1
|
Jiao Z, Zhang M, Ning J, Yao H, Yan X, Wu Z, Wu D, Liu Y, Zhang M, Wang L, Wang D. The oncoprotein SET promotes serine-derived one-carbon metabolism by regulating SHMT2 enzymatic activity. Proc Natl Acad Sci U S A 2025; 122:e2412854122. [PMID: 40339130 DOI: 10.1073/pnas.2412854122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/27/2025] [Indexed: 05/10/2025] Open
Abstract
Cancer cells frequently reprogram one-carbon metabolic pathways to fulfill their vigorous demands of biosynthesis and antioxidant defense for survival and proliferation. Dysfunction of oncogenes or tumor suppressor genes is critically involved in this process, but the precise mechanisms by which cancer cells actively trigger one-carbon metabolic alterations remain incompletely elucidated. Here, by using untargeted metabolomic analysis, we identify the oncoprotein SE translocation (SET) as a key regulator of one-carbon metabolism in cancer cells. SET physically interacts with mitochondrial SHMT2 and facilitates SHMT2 enzymatic activity. Loss of SET profoundly suppresses serine-derived one-carbon metabolic flux, whereas reexpression of ectopic SET leads to the opposite effect. Notably, although the presence of SHMT2 is critical for SET-mediated one-carbon metabolic alterations, the depletion of SHMT2 alone is insufficient to antagonize SET-induced tumor growth, probably due to functional compensation by its cytosolic isozyme SHMT1 upon SHMT2 knockdown. Instead, pharmacological targeting of cellular SHMT (including both SHMT1 and SHMT2) activity results in dramatic suppression of SET-induced tumor growth. Moreover, by using a Kras/Lkb1 mutation-driven lung tumor mouse model, we demonstrate that the loss of SET compromises both tumor formation and intratumoral SHMT2 enzymatic activity. Clinically, the overexpression of SET and SHMT2 is observed in lung tumors, both of which correlate with poor prognosis. Our study reveals a SET-SHMT2 axis in regulating serine-derived one-carbon metabolism and uncovers one-carbon metabolic reprogramming as a mechanism for SET-driven tumorigenesis.
Collapse
Affiliation(s)
- Zishan Jiao
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Mi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang 110122, China
| | - Jingyuan Ning
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhen Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dexuan Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yajing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Gong L, Xu D, Ni K, Li J, Mao W, Zhang B, Pu Z, Fang X, Yin Y, Ji L, Wang J, Hu Y, Meng J, Zhang R, Jiao J, Zou J. Smad1 Promotes Tumorigenicity and Chemoresistance of Glioblastoma by Sequestering p300 From p53. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402258. [PMID: 39629919 PMCID: PMC11789598 DOI: 10.1002/advs.202402258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Indexed: 01/30/2025]
Abstract
Acetylation is critically required for p53 activation, though it remains poorly understood how p53 acetylation is regulated in glioblastoma (GBM). This study reveals that p53 acetylation is a favorable prognostic marker for GBM, regardless of p53 status, and that Smad1, a key negative regulator of p53 acetylation, is involved in this process. Smad1 forms a complex with p53 and p300, inhibiting p300's interaction with p53 and leading to reduced p53 acetylation and increased Smad1 acetylation in GBM. This results in enhanced tumor growth and resistance to chemotherapy, particularly in tumors with missense mutant p53. Acetylation of K373 is found to be essential for Smad1's oncogenic function but does not confer chemoresistance in the absence of p53. Through molecular docking, it is discovered that Smad1 and p53 both interact with the acetyltransferase domain of p300, but at different amino acid sites. Disturbing the interface of Smad1 through amino acid mutations abolishes the Smad1-p300 complex and promotes p53 acetylation. Therefore, a small molecule is identified through virtual screening that specifically disrupts the Smad1-p300 interaction, offering a promising strategy for inhibiting GBM and increasing chemosensitivity by inhibiting Smad1 acetylation and restoring p53 acetylation.
Collapse
Affiliation(s)
- Lingli Gong
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Daxing Xu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Kaixiang Ni
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jie Li
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Wei Mao
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zhening Pu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jingjing Wang
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Jiao Meng
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
- Wuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
3
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
4
|
Xu W, Yao H, Wu Z, Yan X, Jiao Z, Liu Y, Zhang M, Wang D. Oncoprotein SET-associated transcription factor ZBTB11 triggers lung cancer metastasis. Nat Commun 2024; 15:1362. [PMID: 38355937 PMCID: PMC10867109 DOI: 10.1038/s41467-024-45585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Metastasis is the major cause of lung cancer-related death, but the mechanisms governing lung tumor metastasis remain incompletely elucidated. SE translocation (SET) is overexpressed in lung tumors and correlates with unfavorable prognosis. Here we uncover SET-associated transcription factor, zinc finger and BTB domain-containing protein 11 (ZBTB11), as a prometastatic regulator in lung tumors. SET interacts and collaborates with ZBTB11 to promote lung cancer cell migration and invasion, primarily through SET-ZBTB11 complex-mediated transcriptional activation of matrix metalloproteinase-9 (MMP9). Additionally, by transcriptional repression of proline-rich Gla protein 2 (PRRG2), ZBTB11 links Yes-associated protein 1 (YAP1) activation to drive lung tumor metastasis independently of SET-ZBTB11 complex. Loss of ZBTB11 suppresses distal metastasis in a lung tumor mouse model. Overexpression of ZBTB11 is recapitulated in human metastatic lung tumors and correlates with diminished survival. Our study demonstrates ZBTB11 as a key metastatic regulator and reveals diverse mechanisms by which ZBTB11 modulates lung tumor metastasis.
Collapse
Affiliation(s)
- Wenbin Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zhen Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zishan Jiao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yajing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Silva GD, Milan TM, Chagas PS, Trevisan GL, Ferraz CL, Leopoldino AM. SET protein as an epigenetics target. Epigenomics 2024; 16:249-257. [PMID: 38131159 DOI: 10.2217/epi-2023-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The SET gene has four transcripts reported in NCBI, coding two isoforms of SET proteins. The most known function of SET protein is inhibiting protein phosphatase 2A, a tumor suppressor, which has been associated with different biological processes. In this review, our focus was on exploring the other SET functions related to epigenetic mechanisms, which impact cellular migration, cell cycle and apoptosis.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Thaís Moré Milan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Glauce Lunardelli Trevisan
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Camila Lopes Ferraz
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology & Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|
6
|
Romhányi D, Szabó K, Kemény L, Groma G. Histone and Histone Acetylation-Related Alterations of Gene Expression in Uninvolved Psoriatic Skin and Their Effects on Cell Proliferation, Differentiation, and Immune Responses. Int J Mol Sci 2023; 24:14551. [PMID: 37833997 PMCID: PMC10572426 DOI: 10.3390/ijms241914551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Psoriasis is a chronic immune-mediated skin disease in which the symptom-free, uninvolved skin carries alterations in gene expression, serving as a basis for lesion formation. Histones and histone acetylation-related processes are key regulators of gene expression, controlling cell proliferation and immune responses. Dysregulation of these processes is likely to play an important role in the pathogenesis of psoriasis. To gain a complete overview of these potential alterations, we performed a meta-analysis of a psoriatic uninvolved skin dataset containing differentially expressed transcripts from nearly 300 individuals and screened for histones and histone acetylation-related molecules. We identified altered expression of the replication-dependent histones HIST2H2AA3 and HIST2H4A and the replication-independent histones H2AFY, H2AFZ, and H3F3A/B. Eight histone chaperones were also identified. Among the histone acetyltransferases, ELP3 and KAT5 and members of the ATAC, NSL, and SAGA acetyltransferase complexes are affected in uninvolved skin. Histone deacetylation-related alterations were found to affect eight HDACs and members of the NCOR/SMRT, NURD, SIN3, and SHIP HDAC complexes. In this article, we discuss how histone and histone acetylation-related expression changes may affect proliferation and differentiation, as well as innate, macrophage-mediated, and T cell-mediated pro- and anti-inflammatory responses, which are known to play a central role in the development of psoriasis.
