1
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
2
|
Tan KX, Jeevanandam J, Rodrigues J, Danquah MK. Aptamer-Mediated Antiviral Approaches for SARS-CoV-2. FRONT BIOSCI-LANDMRK 2022; 27:306. [PMID: 36472112 DOI: 10.31083/j.fbl2711306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Indexed: 11/18/2022]
Abstract
2020 and 2021 were disastrous years across the world, with the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) virus as a pandemic, which continues to be a top global health issue. There are still many countries and regions struggling to fight coronavirus disease 2019 (COVID-19), and, with the emergence of the various variants of the virus, we are still far from considering this global pandemic over. In addition to having good diagnostic tools and a variety of vaccines with high efficacy, it is of utmost importance to develop effective antiviral drugs or therapies to battle COVID-19. Aptamers known as the next-generation targeting elements can offer promising opportunities in developing antiviral drugs against SARS-CoV-2. This is owing to their high specificity and affinity, making them ideal for targeting ligands and neutralizers to impede both, viral entry and replication or even further enhance the anti-infection effects in the infected host cells. Also, aptamers are extremely attractive as they can be rapidly synthesized and scalable with a lower production cost. This work provides in-depth discussions on the potential of aptamers in therapeutic applications, their mode of action, and current progress on the use of aptamer-based therapies against SARS-CoV-2 and other viruses. The article also discusses the limitations associated with aptamer-based SARS-CoV-2-antiviral therapy with several proposed ideas to resolve them. Lastly, theranostic applications of aptamer nanoformulated dendrimers against viral infections are discussed.
Collapse
Affiliation(s)
- Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 349248 Singapore, Singapore
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37996, USA
| |
Collapse
|
3
|
Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother 2021; 146:112530. [PMID: 34915416 DOI: 10.1016/j.biopha.2021.112530] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Breast carcinomas repeat their number and grow exponentially making it extremely frequent malignancy among women. Approximately, 70-80% of early diagnosed or non-metastatic conditions are treatable while the metastatic cases are considered ineffective to treat with current ample amount of therapy. Target based anti-cancer treatment has been in the limelight for decades and is perceived significant consideration of scientists. Aptamers are the 'coming of age' therapeutic approach, selected using an appropriate tool from the library of sequences. Aptamers are non-immunogenic, stable, and high-affinity ligand which are poised to reach the clinical benchmark. With the heed in nanoparticle application, the delivery of aptamer to the specific site could be enhanced which also protects them from nuclease degradation. Moreover, nanoparticles due to robust structure, high drug entrapment, and modifiable release of cargo could serve as a successful candidate in the treatment of breast carcinoma. This review would showcase the method and modified method of selection of aptamers, aptamers that were able to make its way towards clinical trial and their targetability and selectivity towards breast cancers. The appropriate usage of aptamer-based biosensor in breast cancer diagnosis have also been discussed.
Collapse
|
4
|
Khanali J, Azangou-Khyavy M, Asaadi Y, Jamalkhah M, Kiani J. Nucleic Acid-Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Front Microbiol 2021; 12:758948. [PMID: 34858370 PMCID: PMC8630580 DOI: 10.3389/fmicb.2021.758948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Despite significant efforts, there are currently no approved treatments for COVID-19. However, biotechnological approaches appear to be promising in the treatment of the disease. Accordingly, nucleic acid-based treatments including aptamers and siRNAs are candidates that might be effective in COVID-19 treatment. Aptamers can hamper entry and replication stages of the SARS-CoV-2 infection, while siRNAs can cleave the viral genomic and subgenomic RNAs to inhibit the viral life cycle and reduce viral loads. As a conjugated molecule, aptamer–siRNA chimeras have proven to be dual-functioning antiviral therapy, acting both as virus-neutralizing and replication-interfering agents as well as being a siRNA targeted delivery approach. Previous successful applications of these compounds against various stages of the pathogenesis of diseases and viral infections, besides their advantages over other alternatives, might provide sufficient rationale for the application of these nucleic acid-based drugs against the SARS-CoV-2. However, none of them are devoid of limitations. Here, the literature was reviewed to assess the plausibility of using aptamers, siRNAs, and aptamer–siRNA chimeras against the SARS-CoV-2 based on their previously established effectiveness, and discussing challenges lie in applying these molecules.
Collapse
Affiliation(s)
- Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Monire Jamalkhah
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
6
|
Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem 2021; 413:4563-4579. [PMID: 33506341 PMCID: PMC7840224 DOI: 10.1007/s00216-020-03124-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms such as viruses and bacteria pose a great threat to human health. Although a significant progress has been obtained in the diagnosis and prevention of infectious diseases, it still remains challenging to develop rapid and cost-effective detection approaches and overcome the side effects of therapeutic agents and pathogen resistance. Functional nucleic acids (FNAs), especially the most widely used aptamers and DNAzymes, hold the advantages of high stability and flexible design, which make them ideal molecular recognition tools for bacteria and viruses, as well as potential therapeutic drugs for infectious diseases. This review summarizes important advances in the selection and detection of bacterial- and virus-associated FNAs, along with their potential prevention ability of infectious disease in recent years. Finally, the challenges and future development directions are concluded.
Collapse
|
7
|
Ratanabunyong S, Aeksiri N, Yanaka S, Yagi-Utsumi M, Kato K, Choowongkomon K, Hannongbua S. Characterization of New DNA Aptamers for Anti-HIV-1 Reverse Transcriptase. Chembiochem 2020; 22:915-923. [PMID: 33095511 DOI: 10.1002/cbic.202000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Indexed: 11/09/2022]
Abstract
HIV-1 RT is a necessary enzyme for retroviral replication, which is the main target for antiviral therapy against AIDS. Effective anti-HIV-1 RT drugs are divided into two groups; nucleoside inhibitors (NRTI) and non-nucleoside inhibitors (NNRTI), which inhibit DNA polymerase. In this study, new DNA aptamers were isolated as anti-HIV-1 RT inhibitors. The selected DNA aptamer (WT62) presented with high affinity and inhibition against wild-type (WT) HIV-1 RT and gave a KD value of 75.10±0.29 nM and an IC50 value of 84.81±8.54 nM. Moreover, WT62 decreased the DNA polymerase function of K103 N/Y181 C double mutant (KY) HIV-1 RT by around 80 %. Furthermore, the ITC results showed that this aptamer has small binding enthalpies with both WT and KY HIV-1 RTs through which the complex might form a hydrophobic interaction or noncovalent bonding. The NMR result also suggested that the WT62 aptamer could bind with both WT and KY mutant HIV-1 RTs at the connection domain.
