1
|
Lombardi S, Zilocchi M, Nicsanu R, Barabino SML. Emerging connections: Poly(ADP-ribose), FET proteins and RNA in the regulation of DNA damage condensates. DNA Repair (Amst) 2025; 150:103846. [PMID: 40381401 DOI: 10.1016/j.dnarep.2025.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Our genome is exposed to thousands of DNA lesions every day, posing a significant threat to cellular viability. To deal with these lesions, cells have evolved sophisticated repair mechanisms collectively known as the DNA damage response. DNA double-strand breaks (DSBs) are very cytotoxic damages, and their repair requires the precise and coordinated recruitment of multiple repair factors to form nuclear foci. Recent research highlighted that these repair structures behave as biomolecular condensates, i.e. membraneless compartments with liquid-like properties. The formation of condensates is driven by weak, multivalent interactions among proteins and nucleic acids, and recent studies highlighted the roles of poly(ADP-ribose) (PAR) and RNA in regulating DSBs-related condensates. Additionally, the FET family of RNA-binding proteins (including FUS, EWS and TAF15), has emerged as a critical player in the DNA damage response, with recent evidence suggesting that FET proteins support the formation and dynamics of repair condensates. Notably, phase separation of FET proteins is implicated also in their pathological functions in cancer biology, highlighting the pervasive role of condensation. This review will provide an overview of biomolecular condensates at DSBs, focusing on the interplay among PAR and RNA in the spatiotemporal regulation of FET proteins at repair complexes. We will also discuss the role of FET condensates in cancer biology and how they are targeted for therapeutic purposes. The study of biomolecular condensates holds great promise for advancing our understanding of key cellular processes and developing novel therapeutic strategies, but requires careful consideration of potential challenges.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Mara Zilocchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Roland Nicsanu
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Silvia Maria Luisa Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| |
Collapse
|
2
|
Huang C, Xiao H, Yang Y, Luo J, Lai Y, Liu S, Mao K, Chen J, Wang L. Adenosine diphosphate-ribosylation greatly affects proteins function: a focus on neurodegenerative diseases. Front Aging Neurosci 2025; 17:1575204. [PMID: 40370754 PMCID: PMC12075376 DOI: 10.3389/fnagi.2025.1575204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Adenosine diphosphate-ribosylation (ADPRylation) is a reversible posttranslational modification that plays a crucial role in cellular homeostasis and disease development. ADPRylation is produced via nicotinamide adenine dinucleotide hydrolysis and modifies proteins via corresponding transferases, mainly poly(ADP-ribose) polymerases (PARPs), the inhibitors of which have been used in the clinical treatment of cancer. ADPRylation is involved in various physiological processes, including pathogen infection, inflammation, DNA repair, and neurological disorders. In neurodegenerative diseases (NDs), dysregulated ADPRylation contributes to protein aggregation, neuroinflammation, and metabolic disturbances, while targeted modulation shows therapeutic potential. ADPRylation differentially regulates neurodegenerative processes, and PARP inhibitors can reduce neuroinflammation, oxidative stress, and metabolic dysfunction. However, challenges such as poor blood-brain barrier penetration and cell type-specific responses limit clinical translation. This review summarizes recent findings on the role of ADPRylation and PARPs in NDs, highlighting their involvement in protein aggregation and cellular signaling. It emphasizes the importance of ADPRylation in neuronal cells and supports the development of precision therapies targeting this pathway to address current treatment challenges in NDs.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Respiratory Medicine, Jiangmen Central Hospital Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Huilin Xiao
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yang Yang
- Department of Rehabilitation, Affiliated Shenzhen Baoan Central Hospital Group of Guangdong Medical University, Shenzhen, China
| | - Jiankun Luo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yixi Lai
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shizhen Liu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Kanmin Mao
- Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialong Chen
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Liling Wang
- Department of Rehabilitation, Affiliated Shenzhen Baoan Central Hospital Group of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
3
|
Blanch JR, Woodward N, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. Nucleic Acids Res 2025; 53:gkaf304. [PMID: 40275613 PMCID: PMC12021795 DOI: 10.1093/nar/gkaf304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
DNA polymerase theta (Pol θ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes proper egg development and is required for repair of DNA double-strand breaks and interstrand crosslink tolerance. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the catalytic domains and suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | - Nicholas Woodward
- Department of Biology, Tufts University, Medford, MA 02155, United States
| | | | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
4
|
Mejías D, Seballos V, Lafon-Hughes L. Liquid‒liquid phase separation and poly(ADP‒ribosyl)ation in the context of ultraviolet radiation-induced stress in mammalian cells. Biophys Rev 2025; 17:499-510. [PMID: 40376396 PMCID: PMC12075067 DOI: 10.1007/s12551-025-01294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/21/2025] [Indexed: 05/18/2025] Open
Abstract
Poly(ADP‒ribose) polymerases (PARPs) consume NAD+ to synthesize poly(ADP‒ribose) (PAR) primarily via post-translational modification. PAR is degraded mainly by poly (ADP-ribose) glycohydrolase (PARG). PAR can be linear or branched and can have up to 200 monomers. With two phosphates per monomer, PAR is highly negatively charged. PAR can be recognized by specific protein domains and has been described as a "glue" or scaffold for the assembly of multiprotein complexes. PAR is involved in several diverse cellular structures and functions, including DNA replication, transcription, DNA repair, chromatin structure and imprinting regulation, mitotic spindle assembly, cell‒cell junctions, cytoplasmic granule formation, biomineralization and the formation of pathological aggregates. Here, we review the effects of ultraviolet radiation (UVR) on mammalian cells, emphasizing the participation of PAR metabolism in the novel paradigm of liquid‒liquid phase separation (LLPS). Further studies demand interdisciplinary approaches, undoubtedly requiring contributions from biophysicists. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-025-01294-x.