Collapse
Affiliation(s)
- Dóra Romhányi
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
| | - Kornélia Szabó
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- Hungarian Centre of Excellence for Molecular Medicine-University of Szeged Skin Research Group (HCEMM-USZ Skin Research Group), H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary; (D.R.); (K.S.); (L.K.)
- HUN-REN-SZTE Dermatological Research Group, H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Menchits Y, Salimova T, Komkov A, Abramov D, Konyukhova T, Abasov R, Raykina E, Itov A, Gaskova M, Borkovskaia A, Kazakova A, Soldatkina O, Kashpor S, Semchenkova A, Popov A, Novichkova G, Olshanskaya Y, Maschan A, Zerkalenkova E. Unusual Presentation of SET::NUP214-Associated Concomitant Hematological Neoplasm in a Child-Diagnostic and Treatment Struggle. Int J Mol Sci 2023; 24:14451. [PMID: 37833906 PMCID: PMC10572181 DOI: 10.3390/ijms241914451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Simultaneous multilineage hematologic malignancies are uncommon and associated with poorer prognosis than single-lineage leukemia or lymphoma. Here, we describe a concomitant malignant neoplasm in a 4-year-old boy. The child presented with massive lymphoproliferative syndrome, nasal breathing difficulties, and snoring. Morphological, immunocytochemical, and flow cytometry diagnostics showed coexistence of acute myeloid leukemia (AML) and peripheral T-cell lymphoma (PTCL). Molecular examination revealed a rare t(9;9)(q34;q34)/SET::NUP214 translocation as well as common TCR clonal rearrangements in both the bone marrow and lymph nodes. The disease showed primary refractoriness to both lymphoid and myeloid high-dose chemotherapy as well as combined targeted therapy (trametinib + ruxolitinib). Hence, HSCT was performed, and the patient has since been in complete remission for over a year. This observation highlights the importance of molecular techniques for determining the united nature of complex SET::NUP214-positive malignant neoplasms arising from precursor cells with high lineage plasticity.
Collapse
Affiliation(s)
- Yaroslav Menchits
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Tatiana Salimova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexander Komkov
- Abu Dhabi Stem Cells Center, Mahdar Qutouf Str., 25, Abu Dhabi 22404, United Arab Emirates;
| | - Dmitry Abramov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Tatiana Konyukhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Ruslan Abasov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Elena Raykina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Albert Itov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Marina Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Aleksandra Borkovskaia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Anna Kazakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Olga Soldatkina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Svetlana Kashpor
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexandra Semchenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samora Maschela Str., 1, 117998 Moscow, Russia (T.K.); (R.A.)
| |
Collapse
|
8
|
Kohyanagi N, Ohama T. The impact of SETBP1 mutations in neurological diseases and cancer. Genes Cells 2023; 28:629-641. [PMID: 37489294 PMCID: PMC11447826 DOI: 10.1111/gtc.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| |
Collapse
|
9
|
Park J, Kim JY, Park JW, Kang JY, Oh H, Hahm J, Chae YC, Chakravarti D, Seo S. INHAT subunit SET/TAF-Iβ regulates PRC1-independent H2AK119 mono-ubiquitination via E3 ligase MIB1 in colon cancer. NAR Cancer 2023; 5:zcad050. [PMID: 37746636 PMCID: PMC10516711 DOI: 10.1093/narcan/zcad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023] Open
Abstract
SET/TAF-Iβ, a subunit of the inhibitor of acetyltransferases (INHAT) complex, exhibits transcriptional repression activity by inhibiting histone acetylation. We find that SET/TAF-Iβ regulates mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), which is involved in polycomb-mediated transcriptional repression, in HCT116 cells. In this report, we demonstrate that SET/TAF-Iβ acts as an E2 ubiquitin-conjugating enzyme for PRC1-independent H2AK119ub. Furthermore, we identify that MIB1 is the E3 ligase partner for SET/TAF-Iβ using LC-MS/MS and in vitro ubiquitination assays. Transcriptome analysis reveals that SET/TAF-Iβ and MIB1 regulate the expression of genes related to DNA replication and cell cycle progression in HCT116 cells, and knockdown of either protein reduces proliferation of HCT116 cells by impeding cell cycle progression. Together, our study reveals a novel PRC1-independent epigenetic regulatory mechanism for H2AK119ub by SET/TAF-Iβ and MIB1 in colon cancer.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyein Oh
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Cheol Chae
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Zhang L, Zhang J, Xuan X, Wu D, Yu J, Wang P, Yang X, Zhang J, Gan W, He M, Liu XM, Zhou J, Wang D, Gu W, Li D. A p53/LINC00324 positive feedback loop suppresses tumor growth by counteracting SET-mediated transcriptional repression. Cell Rep 2023; 42:112833. [PMID: 37480565 DOI: 10.1016/j.celrep.2023.112833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023] Open
Abstract
The p53 tumor suppressor exerts antitumor functions through its ability to regulate the transcription of its downstream targets. Long noncoding RNAs (lncRNAs) act as oncogenes or tumor suppressors implicated in tumorigenesis and tumor progression. Here, we identify the lncRNA LINC00324 (long intergenic noncoding RNA 00324) as a direct p53 transcriptional target. Knockdown of LINC00324 expression promotes tumor growth by reducing p53 transcriptional activity, whereas ectopic LINC00324 expression demonstrates a reverse effect. Notably, LINC00324 is present in the endogenous p53 complex in tumor cells and directly binds to the C-terminal domain of p53 in vitro. Mechanistically, LINC00324 enables p53 transactivation by competitively disrupting the p53-SET interaction, resulting in an increase of p300/CBP-mediated H3K18 and H3K27 acetylation on the p53 target promoters. Lower LINC00324 expression is associated with more aggressive disease status and predicts worse overall survival of patients with cancer. Our study identifies a p53/LINC00324 positive feedback loop that suppresses tumor growth by counteracting SET-mediated transcriptional repression.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jun Zhang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaofeng Xuan
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Di Wu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jianfeng Yu
- Department of Life Science and Technology, Changshu Institute of Technology, 99 South Third Ring Road, Suzhou 215500, China
| | - Peizhen Wang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Wenjuan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou 215300, China
| | - Mengfan He
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Xiao-Min Liu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jun Zhou
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China.
| |
Collapse
|
11
|
Guo C, Meza-Sosa KF, Valle-Garcia D, Zhao G, Gao K, Yu L, Zhang H, Chen Y, Sun L, Rockowitz S, Wang S, Jiang S, Lieberman J. The SET oncoprotein promotes estrogen-induced transcription by facilitating establishment of active chromatin. Proc Natl Acad Sci U S A 2023; 120:e2206878120. [PMID: 36791099 PMCID: PMC9974495 DOI: 10.1073/pnas.2206878120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
SET is a multifunctional histone-binding oncoprotein that regulates transcription by an unclear mechanism. Here we show that SET enhances estrogen-dependent transcription. SET knockdown abrogates transcription of estrogen-responsive genes and their enhancer RNAs. In response to 17β-estradiol (E2), SET binds to the estrogen receptor α (ERα) and is recruited to ERα-bound enhancers and promoters at estrogen response elements (EREs). SET functions as a histone H2 chaperone that dynamically associates with H2A.Z via its acidic C-terminal domain and promotes H2A.Z incorporation, ERα, MLL1, and KDM3A loading and modulates histone methylation at EREs. SET depletion diminishes recruitment of condensin complexes to EREs and impairs E2-dependent enhancer-promoter looping. Thus, SET boosts E2-induced gene expression by establishing an active chromatin structure at ERα-bound enhancers and promoters, which is essential for transcriptional activation.