Collapse
Affiliation(s)
- Siriluk Ratanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Niran Aeksiri
- Department of Agricultural Sciences, Naresuan University, Phitsanlolok, 65000, Thailand
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, 10900, Chatuchak, Bangkok, Thailand.,Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
8
|
Nguyen PDM, Zheng J, Gremminger TJ, Qiu L, Zhang D, Tuske S, Lange MJ, Griffin PR, Arnold E, Chen SJ, Zou X, Heng X, Burke DH. Binding interface and impact on protease cleavage for an RNA aptamer to HIV-1 reverse transcriptase. Nucleic Acids Res 2020; 48:2709-2722. [PMID: 31943114 PMCID: PMC7049723 DOI: 10.1093/nar/gkz1224] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit RT in enzymatic and viral replication assays. Some aptamers inhibit RT from only a few viral clades, while others show broad-spectrum inhibition. Biophysical determinants of recognition specificity are poorly understood. We investigated the interface between HIV-1 RT and a broad–spectrum UCAA-family aptamer. SAR and hydroxyl radical probing identified aptamer structural elements critical for inhibition and established the role of signature UCAA bulge motif in RT-aptamer interaction. HDX footprinting on RT ± aptamer shows strong contacts with both subunits, especially near the C-terminus of p51. Alanine scanning revealed decreased inhibition by the aptamer for mutants P420A, L422A and K424A. 2D proton nuclear magnetic resonance and SAXS data provided constraints on the solution structure of the aptamer and enable computational modeling of the docked complex with RT. Surprisingly, the aptamer enhanced proteolytic cleavage of precursor p66/p66 by HIV-1 protease, suggesting that it stabilizes the productive conformation to allow maturation. These results illuminate features at the RT-aptamer interface that govern recognition specificity by a broad-spectrum antiviral aptamer, and they open new possibilities for accelerating RT maturation and interfering with viral replication.
Collapse
Affiliation(s)
- Phuong D M Nguyen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Liming Qiu
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Dong Zhang
- Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA
| | - Steve Tuske
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shi-Jie Chen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
10
|
Pang KM, Castanotto D, Li H, Scherer L, Rossi JJ. Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy. Nucleic Acids Res 2019; 46:e6. [PMID: 29077949 PMCID: PMC5758892 DOI: 10.1093/nar/gkx980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Gene therapy by engineering patient's own blood cells to confer HIV resistance can potentially lead to a functional cure for AIDS. Toward this goal, we have previously developed an anti-HIV lentivirus vector that deploys a combination of shRNA, ribozyme and RNA decoy. To further improve this therapeutic vector against viral escape, we sought an additional reagent to target HIV integrase. Here, we report the development of a new strategy for selection and expression of aptamer for gene therapy. We developed a SELEX protocol (multi-tag SELEX) for selecting RNA aptamers against proteins with low solubility or stability, such as integrase. More importantly, we expressed these aptamers in vivo by incorporating them in the terminal loop of shRNAs. This novel strategy allowed efficient expression of the shRNA–aptamer fusions that targeted RNAs and proteins simultaneously. Expressed shRNA–aptamer fusions targeting HIV integrase or reverse transcriptase inhibited HIV replication in cell cultures. Viral inhibition was further enhanced by combining an anti-integrase aptamer with an anti-HIV Tat-Rev shRNA. This construct exhibited efficacy comparable to that of integrase inhibitor Raltegravir. Our strategy for the selection and expression of RNA aptamers can potentially extend to other gene therapy applications.
Collapse
Affiliation(s)
- Ka Ming Pang
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Department of Medical Oncology & Therapeutics Research, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Daniela Castanotto
- Department of Medical Oncology & Therapeutics Research, City of Hope National Cancer Center, Duarte, CA 91010, USA
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lisa Scherer
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Zou X, Wu J, Gu J, Shen L, Mao L. Application of Aptamers in Virus Detection and Antiviral Therapy. Front Microbiol 2019; 10:1462. [PMID: 31333603 PMCID: PMC6618307 DOI: 10.3389/fmicb.2019.01462] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Viral infections can cause serious diseases for humans and animals. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro technology known as the Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Similar to antibodies, aptamers bind specifically to their targets. However, compared with antibody, aptamers are easy to synthesize and modify and can bind to a broad range of targets. Thus, aptamers are promising for detecting viruses and treating viral infections. In this review, we briefly introduce aptamer-based biosensors (aptasensors) and describe their applications in rapid detection of viruses and as antiviral agents in treating infections. We summarize available data about the use of aptamers to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to different viruses that have been screened out but have not yet been used for detecting viruses or treating viral infections. Finally, we analyze barriers and developing perspectives in the application of aptamer-based virus detection and therapeutics.
Collapse
Affiliation(s)
- Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Poly-Target Selection Identifies Broad-Spectrum RNA Aptamers. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:605-619. [PMID: 30472639 PMCID: PMC6251793 DOI: 10.1016/j.omtn.2018.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
Aptamer selections often yield distinct subpopulations, each with unique phenotypes that can be leveraged for specialized applications. Although most selections aim to attain ever higher specificity, we sought to identify aptamers that recognize increasingly divergent primate lentiviral reverse transcriptases (RTs). We hypothesized that aptamer subpopulations in libraries pre-enriched against a single RT may exhibit broad-spectrum binding and inhibition, and we devised a multiplexed poly-target selection to elicit those phenotypes against a panel of primate lentiviral RTs. High-throughput sequencing and coenrichment/codepletion analysis of parallel and duplicate selection trajectories rapidly narrowed the list of candidate aptamers by orders of magnitude and identified dozens of priority candidates for further screening. Biochemical characterization validated a novel aptamer motif and several rare and unobserved variants of previously known motifs that inhibited recombinant RTs to varying degrees. These broad-spectrum aptamers also suppressed replication of viral constructs carrying phylogenetically diverse RTs. The poly-target selection and coenrichment/codepletion approach described herein is a generalizable strategy for identifying cross-reactivity among related targets from combinatorial libraries.