Collapse
Affiliation(s)
- Daniela Mejías
- Biophysical Chemistry Group, Biological Sciences Department, Centro Universitario Litoral Norte, Salto, Universidad de La República (UdelaR), Rivera1350, ZIP 50.000, Montevideo, Uruguay
| | - Valentina Seballos
- Biophysical Chemistry Group, Biological Sciences Department, Centro Universitario Litoral Norte, Salto, Universidad de La República (UdelaR), Rivera1350, ZIP 50.000, Montevideo, Uruguay
| | - Laura Lafon-Hughes
- Biophysical Chemistry Group, Biological Sciences Department, Centro Universitario Litoral Norte, Salto, Universidad de La República (UdelaR), Rivera1350, ZIP 50.000, Montevideo, Uruguay
| |
Collapse
|
5
|
Guttman LC, Yang L, Liu M, Dawson VL, Dawson TM. Targeting PAAN/MIF nuclease activity in parthanatos-associated brain diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2025; 102:1-26. [PMID: 39929577 DOI: 10.1016/bs.apha.2024.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Current FDA-approved drugs for neurodegenerative diseases primarily aim to reduce pathological protein aggregation or alleviate symptoms by enhancing neurotransmitter signaling. However, outcomes remain suboptimal and often fail to modify the course of neurodegenerative diseases. Acute neurologic injury that occurs in stroke and traumatic brain injury (TBI) also suffer from inadequate therapies to prevent neuronal cell death, resulting from both the acute insult and the subsequent reperfusion injury following recanalization of the occlusion in stroke. Approaches to prevent neuronal loss in neurodegenerative disease and acute neurologic injury hold significant therapeutic promise. Parthanatos is a cell death pathway that is activated and plays an integral role in these neurologic disorders. Parthanatos-associated apoptosis-inducing factor nuclease (PAAN), also known as macrophage migration inhibitory factor (MIF) nuclease, is the final executioner in the parthanatic cell death cascade. We posit that inhibiting parthanatos by blocking MIF nuclease activity offers a promising and precise strategy to prevent neuronal cell death in both chronic neurodegenerative disease and acute neurologic injury. In this chapter, we discuss the role of MIF's nuclease activity - distinct from its other enzymatic activities - in driving cell death that occurs in various neurological diseases. We also delve into the discovery, screening, structure, and function of MIF nuclease inhibitors, which have demonstrated neuroprotection in Parkinson's disease (PD) cell and mouse models. This analysis includes essential future research directions and queries that need to be considered to advance the clinical development of MIF nuclease inhibitors. Ultimately, our discussion aims to inspire drug development centered around inhibiting MIF's nuclease activity, potentially resulting in transformative, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lauren C Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meilian Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valina L Dawson
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
6
|
Moss KR, Saxena S. Schwann Cells in Neuromuscular Disorders: A Spotlight on Amyotrophic Lateral Sclerosis. Cells 2025; 14:47. [PMID: 39791748 PMCID: PMC11719703 DOI: 10.3390/cells14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes. Furthermore, advancements in understanding Schwann cell pathology in ALS combined with lessons learned from studying Charcot-Marie-Tooth disease Type 1 (CMT1) suggest potential therapeutic strategies targeting these cells may support nerve repair and slow disease progression. Overall, this review aims to provide comprehensive insights into Schwann cell classification, physiology, and function, underscoring the critical pathological contributions of Schwann cells in ALS and suggests new avenues for targeted therapeutic interventions aimed at modulating Schwann cell function in ALS.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| | - Smita Saxena
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Khodyreva SN, Dyrkheeva NS, Lavrik OI. Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair. Biomedicines 2024; 12:2808. [PMID: 39767715 PMCID: PMC11673744 DOI: 10.3390/biomedicines12122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The nervous system is susceptible to DNA damage and DNA repair defects, and if DNA damage is not repaired, neuronal cells can die, causing neurodegenerative diseases in humans. The overall picture of what is known about DNA repair mechanisms in the nervous system is still unclear. The current challenge is to use the accumulated knowledge of basic science on DNA repair to improve the treatment of neurodegenerative disorders. In this review, we summarize the current understanding of the function of DNA damage repair, in particular, the base excision repair and double-strand break repair pathways as being the most important in nervous system cells. We summarize recent data on the proteins involved in DNA repair associated with neurodegenerative diseases, with particular emphasis on PARP1 and ND-associated proteins, which are involved in DNA repair and have the ability to undergo liquid-liquid phase separation.
