700229] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 12/29/2022]
Abstract
The main objective of this work is to provide an update on synthetic nucleic acid analogues and nanoassemblies as tools in gene therapy. In particular, the synthesis and properties of peptide-oligonucleotide conjugates (POCs), which have high potential in research and as therapeutics, are described in detail. The exploration of POCs has already led to fruitful results in the treatment of neurological diseases, lung disorders, cancer, leukemia, viral, and bacterial infections. However, delivery and in vivo stability are the major barriers to the clinical application of POCs and other analogues that still have to be overcome. This review summarizes recent achievements in the delivery and in vivo administration of synthetic nucleic acid analogues, focusing on POCs, and compares their efficiency.
Collapse
Affiliation(s)
- Maria Taskova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Anna Mantsiou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Kira Astakhova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
31
|
Ding XR, Yang J, Lu DD, Li QJ, Zhang ZY, Zhou Z, Wang SQ. Delivery System Targeting Hemagglutinin of Influenza Virus A to Facilitate Antisense-Based Anti-H1N1 Therapy. Bioconjug Chem 2017; 28:1842-1849. [PMID: 28635259 DOI: 10.1021/acs.bioconjchem.7b00124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antisense oligonucleotides (ODNs) are therapeutic molecules that hybridize to complementary target mRNA sequences. To further overcome the poor cellular uptake of ODNs, we proposed a novel strategy to deliver ODNs by conjugating the anti-influenza A virus (IAV) ODN with a peptide showing high affinity to the hemagglutinin (HA) on the surface of IAV particles or the IAV-infected host cells. The HA-specific binding peptides were selected by phage display, and the individual binding clones are characterized by DNA sequencing, and the selected phage was further assayed by enzyme-linked immunosorbent assay. The final selected HA-binding peptide, SHGRITFAYFAN, was conjugated to an anti-IAV ODN. The delivery efficiency and the anti-IAV effects of the conjugated molecule were evaluated in a cell-culture and a mouse-infection model. The conjugated molecule was successfully delivered into IAV-infected host cells more efficiently than the anti-IAV ODN in vitro and in vivo. Furthermore, the conjugated molecule protected 80% of the mice from lethal challenge and inhibited the plaque count by 75% compared to the unconjugated molecule (60% and 40%). These findings demonstrate that the delivery of antisense oligodeoxynucleotides to infected tissues by a virus-binding peptide-mediated system is a potential therapeutic strategy against IAV.
Collapse
Affiliation(s)
- Xiao Ran Ding
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Jing Yang
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Dan Dan Lu
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Qing Jun Li
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Zhao Yan Zhang
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Zhe Zhou
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Sheng Qi Wang
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| |
Collapse
|
32
|
Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 2017; 35:230-237. [PMID: 28244996 DOI: 10.1038/nbt.3779] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023]
Abstract
Antisense oligonucleotides (ASOs) modified with phosphorothioate (PS) linkages and different 2' modifications can be used either as drugs (e.g., to treat homozygous familial hypercholesterolemia and spinal muscular atrophy) or as research tools to alter gene expression. PS-ASOs can enter cells without additional modification or formulation and can be designed to mediate sequence-specific cleavage of different types of RNA (including mRNA and non-coding RNA) targeted by endogenous RNase H1. Although PS-ASOs function in both the cytoplasm and nucleus, localization to different subcellular regions can affect their therapeutic potency. Cellular uptake and intracellular distribution of PS ASOs are mediated by protein interactions. The main proteins involved in these processes have been identified, and intracellular sites in which PS ASOs are active, or inactive, cataloged.
Collapse
|
33
|
Rocha CSJ, Lundin KE, Behlke MA, Zain R, El Andaloussi S, Smith CIE. Four Novel Splice-Switch Reporter Cell Lines: Distinct Impact of Oligonucleotide Chemistry and Delivery Vector on Biological Activity. Nucleic Acid Ther 2016; 26:381-391. [PMID: 27629437 DOI: 10.1089/nat.2016.0631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
New advances in oligonucleotide (ON) chemistry emerge continuously, and over the last few years, several aspects of ON delivery have been improved. However, clear knowledge regarding how certain chemistries behave alone, or in combination with various delivery vectors, is limited. Moreover, characterization is frequently limited to a single reporter cell line and, when different cell types are studied, experiments are commonly not carried out under similar conditions, hampering comparative analysis. To address this, we have developed a small "tissue" library of new, stable, pLuc/705 splice-switching reporter cell lines (named HuH7_705, U-2 OS_705, C2C12_705, and Neuro-2a_705). Our data show that, indeed, the cell type used in activity screenings influences the efficiency of ONs of different chemistry (phosphorothioate with locked nucleic acid or 2'-O-methyl with or without N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine). Likewise, the delivery method, Lipofectamine® 2000, PepFect14 nanoparticles, or "naked" uptake, also demonstrates cell-type-dependent outcomes. Taken together, these cell lines can potentially become useful tools for future in vitro evaluation of new nucleic acid-based oligomers as well as delivery compounds for splice-switching approaches and cell-specific therapies.