Collapse
|
13
|
Lange MJ, Nguyen PDM, Callaway MK, Johnson MC, Burke DH. RNA-protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers. Nucleic Acids Res 2017; 45:6087-6097. [PMID: 28334941 PMCID: PMC5449596 DOI: 10.1093/nar/gkx155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit HIV-1 replication, but little is known about potential aptamer-specific viral resistance. During replication, RT interacts with diverse nucleic acids. Thus, the genetic threshold for eliciting resistance may be high for aptamers that make numerous contacts with RT. To evaluate the impact of RT–aptamer binding specificity on replication, we engineered proviral plasmids encoding diverse RTs within the backbone of HIV-1 strain NL4-3. Viruses inhibited by pseudoknot aptamers were rendered insensitive by a naturally occurring R277K variant, providing the first demonstration of aptamer-specific resistance in cell culture. Naturally occurring, pseudoknot-insensitive viruses were rendered sensitive by the inverse K277R mutation, establishing RT as the genetic locus for aptamer-mediated HIV-1 inhibition. Non-pseudoknot RNA aptamers exhibited broad-spectrum inhibition. Inhibition was observed only when virus was produced in aptamer-expressing cells, indicating that encapsidation is required. HIV-1 suppression magnitude correlated with the number of encapsidated aptamer transcripts per virion, with saturation occurring around 1:1 stoichiometry with packaged RT. Encapsidation specificity suggests that aptamers may encounter dimerized GagPol in the cytosol during viral assembly. This study provides new insights into HIV-1's capacity to escape aptamer-mediated inhibition, the potential utility of broad-spectrum aptamers to overcome resistance, and molecular interactions that occur during viral assembly.
Collapse
Affiliation(s)
- Margaret J Lange
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Phuong D M Nguyen
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mackenzie K Callaway
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Marc C Johnson
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Donald H Burke
- Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
15
|
Aeksiri N, Warakulwit C, Hannongbua S, Unajak S, Choowongkomon K. Use of Capillary Electrophoresis to Study the Binding Interaction of Aptamers with Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT : Studying the Binding Interaction of Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT with Aptamers by Performing the Capillary Electrophoresis. Appl Biochem Biotechnol 2016; 182:546-558. [PMID: 27900665 DOI: 10.1007/s12010-016-2343-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
A number of nucleic acid aptamers with high affinities to human immunodeficiency virus reverse transcriptase (HIV-1 RT) are currently known. They can potentially be developed as broad-spectrum antiviral drugs, but there is little known about their binding interaction with mutant HIV-1 RT. Therefore, we utilized non-equilibrium capillary electrophoresis of equilibrium mixture (NECEEM) to study the interaction of three HIV-1 RTs (wild type, K103N, and double mutant (K103N/Y181C)) with RT1t49 and RT12 aptamers. This approach was used to study and evaluate the K d values of these molecules. The results showed that the K d values of the tested aptamers were lower than that of the DNA substrate. The results also pointed out that RT1t49 could bind with all HIV-1 RTs and compete with the DNA substrate at the active site. Moreover, we studied the binding stoichiometry of HIV-1 RT using aptamers as probes. The findings showed evidence of two binding stoichiometries with HIV-1 RT and the RT12 aptamer but only one binding stoichiometry for RT1t49. In addition, RT1t49 could bind specifically with the wild-type, K103N, and double mutants in Escherichia coli lysate. This result also indicated that the aptamer could detect HIV-1 RT in the presence of E. coli lysate.
Collapse
Affiliation(s)
- Niran Aeksiri
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chompunuch Warakulwit
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, NRU-KU, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
16
|
Li Y, Xu S, Wu X, Xu Q, Zhao Y, Lou X, Yang X. Thioflavin T as a fluorescence light-up probe for both parallel and antiparallel G-quadruplexes of 29-mer thrombin binding aptamer. Anal Bioanal Chem 2016; 408:8025-8036. [PMID: 27590320 DOI: 10.1007/s00216-016-9901-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/31/2022]
Abstract
A wide range of pathologies have been targeted with bimodular aptamers that contain both G-quadruplex (G4) and duplex motifs, while the structures and functions are poorly understood. G4-selective fluorescent dyes have served as facile tools to probe G4s, but not for bimodular aptamers, yet. Here, taking the 29-mer thrombin binding aptamer (TBA29) as an example, we demonstrated that 3,6-dimethyl-2-(4-dimethylaminophenyl)-benzothiazolium (ThT) was the most effective dye compared to NMM and PPIX in recognizing TBA29. Binding studies indicate that ThT recognized TBA29 via distinct buffer-dependent mechanisms. Specifically, ThT induced the formation of a bimolecular parallel G4 in cation-deficient buffer, showing 341-fold fluorescent enhancement. The competitive binding of thrombin disrupted the complex, leading to the monotonic fluorescence decrease. A similar mechanism was previously reported for the interaction between ThT and the 15-mer thrombin binding aptamer (TBA15). However, TBA29 bound with ThT in a more favorable state than TBA15, showing hyperchromic effects and two times stronger fluorescence enhancement. Differently, ThT bound with antiparallel TBA29/TBA15 in an intercalating/groove binding mode in 100 mM KCl, generating 181/28-fold fluorescence enhancement, respectively. These results revealed that ThT recognized both parallel and antiparallel G4s of TBA29 more efficiently than it recognized TBA15. The duplex structure of TBA29 may play an important role in its interaction with ThT. Our study broadens the application of ThT in screening G4 to bimodular aptamers and provides some insights into the structures of TBA29, along with the interaction between ThT and TBA29. Our study also is useful for the development of structure-switching-based biosensors using bimodular aptamers. Graphical abstract The buffer-dependent binding mechanisms of ThT with TBA29, and the competitive (top)/noncompetitive (bottom) binding of thrombin with TBA29-ThT complex.