Collapse
Affiliation(s)
- Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
8
|
Chin Sang C, Moore G, Tereshchenko M, Zhang H, Nosella ML, Dasovich M, Alderson TR, Leung AKL, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. EMBO Rep 2024; 25:5635-5666. [PMID: 39496836 PMCID: PMC11624282 DOI: 10.1038/s44319-024-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it remains unclear how exactly PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human single-strand repair proteins in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain length-dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments, which correlates with PARP1 clusters compacting long DNA and bridging DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities of DNA repair factors, which may inform on how PARPs function in DNA repair foci and other PAR-driven condensates in cells.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Michael L Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Green Centre for Reproductive Biology Sciences, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - T Reid Alderson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Institute of Structural Biology, Helmholtz Zentrum München, Munich, Bavaria, Germany
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
Sukhanova MV, Anarbaev RO, Naumenko KN, Hamon L, Singatulina AS, Pastré D, Lavrik OI. Phase Separation of FUS with Poly(ADP-ribosyl)ated PARP1 Is Controlled by Polyamines, Divalent Metal Cations, and Poly(ADP-ribose) Structure. Int J Mol Sci 2024; 25:12445. [PMID: 39596510 PMCID: PMC11594298 DOI: 10.3390/ijms252212445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Fused in sarcoma (FUS) is involved in the formation of nuclear biomolecular condensates associated with poly(ADP-ribose) [PAR] synthesis catalyzed by a DNA damage sensor such as PARP1. Here, we studied FUS microphase separation induced by poly(ADP-ribosyl)ated PARP1WT [PAR-PARP1WT] or its catalytic variants PARP1Y986S and PARP1Y986H, respectively, synthesizing (short PAR)-PARP1Y986S or (short hyperbranched PAR)-PARP1Y986H using dynamic light scattering, fluorescence microscopy, turbidity assays, and atomic force microscopy. We observed that biologically relevant cations such as Mg2+, Ca2+, or Mn2+ or polyamines (spermine4+ or spermidine3+) were essential for the assembly of FUS with PAR-PARP1WT and FUS with PAR-PARP1Y986S in vitro. We estimated the range of the FUS-to-PAR-PARP1 molar ratio and the cation concentration that are favorable for the stability of the protein's microphase-separated state. We also found that FUS microphase separation induced by PAR-PARP1Y986H (i.e., a PARP1 variant attaching short hyperbranched PAR to itself) can occur in the absence of cations. The dependence of PAR-PARP1-induced FUS microphase separation on cations and on the branching of the PAR structure points to a potential role of the latter in the regulation of the formation of FUS-related biological condensates and requires further investigation.
Collapse
Affiliation(s)
- Maria V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Rashid O. Anarbaev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - Loic Hamon
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Anastasia S. Singatulina
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| | - David Pastré
- INSERM U1204, Univ-Evry, University Paris Saclay, 91025 Evry, France;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia; (M.V.S.); (R.O.A.); (K.N.N.); (A.S.S.)
| |
Collapse
|
10
|
Mukherjee S, Schäfer LV. Heterogeneous Slowdown of Dynamics in the Condensate of an Intrinsically Disordered Protein. J Phys Chem Lett 2024; 15:11244-11251. [PMID: 39486437 PMCID: PMC11571228 DOI: 10.1021/acs.jpclett.4c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
The high concentration of proteins and other biological macromolecules inside biomolecular condensates leads to dense and confined environments, which can affect the dynamic ensembles and the time scales of the conformational transitions. Here, we use atomistic molecular dynamics (MD) simulations of the intrinsically disordered low complexity domain (LCD) of the human fused in sarcoma (FUS) RNA-binding protein to study how self-crowding inside a condensate affects the dynamic motions of the protein. We found a heterogeneous retardation of the protein dynamics in the condensate with respect to the dilute phase, with large-amplitude motions being strongly slowed by up to 2 orders of magnitude, whereas small-scale motions, such as local backbone fluctuations and side-chain rotations, are less affected. The results support the notion of a liquid-like character of the condensates and show that different protein motions respond differently to the environment.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
11
|
Al-Rahahleh RQ, Sobol RW. Poly-ADP-ribosylation dynamics, signaling, and analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:315-337. [PMID: 39221603 PMCID: PMC11604531 DOI: 10.1002/em.22623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
ADP-ribosylation is a reversible post-translational modification that plays a role as a signaling mechanism in various cellular processes. This modification is characterized by its structural diversity, highly dynamic nature, and short half-life. Hence, it is tightly regulated at many levels by cellular factors that fine-tune its formation, downstream signaling, and degradation that together impacts cellular outcomes. Poly-ADP-ribosylation is an essential signaling mechanism in the DNA damage response that mediates the recruitment of DNA repair factors to sites of DNA damage via their poly-ADP-ribose (PAR)-binding domains (PBDs). PAR readers, encoding PBDs, convey the PAR signal to mediate cellular outcomes that in some cases can be dictated by PAR structural diversity. Several PBD families have been identified, each with variable PAR-binding affinity and specificity, that also recognize and bind to distinct parts of the PAR chain. PARylation signaling has emerged as an attractive target for the treatment of specific cancer types, as the inhibition of PAR formation or degradation can selectively eliminate cancer cells with specific DNA repair defects and can enhance radiation or chemotherapy response. In this review, we summarize the key players of poly-ADP-ribosylation and its regulation and highlight PBDs as tools for studying PARylation dynamics and the expanding potential to target PARylation signaling in cancer treatment.
Collapse
Affiliation(s)
- Rasha Q. Al-Rahahleh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| | - Robert W. Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912
| |
Collapse
|
12
|
Maceratessi S, Sampaio NG. hnRNPs in antiviral innate immunity. Immunology 2024; 173:425-441. [PMID: 39111743 DOI: 10.1111/imm.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024] Open
Abstract
During virus infection, many host proteins are redirected from their normal cellular roles to restrict and terminate infection. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are cellular RNA-binding proteins critical to host nucleic acid homeostasis, but can also be involved in the viral infection process, affecting virus replication, assembly and propagation. It has become evident that hnRNPs play important roles in modulation of host innate immunity, which provides critical initial protection against infection. These novel findings can potentially lead to the leveraging of hnRNPs in antiviral therapies. We review hnRNP involvement in antiviral innate immunity, in humans, mice and other animals, and discuss hnRNP targeting as a potential novel antiviral therapeutic.