Collapse
Affiliation(s)
- Cristina S J Rocha
- 1 Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital , Huddinge, Sweden
| | - Karin E Lundin
- 1 Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital , Huddinge, Sweden
| | - Mark A Behlke
- 2 Integrated DNA Technologies, Inc. , Coralville, Iowa
| | - Rula Zain
- 1 Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital , Huddinge, Sweden .,3 Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital , Stockholm, Sweden
| | - Samir El Andaloussi
- 1 Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital , Huddinge, Sweden .,4 Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford, United Kingdom
| | - C I Edvard Smith
- 1 Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital , Huddinge, Sweden
| |
Collapse
|
34
|
Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - Candidates for gene silencing therapeutics. Eur J Pharm Biopharm 2016; 107:321-40. [PMID: 27521696 DOI: 10.1016/j.ejpb.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.
Collapse
Affiliation(s)
- Matt Gooding
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
35
|
Juliano RL. The delivery of therapeutic oligonucleotides. Nucleic Acids Res 2016; 44:6518-48. [PMID: 27084936 PMCID: PMC5001581 DOI: 10.1093/nar/gkw236] [Citation(s) in RCA: 615] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The oligonucleotide therapeutics field has seen remarkable progress over the last few years with the approval of the first antisense drug and with promising developments in late stage clinical trials using siRNA or splice switching oligonucleotides. However, effective delivery of oligonucleotides to their intracellular sites of action remains a major issue. This review will describe the biological basis of oligonucleotide delivery including the nature of various tissue barriers and the mechanisms of cellular uptake and intracellular trafficking of oligonucleotides. It will then examine a variety of current approaches for enhancing the delivery of oligonucleotides. This includes molecular scale targeted ligand-oligonucleotide conjugates, lipid- and polymer-based nanoparticles, antibody conjugates and small molecules that improve oligonucleotide delivery. The merits and liabilities of these approaches will be discussed in the context of the underlying basic biology.
Collapse
Affiliation(s)
- Rudolph L Juliano
- UNC Eshelman School of Pharmacy and UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration. Mol Psychiatry 2016; 21:328-38. [PMID: 26100539 PMCID: PMC4759205 DOI: 10.1038/mp.2015.80] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/27/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Abstract
Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, ~80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive-like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant-like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies.
Collapse
|
37
|
Yuan A, Laing B, Hu Y, Ming X. Direct oligonucleotide-photosensitizer conjugates for photochemical delivery of antisense oligonucleotides. Chem Commun (Camb) 2015; 51:6678-80. [PMID: 25786195 DOI: 10.1039/c5cc00573f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activation of photosensitizers in endosomes enables release of therapeutic macromolecules into the cytosol of the target cells for pharmacological actions. In this study, we demonstrate that direct conjugation of photosensitizers to oligonucleotides (ONs) allows spatial and temporal co-localization of the two modalities in the target cells, and thus leads to superior functional delivery of ONs. Further, light-activated delivery of an anticancer ON caused cancer cell killing via modulation of an oncogene and photodynamic therapy.
Collapse
Affiliation(s)
- Ahu Yuan
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
38
|
Carver K, Ming X, Juliano RL. Tumor cell-targeted delivery of nanoconjugated oligonucleotides in composite spheroids. Nucleic Acid Ther 2015; 24:413-9. [PMID: 25238564 DOI: 10.1089/nat.2014.0493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Standard tissue culture has often been a poor model for predicting the efficacy of anti-cancer agents including oligonucleotides. In contrast to the simplicity of monolayer tissue cultures, a tumor mass includes tightly packed tumor cells, tortuous blood vessels, high levels of extracellular matrix, and stromal cells that support the tumor. These complexities pose a challenge for delivering therapeutic agents throughout the tumor, with many drugs limited to cells proximal to the vasculature. Multicellular tumor spheroids are superior to traditional monolayer cell culture for the assessment of cancer drug delivery, since they possess many of the characteristics of metastatic tumor foci. However, homogeneous spheroids comprised solely of tumor cells do not account for some of the key aspects of metastatic tumors, particularly the interaction with host cells such as fibroblasts. Further, homogeneous culture does not allow for the assessment of targeted delivery to tumor versus host cells. Here we have evaluated delivery of targeted and untargeted oligonucleotide nanoconjugates and of oligonucleotide polyplexes in both homogeneous and composite tumor spheroids. We find that inclusion of fibroblasts in the spheroids reduces delivery efficacy of the polyplexes. In contrast, targeted multivalent RGD-oligonucleotide nanoconjugates were able to effectively discriminate between melanoma cells and fibroblasts, thus providing tumor-selective uptake and pharmacological effects.