Collapse
Affiliation(s)
- Ye Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Shi Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiao Wu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qing Xu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yinhua Zhao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Xianbin Yang
- AM Biotechnologies, 12521 Gulf Freeway, Houston, TX, 77034, USA.
| |
Collapse
|
17
|
Miller MT, Tuske S, Das K, DeStefano JJ, Arnold E. Structure of HIV-1 reverse transcriptase bound to a novel 38-mer hairpin template-primer DNA aptamer. Protein Sci 2015; 25:46-55. [PMID: 26296781 DOI: 10.1002/pro.2776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023]
Abstract
The development of a modified DNA aptamer that binds HIV-1 reverse transcriptase (RT) with ultra-high affinity has enabled the X-ray structure determination of an HIV-1 RT-DNA complex to 2.3 Å resolution without the need for an antibody Fab fragment or RT-DNA cross-linking. The 38-mer hairpin-DNA aptamer has a 15 base-pair duplex, a three-deoxythymidine hairpin loop, and a five-nucleotide 5'-overhang. The aptamer binds RT in a template-primer configuration with the 3'-end positioned at the polymerase active site and has 2'-O-methyl modifications at the second and fourth duplex template nucleotides that interact with the p66 fingers and palm subdomains. This structure represents the highest resolution RT-nucleic acid structure to date. The RT-aptamer complex is catalytically active and can serve as a platform for studying fundamental RT mechanisms and for development of anti-HIV inhibitors through fragment screening and other approaches. Additionally, the structure allows for a detailed look at a unique aptamer design and provides the molecular basis for its remarkably high affinity for RT.
Collapse
Affiliation(s)
- Matthew T Miller
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Steve Tuske
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, 20742
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
18
|
Davydova A, Vorobjeva M, Pyshnyi D, Altman S, Vlassov V, Venyaminova A. Aptamers against pathogenic microorganisms. Crit Rev Microbiol 2015; 42:847-65. [PMID: 26258445 PMCID: PMC5022137 DOI: 10.3109/1040841x.2015.1070115] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An important current issue of modern molecular medicine and biotechnology is the search for new approaches to early diagnostic assays and adequate therapy of infectious diseases. One of the promising solutions to this problem might be a development of nucleic acid aptamers capable of interacting specifically with bacteria, protozoa, and viruses. Such aptamers can be used for the specific recognition of infectious agents as well as for blocking of their functions. The present review summarizes various modern SELEX techniques used in this field, and of several currently identified aptamers against viral particles and unicellular organisms, and their applications. The prospects of applying nucleic acid aptamers for the development of novel detection systems and antibacterial and antiviral drugs are discussed.
Collapse
Affiliation(s)
- Anna Davydova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Maria Vorobjeva
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Dmitrii Pyshnyi
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Sidney Altman
- b Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , CT , USA
| | - Valentin Vlassov
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| | - Alya Venyaminova
- a Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences , Novosibirsk , Russia and
| |
Collapse
|
19
|
RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins. Viruses 2015; 7:3345-60. [PMID: 26114473 PMCID: PMC4517104 DOI: 10.3390/v7072775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/08/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022] Open
Abstract
An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.
Collapse
|
20
|
Cross-protection of influenza A virus infection by a DNA aptamer targeting the PA endonuclease domain. Antimicrob Agents Chemother 2015; 59:4082-93. [PMID: 25918143 DOI: 10.1128/aac.00306-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023] Open
Abstract
Amino acid residues in the N-terminal of the PA subunit (PAN) of the influenza A virus polymerase play critical roles in endonuclease activity, protein stability, and viral RNA (vRNA) promoter binding. In addition, PAN is highly conserved among different subtypes of influenza virus, which suggests PAN to be a desired target in the development of anti-influenza agents. We selected DNA aptamers targeting the intact PA protein or the PAN domain of an H5N1 virus strain using systematic evolution of ligands by exponential enrichment (SELEX). The binding affinities of selected aptamers were measured, followed by an evaluation of in vitro endonuclease inhibitory activity. Next, the antiviral effects of enriched aptamers against influenza A virus infections were examined. A total of three aptamers targeting PA and six aptamers targeting PAN were selected. Our data demonstrated that all three PA-selected aptamers neither inhibited endonuclease activity nor exhibited antiviral efficacy, whereas four of the six PAN-selected aptamers inhibited both endonuclease activity and H5N1 virus infection. Among the four effective aptamers, one exhibited cross-protection against infections of H1N1, H5N1, H7N7, and H7N9 influenza viruses, with a 50% inhibitory concentration (IC50) of around 10 nM. Notably, this aptamer was identified at the 5th round but disappeared after the 10th round of selection, suggesting that the identification and evaluation of aptamers at early rounds of selection may be highly helpful for screening effective aptamers. Overall, our study provides novel insights for screening and developing effective aptamers for use as anti-influenza drugs.
Collapse
|
21
|
Aeksiri N, Songtawee N, Gleeson MP, Hannongbua S, Choowongkomon K. Insight into HIV-1 reverse transcriptase-aptamer interaction from molecular dynamics simulations. J Mol Model 2014; 20:2380. [PMID: 25073457 DOI: 10.1007/s00894-014-2380-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus-1 reverse transcriptase (HIV-1 RT) is considered to be one of the key targets for antiviral drug therapy. The emergence of the aptamers as potential inhibitors against HIV-1 reverse transcriptase has attracted the attention of the scientific community because these macromolecules can effectively inhibit HIV-1 RT with between micromolar to picomolar concentrations. However, it is not clear how aptamers interact with HIV-1 RT. We have undertaken a molecular dynamics (MD) study in order to gain a keen insight into the conformational dynamics of HIV-1 RT on the formation of a complex with an aptamer or DNA substrate. We have therefore employed three separate models: apo HIV-1 RT, HIV-1 RT with a bound RNA aptamer, and HIV-1 RT with a bound DNA substrate. The results show that HIV-1 RT complex with an aptamer was more stable than that with DNA substrate. It was found that the aptamer interacted with HIV-1 RT in a fingers-and-thumb-closed conformation, at the bound at the nucleic acid substrate binding site. We identified key residues within the HIV-1 RT-aptamer complex in order to help design, develop, and test a new aptamer based on therapies in the future.