Collapse
Affiliation(s)
- Sofia Maceratessi
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| | - Natalia G Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Chung CS, Kou Y, Shemtov SJ, Verheijen BM, Flores I, Love K, Del Dosso A, Thorwald MA, Liu Y, Hicks D, Sun Y, Toney RG, Carrillo L, Nguyen MM, Biao H, Jin Y, Jauregui AM, Quiroz JD, Head E, Moore DL, Simpson S, Thomas KW, Coba MP, Li Z, Benayoun BA, Rosenthal JJC, Kennedy SR, Quadrato G, Gout JF, Chen L, Vermulst M. Transcript errors generate amyloid-like proteins in huwman cells. Nat Commun 2024; 15:8676. [PMID: 39375347 PMCID: PMC11458900 DOI: 10.1038/s41467-024-52886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases.
Collapse
Affiliation(s)
- Claire S Chung
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yi Kou
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Sarah J Shemtov
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Bert M Verheijen
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Ilse Flores
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Kayla Love
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Ashley Del Dosso
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Max A Thorwald
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yuchen Liu
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Daniel Hicks
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yingwo Sun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Renaldo G Toney
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Lucy Carrillo
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Megan M Nguyen
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Huang Biao
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Yuxin Jin
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | | | | | - Elizabeth Head
- University of California Irvine, Department of Pathology and Laboratory Medicine, Irvine, USA
| | - Darcie L Moore
- University of Wisconsin, Department of Neuroscience, Madison, USA
| | - Stephen Simpson
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Kelley W Thomas
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Marcelo P Coba
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Zhongwei Li
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Bérénice A Benayoun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | | | - Scott R Kennedy
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Giorgia Quadrato
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biology, Mississippi State, USA
| | - Lin Chen
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA.
| |
Collapse
|
14
|
Yang L, Guttman L, Dawson VL, Dawson TM. Parthanatos: Mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 2024; 228:116174. [PMID: 38552851 PMCID: PMC11410548 DOI: 10.1016/j.bcp.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Parthanatos is a cell death signaling pathway that has emerged as a compelling target for pharmaceutical intervention. It plays a pivotal role in the neuron loss and neuroinflammation that occurs in Parkinson's Disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and stroke. There are currently no treatments available to humans to prevent cell death in any of these diseases. This review provides an in-depth examination of the current understanding of the Parthanatos mechanism, with a particular focus on its implications in neuroinflammation and various diseases discussed herein. Furthermore, we thoroughly review potential intervention targets within the Parthanatos pathway. We dissect recent progress in inhibitory strategies, complimented by a detailed structural analysis of key Parthanatos executioners, PARP-1, AIF, and MIF, along with an assessment of their established inhibitors. We hope to introduce a new perspective on the feasibility of targeting components within the Parthanatos pathway, emphasizing its potential to bring about transformative outcomes in therapeutic interventions. By delineating therapeutic opportunities and known targets, we seek to emphasize the imperative of blocking Parthanatos as a precursor to developing disease-modifying treatments. This comprehensive exploration aims to catalyze a paradigm shift in our understanding of potential neurodegenerative disease therapeutics, advocating for the pursuit of effective interventions centered around Parthanatos inhibition.
Collapse
Affiliation(s)
- Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
15
|
Wu Y, Ma B, Liu C, Li D, Sui G. Pathological Involvement of Protein Phase Separation and Aggregation in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:10187. [PMID: 39337671 PMCID: PMC11432175 DOI: 10.3390/ijms251810187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases are the leading cause of human disability and immensely reduce patients' life span and quality. The diseases are characterized by the functional loss of neuronal cells and share several common pathogenic mechanisms involving the malfunction, structural distortion, or aggregation of multiple key regulatory proteins. Cellular phase separation is the formation of biomolecular condensates that regulate numerous biological processes, including neuronal development and synaptic signaling transduction. Aberrant phase separation may cause protein aggregation that is a general phenomenon in the neuronal cells of patients suffering neurodegenerative diseases. In this review, we summarize the pathological causes of common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. We discuss the regulation of key amyloidogenic proteins with an emphasis of their aberrant phase separation and aggregation. We also introduce the approaches as potential therapeutic strategies to ameliorate neurodegenerative diseases through intervening protein aggregation. Overall, this review consolidates the research findings of phase separation and aggregation caused by misfolded proteins in a context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Biao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Chang Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| |
Collapse
|
16
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Blanch JR, Krishnamurthy M, McVey M. A non-tethering role for the Drosophila Pol θ linker domain in promoting damage resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609911. [PMID: 39253446 PMCID: PMC11383001 DOI: 10.1101/2024.08.27.609911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA polymerase theta ( Pol θ ) is an error-prone translesion polymerase that becomes crucial for DNA double-strand break repair when cells are deficient in homologous recombination or non-homologous end joining. In some organisms, Pol θ also promotes tolerance of DNA interstrand crosslinks. Due to its importance in DNA damage tolerance, Pol θ is an emerging target for treatment of cancer and disease. Prior work has characterized the functions of the Pol θ helicase-like and polymerase domains, but the roles of the linker domain are largely unknown. Here, we show that the Drosophila melanogaster Pol θ linker domain promotes egg development and is required for tolerance of DNA double-strand breaks and interstrand crosslinks. While a linker domain with scrambled amino acid residues is sufficient for DNA repair, replacement of the linker with part of the Homo sapiens Pol θ linker or a disordered region from the FUS RNA-binding protein does not restore function. These results demonstrate that the linker domain is not simply a random tether between the helicase-like and polymerase domains. Furthermore, they suggest that intrinsic amino acid residue properties, rather than protein interaction motifs, are more critical for Pol θ linker functions in DNA repair.