Collapse
Affiliation(s)
- Kyle Carver
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | |
Collapse
|
39
|
Ming X, Laing B. Bioconjugates for targeted delivery of therapeutic oligonucleotides. Adv Drug Deliv Rev 2015; 87:81-9. [PMID: 25689735 DOI: 10.1016/j.addr.2015.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/05/2023]
Abstract
Bioconjugates have been used to deliver therapeutic oligonucleotides to their pharmacological targets in diseased cells. Molecular-scale conjugates can be prepared by directly linking targeting ligands with oligonucleotides and the resultant conjugates can selectively bind to cell surface receptors in target cells in diseased tissues. Besides targeted delivery, additional functionality can be incorporated in the conjugates by utilization of carrier molecules, and these larger conjugates are called carrier-associated conjugates. Both molecular and carrier-associated conjugates have achieved initial successes in clinical trials for treating liver diseases; therefore, currently the greater challenge is to deliver oligonucleotides to extrahepatic tissues such as tumors. This review will provide an update on the application of oligonucleotide conjugates for targeted delivery during the last decade. By identifying key elements for successful delivery, it is suggested that oligonucleotide conjugates with intermediate size, cell targeting ability, and endosomal release functionality are superior systems to advance oligonucleotides to achieve their full therapeutic potentials.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Brian Laing
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Cellular uptake and intracellular trafficking of oligonucleotides. Adv Drug Deliv Rev 2015; 87:35-45. [PMID: 25881722 DOI: 10.1016/j.addr.2015.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/10/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Oligonucleotides manifest much promise as potential therapeutic agents. However, understanding of how oligonucleotides function within living organisms is still rather limited. A major concern in this regard is the mechanisms of cellular uptake and intracellular trafficking of both 'free' oligonucleotides and oligonucleotides associated with various polymeric or nanocarrier delivery systems. Here we review basic aspects of the mechanisms of endocytosis and intracellular trafficking and how insights from these processes can be used to understand oligonucleotide delivery. In particular we discuss opportunities for escape of oligonucleotides from endomembrane compartments and describe recent studies using small molecules to enhance oligonucleotide effects.
Collapse
|
41
|
Hemphill J, Liu Q, Uprety R, Samanta S, Tsang M, Juliano RL, Deiters A. Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides. J Am Chem Soc 2015; 137:3656-62. [PMID: 25734836 DOI: 10.1021/jacs.5b00580] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spliceosome machinery is composed of several proteins and multiple small RNA molecules that are involved in gene regulation through the removal of introns from pre-mRNAs in order to assemble exon-based mRNA containing protein-coding sequences. Splice-switching oligonucleotides (SSOs) are genetic control elements that can be used to specifically control the expression of genes through correction of aberrant splicing pathways. A current limitation with SSO methodologies is the inability to achieve conditional control of their function paired with high spatial and temporal resolution. We addressed this limitation through site-specific installation of light-removable nucleobase-caging groups as well as photocleavable backbone linkers into synthetic SSOs. This enables optochemical OFF → ON and ON → OFF switching of their activity and thus precise control of alternative splicing. The use of light as a regulatory element allows for tight spatial and temporal control of splice switching in mammalian cells and animals.