Collapse
Affiliation(s)
- Niran Aeksiri
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | | | | | | |
Collapse
|
22
|
Abstract
Aptamers targeted to HIV reverse transcriptase (RT) have been demonstrated to inhibit RT in biochemical assays and as in cell culture. However, methods employed to date to evaluate viral suppression utilize time-consuming serial passage of infectious HIV in aptamer-expressing stable cell lines. We have established a rapid, transfection-based assay system to effectively examine the inhibitory potential of anti-HIV RT aptamers expressed between two catalytically inactive hammerhead ribozymes. Our system can be altered and optimized for a variety of cloning schemes, and addition of sequences of interest to the cassette is simple and straightforward. When paired with methods to analyze aptamer RNA accumulation and localization in cells and as packaging into pseudotyped virions, the method has a very high level of success in predicting good inhibitors.
Collapse
|
23
|
Yang Z, Vu GP, Qian H, Chen YC, Wang Y, Reeves M, Zen K, Liu F. Engineered RNase P ribozymes effectively inhibit human cytomegalovirus gene expression and replication. Viruses 2014; 6:2376-91. [PMID: 24932966 PMCID: PMC4074932 DOI: 10.3390/v6062376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/16/2022] Open
Abstract
RNase P ribozyme can be engineered to be a sequence-specific gene-targeting agent with promising application in both basic research and clinical settings. By using an in vitro selection system, we have previously generated RNase P ribozyme variants that have better catalytic activity in cleaving an mRNA sequence than the wild type ribozyme. In this study, one of the variants was used to target the mRNA encoding human cytomegalovirus (HCMV) essential transcription factor immediate-early protein 2 (IE2). The variant was able to cleave IE2 mRNA in vitro 50-fold better than the wild type ribozyme. A reduction of about 98% in IE2 expression and a reduction of 3500-fold in viral production was observed in HCMV-infected cells expressing the variant compared to a 75% reduction in IE2 expression and a 100-fold reduction in viral production in cells expressing the ribozyme derived from the wild type sequence. These results suggest that ribozyme variants that are selected to be highly active in vitro are also more effective in inhibiting the expression of their targets in cultured cells. Our study demonstrates that RNase P ribozyme variants are efficient in reducing HCMV gene expression and growth and are potentially useful for anti-viral therapeutic application.
Collapse
Affiliation(s)
- Zhu Yang
- Institute of Virology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| | - Hua Qian
- Department of Gynecology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, China.
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| | - Yu Wang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China.
| | - Michael Reeves
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Ke Zen
- Institute of Virology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Yu X, Gao Y, Xue B, Wang X, Yang D, Qin Y, Yu R, Liu N, Xu L, Fang X, Zhu H. Inhibition of hepatitis C virus infection by NS5A-specific aptamer. Antiviral Res 2014; 106:116-24. [PMID: 24713119 DOI: 10.1016/j.antiviral.2014.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 12/24/2022]
Abstract
To increase efficacy of hepatitis C treatment, future regiments will incorporate multiple direct-acting antiviral drugs. HCV NS5A protein was expressed and purified. Aptamers against NS5A were screened and obtained by the selective evolution of ligands by exponential enrichment approach and the antiviral actions of the aptamers were tested. The mechanisms through which the aptamers exert their antiviral activity were explored. The aptamers NS5A-4 and NS5A-5 inhibit HCV RNA replication and infectious virus production without causing cytotoxicity in human hepatocytes. The aptamers do not affect hepatitis B virus replication in HepG2.2.15 cells. Interferon beta (IFN-β) and interferon-stimulated genes (ISGs) are not induced by the aptamers in HCV-infected hepatocytes. Further study shows that domain I and domain III of NS5A protein are involved in the suppression of HCV RNA replication and infectious virus production by NS5A-4. Y2105H within NS5A is the major resistance mutation identified. NS5A aptamer disrupts the interaction of NS5A with core protein. The data suggest that the aptamers against NS5A protein may exert antiviral effects through inhibiting viral RNA replication, preventing the interaction of NS5A with core protein. Aptamers for NS5A may be used to understand the mechanisms of virus replication and assembly and served as potential therapeutic agents for hepatitis C.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yimin Gao
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohong Wang
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Darong Yang
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China
| | - Yuwen Qin
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Rong Yu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Nianli Liu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China
| | - Li Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China; Research Center of Cancer Prevention & Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China.
| |
Collapse
|
25
|
Gao Y, Yu X, Xue B, Zhou F, Wang X, Yang D, Liu N, Xu L, Fang X, Zhu H. Inhibition of hepatitis C virus infection by DNA aptamer against NS2 protein. PLoS One 2014; 9:e90333. [PMID: 24587329 PMCID: PMC3938669 DOI: 10.1371/journal.pone.0090333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 02/06/2023] Open
Abstract
NS2 protein is essential for hepatitis C virus (HCV) replication. NS2 protein was expressed and purified. Aptamers against NS2 protein were raised and antiviral effects of the aptamers were examined. The molecular mechanism through which the aptamers exert their anti-HCV activity was investigated. The data showed that aptamer NS2-3 inhibited HCV RNA replication in replicon cell line and infectious HCV cell culture system. NS2-3 and another aptamer NS2-2 were demonstrated to inhibit infectious virus production without cytotoxicity in vitro. They did not affect hepatitis B virus replication. Interferon beta (IFN-β) and interferon-stimulated genes (ISGs) were not induced by the aptamers in HCV-infected hepatocytes. Furthermore, our study showed that N-terminal region of NS2 protein is involved in the inhibition of HCV infection by NS2-2. I861T within NS2 is the major resistance mutation identified. Aptamer NS2-2 disrupts the interaction of NS2 with NS5A protein. The data suggest that NS2-2 aptamer against NS2 protein exerts its antiviral effects through binding to the N-terminal of NS2 and disrupting the interaction of NS2 with NS5A protein. NS2-specific aptamer is the first NS2 inhibitor and can be used to understand the mechanisms of virus replication and assembly. It may be served as attractive candidates for inclusion in the future HCV direct-acting antiviral combination therapies.