Collapse
Affiliation(s)
- Justin R Blanch
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| | - Manan Krishnamurthy
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
- Icahn School of Medicine at Mount Sinai, New York City, New York, 10029, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, United States of America
| |
Collapse
|
18
|
Pal A, Grossmann D, Glaß H, Zimyanin V, Günther R, Catinozzi M, Boeckers TM, Sterneckert J, Storkebaum E, Petri S, Wegner F, Grill SW, Pan-Montojo F, Hermann A. Glycolic acid and D-lactate-putative products of DJ-1-restore neurodegeneration in FUS - and SOD1-ALS. Life Sci Alliance 2024; 7:e202302535. [PMID: 38760174 PMCID: PMC11101837 DOI: 10.26508/lsa.202302535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.
Collapse
Affiliation(s)
- Arun Pal
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dajana Grossmann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Vitaly Zimyanin
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - René Günther
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Dresden, Germany
| | - Marica Catinozzi
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, as well as Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden as well as Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Erik Storkebaum
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Francisco Pan-Montojo
- Department of Psychiatrie and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
19
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
20
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
22
|
Sundara Rajan S, Ebegboni VJ, Pichling P, Ludwig KR, Jones TL, Chari R, Tran A, Kruhlak MJ, Loncarek J, Caplen NJ. Endogenous EWSR1 Exists in Two Visual Modalities That Reflect Its Associations with Nucleic Acids and Concentration at Sites of Active Transcription. Mol Cell Biol 2024; 44:103-122. [PMID: 38506112 PMCID: PMC10986767 DOI: 10.1080/10985549.2024.2315425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
EWSR1 is a member of the FET family of nucleic acid binding proteins that includes FUS and TAF15. Here, we report the systematic analysis of endogenous EWSR1's cellular organization in human cells. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vernon J. Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricio Pichling
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, Maryland, USA
| | - Andy Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael J. Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jadranka Loncarek
- Centrosome Biology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Kodavati M, Wang H, Guo W, Mitra J, Hegde PM, Provasek V, Rao VHM, Vedula I, Zhang A, Mitra S, Tomkinson AE, Hamilton DJ, Van Den Bosch L, Hegde ML. FUS unveiled in mitochondrial DNA repair and targeted ligase-1 expression rescues repair-defects in FUS-linked motor neuron disease. Nat Commun 2024; 15:2156. [PMID: 38461154 PMCID: PMC10925063 DOI: 10.1038/s41467-024-45978-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/08/2024] [Indexed: 03/11/2024] Open
Abstract
This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.
Collapse
Affiliation(s)
- Manohar Kodavati
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Haibo Wang
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenting Guo
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- INSERM, UMR-S1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Université de Strasbourg, CRBS, Strasbourg, France
| | - Joy Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Pavana M Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Vincent Provasek
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- College of Medicine, Texas A&M University, College Station, TX, USA
| | - Vikas H Maloji Rao
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Indira Vedula
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine affiliate, Houston, TX, USA
| | - Sankar Mitra
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Alan E Tomkinson
- Departments of Internal Medicine, and Molecular Genetics and Microbiology and University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA
- Department of Medicine, Houston Methodist, Weill Cornell Medicine affiliate, Houston, TX, USA
| | - Ludo Van Den Bosch
- KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Muralidhar L Hegde
- Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
24
|
Chappidi N, Quail T, Doll S, Vogel LT, Aleksandrov R, Felekyan S, Kühnemuth R, Stoynov S, Seidel CAM, Brugués J, Jahnel M, Franzmann TM, Alberti S. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell 2024; 187:945-961.e18. [PMID: 38320550 DOI: 10.1016/j.cell.2024.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.
Collapse
Affiliation(s)
- Nagaraja Chappidi
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Thomas Quail
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Simon Doll
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Radoslav Aleksandrov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jan Brugués
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Marcus Jahnel
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| |
Collapse
|
25
|
Sang CC, Moore G, Tereshchenko M, Nosella ML, Zhang H, Alderson TR, Dasovich M, Leung A, Finkelstein IJ, Forman-Kay JD, Lee HO. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.575817. [PMID: 38328070 PMCID: PMC10849519 DOI: 10.1101/2024.01.20.575817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is one of the first responders to DNA damage and plays crucial roles in recruiting DNA repair proteins through its activity - poly(ADP-ribosyl)ation (PARylation). The enrichment of DNA repair proteins at sites of DNA damage has been described as the formation of a biomolecular condensate. However, it is not understood how PARP1 and PARylation contribute to the formation and organization of DNA repair condensates. Using recombinant human PARP1 in vitro, we find that PARP1 readily forms viscous biomolecular condensates in a DNA-dependent manner and that this depends on its three zinc finger (ZnF) domains. PARylation enhances PARP1 condensation in a PAR chain-length dependent manner and increases the internal dynamics of PARP1 condensates. DNA and single-strand break repair proteins XRCC1, LigIII, Polβ, and FUS partition in PARP1 condensates, although in different patterns. While Polβ and FUS are both homogeneously mixed within PARP1 condensates, FUS enrichment is greatly enhanced upon PARylation whereas Polβ partitioning is not. XRCC1 and LigIII display an inhomogeneous organization within PARP1 condensates; their enrichment in these multiphase condensates is enhanced by PARylation. Functionally, PARP1 condensates concentrate short DNA fragments and facilitate compaction of long DNA and bridge DNA ends. Furthermore, the presence of PARP1 condensates significantly promotes DNA ligation upon PARylation. These findings provide insight into how PARP1 condensation and PARylation regulate the assembly and biochemical activities in DNA repair foci, which may inform on how PARPs function in other PAR-driven condensates.