Collapse
Affiliation(s)
- James Hemphill
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,‡Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Qingyang Liu
- ‡Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Rajendra Uprety
- ‡Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Subhas Samanta
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- §Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Rudolph L Juliano
- ∥Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander Deiters
- †Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,‡Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
42
|
Yang B, Ming X, Cao C, Laing B, Yuan A, Porter MA, Hull-Ryde EA, Maddry J, Suto M, Janzen WP, Juliano RL. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides. Nucleic Acids Res 2015; 43:1987-96. [PMID: 25662226 PMCID: PMC4344505 DOI: 10.1093/nar/gkv060] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The therapeutic use of antisense and siRNA oligonucleotides has been constrained by the limited ability of these membrane-impermeable molecules to reach their intracellular sites of action. We sought to address this problem using small organic molecules to enhance the effects of oligonucleotides by modulating their intracellular trafficking and release from endosomes. A high-throughput screen of multiple small molecule libraries yielded several hits that markedly potentiated the actions of splice switching oligonucleotides in cell culture. These compounds also enhanced the effects of antisense and siRNA oligonucleotides. The hit compounds preferentially caused release of fluorescent oligonucleotides from late endosomes rather than other intracellular compartments. Studies in a transgenic mouse model indicated that these compounds could enhance the in vivo effects of a splice-switching oligonucleotide without causing significant toxicity. These observations suggest that selected small molecule enhancers may eventually be of value in oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- B Yang
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - X Ming
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - C Cao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - B Laing
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Yuan
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - M A Porter
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - E A Hull-Ryde
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Maddry
- Southern Research Institute, Birmingham, AL 35205, USA
| | - M Suto
- Southern Research Institute, Birmingham, AL 35205, USA
| | - W P Janzen
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - R L Juliano
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech 2014; 15:1345-54. [PMID: 24927668 PMCID: PMC4179653 DOI: 10.1208/s12249-014-0143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
Collapse
Affiliation(s)
- Jason T. Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
44
|
Suresh D, Zambre A, Chanda N, Hoffman TJ, Smith CJ, Robertson JD, Kannan R. Bombesin peptide conjugated gold nanocages internalize via clathrin mediated endocytosis. Bioconjug Chem 2014; 25:1565-79. [PMID: 25020251 DOI: 10.1021/bc500295s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The nature of interaction and mechanism of internalization of receptor-avid peptide nanoparticles with cells is not yet completely understood. This article describes the cellular internalization mechanism and intracellular trafficking of peptide conjugated receptor targeted porous Gold nanocages (AuNCs) in cancer cells. We synthesized and characterized a library of AuNCs conjugated with bombesin (BBN) peptide. Evidence of selective affinity of AuNC-BBN toward gastrin releasing peptide receptors (GRPR) was obtained using radiolabeled competitive cell binding assay. Endocytic mechanism was investigated using cell inhibitor studies and monitored using optical and transmission electron microscopy (TEM). Results show AuNC-BBN uptake in PC3 cells is mediated by clathrin mediated endocytosis (CME). Indeed, in the presence of CME inhibitors, AuNC-BBN uptake in cells is reduced up to 84%. TEM images further confirm CME characteristic clathrin coated pits and lysosomal release of AuNCs. These results demonstrate that peptide ligands conjugated to the surface of nanoparticles maintain their target specificity. This bolsters the case for peptide robustness and its persisting functionality in intracellular vehicular delivery systems.
Collapse
Affiliation(s)
- Dhananjay Suresh
- Departments of †Bioengineering, ‡Radiology, ¥Medicine and §Chemistry, ⊥University of Missouri Research Reactor, and #International Center for Nano/Micro Systems and Nanotechnology, University of Missouri , Columbia, Missouri 65211, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Juliano RL, Ming X, Carver K, Laing B. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 2014; 24:101-13. [PMID: 24383421 DOI: 10.1089/nat.2013.0463] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
46
|
Cellular Mechanisms in Nanomaterial Internalization, Intracellular Trafficking, and Toxicity. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Zhang MZ, Yu Y, Yu RN, Wan M, Zhang RY, Zhao YD. Tracking the down-regulation of folate receptor-α in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4183-4193. [PMID: 23828664 DOI: 10.1002/smll.201300994] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 06/02/2023]
Abstract
Based on the multivalent binding capability of streptavidin (SA) to biotin, a multifunctional quantum dot probe (QD-(AS-ODN+p160)) coupled with antisense oligonucleotide (AS-ODN) and peptide p160 is designed for real-time tracking of targeted delivery of AS-ODN and regulation of folate receptor-α (hFR-α) in MCF-7 breast cancer cells. Fluorescence spectra, capillary electrophoresis (CE) and dynamic light scattering (DLS) are used to characterize the conjugation of AS-ODN and p160 with quantum dots (QDs), DLS results confirm the well stability of the probe in aqueous media. Confocal imaging and quantitative flow cytometry show that QD-(AS-ODN+p160) is able to specifically target human breast cancer MCF-7 cells. Low temperature and ATP depletion treatments reveal the cellular uptake of QD-(AS-ODN+p160) is energy-dependent, and the effects of inhibition agents and co-localization imaging further confirm the endocytic pathway is mainly receptor-mediated. Transmission electron microscopy (TEM) shows the intracellular delivery and endosomal escape of QD probe along with incubation time extended. Two transfection concentrations of QD probe (10 nM and 50 nM) below half inhibitory concentration (IC50 ) value are chosen according to MTT assay. Real-time PCR shows at these two concentration cases the relative mRNA expression levels of hFR-α reduce to 72.5 ± 3.9% and 17.6 ± 1.0%, respectively. However, western blot and quantitative ELISA analysis show the expression level of hFR-α protein has a significant decrease only at 50 nM, indicating that gene silence is concentration-dependent. These results demonstrate that the QD-(AS-ODN+p160) probe not only achieves gene silence in a cell-specific manner but also achieves real-time tracking during AS-ODN intracellular delivery.