Collapse
Affiliation(s)
- Changying Guo
- College of Life Science and Technology, Xinjiang University, Urumqi830000, China
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Karla F. Meza-Sosa
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - David Valle-Garcia
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Boston, MA02115
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Guomeng Zhao
- China Pharmaceutical University, Nanjing211198, China
| | - Kun Gao
- China Pharmaceutical University, Nanjing211198, China
| | - Liting Yu
- China Pharmaceutical University, Nanjing211198, China
| | | | - Yeqing Chen
- Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ07102
| | - Liang Sun
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shira Rockowitz
- Research Computing, Department of Information Technology, Boston Children’s Hospital, Boston, MA02115
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA02115
| | - Shouyu Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing210093, China
| | - Sheng Jiang
- China Pharmaceutical University, Nanjing211198, China
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
12
|
The repression of oncoprotein SET by the tumor suppressor p53 reveals a p53-SET-PP2A feedback loop for cancer therapy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:81-93. [PMID: 35881220 DOI: 10.1007/s11427-021-2123-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023]
Abstract
The oncoprotein SET is frequently overexpressed in many types of tumors and contributes to malignant initiation and progression through multiple mechanisms, including the hijacking of the tumor suppressors p53 and PP2A. Targeting aberrant SET represents a promising strategy for cancer intervention. However, the mechanism by which endogenous SET is regulated in cancer cells remains largely unknown. Here, we identified the tumor suppressor p53 as a key regulator that transcriptionally repressed the expression of SET in both normal and cancer cells. In addition, p53 stimulated PP2A phosphatase activity via p53-mediated transcriptional repression of SET, whereby SET-mediated inhibition of PP2A was alleviated. Moreover, targeting the interaction between SET and PP2A catalytic subunit (PP2Ac) with FTY720 enhanced stress-induced p53 activation via PP2A-mediated dephosphorylation of p53 on threonine 55 (Thr55). Therefore, our findings uncovered a previously unknown p53-SET-PP2A regulatory feedback loop. To functionally potentiate this feedback loop, we designed a combined therapeutic strategy by simultaneously administrating a p53 activator and SET antagonist in cancer cells and observed a dramatic synergistic effect on tumor suppression. Our study reveals mechanistic insight into the regulation of the oncoprotein SET and raises a potential strategy for cancer therapy by stimulating the p53-SET-PP2A feedback loop.
Collapse
|
13
|
Di Mambro A, Esposito M. Thirty years of SET/TAF1β/I2PP2A: from the identification of the biological functions to its implications in cancer and Alzheimer's disease. Biosci Rep 2022; 42:BSR20221280. [PMID: 36345878 PMCID: PMC9679398 DOI: 10.1042/bsr20221280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
The gene encoding for the protein SE translocation (SET) was identified for the first time 30 years ago as part of a chromosomal translocation in a patient affected by leukemia. Since then, accumulating evidence have linked overexpression of SET, aberrant SET splicing, and cellular localization to cancer progression and development of neurodegenerative tauopathies such as Alzheimer's disease. Molecular biology tools, such as targeted genetic deletion, and pharmacological approaches based on SET antagonist peptides, have contributed to unveil the molecular functions of SET and its implications in human pathogenesis. In this review, we provide an overview of the functions of SET as inhibitor of histone and non-histone protein acetylation and as a potent endogenous inhibitor of serine-threonine phosphatase PP2A. We discuss the role of SET in multiple cellular processes, including chromatin remodelling and gene transcription, DNA repair, oxidative stress, cell cycle, apoptosis cell migration and differentiation. We review the molecular mechanisms linking SET dysregulation to tumorigenesis and discuss how SET commits neurons to progressive cell death in Alzheimer's disease, highlighting the rationale of exploiting SET as a therapeutic target for cancer and neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Antonella Di Mambro
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| | - Maria Teresa Esposito
- The Centre for Integrated Research in Life and Health Sciences, School of Health and Life Science, University of Roehampton, London, U.K
| |
Collapse
|
14
|
Sevoflurane inhibits histone acetylation and contributes to cognitive dysfunction by enhancing the expression of ANP32A in aging mice. Behav Brain Res 2022; 431:113949. [PMID: 35659510 DOI: 10.1016/j.bbr.2022.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
|
15
|
Gadallah M, Asaad NY, Shabaan M, Elkholy SS, Samara MY, Taie D. Role of SET oncoprotein in hepatocellular carcinoma: An immunohistochemical study. J Immunoassay Immunochem 2022; 43:420-434. [PMID: 35156535 DOI: 10.1080/15321819.2022.2034646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary cancer of the liver and it is the fourth most common cause of cancer related death worldwide. In Egypt, liver cancer constitutes the most common cause of mortality-related cancer. This study aimed to evaluate the immunohistochemical expression of SET oncoprotein in HCC tissues in comparison with its expression in non tumorous liver tissues and to correlate its expression with clinicopathological parameters. This study investigated 100 cases of HCC (including tumorous and non tumorous tissues). One hundred percent of tumorous and non-tumorous tissues were positive for SET expression. The mean and median values of H-score for SET expression were higher in tumorous than non tumorous tissues (P = .03). Higher SET expression was significantly correlated with larger tumor size (P = .012), positive lymphovascular invasion (P = .028), and shorter overall survival (P < .001). SET expression in tumor tissues is the most independent factor to affect the overall survival of HCC patients. SET plays a role in hepatocarcinogenesis proved by the increase of SET expression from non-tumorous to tumorous tissues. Also, SET can be used as a prognostic indicator and a novel target therapy in HCC patients.
Collapse
Affiliation(s)
- Marwa Gadallah
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy Yousef Asaad
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Mohammed Shabaan
- Faculty of Medicine, Pathology, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Saad Elkholy
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Manar Yousef Samara
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| | - Doha Taie
- Menoufia University National Liver Institute, Pathology, Shebin El-Kom, Egypt
| |
Collapse
|
16
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
17
|
Harikumar A, Lim PSL, Nissim-Rafinia M, Park JE, Sze SK, Meshorer E. Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and β-Catenin. Stem Cell Reports 2021; 15:1260-1274. [PMID: 33296674 PMCID: PMC7724474 DOI: 10.1016/j.stemcr.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and β-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active β-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and β-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the β-catenin-TCF regulatory axis.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Patrick S L Lim
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
18
|
Nenasheva VV, Makarova IV, Stepanenko EA, Antonov SA, Novosadova EV, Narsullaeva AR, Kozikova LV, Polteva EA, Sleptsova LA, Shcherbatova NA, Khaidarova NV, Andreeva LE, Tarantul VZ. Human TAF-Iα promotes oncogenic transformation via enhancement of cell proliferation and suppression of apoptosis. In Vitro Cell Dev Biol Anim 2021; 57:531-538. [PMID: 34021475 DOI: 10.1007/s11626-021-00572-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/29/2021] [Indexed: 11/24/2022]
Abstract
Template activating factor-I (TAF-I) is a multifunctional protein involved in various biological processes including the inhibition of histone acetylation, DNA replication, cell cycle regulation, and oncogenesis. Two main TAF-I isoforms with different N-termini, TAF-Iα and TAF-Iβ (SET), are expressed in cells. There are numerous data about functional properties of TAF-Iβ, whereas the effects of TAF-Iα remain largely unexplored. Here, we employed focus formation and cell proliferation assays, TUNEL staining, cytological analysis, and RT-qPCR to compare the effects of human TAF-Iα and TAF-Iβ genes, transiently expressed in Rat2 cells and in Misgurnus fossilis loaches. We found that both TAF-I isoforms possessed equal oncogenic potential in these systems. Furthermore, an overexpression of human TAF-Iα and TAF-Iβ in Rat2 cells promoted their proliferation. Accordingly, the mitotic index was increased in the transgenic loaches expressing human TAF-Iα or TAF-Iβ. TUNEL assay as well as downregulation of p53 gene and upregulation of bcl-2 gene in these transgenic loaches demonstrated that both isoforms suppressed apoptosis. Thus, TAF-Iα isoform exerts the same oncogenic potential as TAF-Iβ, likely by suppressing the apoptosis and promoting cell proliferation.