Collapse
Affiliation(s)
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - T. Reid Alderson
- Division of Molecular Biology and Biochemistry, Medizinische Universität Graz, Graz, 8010, Austria
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Department of Oncology, and Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, TX, USA
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Hyun O. Lee
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
26
|
Caldecott KW. Causes and consequences of DNA single-strand breaks. Trends Biochem Sci 2024; 49:68-78. [PMID: 38040599 DOI: 10.1016/j.tibs.2023.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
DNA single-strand breaks (SSBs) are among the most common lesions arising in human cells, with tens to hundreds of thousands arising in each cell, each day. Cells have efficient mechanisms for the sensing and repair of these ubiquitous DNA lesions, but the failure of these processes to rapidly remove SSBs can lead to a variety of pathogenic outcomes. The threat posed by unrepaired SSBs is illustrated by the existence of at least six genetic diseases in which SSB repair (SSBR) is defective, all of which are characterised by neurodevelopmental and/or neurodegenerative pathology. Here, I review current understanding of how SSBs arise and impact on critical molecular processes, such as DNA replication and gene transcription, and their links to human disease.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
27
|
Wang Y, Liu L, Chen H, Yang Y, Mu C, Ren H, Liu Y, Yu L, Fang Q, Wang G, Hao Z. Disrupted phase behavior of FUS underlies poly-PR-induced DNA damage in amyotrophic lateral sclerosis. Hum Mol Genet 2023; 33:64-77. [PMID: 37756636 DOI: 10.1093/hmg/ddad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the first intron of the chromosome 9 open reading frame 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Among the five dipeptide repeat proteins translated from G4C2 HRE, arginine-rich poly-PR (proline:arginine) is extremely toxic. However, the molecular mechanism responsible for poly-PR-induced cell toxicity remains incompletely understood. Here, we found that poly-PR overexpression triggers severe DNA damage in cultured cells, primary cortical neurons, and the motor cortex of a poly-PR transgenic mouse model. Interestingly, we identified a linkage between poly-PR and RNA-binding protein fused in sarcoma (FUS), another ALS-related gene product associated with DNA repair. Poly-PR interacts with FUS both in vitro and in vivo, phase separates with FUS in a poly-PR concentration-dependent manner, and impairs the fluidity of FUS droplets in vitro and in cells. Moreover, poly-PR impedes the recruitment of FUS and its downstream protein XRCC1 to DNA damage foci after microirradiation. Importantly, overexpression of FUS significantly decreased the level of DNA damage and dramatically reduced poly-PR-induced cell death. Our data suggest the severe DNA damage caused by poly-PR and highlight the interconnection between poly-PR and FUS, enlightening the potential therapeutic role of FUS in alleviating poly-PR-induced cell toxicity.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liu Liu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, Hunan 410005, China
| | - Hui Chen
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yinxue Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Mu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Haigang Ren
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- MOE Key Laboratory, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zongbing Hao
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
28
|
Wang Z, Yang H, Han Y, Teng J, Kong X, Qi X. Screening and identification of key biomarkers associated with amyotrophic lateral sclerosis and depression using bioinformatics. Medicine (Baltimore) 2023; 102:e36265. [PMID: 38013317 PMCID: PMC10681454 DOI: 10.1097/md.0000000000036265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
This study aims to identify common molecular biomarkers between amyotrophic lateral sclerosis (ALS) and depression using bioinformatics methods, in order to provide potential targets and new ideas and methods for the diagnosis and treatment of these diseases. Microarray datasets GSE139384, GSE35978 and GSE87610 were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between ALS and depression were identified. After screening for overlapping DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING database and Cytoscape software, and hub genes were identified. Finally, a network between miRNAs and hub genes was constructed using the NetworkAnalyst tool, and possible key miRNAs were predicted. A total of 357 genes have been identified as common DEGs between ALS and depression. GO and KEGG enrichment analyses of the 357 DEGs showed that they were mainly involved in cytoplasmic translation. Further analysis of the PPI network using Cytoscape and MCODE plugins identified 6 hub genes, including mitochondrial ribosomal protein S12 (MRPS12), poly(rC) binding protein 1 (PARP1), SNRNP200, PCBP1, small G protein signaling modulator 1 (SGSM1), and DNA methyltransferase 1 (DNMT1). Five possible target miRNAs, including miR-221-5p, miR-21-5p, miR-100-5p, miR-30b-5p, and miR-615-3p, were predicted by constructing a miRNA-gene network. This study used bioinformatics techniques to explore the potential association between ALS and depression, and identified potential biomarkers. These biomarkers may provide new ideas and methods for the early diagnosis, treatment, and monitoring of ALS and depression.