Collapse
Affiliation(s)
- Ming-Zhen Zhang
- Britton Chance Center for Biomedical Photonics at, Wuhan National Laboratory for Optoelectronics-Hubei, Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Nakagawa O, Ming X, Carver K, Juliano R. Conjugation with receptor-targeted histidine-rich peptides enhances the pharmacological effectiveness of antisense oligonucleotides. Bioconjug Chem 2013; 25:165-70. [PMID: 24354269 DOI: 10.1021/bc400500h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ineffective delivery to intracellular sites of action is one of the key limitations to the use of antisense and siRNA oligonucleotides as therapeutic agents. Here, we describe molecular scale antisense oligonucleotide conjugates that bind selectively to a cell surface receptor, are internalized, and then partially escape from nonproductive endosomal locations to reach their sites of action in the nucleus. Peptides that include bombesin sequences for receptor targeting and a run of histidine residues for endosomal disruption were covalently linked to a splice switching antisense oligonucleotide. The conjugates were tested for their ability to correct splicing and up-regulate expression of a luciferase reporter in prostate cancer cells that express the bombesin receptor. We found that trivalent conjugates that included both the targeting sequence and several histidine residues were substantially more effective than conjugates containing only the bombesin or histidine moieties. This demonstrates the potential of creating molecular scale oligonucleotide conjugates with both targeting and endosome escape capabilities.
Collapse
Affiliation(s)
- Osamu Nakagawa
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill North Carolina 27599, United States
| | | | | | | |
Collapse
|
49
|
Reyes-Reveles J, Sedaghat-Herati R, Gilley DR, Schaeffer AM, Ghosh KC, Greene TD, Gann HE, Dowler WA, Kramer S, Dean JM, Delong RK. mPEG-PAMAM-G4 nucleic acid nanocomplexes: enhanced stability, RNase protection, and activity of splice switching oligomer and poly I:C RNA. Biomacromolecules 2013; 14:4108-15. [PMID: 24164501 PMCID: PMC4295786 DOI: 10.1021/bm4012425] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendrimer chemistries have virtually exploded in recent years with increasing interest in this class of polymers as gene delivery vehicles. An effective nucleic acid delivery vehicle must efficiently bind its cargo and form physically stable complexes. Most importantly, the nucleic acid must be protected in biological fluids and tissues, as RNA is extremely susceptible to nuclease degradation. Here, we characterized the association of nucleic acids with generation 4 PEGylated poly(amidoamine) dendrimer (mPEG-PAMAM-G4). We investigated the formation, size, and stability over time of the nanoplexes at various N/P ratios by gel shift and dynamic light scatter spectroscopy (DLS). Further characterization of the mPEG-PAMAM-G4/nucleic acid association was provided by atomic force microscopy (AFM) and by circular dichroism (CD). Importantly, mPEG-PAMAM-G4 complexation protected RNA from treatment with RNase A, degradation in serum, and various tissue homogenates. mPEG-PAMAM-G4 complexation also significantly enhanced the functional delivery of RNA in a novel engineered human melanoma cell line with splice-switching oligonucleotides (SSOs) targeting a recombinant luciferase transcript. mPEG-PAMAM-G4 triconjugates formed between gold nanoparticle (GNP) and particularly manganese oxide (MnO) nanorods, poly IC, an anticancer RNA, showed enhanced cancer-killing activity by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay.
Collapse
Affiliation(s)
- Juan Reyes-Reveles
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Reza Sedaghat-Herati
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897
| | - David R. Gilley
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Ashley M. Schaeffer
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Kartik C. Ghosh
- Department of Physics, Missouri State University, Springfield, Missouri, 65897
| | - Thomas D. Greene
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Hannah E. Gann
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Wesley A Dowler
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897
| | - Stephen Kramer
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897
| | - John M. Dean
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
| | - Robert K. Delong
- Department of Biomedical Sciences, Missouri State University, Springfield, Missouri, 65897
- Corresponding author: R. K. DeLong, Phone: 417-836-5730;
| |
Collapse
|
50
|
Järver P, O'Donovan L, Gait MJ. A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid Ther 2013; 24:37-47. [PMID: 24171481 DOI: 10.1089/nat.2013.0454] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Peter Järver
- Medical Research Council , Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|