Collapse
Affiliation(s)
- Valentina V Nenasheva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| | - Irina V Makarova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Ekaterina A Stepanenko
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Stanislav A Antonov
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Ekaterina V Novosadova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Anastasia R Narsullaeva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Larisa V Kozikova
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, 196601, Russia
| | - Ekaterina A Polteva
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L. K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, 196601, Russia
| | - Lyudmila A Sleptsova
- Faculty of Biology, Department of Embryology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalya A Shcherbatova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Nella V Khaidarova
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Lyudmila E Andreeva
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Vyacheslav Z Tarantul
- Department of Viral and Cellular Molecular Genetics, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| |
Collapse
|
19
|
Mandemaker IK, Zhou D, Bruens ST, Dekkers DH, Verschure PJ, Edupuganti RR, Meshorer E, Demmers JAA, Marteijn JA. Histone H1 eviction by the histone chaperone SET reduces cell survival following DNA damage. J Cell Sci 2020; 133:jcs235473. [PMID: 32184266 DOI: 10.1242/jcs.235473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/27/2020] [Indexed: 08/31/2023] Open
Abstract
Many chromatin remodeling and modifying proteins are involved in the DNA damage response, where they stimulate repair or induce DNA damage signaling. Interestingly, we identified that downregulation of the histone H1 (H1)-interacting protein SET results in increased resistance to a wide variety of DNA damaging agents. We found that this increased resistance does not result from alleviation of an inhibitory effect of SET on DNA repair but, rather, is the consequence of a suppressed apoptotic response to DNA damage. Furthermore, we provide evidence that the histone chaperone SET is responsible for the eviction of H1 from chromatin. Knockdown of H1 in SET-depleted cells resulted in re-sensitization of cells to DNA damage, suggesting that the increased DNA damage resistance in SET-depleted cells is the result of enhanced retention of H1 on chromatin. Finally, clonogenic survival assays showed that SET and p53 act epistatically in the attenuation of DNA damage-induced cell death. Taken together, our data indicate a role for SET in the DNA damage response as a regulator of cell survival following genotoxic stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imke K Mandemaker
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Di Zhou
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Serena T Bruens
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Dick H Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Pernette J Verschure
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Raghu R Edupuganti
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra campus, 91904 Jerusalem, Israel
| | - Eran Meshorer
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra campus, 91904 Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
20
|
Zhong J, Ren X, Chen Z, Zhang H, Zhou L, Yuan J, Li P, Chen X, Liu W, Wu D, Yang X, Liu J. miR-21-5p promotes lung adenocarcinoma progression partially through targeting SET/TAF-Iα. Life Sci 2019; 231:116539. [PMID: 31176779 DOI: 10.1016/j.lfs.2019.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Although SET(I2PP2A) and miRNAs are reported to play a pivotal role in lung cancer, the underlying mechanisms have remained obscure. To address this issue, we investigated how miRNAs and SET participate in the progression of lung cancer. METHODS miRNAs that target SET were predicted from multiple miRNA databases. Three human NSCLC cell lines and two normal lung cell lines were used to evaluate aberrant miRNA and SET expressions. A dual luciferase reporter assay system was employed to verify the interaction between miRNA and SET. Stable miRNA knockdown and SET overexpression in A549 cells were achieved through lentivirus transfection; the corresponding influences on lung cancer progression were also examined. RESULTS In this study, A549 was the sole cell line to lack SET/TAF-Iα expression, which was inversely correlated with the up-regulation of miR-21-5p. SET was subsequently revealed as the direct target site of miR-21-5p in A549 cells. The stable miR-21-5p knockdown and SET/TAF-Iα overexpression were shown to markedly enhance the expression of SET/TAF-Iα and to inhibit the migration, invasion, proliferation as well as the in vivo tumorigenicity of A549 cells. CONCLUSION We suggest that SET/TAF-Iα might be a tumor suppressing factor regulated by miR-21-5p in lung adenocarcinoma. This might provide a target for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xiaohu Ren
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Zhihong Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Hang Zhang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Li Zhou
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Jianhui Yuan
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Ping Li
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xiao Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Wei Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Desheng Wu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xifei Yang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Jianjun Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
21
|
Lau YFC, Li Y, Kido T. Battle of the sexes: contrasting roles of testis-specific protein Y-encoded (TSPY) and TSPX in human oncogenesis. Asian J Androl 2019; 21:260-269. [PMID: 29974883 PMCID: PMC6498724 DOI: 10.4103/aja.aja_43_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
The Y-located testis-specific protein Y-encoded (TSPY) and its X-homologue TSPX originated from the same ancestral gene, but act as a proto-oncogene and a tumor suppressor gene, respectively. TSPY has specialized in male-specific functions, while TSPX has assumed the functions of the ancestral gene. Both TSPY and TSPX harbor a conserved SET/NAP domain, but are divergent at flanking structures. Specifically, TSPX contains a C-terminal acidic domain, absent in TSPY. They possess contrasting properties, in which TSPY and TSPX, respectively, accelerate and arrest cell proliferation, stimulate and inhibit cyclin B-CDK1 phosphorylation activities, have no effect and promote proteosomal degradation of the viral HBx oncoprotein, and exacerbate and repress androgen receptor (AR) and constitutively active AR variant, such as AR-V7, gene transactivation. The inhibitory domain has been mapped to the carboxyl acidic domain in TSPX, truncation of which results in an abbreviated TSPX exerting positive actions as TSPY. Transposition of the acidic domain to the C-terminus of TSPY results in an inhibitory protein as intact TSPX. Hence, genomic mutations/aberrant splicing events could generate TSPX proteins with truncated acidic domain and oncogenic properties as those for TSPY. Further, TSPY is upregulated by AR and AR-V7 in ligand-dependent and ligand-independent manners, respectively, suggesting the existence of a positive feedback loop between a Y-located proto-oncogene and male sex hormone/receptors, thereby amplifying the respective male oncogenic actions in human cancers and diseases. TSPX counteracts such positive feedback loop. Hence, TSPY and TSPX are homologues on the sex chromosomes that function at the two extremes of the human oncogenic spectrum.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| |
Collapse
|
22
|
Deregulation of SET is Associated with Tumor Progression and Predicts Adverse Outcome in Patients with Early-Stage Colorectal Cancer. J Clin Med 2019; 8:jcm8030346. [PMID: 30871013 PMCID: PMC6463201 DOI: 10.3390/jcm8030346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
SET nuclear proto-oncogene (SET) deregulation is a novel molecular target in metastatic colorectal cancer (CRC). However, its role in CRC progression and its potential clinical impact in early-stage CRC patients remain unknown. Here, we studied the biological effects of SET on migration using wound-healing and transwell assays, and anchorage-independent cell growth using soft agar colony formation assays after ectopic SET modulation. SET was analyzed by immuno-staining in 231 early-stage CRC patients, and miR-199b expression was quantified by real-time PCR in a set of CRC patients. Interestingly, SET enhances cell migration, markedly affects the colony-forming ability, promotes epithelial to mesenchymal transition, and induces the expression of the MYC proto-oncogene (c-MYC) in CRC cells. SET overexpression was detected in 15.4% of cases and was associated with worse Eastern Cooperative Oncology Group (ECOG) status (p = 0.021) and relapse in stage-II CRC patients (p = 0.008). Moreover, SET overexpression predicted shorter overall survival (p < 0.001) and time to metastasis (p < 0.001), and its prognostic value was particularly evident in elderly patients. MiR-199b downregulation was identified as a molecular mechanism to deregulate SET in patients with localized disease. In conclusion, SET overexpression is a common alteration in early-stage CRC, playing an oncogenic role associated with progression and aggressiveness, and portends a poor outcome. Thus, SET emerges as a novel potential molecular target with clinical impact in early-stage in CRC.