Collapse
Affiliation(s)
- Ziyue Wang
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Hao Yang
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Yu Han
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Jing Teng
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Xinru Kong
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| |
Collapse
|
29
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
30
|
Ramesh S, Almeida SD, Hammigi S, Radhakrishna GK, Sireesha G, Panneerselvam T, Vellingiri S, Kunjiappan S, Ammunje DN, Pavadai P. A Review of PARP-1 Inhibitors: Assessing Emerging Prospects and Tailoring Therapeutic Strategies. Drug Res (Stuttg) 2023; 73:491-505. [PMID: 37890514 DOI: 10.1055/a-2181-0813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Eukaryotic organisms contain an enzyme family called poly (ADP-ribose) polymerases (PARPs), which is responsible for the poly (ADP-ribosylation) of DNA-binding proteins. PARPs are members of the cell signaling enzyme class. PARP-1, the most common isoform of the PARP family, is responsible for more than 90% of the tasks carried out by the PARP family as a whole. A superfamily consisting of 18 PARPs has been found. In order to synthesize polymers of ADP-ribose (PAR) and nicotinamide, the DNA damage nick monitor PARP-1 requires NAD+ as a substrate. The capability of PARP-1 activation to boost the transcription of proinflammatory genes, its ability to deplete cellular energy pools, which leads to cell malfunction and necrosis, and its involvement as a component in the process of DNA repair are the three consequences of PARP-1 activation that are of particular significance in the process of developing new drugs. As a result, the pharmacological reduction of PARP-1 may result in an increase in the cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Soundarya Ramesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Shannon D Almeida
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Sameerana Hammigi
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Govardan Katta Radhakrishna
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Golla Sireesha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Shangavi Vellingiri
- Department of Pharmacy Practice, Swamy Vivekananda College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| |
Collapse
|
31
|
Mamontova EM, Clément MJ, Sukhanova MV, Joshi V, Bouhss A, Rengifo-Gonzalez JC, Desforges B, Hamon L, Lavrik OI, Pastré D. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Cell Rep 2023; 42:113199. [PMID: 37804508 DOI: 10.1016/j.celrep.2023.113199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Evgeniya M Mamontova
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia
| | - Marie-Jeanne Clément
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ahmed Bouhss
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | | | - Bénédicte Desforges
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Loic Hamon
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Av. 8, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Street, Novosibirsk 630090, Russia.
| | - David Pastré
- SABNP, University Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France.
| |
Collapse
|
32
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
33
|
Mukherjee S, Schäfer LV. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Nat Commun 2023; 14:5892. [PMID: 37735186 PMCID: PMC10514047 DOI: 10.1038/s41467-023-41586-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) can drive a multitude of cellular processes by compartmentalizing biological cells via the formation of dense liquid biomolecular condensates, which can function as membraneless organelles. Despite its importance, the molecular-level understanding of the underlying thermodynamics of this process remains incomplete. In this study, we use atomistic molecular dynamics simulations of the low complexity domain (LCD) of human fused in sarcoma (FUS) protein to investigate the contributions of water and protein molecules to the free energy changes that govern LLPS. Both protein and water components are found to have comparably sizeable thermodynamic contributions to the formation of FUS condensates. Moreover, we quantify the counteracting effects of water molecules that are released into the bulk upon condensate formation and the waters retained within the protein droplets. Among the various factors considered, solvation entropy and protein interaction enthalpy are identified as the most important contributions, while solvation enthalpy and protein entropy changes are smaller. These results provide detailed molecular insights on the intricate thermodynamic interplay between protein- and solvation-related forces underlying the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780, Bochum, Germany.
| |
Collapse
|
34
|
Gerovska D, Noer JB, Qin Y, Ain Q, Januzi D, Schwab M, Witte OW, Araúzo-Bravo MJ, Kretz A. A distinct circular DNA profile intersects with proteome changes in the genotoxic stress-related hSOD1 G93A model of ALS. Cell Biosci 2023; 13:170. [PMID: 37705092 PMCID: PMC10498603 DOI: 10.1186/s13578-023-01116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Numerous genes, including SOD1, mutated in familial and sporadic amyotrophic lateral sclerosis (f/sALS) share a role in DNA damage and repair, emphasizing genome disintegration in ALS. One possible outcome of chromosomal instability and repair processes is extrachromosomal circular DNA (eccDNA) formation. Therefore, eccDNA might accumulate in f/sALS with yet unknown function. METHODS We combined rolling circle amplification with linear DNA digestion to purify eccDNA from the cervical spinal cord of 9 co-isogenic symptomatic hSOD1G93A mutants and 10 controls, followed by deep short-read sequencing. We mapped the eccDNAs and performed differential analysis based on the split read signal of the eccDNAs, referred as DifCir, between the ALS and control specimens, to find differentially produced per gene circles (DPpGC) in the two groups. Compared were eccDNA abundances, length distributions and genic profiles. We further assessed proteome alterations in ALS by mass spectrometry, and matched the DPpGCs with differentially expressed proteins (DEPs) in ALS. Additionally, we aligned the ALS-specific DPpGCs to ALS risk gene databases. RESULTS We found a six-fold enrichment in the number of unique eccDNAs in the genotoxic ALS-model relative to controls. We uncovered a distinct genic circulome profile characterized by 225 up-DPpGCs, i.e., genes that produced more eccDNAs from distinct gene sequences in ALS than under control conditions. The inter-sample recurrence rate was at least 89% for the top 6 up-DPpGCs. ALS proteome analyses revealed 42 corresponding DEPs, of which 19 underlying genes were itemized for an ALS risk in GWAS databases. The up-DPpGCs and their DEP tandems mainly impart neuron-specific functions, and gene set enrichment analyses indicated an overrepresentation of the adenylate cyclase modulating G protein pathway. CONCLUSIONS We prove, for the first time, a significant enrichment of eccDNA in the ALS-affected spinal cord. Our triple circulome, proteome and genome approach provide indication for a potential importance of certain eccDNAs in ALS neurodegeneration and a yet unconsidered role as ALS biomarkers. The related functional pathways might open up new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Julie B Noer
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yating Qin
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Quratul Ain
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Department of Internal Medicine IV, Hepatology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Donjetë Januzi
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
- Basque Foundation for Science, IKERBASQUE, 48013, Bilbao, Spain.
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics Group, 48149, Münster, North Rhine-Westphalia, Germany.
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - Alexandra Kretz
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany.