Collapse
Affiliation(s)
- Yimin Gao
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaoyan Yu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Binbin Xue
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Fei Zhou
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Xiaohong Wang
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Darong Yang
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Research Center of Cancer Prevention & Treatment and Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China
| | - Nianli Liu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Research Center of Cancer Prevention & Treatment and Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China
| | - Li Xu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhu
- Department of Molecular Medicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
- Research Center of Cancer Prevention & Treatment and Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital (Affiliated Tumor Hospital of Xiangya Medical School of Central South University), Changsha, China
- * E-mail:
| |
Collapse
|
26
|
Abstract
Hepatitis C virus (HCV) core protein is essential for virus assembly. HCV core protein was expressed and purified. Aptamers against core protein were raised through the selective evolution of ligands by the exponential enrichment approach. Detection of HCV infection by core aptamers and the antiviral activities of aptamers were characterized. The mechanism of their anti-HCV activity was determined. The data showed that selected aptamers against core specifically recognize the recombinant core protein but also can detect serum samples from hepatitis C patients. Aptamers have no effect on HCV RNA replication in the infectious cell culture system. However, the aptamers inhibit the production of infectious virus particles. Beta interferon (IFN-β) and interferon-stimulated genes (ISGs) are not induced in virally infected hepatocytes by aptamers. Domains I and II of core protein are involved in the inhibition of infectious virus production by the aptamers. V31A within core is the major resistance mutation identified. Further study shows that the aptamers disrupt the localization of core with lipid droplets and NS5A and perturb the association of core protein with viral RNA. The data suggest that aptamers against HCV core protein inhibit infectious virus production by disrupting the localization of core with lipid droplets and NS5A and preventing the association of core protein with viral RNA. The aptamers for core protein may be used to understand the mechanisms of virus assembly. Core-specific aptamers may hold promise for development as early diagnostic reagents and potential therapeutic agents for chronic hepatitis C.
Collapse
|
27
|
Banerjee J, Nilsen-Hamilton M. Aptamers: multifunctional molecules for biomedical research. J Mol Med (Berl) 2013; 91:1333-42. [PMID: 24045702 DOI: 10.1007/s00109-013-1085-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Aptamers are single-stranded oligonucleotides that fold into well-defined three-dimensional shapes, allowing them to bind their targets with high affinity and specificity. They can be generated through an in vitro process called "Systemic Evolution of Ligands by Exponential Enrichment" and applied for specific detection, inhibition, and characterization of various targets like small organic and inorganic molecules, proteins, and whole cells. Aptamers have also been called chemical antibodies because of their synthetic origin and their similar modes of action to antibodies. They exhibit significant advantages over antibodies in terms of their small size, synthetic accessibility, and ability to be chemically modified and thus endowed with new properties. The first generation of aptamer drug "Macugen" was available for public use within 25 years of the discovery of aptamers. With others in the pipeline for clinical trials, this emerging field of medical biotechnology is raising significant interest. However, aptamers pose different problems for their development than for antibodies that need to be addressed to achieve practical applications. It is likely that current developments in aptamer engineering will be the basis for the evolution of improved future bioanalytical and biomedical applications. The present review discusses the development of aptamers for therapeutics, drug delivery, target validation and imaging, and reviews some of the challenges to fully realizing the promise of aptamers in biomedical applications.
Collapse
Affiliation(s)
- Jayeeta Banerjee
- Biology Department, Indian Institute of Science Education and Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune, 411008, India,
| | | |
Collapse
|
28
|
Inhibition of hepatitis C virus infection by DNA aptamer against envelope protein. Antimicrob Agents Chemother 2013; 57:4937-44. [PMID: 23877701 DOI: 10.1128/aac.00897-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) envelope protein (E1E2) is essential for virus binding to host cells. Aptamers have been demonstrated to have strong promising applications in drug development. In the current study, a cDNA fragment encoding the entire E1E2 gene of HCV was cloned. E1E2 protein was expressed and purified. Aptamers for E1E2 were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and the antiviral actions of the aptamers were examined. The mechanism of their antiviral activity was investigated. The data show that selected aptamers for E1E2 specifically recognize the recombinant E1E2 protein and E1E2 protein from HCV-infected cells. CD81 protein blocks the binding of aptamer E1E2-6 to E1E2 protein. Aptamers against E1E2 inhibit HCV infection in an infectious cell culture system although they have no effect on HCV replication in a replicon cell line. Beta interferon (IFN-β) and IFN-stimulated genes (ISGs) are not induced in virus-infected hepatocytes with aptamer treatment, suggesting that E1E2-specific aptamers do not induce innate immunity. E2 protein is essential for the inhibition of HCV infection by aptamer E1E2-6, and the aptamer binding sites are located in E2. Q412R within E1E2 is the major resistance substitution identified. The data indicate that an aptamer against E1E2 exerts its antiviral effects through inhibition of virus binding to host cells. Aptamers against E1E2 can be used with envelope protein to understand the mechanisms of HCV entry and fusion. The aptamers may hold promise for development as therapeutic drugs for hepatitis C patients.
Collapse
|
29
|
Inhibition of hepatitis C virus infection by DNA aptamer against envelope protein. Antimicrob Agents Chemother 2013. [PMID: 23877701 DOI: 10.1128/aac.00897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) envelope protein (E1E2) is essential for virus binding to host cells. Aptamers have been demonstrated to have strong promising applications in drug development. In the current study, a cDNA fragment encoding the entire E1E2 gene of HCV was cloned. E1E2 protein was expressed and purified. Aptamers for E1E2 were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and the antiviral actions of the aptamers were examined. The mechanism of their antiviral activity was investigated. The data show that selected aptamers for E1E2 specifically recognize the recombinant E1E2 protein and E1E2 protein from HCV-infected cells. CD81 protein blocks the binding of aptamer E1E2-6 to E1E2 protein. Aptamers against E1E2 inhibit HCV infection in an infectious cell culture system although they have no effect on HCV replication in a replicon cell line. Beta interferon (IFN-β) and IFN-stimulated genes (ISGs) are not induced in virus-infected hepatocytes with aptamer treatment, suggesting that E1E2-specific aptamers do not induce innate immunity. E2 protein is essential for the inhibition of HCV infection by aptamer E1E2-6, and the aptamer binding sites are located in E2. Q412R within E1E2 is the major resistance substitution identified. The data indicate that an aptamer against E1E2 exerts its antiviral effects through inhibition of virus binding to host cells. Aptamers against E1E2 can be used with envelope protein to understand the mechanisms of HCV entry and fusion. The aptamers may hold promise for development as therapeutic drugs for hepatitis C patients.