Collapse
|
23
|
Bayarkhangai B, Noureldin S, Yu L, Zhao N, Gu Y, Xu H, Guo C. A comprehensive and perspective view of oncoprotein SET in cancer. Cancer Med 2018; 7:3084-3094. [PMID: 29749127 PMCID: PMC6051184 DOI: 10.1002/cam4.1526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
SET is a multifunctional oncoprotein which is ubiquitously expressed in all kinds of cells. The SET protein participates in many cellular processes including cell cycle, cell migration, apoptosis, transcription, and DNA repair. Accumulating evidence demonstrates that the expression and activity of SET correlate with cancer occurrence, metastasis, and prognosis. Therefore, the SET protein is regarded as a potential target for cancer therapy and several inhibitors are being developed for clinical use. Herein, we comprehensively review the physiological and pathological functions of SET as well as its structure-function relationship. Additionally, the regulatory mechanisms of SET at both transcriptional and posttranslational levels are also discussed.
Collapse
Affiliation(s)
- Buuvee Bayarkhangai
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Suzan Noureldin
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Liting Yu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Na Zhao
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Yaru Gu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Hanmei Xu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Changying Guo
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
24
|
Saavedra F, Rivera C, Rivas E, Merino P, Garrido D, Hernández S, Forné I, Vassias I, Gurard-Levin ZA, Alfaro IE, Imhof A, Almouzni G, Loyola A. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Res 2017; 45:11700-11710. [PMID: 28977641 PMCID: PMC5714232 DOI: 10.1093/nar/gkx775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/24/2017] [Indexed: 11/12/2022] Open
Abstract
Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iβ. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iβ protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iβ depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iβ and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.
Collapse
Affiliation(s)
| | | | | | - Paola Merino
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | | | | | - Ignasi Forné
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Isabelle Vassias
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Zachary A Gurard-Levin
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | - Iván E Alfaro
- Fundación Ciencia & Vida, Santiago 7780272, Chile.,Departamento de Biología. Facultad de Ciencias Naturales y Exactas. Universidad de Playa Ancha, Valparaíso, Chile
| | - Axel Imhof
- Munich Center of Integrated Protein Science and Biomedical Center, Ludwig-Maximilians University of Munich, Planegg-Martinsried 80336, Germany
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris F-75248, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris F-75248, France
| | | |
Collapse
|
25
|
Assembly and remodeling of viral DNA and RNA replicons regulated by cellular molecular chaperones. Biophys Rev 2017; 10:445-452. [PMID: 29170971 DOI: 10.1007/s12551-017-0333-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
A variety of cellular reactions mediated by interactions among proteins and nucleic acids requires a series of proteins called molecular chaperones. The viral genome encodes relatively few kinds of viral proteins and, therefore, host-derived cellular factors are required for virus proliferation. Here we discuss those cellular proteins known as molecular chaperones, which are essential for the assembly of functional viral DNA/RNA replicons. The function of these molecular chaperones in the cellular context is also discussed.
Collapse
|
26
|
Probing the interaction of the p53 C-terminal domain to the histone demethylase LSD1. Arch Biochem Biophys 2017; 632:202-208. [PMID: 28784588 DOI: 10.1016/j.abb.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
The p53 transcription factor plays a central role in the regulation of the expression of several genes, and itself is post-translationally regulated through its different domains. Of particular relevance for p53 function is its intrinsically disordered C-terminal domain (CTD), representing a hotspot for post-translational modifications and a docking site for transcriptional regulators. For example, the histone H3 lysine demethylase 1 (LSD1) interacts with p53 via the p53-CTD for mutual regulation. To biochemically and functionally characterize this complex, we evaluated the in vitro interactions of LSD1 with several p53-CTD peptides differing in length and modifications. Binding was demonstrated through thermal shift, enzymatic and fluorescence polarization assays, but no enzymatic activity could be detected on methylated p53-CTD peptides in vitro. These experiments were performed using the wild-type enzyme and LSD1 variants that are mutated on three active-site residues. We found that LSD1 demethylase activity is inhibited by p53-CTD. We also noted that the association between the two proteins is mediated by mostly non-specific electrostatic interactions involving conserved active-site residues of LSD1 and a highly charged segment of the p53-CTD. We conclude that p53-CTD inhibits LSD1 activity and that the direct association between the two proteins can contribute to their functional cross-talk.
Collapse
|
27
|
Jiang SW, Xu S, Chen H, Liu X, Tang Z, Cui Y, Liu J. Pathologic significance of SET/I2PP2A-mediated PP2A and non-PP2A pathways in polycystic ovary syndrome (PCOS). Clin Chim Acta 2017; 464:155-159. [PMID: 27836688 DOI: 10.1016/j.cca.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 02/05/2023]
Abstract
SET (SE translocation, SET), a constitutive inhibitor of protein phosphatase 2A (PP2A), is a multifunctional oncoprotein involved in DNA replication, histone modification, nucleosome assembly, gene transcription and cell proliferation. It is widely expressed in human tissues including the gonadal system and brain. Intensive studies have shown that overexpressed SET plays an important role in the development of Alzheimer's disease (AD), and may also contribute to the malignant transformation of breast and ovarian cancers. Recent studies indicated that through interaction with PP2A, SET may upregulate androgen biosynthesis and contribute to hyperandrogenism in polycystic ovary syndrome (PCOS) patients. This review article summarizes data concerning the SET expression in ovaries from PCOS and normal women, and analyzes the role/regulatory mechanism of SET for androgen biosynthesis in PCOS, as well as the significance of this action in the development of PCOS. The potential value of SET-triggered pathway as a therapeutic target and the application of anti-SET reagents for treating hyperandrogenism in PCOS patients are also discussed.
Collapse
Affiliation(s)
- Shi-Wen Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA.
| | - Siliang Xu
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, USA; The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Xiaoqiang Liu
- The Third People's Hospital of Qingdao, Department of Obstetrics and Gynecology, Qingdao, Shandong 266041, China; Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zuoqing Tang
- Department of Medical Genetics, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yugui Cui
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiayin Liu
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
28
|
Navratilova I, Aristotelous T, Picaud S, Chaikuad A, Knapp S, Filappakopoulos P, Hopkins AL. Discovery of New Bromodomain Scaffolds by Biosensor Fragment Screening. ACS Med Chem Lett 2016; 7:1213-1218. [PMID: 27994766 DOI: 10.1021/acsmedchemlett.6b00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
The discovery of novel bromodomain inhibitors by fragment screening is complicated by the presence of dimethyl sulfoxide (DMSO), an acetyl-lysine mimetic, that can compromise the detection of low affinity fragments. We demonstrate surface plasmon resonance as a primary fragment screening approach for the discovery of novel bromodomain scaffolds, by describing a protocol to overcome the DMSO interference issue. We describe the discovery of several novel small molecules scaffolds that inhibit the bromodomains PCAF, BRD4, and CREBBP, representing canonical members of three out of the seven subfamilies of bromodomains. High-resolution crystal structures of the complexes of key fragments binding to BRD4(1), CREBBP, and PCAF were determined to provide binding mode data to aid the development of potent and selective inhibitors of PCAF, CREBBP, and BRD4.
Collapse
Affiliation(s)
- Iva Navratilova
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Tonia Aristotelous
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Sarah Picaud
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target
Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Apirat Chaikuad
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target
Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Stefan Knapp
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target
Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Panagis Filappakopoulos
- Structural
Genomics Consortium, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Andrew L. Hopkins
- Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
29
|
Abstract
Aberrations in the epigenetic landscape are a hallmark of cancer. Alterations in enzymes that are “writers,” “erasers,” or “readers” of histone modification marks are common. Bromodomains are “readers” that bind acetylated lysines in histone tails. Their most important function is the regulation of gene transcription by the recruitment of different molecular partners. Moreover, proteins containing bromodomains are also epigenetic regulators, although little is known about the specific function of these domains. In recent years, there has been increasing interest in developing small molecules that can target specific bromodomains. First, this has helped clarify biological functions of bromodomain-containing proteins. Secondly, it opens a new front for combatting cancer. In this review we will describe the structures and mechanisms associated with Bromodomain and Extra-Terminal motif (BET) inhibitors and non-BET inhibitors, their current status of development, and their promising role as anti-cancer agents.
Collapse
Affiliation(s)
- Montserrat Pérez-Salvia
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain
| | - Manel Esteller
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain.,b Department of Physiological Sciences II, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain.,c Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Catalonia , Spain
| |
Collapse
|
30
|
The zebrafish homologs of SET/I2PP2A oncoprotein: expression patterns and insights into their physiological roles during development. Biochem J 2016; 473:4609-4627. [PMID: 27754889 DOI: 10.1042/bcj20160523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 01/12/2023]
Abstract
The oncoprotein SET/I2PP2A (protein phosphatase 2A inhibitor 2) participates in various cellular mechanisms such as transcription, cell cycle regulation and cell migration. SET is also an inhibitor of the serine/threonine phosphatase PP2A, which is involved in the regulation of cell homeostasis. In zebrafish, there are two paralogous set genes that encode Seta (269 amino acids) and Setb (275 amino acids) proteins which share 94% identity. We show here that seta and setb are similarly expressed in the eye, the otic vesicle, the brain and the lateral line system, as indicated by in situ hybridization labeling. Whole-mount immunofluorescence analysis revealed the expression of Seta/b proteins in the eye retina, the olfactory pit and the lateral line neuromasts. Loss-of-function studies using antisense morpholino oligonucleotides targeting both seta and setb genes (MOab) resulted in increased apoptosis, reduced cell proliferation and morphological defects. The morphant phenotypes were partially rescued when MOab was co-injected with human SET mRNA. Knockdown of setb with a transcription-blocking morpholino oligonucleotide (MOb) resulted in phenotypic defects comparable with those induced by setb gRNA (guide RNA)/Cas9 [CRISPR (clustered regularly interspaced short palindromic repeats)-associated 9] injections. In vivo labeling of hair cells showed a significantly decreased number of neuromasts in MOab-, MOb- and gRNA/Cas9-injected embryos. Microarray analysis of MOab morphant transcriptome revealed differential expression in gene networks controlling transcription in the sensory organs, including the eye retina, the ear and the lateral line. Collectively, our results suggest that seta and setb are required during embryogenesis and play roles in the zebrafish sensory system development.
Collapse
|
31
|
Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu WG, Qin J, Honig B, Gu W. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature 2016; 538:118-122. [PMID: 27626385 PMCID: PMC5333498 DOI: 10.1038/nature19759] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
Abstract
Although lysine acetylation is now recognized as a general protein
modification for both histones and non-histone proteins1-3, the mechanisms of acetylation mediated actions are not
completely understood. Acetylation of the C-terminal domain (CTD) of p53 was the
first example for non-histone protein acetylation4. Yet the precise role of the CTD acetylation
remains elusive. Lysine acetylation often creates binding sites for
bromodomain-containing “reader” proteins5,6;
surprisingly, in a proteomic screen, we identified SET as a major cellular
factor whose binding with p53 is totally dependent on the CTD acetylation
status. SET profoundly inhibits p53 transcriptional activity in unstressed cells
but SET-mediated repression is completely abolished by stress-induced p53 CTD
acetylation. Moreover, loss of the interaction with SET activates p53, resulting
in tumor regression in mouse xenograft models. Notably, the acidic domain of SET
acts as a “reader” for unacetylated CTD of p53 and this mechanism
of acetylation-dependent regulation is widespread in nature. For example, p53
acetylation also modulates its interactions with similar acidic domains found in
other p53 regulators including VPRBP, DAXX and PELP1 (refs. 7-9),
and computational analysis of the proteome identified numerous proteins with the
potential to serve as the acidic domain readers and lysine-rich ligands. Unlike
bromodomain readers, which preferentially bind the acetylated forms of their
cognate ligands, the acidic domain readers specifically recognize the
unacetylated forms of their ligands. Finally, the acetylation-dependent
regulation of p53 was further validated in vivo by using a
knockin mouse model expressing an acetylation-mimicking form of p53. These
results reveal that the acidic domain-containing factors act as a new class of
acetylation-dependent regulators by targeting p53 and potentially, beyond.
Collapse
Affiliation(s)
- Donglai Wang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Ning Kon
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Gorka Lasso
- Department of Biochemistry and Molecular Biophysics and Systems Biology, Center for Computational Biology and Bioinformatics, Howard Hughes Medical Institute, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Le Jiang
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Wenchuan Leng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Jun Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing, 102206, China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics and Systems Biology, Center for Computational Biology and Bioinformatics, Howard Hughes Medical Institute, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| |
Collapse
|
32
|
MYC-dependent recruitment of RUNX1 and GATA2 on the SET oncogene promoter enhances PP2A inactivation in acute myeloid leukemia. Oncotarget 2016; 8:53989-54003. [PMID: 28903318 PMCID: PMC5589557 DOI: 10.18632/oncotarget.9840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/22/2016] [Indexed: 01/15/2023] Open
Abstract
The SET (I2PP2A) oncoprotein is a potent inhibitor of protein phosphatase 2A (PP2A) that regulates many cell processes and important signaling pathways. Despite the importance of SET overexpression and its prognostic impact in both hematologic and solid tumors, little is known about the mechanisms involved in its transcriptional regulation. In this report, we define the minimal promoter region of the SET gene, and identify a novel multi-protein transcription complex, composed of MYC, SP1, RUNX1 and GATA2, which activates SET expression in AML. The role of MYC is crucial, since it increases the expression of the other three transcription factors of the complex, and supports their recruitment to the promoter of SET. These data shed light on a new regulatory mechanism in cancer, in addition to the already known PP2A-MYC and SET-PP2A. Besides, we show that there is a significant positive correlation between the expression of SET and MYC, RUNX1, and GATA2 in AML patients, which further endorses our results. Altogether, this study opens new directions for understanding the mechanisms that lead to SET overexpression, and demonstrates that MYC, SP1, RUNX1 and GATA2 are key transcriptional regulators of SET expression in AML.
Collapse
|
33
|
Radulovic M, Baqader NO, Stoeber K, Godovac-Zimmermann J. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts. J Proteome Res 2016; 15:1907-38. [PMID: 27142241 DOI: 10.1021/acs.jproteome.6b00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFβ signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations.