Collapse
|
30
|
Ray P, Viles KD, Soule EE, Woodruff RS. Application of aptamers for targeted therapeutics. Arch Immunol Ther Exp (Warsz) 2013; 61:255-71. [PMID: 23563807 DOI: 10.1007/s00005-013-0227-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/25/2013] [Indexed: 12/30/2022]
Abstract
Aptamers are short, single-stranded oligonucleotides that are isolated through a process termed systematic evolution of ligands by exponential enrichment. With the advent of cell-based selection technology, aptamers can be selected to bind protein targets that are expressed on the cell surface. These aptamers demonstrate excellent specificity and high affinity toward their target proteins and are often internalized upon binding to their targets. This has opened up the possibility of using aptamers for cell-specific targeted drug delivery. In this review, we will discuss cell-surface protein targets, the aptamers that bind them, and their applications for targeted therapeutics.
Collapse
Affiliation(s)
- Partha Ray
- Department of Surgery, Duke University Medical Center, DUMC Box 103035, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
31
|
Whatley AS, Ditzler MA, Lange MJ, Biondi E, Sawyer AW, Chang JL, Franken JD, Burke DH. Potent Inhibition of HIV-1 Reverse Transcriptase and Replication by Nonpseudoknot, "UCAA-motif" RNA Aptamers. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e71. [PMID: 23385524 PMCID: PMC3586799 DOI: 10.1038/mtna.2012.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA aptamers that bind the reverse transcriptase (RT) of human immunodeficiency virus (HIV) compete with nucleic acid primer/template for access to RT, inhibit RT enzymatic activity in vitro, and suppress viral replication when expressed in human cells. Numerous pseudoknot aptamers have been identified by sequence analysis, but relatively few have been confirmed experimentally. In this work, a screen of nearly 100 full-length and >60 truncated aptamer transcripts established the predictive value of the F1Pk and F2Pk pseudoknot signature motifs. The screen also identified a new, nonpseudoknot motif with a conserved unpaired UCAA element. High-throughput sequence (HTS) analysis identified 181 clusters capable of forming this novel element. Comparative sequence analysis, enzymatic probing and RT inhibition by aptamer variants established the essential requirements of the motif, which include two conserved base pairs (AC/GU) on the 5′ side of the unpaired UCAA. Aptamers in this family inhibit RT in primer extension assays with IC50 values in the low nmol/l range, and they suppress viral replication with a potency that is comparable with that of previously studied aptamers. All three known anti-RT aptamer families (pseudoknots, the UCAA element, and the recently described “(6/5)AL” motif) are therefore suitable for developing aptamer-based antiviral gene therapies.
Collapse
Affiliation(s)
- Angela S Whatley
- 1] Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA [2] Current addresses: Department of Veterans Affairs Office of Research and Development (10P9), Washington DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zeng W, Chen YC, Bai Y, Trang P, Vu GP, Lu S, Wu J, Liu F. Effective inhibition of human immunodeficiency virus 1 replication by engineered RNase P ribozyme. PLoS One 2012; 7:e51855. [PMID: 23300569 PMCID: PMC3530568 DOI: 10.1371/journal.pone.0051855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/13/2012] [Indexed: 11/18/2022] Open
Abstract
Using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme. Our results provide the first direct evidence that combined mutations at nucleotide 83 and 340 of RNase P catalytic RNA from Escherichia coli (G(83) -> U(83) and G(340) -> A(340)) increase the overall efficiency of the ribozyme in cleaving an HIV RNA sequence. Moreover, the variant is more effective in reducing HIV-1 p24 expression and intracellular viral RNA level in cells than the wild type ribozyme. A reduction of about 90% in viral RNA level and a reduction of 150 fold in viral growth were observed in cells that expressed the variant, while a reduction of less than 10% was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered ribozyme variants are effective in inhibiting HIV infection. These results also demonstrate the potential of engineering RNase P ribozymes for anti-HIV application.
Collapse
Affiliation(s)
- Wenbo Zeng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Yong Bai
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Phong Trang
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (JW); (SL)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- * E-mail: (FL); (JW); (SL)
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (JW); (SL)
| |
Collapse
|
33
|
Ditzler MA, Lange MJ, Bose D, Bottoms CA, Virkler KF, Sawyer AW, Whatley AS, Spollen W, Givan SA, Burke DH. High-throughput sequence analysis reveals structural diversity and improved potency among RNA inhibitors of HIV reverse transcriptase. Nucleic Acids Res 2012; 41:1873-84. [PMID: 23241386 PMCID: PMC3561961 DOI: 10.1093/nar/gks1190] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Systematic evolution of ligands through exponential enrichment (SELEX) is a well-established method for generating nucleic acid populations that are enriched for specified functions. High-throughput sequencing (HTS) enhances the power of comparative sequence analysis to reveal details of how RNAs within these populations recognize their targets. We used HTS analysis to evaluate RNA populations selected to bind type I human immunodeficiency virus reverse transcriptase (RT). The populations are enriched in RNAs of independent lineages that converge on shared motifs and in clusters of RNAs with nearly identical sequences that share common ancestry. Both of these features informed inferences of the secondary structures of enriched RNAs, their minimal structural requirements and their stabilities in RT-aptamer complexes. Monitoring population dynamics in response to increasing selection pressure revealed RNA inhibitors of RT that are more potent than the previously identified pseudoknots. Improved potency was observed for inhibition of both purified RT in enzymatic assays and viral replication in cell-based assays. Structural and functional details of converged motifs that are obscured by simple consensus descriptions are also revealed by the HTS analysis. The approach presented here can readily be generalized for the efficient and systematic post-SELEX development of aptamers for down-stream applications.