Collapse
Affiliation(s)
- Marko Radulovic
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.,Insitute of Oncology and Radiology , Pasterova 14, 11000 Belgrade, Serbia
| | - Noor O Baqader
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London , University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
34
|
Zhang J, Shen L, Sun LQ. The regulation of radiosensitivity by p53 and its acetylation. Cancer Lett 2015; 363:108-18. [DOI: 10.1016/j.canlet.2015.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/26/2022]
|
35
|
Kalousi A, Hoffbeck AS, Selemenakis P, Pinder J, Savage K, Khanna K, Brino L, Dellaire G, Gorgoulis V, Soutoglou E. The Nuclear Oncogene SET Controls DNA Repair by KAP1 and HP1 Retention to Chromatin. Cell Rep 2015; 11:149-63. [DOI: 10.1016/j.celrep.2015.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
|
36
|
Bertram K, Valcu CM, Weitnauer M, Linne U, Görlach A. NOX1 supports the metabolic remodeling of HepG2 cells. PLoS One 2015; 10:e0122002. [PMID: 25806803 PMCID: PMC4373763 DOI: 10.1371/journal.pone.0122002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/09/2015] [Indexed: 12/31/2022] Open
Abstract
NADPH oxidases are important sources of reactive oxygen species (ROS) which act as signaling molecules in the regulation of protein expression, cell proliferation, differentiation, migration and cell death. The NOX1 subunit is over-expressed in several cancers and NOX1 derived ROS have been repeatedly linked with tumorigenesis and tumor progression although underlying pathways are ill defined. We engineered NOX1-depleted HepG2 hepatoblastoma cells and employed differential display 2DE experiments in order to investigate changes in NOX1-dependent protein expression profiles. A total of 17 protein functions were identified to be dysregulated in NOX1-depleted cells. The proteomic results support a connection between NOX1 and the Warburg effect and a role for NOX in the regulation of glucose and glutamine metabolism as well as of lipid, protein and nucleotide synthesis in hepatic tumor cells. Metabolic remodeling is a common feature of tumor cells and understanding the underlying mechanisms is essential for the development of new cancer treatments. Our results reveal a manifold involvement of NOX1 in the metabolic remodeling of hepatoblastoma cells towards a sustained production of building blocks required to maintain a high proliferative rate, thus rendering NOX1 a potential target for cancer therapy.
Collapse
Affiliation(s)
- Katharina Bertram
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
| | - Cristina-Maria Valcu
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
- * E-mail: (CMV), (AG)
| | - Michael Weitnauer
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
| | - Uwe Linne
- Chemistry Department—Mass Spectrometry, Philipps-University Marburg, Hans-Meerwein-Strasse, Marburg, Germany
| | - Agnes Görlach
- Experimental and Molecular Paediatric Cardiology, German Heart Centre Munich at the Technical University Munich, Lazarettstr. 36, Munich, Germany
- * E-mail: (CMV), (AG)
| |
Collapse
|
37
|
Sun L, Hartson SD, Matts RL. Identification of proteins associated with Aha1 in HeLa cells by quantitative proteomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:365-80. [PMID: 25614414 DOI: 10.1016/j.bbapap.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/20/2014] [Accepted: 01/09/2015] [Indexed: 01/17/2023]
Abstract
The identification of the activator of heat shock protein 90 (Hsp90) ATPase's (Aha1) protein-protein interaction (PPI) network will provide critical insights into the relationship of Aha1 with multi-molecular complexes and shed light onto Aha1's interconnections with Hsp90-regulated biological functions. Flag-tagged Aha1 was over-expressed in HeLa cells and isolated by anti-Flag affinity pull downs, followed by trypsin digestion and identification co-adsorbing proteins by liquid chromatography-tandem mass spectroscopy (LC-MS/MS). A probability-based identification of Aha1 PPIs was generated from the LC-MS/MS analysis by using a relative quantification strategy, spectral counting (SC). By comparing the SC-based protein levels between Aha1 pull-down samples and negative controls, 164 Aha1-interacting proteins were identified that were quantitatively enriched in the pull-down samples over the controls. The identified Aha1-interacting proteins are involved in a wide number of intracellular bioprocesses, including DNA maintenance, chromatin structure, RNA processing, translation, nucleocytoplasmic and vesicle transport, among others. The interactions of 33 of the identified proteins with Aha1 were further confirmed by Western blotting, demonstrating the reliability of our affinity-purification-coupled quantitative SC-MS strategy. Our proteomic data suggests that Aha1 may participate in diverse biological pathways to facilitate Hsp90 chaperone functions in response to stress.
Collapse
Affiliation(s)
- Liang Sun
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert L Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
38
|
Oaks J, Ogretmen B. Regulation of PP2A by Sphingolipid Metabolism and Signaling. Front Oncol 2015; 4:388. [PMID: 25642418 PMCID: PMC4295541 DOI: 10.3389/fonc.2014.00388] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/27/2014] [Indexed: 12/21/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein.
Collapse
Affiliation(s)
- Joshua Oaks
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina , Charleston, SC , USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
39
|
Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 2014; 7:30-69. [PMID: 25545885 PMCID: PMC4381250 DOI: 10.3390/cancers7010030] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.
Collapse
Affiliation(s)
- Sara M Reed
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Dawn E Quelle
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
40
|
Cristóbal I, Rincón R, Manso R, Caramés C, Zazo S, Madoz-Gúrpide J, Rojo F, García-Foncillas J. Deregulation of the PP2A inhibitor SET shows promising therapeutic implications and determines poor clinical outcome in patients with metastatic colorectal cancer. Clin Cancer Res 2014; 21:347-56. [PMID: 25388166 DOI: 10.1158/1078-0432.ccr-14-0724] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE SET is an endogenous PP2A inhibitor that might represent a novel molecular target for antitumor therapy. The aim of this study was to evaluate the molecular effects of SET deregulation and its potential clinical significance in metastatic colorectal cancer (mCRC). EXPERIMENTAL DESIGN We studied the biologic effects of SET on cell growth, colonosphere formation, caspase activity, PP2A activation status, and sensitivity to oxaliplatin and FTY720 treatments. Moreover, we analyzed SET expression by immunostaining in 242 patients with mCRC. RESULTS SET deregulation promotes cell growth and colonosphere formation and inhibits PP2A, thereby impairing its antitumor effects. Moreover, SET reduces sensitivity to oxaliplatin in colorectal cancer cell lines, which is restored after FTY720 treatment. SET overexpression was detected in 24.8% (60 of 242) of patients with mCRC and determined significantly shorter overall (8.6 vs. 27 months; P < 0.001) and progression-free survival (7.1 vs. 13.7 months; P < 0.001), and poor response to oxaliplatin-based chemotherapy (P = 0.004). Interestingly, its prognostic value was particularly evident in patients younger than 70 years and in those harboring KRAS mutations. CONCLUSIONS SET overexpression is a frequent event in mCRC that plays a potential oncogenic role associated with worse outcome and resistance to oxaliplatin. Moreover, this alteration defines a subgroup of patients who could benefit from therapies containing PP2A activators such as FTY720.
Collapse
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz," Madrid, Spain
| | - Raúl Rincón
- Translational Oncology Division, Oncohealth institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz," Madrid, Spain
| | - Rebeca Manso
- Pathology Department, IIS "Fundación Jiménez Diaz," UAM, Madrid, Spain
| | - Cristina Caramés
- Translational Oncology Division, Oncohealth institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz," Madrid, Spain
| | - Sandra Zazo
- Pathology Department, IIS "Fundación Jiménez Diaz," UAM, Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS "Fundación Jiménez Diaz," UAM, Madrid, Spain.
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth institute, IIS-Fundacion Jimenez Diaz, UAM, University Hospital "Fundacion Jimenez Diaz," Madrid, Spain.
| |
Collapse
|
41
|
Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration. J Neurosci 2014; 34:7361-74. [PMID: 24849368 DOI: 10.1523/jneurosci.3658-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The failure of the CNS neurons to regenerate axons after injury or stroke is a major clinical problem. Transcriptional regulators like Set-β are well positioned to regulate intrinsic axon regeneration capacity, which declines developmentally in maturing CNS neurons. Set-β also functions at cellular membranes and its subcellular localization is disrupted in Alzheimer's disease, but many of its biological mechanisms have not been explored in neurons. We found that Set-β was upregulated postnatally in CNS neurons, and was primarily localized to the nucleus but was also detected in the cytoplasm and adjacent to the plasma membrane. Remarkably, nuclear Set-β suppressed, whereas Set-β localized to cytoplasmic membranes promoted neurite growth in rodent retinal ganglion cells and hippocampal neurons. Mimicking serine 9 phosphorylation, as found in Alzheimer's disease brains, delayed nuclear import and furthermore blocked the ability of nuclear Set-β to suppress neurite growth. We also present data on gene regulation and protein binding partner recruitment by Set-β in primary neurons, raising the hypothesis that nuclear Set-β may preferentially regulate gene expression whereas Set-β at cytoplasmic membranes may regulate unique cofactors, including PP2A, which we show also regulates axon growth in vitro. Finally, increasing recruitment of Set-β to cellular membranes promoted adult rat optic nerve axon regeneration after injury in vivo. Thus, Set-β differentially regulates axon growth and regeneration depending on subcellular localization and phosphorylation.
Collapse
|
42
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Díaz-Quintana A, De la Rosa MA. A common signalosome for programmed cell death in humans and plants. Cell Death Dis 2014; 5:e1314. [PMID: 24991766 PMCID: PMC4123074 DOI: 10.1038/cddis.2014.280] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - I Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - K González-Arzola
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - A Díaz-Quintana
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Sevilla, Spain
| | - M A De la Rosa
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, Universidad de Sevilla-CSIC, Sevilla, Spain
| |
Collapse
|
43
|
Kim KB, Kim DW, Park JW, Jeon YJ, Kim D, Rhee S, Chae JI, Seo SB. Inhibition of Ku70 acetylation by INHAT subunit SET/TAF-Iβ regulates Ku70-mediated DNA damage response. Cell Mol Life Sci 2014; 71:2731-45. [PMID: 24305947 PMCID: PMC11113754 DOI: 10.1007/s00018-013-1525-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/28/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
DNA double-strand breaks (DSBs) can cause either cell death or genomic instability. The Ku heterodimer Ku70/80 is required for the NHEJ (non-homologous end-joining) DNA DSB repair pathway. The INHAT (inhibitor of histone acetyltransferases) complex subunit, SET/TAF-Iβ, can inhibit p300- and PCAF-mediated acetylation of both histone and p53, thereby repressing general transcription and that of p53 target genes. Here, we show that SET/TAF-Iβ interacts with Ku70/80, and that this interaction inhibits CBP- and PCAF-mediated Ku70 acetylation in an INHAT domain-dependent manner. Notably, DNA damage by UV disrupted the interaction between SET/TAF-Iβ and Ku70. Furthermore, we demonstrate that overexpressed SET/TAF-Iβ inhibits recruitment of Ku70/80 to DNA damage sites. We propose that dysregulation of SET/TAF-Iβ expression prevents repair of damaged DNA and also contributes to cellular proliferation. All together, our findings indicate that SET/TAF-Iβ interacts with Ku70/80 in the nucleus and inhibits Ku70 acetylation. Upon DNA damage, SET/TAF-Iβ dissociates from the Ku complex and releases Ku70/Ku80, which are then recruited to DNA DSB sites via the NHEJ DNA repair pathway.
Collapse
Affiliation(s)
- Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Dong-Wook Kim
- Department of Oral Pharmacology, School of Dentistry, Brain Korea 21 PLUS Project, Chonbuk National University, Jeonju, 561-756 Republic of Korea
- Present Address: Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA USA
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry, Brain Korea 21 PLUS Project, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Daehwan Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry, Brain Korea 21 PLUS Project, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 156-756 Republic of Korea
| |
Collapse
|
44
|
Chae YC, Kim KB, Kang JY, Kim SR, Jung HS, Seo SB. Inhibition of FoxO1 acetylation by INHAT subunit SET/TAF-Iβ induces p21 transcription. FEBS Lett 2014; 588:2867-73. [DOI: 10.1016/j.febslet.2014.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/18/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
45
|
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. ChemMedChem 2014; 9:438-64. [PMID: 24497428 DOI: 10.1002/cmdc.201300434] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/23/2013] [Indexed: 12/15/2022]
Abstract
Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature.
Collapse
|
46
|
Khan MP, Mishra JS, Sharan K, Yadav M, Singh AK, Srivastava A, Kumar S, Bhaduaria S, Maurya R, Sanyal S, Chattopadhyay N. A novel flavonoid C-glucoside from Ulmus wallichiana preserves bone mineral density, microarchitecture and biomechanical properties in the presence of glucocorticoid by promoting osteoblast survival: a comparative study with human parathyroid hormone. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1256-66. [PMID: 23928508 DOI: 10.1016/j.phymed.2013.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/31/2013] [Accepted: 07/09/2013] [Indexed: 05/23/2023]
Abstract
PURPOSE 6-C-β-D-glucopyranosyl-(2S,3S)-(+)-5,7,3',4'-tetrahydroxydihydroflavonol (GTDF) is a novel compound isolated from Ulmus wallichiana, reported to have bone anabolic action in ovariectomized rats. Here, we studied the effect of GTDF in glucocorticoid (GC)-induced bone loss and its mode of action. METHODS Osteoblasts were cultured from rat calvaria or bone marrow to study apoptosis and differentiation by dexamethasone (Dex), methylprednisolone (MP), GTDF, quercetin and rutin. Female Sprague Dawley rats were treated with Dex or MP with or without GTDF or PTH. Efficacy was evaluated by bone microarchitecture using microcomputed tomography, determination of new bone formation by fluorescent labeling of bone and osteoblast apoptosis by co-labeling bone sections with Runx-2 and TUNEL. Serum osteocalcin was determined by ELISA. RESULTS GTDF preserved trabecular and cortical bones in the presence of Dex and MP and mitigated the MP-mediated suppression of serum osteocalcin. Co-administration of GTDF to MP rats increased mineral apposition, bone formation rates, bone biomechanical strength, reduced osteoblast apoptosis and increased osteogenic differentiation of bone marrow stromal cells compared to MP group, suggesting in vivo osteogenic effect of GTDF. These effects of GTDF were to a great extent comparable to PTH. GTDF prevented GC-induced osteoblast apoptosis by inhibiting p53 expression and acetylation, and activation of AKT but did not influence transactivation of GC receptor (GR). CONCLUSIONS GTDF protects against GC-induced bone loss by promoting osteoblast survival through p53 inhibition and activation of AKT pathways but not as a GR antagonist. GTDF has the potential in the management of GC-induced osteopenia.
Collapse
Affiliation(s)
- M P Khan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226021, India; Center for Research on Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226021, India; Center for Drug Discovery and Development in Reproductive Health (CDDDRH), CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226021, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hunter CS, Malik RE, Witzmann FA, Rhodes SJ. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation. PLoS One 2013; 8:e68898. [PMID: 23861948 PMCID: PMC3701669 DOI: 10.1371/journal.pone.0068898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/07/2013] [Indexed: 01/19/2023] Open
Abstract
LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
| | - Raleigh E. Malik
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
| | - Frank A. Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon J. Rhodes
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Piri Z, Esmaeilzadeh A, Hajikhanmirzaei M. Interleukin-25 as a candidate gene in immunogene therapy of pancreatic cancer. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2012. [DOI: 10.1016/j.jmhi.2012.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|