Collapse
Affiliation(s)
- Mark A Ditzler
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Ribonucleases H or RNases H are conserved and exist in almost every organism. They generate and remove RNA primers, which are required for DNA replication. RNases H hydrolyze RNA in RNA-DNA hybrids. RNases H and related enzymes contribute to reduction of gene expression in antisense and small-interfering RNA mechanisms for gene silencing. Retroviruses code for RNases H, which are required for DNA provirus synthesis. Their RNase H is fused to the reverse transcriptase and essential for virus replication inside the cell. Retroviruses code for four enzymes, three of which have been targeted by antiretroviral therapies. A drug against the fourth one, the retroviral RNase H, does not yet exist. The viral but not cellular RNases H should be targeted by drug design. Some details will be discussed here. Furthermore, a compound is described, which enables the RNase H to kill cell-free HIV particles by driving the virus into suicide - with potential use as a microbicide.
Collapse
|
35
|
Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG. Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 2012; 287:38110-23. [PMID: 22955279 DOI: 10.1074/jbc.m112.398180] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66(M184I)/p51(WT), p66(E138K)/p51(E138K), p66(E138K/M184I)/p51(E138K), and p66(M184I)/p51(E138K). Ile-184 in p66 (p66(184I)) decreased the catalytic efficiency of RT (k(pol)/K(d)(.dNTP)), primarily through a decrease in dNTP binding (K(d)(.dNTP)). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66(184I) by restoring dNTP binding. Furthermore, p51(138K) reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (K(d)(.RPV) = k(off.RPV)/k(on.RPV)). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51(E138K) affects access to the RPV binding site by disrupting the salt bridge between p51(E138) and p66(K101). p66(184I) caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51(138K) restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lange MJ, Sharma TK, Whatley AS, Landon LA, Tempesta MA, Johnson MC, Burke DH. Robust suppression of HIV replication by intracellularly expressed reverse transcriptase aptamers is independent of ribozyme processing. Mol Ther 2012; 20:2304-14. [PMID: 22948672 DOI: 10.1038/mt.2012.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RNA aptamers that bind human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) also inhibit viral replication, making them attractive as therapeutic candidates and potential tools for dissecting viral pathogenesis. However, it is not well understood how aptamer-expression context and cellular RNA pathways govern aptamer accumulation and net antiviral bioactivity. Using a previously-described expression cassette in which aptamers were flanked by two "minimal core" hammerhead ribozymes, we observed only weak suppression of pseudotyped HIV. To evaluate the importance of the minimal ribozymes, we replaced them with extended, tertiary-stabilized hammerhead ribozymes with enhanced self-cleavage activity, in addition to noncleaving ribozymes with active site mutations. Both the active and inactive versions of the extended hammerhead ribozymes increased inhibition of pseudotyped virus, indicating that processing is not necessary for bioactivity. Clonal stable cell lines expressing aptamers from these modified constructs strongly suppressed infectious virus, and were more effective than minimal ribozymes at high viral multiplicity of infection (MOI). Tertiary stabilization greatly increased aptamer accumulation in viral and subcellular compartments, again regardless of self-cleavage capability. We therefore propose that the increased accumulation is responsible for increased suppression, that the bioactive form of the aptamer is one of the uncleaved or partially cleaved transcripts, and that tertiary stabilization increases transcript stability by reducing exonuclease degradation.
Collapse
Affiliation(s)
- Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Janssen KPF, Knez K, Spasic D, Schrooten J, Lammertyn J. Multiplexed protein detection using an affinity aptamer amplification assay. Anal Bioanal Chem 2012; 404:2073-81. [PMID: 22825678 DOI: 10.1007/s00216-012-6252-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/29/2012] [Accepted: 07/06/2012] [Indexed: 12/01/2022]
Abstract
Affinity probe capillary electrophoresis (APCE) is potentially one of the most versatile technologies for protein diagnostics, offering an excellent balance between robustness, analysis speed and sensitivity. Combining the immunosensing and separating strength of capillary electrophoresis with the signal enhancement power of nucleic acid amplification, aptamers can further push the analytical limits of APCE to offer ultrasensitive, multiplexed detection of protein biomarkers, even when differences in electrophoretic mobility between the different aptamer-target complexes are limited. It is demonstrated how, through careful selection of experimental parameters, simultaneous detection of picomolar levels of three target proteins can be achieved even with aptamers that were initially selected under very different conditions and further taking into account that the aptamers need to be modified to allow successful PCR amplification. Aptamer-enhanced APCE offers limits of detection that are orders of magnitude lower than those that can be achieved through traditional capillary electrophoresis-based immunosensing. With recent developments in aptamer selection that for the first time realise the promise of aptamers as easily accessible, high affinity recognition molecules, it can therefore be envisioned that aptamer-enhanced APCE on parallel microfluidic platforms can be the basis for a truly high-throughput multiplexed proteomics platform, rivalling genetic screening for the first time.
Collapse
|
38
|
Mehta J, Rouah-Martin E, Van Dorst B, Maes B, Herrebout W, Scippo ML, Dardenne F, Blust R, Robbens J. Selection and characterization of PCB-binding DNA aptamers. Anal Chem 2012; 84:1669-76. [PMID: 22166135 DOI: 10.1021/ac202960b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that resist natural degradation and bioaccumulate in nature. Combined with their toxicity, this leads them to cause cancer and other health hazards. Thus, there is a vital need for rapid and sensitive methods to detect PCB residues in food and in the environment. In this study, PCB-binding DNA aptamers were developed using PCB72 and PCB106 as targets for aptamer selection. Aptamers are synthetic DNA recognition elements which form unique conformations that enable them to bind specifically to their targets. Using in vitro selection techniques and fluorometry, an aptamer that binds with nanomolar affinity to both the PCBs has been developed. It displayed high selectivity to the original target congeners and limited affinity toward other PCB congeners (105, 118, 153, and 169), suggesting general specificity for the basic PCB skeleton with varying affinities for different congeners. This aptamer provides a basis for constructing an affordable, sensitive, and high-throughput assay for the detection of PCBs in food and environmental samples and offers a promising alternative to existing methods of PCB quantitation. This study therefore advances aptamer technology by targeting one of the highly sought-after POPs, for the first time ever recorded.
Collapse
Affiliation(s)
- Jaytry Mehta
- Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|