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany.
| |
Collapse
|
35
|
Rajan SS, Ebegboni VJ, Pichling P, Ludwig KR, Jones TL, Chari R, Tran A, Kruhlak MJ, Loncarek J, Caplen NJ. EWSR1's visual modalities are defined by its association with nucleic acids and RNA polymerase II. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553246. [PMID: 37645932 PMCID: PMC10462028 DOI: 10.1101/2023.08.16.553246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report systematic analysis of endogenous EWSR1's cellular organization. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Interestingly, EWSR1 and FUS, another FET protein, exhibit distinct spatial organizations. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Vernon J. Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Patricio Pichling
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program at the Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Andy Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jadranka Loncarek
- Centrosome Biology Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health MD 20892, USA
| |
Collapse
|
36
|
Abstract
Biomolecular condensates are reversible compartments that form through a process called phase separation. Post-translational modifications like ADP-ribosylation can nucleate the formation of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) chains are remarkably transient modifications with turnover rates on the order of minutes, yet they can be required for the formation of granules in response to oxidative stress, DNA damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase transitions in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein-PAR interactions. We review substantial progress in recent efforts to determine the molecular mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify the exact pathway from PARylation to condensate formation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
38
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
39
|
Zielinska Z, Oldak L, Kacperczyk-Bartnik J, Koc-Żórawska E, Żórawski M, Laudanski P, Gorodkiewicz E. An Array SPRi Biosensor for the Determination on PARP-1 in Blood Plasma. Biomedicines 2023; 11:biomedicines11020602. [PMID: 36831138 PMCID: PMC9953221 DOI: 10.3390/biomedicines11020602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
A biosensor was developed for the quantification of poly(ADP-ribose) polymerase-1 (PARP-1) in body fluids. An antibody specific for PARP-1 was placed on a chip with cysteamine (linker) and a gold layer. This biosensor has a linear response range (10-1000 pg∙mL-1) under appropriate pH conditions and with an antibody ligand concentration of 5 ng∙mL-1. Plasma samples were diluted with PBS buffer in appropriate quantities so that they fell within the linear range of the calibration curve. The biosensor exhibited suitable precision and accuracy, and good recovery (at levels from 95% to 105%). The method was validated by means of PARP-1 determinations in plasma samples from patients with endometriosis and a control group, using surface plasmon resonance imaging (SPRi) biosensors and an enzyme-linked immunosorbent assay (ELISA) test. The Spearman correlation coefficient was close to 1. PARP-1 may be a marker providing information about pathological changes in the body during endometriosis.
Collapse
Affiliation(s)
- Zuzanna Zielinska
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland
- Correspondence: (Z.Z.); (L.O.)
| | - Lukasz Oldak
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland
- Correspondence: (Z.Z.); (L.O.)
| | - Joanna Kacperczyk-Bartnik
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, 02-091 Warsaw, Poland
- Club 35, Polish Society of Gynecologists and Obstetricians, 53-125 Wrocław, Poland
| | - Ewa Koc-Żórawska
- II Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Marcin Żórawski
- II Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Piotr Laudanski
- OVIklinika Infertility Center, 01-377 Warsaw, Poland
- Women’s Health Research Institute, Calisia University, 62-800 Kalisz, Poland
- Department of Obstetrics, Gynaecology, Gynecology and Gynaecological Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland
| |
Collapse
|
40
|
Assoni AF, Foijer F, Zatz M. Amyotrophic Lateral Sclerosis, FUS and Protein Synthesis Defects. Stem Cell Rev Rep 2022; 19:625-638. [PMID: 36515764 DOI: 10.1007/s12015-022-10489-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that mainly affects the motor system. It is a very heterogeneous disorder, so far more than 40 genes have been described as responsible for ALS. The cause of motor neuron degeneration is not yet fully understood, but there is consensus in the literature that it is the result of a complex interplay of several pathogenic processes, which include alterations in nucleocytoplasmic transport, defects in transcription and splicing, altered formation and/or disassembly of stress granules and impaired proteostasis. These defects result in protein aggregation, impaired DNA repair, mitochondrial dysfunction and oxidative stress, neuroinflammation, impaired axonal transport, impaired vesicular transport, excitotoxicity, as well as impaired calcium influx. We argue here that all the above functions ultimately lead to defects in protein synthesis. Fused in Sarcoma (FUS) is one of the genes associated with ALS. It causes ALS type 6 when mutated and is found mislocalized to the cytoplasm in the motor neurons of sporadic ALS patients (without FUS mutations). In addition, FUS plays a role in all cellular functions that are impaired in degenerating motor neurons. Moreover, ALS patients with FUS mutations present the first symptoms significantly earlier than in other forms of the disease. Therefore, the aim of this review is to further discuss ALS6, detail the cellular functions of FUS, and suggest that the localization of FUS, as well as protein synthesis rates, could be hallmarks of the ALS phenotype and thus good therapeutic targets.
Collapse
Affiliation(s)
- Amanda Faria Assoni
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 055080-090, CidadeUniversitária, São Paulo, Brazil.,European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 055080-090, CidadeUniversitária, São Paulo, Brazil.
| |
Collapse
|
41
|
Zhang W, Guo J, Chen Q. Role of PARP-1 in Human Cytomegalovirus Infection and Functional Partners Encoded by This Virus. Viruses 2022; 14:2049. [PMID: 36146855 PMCID: PMC9501325 DOI: 10.3390/v14092049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that threats the majority of the world's population. Poly (ADP-ribose) polymerase 1 (PARP-1) and protein poly (ADP-ribosyl)ation (PARylation) regulates manifold cellular functions. The role of PARP-1 and protein PARylation in HCMV infection is still unknown. In the present study, we found that the pharmacological and genetic inhibition of PARP-1 attenuated HCMV replication, and PARG inhibition favors HCMV replication. PARP-1 and its enzymatic activity were required for efficient HCMV replication. HCMV infection triggered the activation of PARP-1 and induced the translocation of PARP-1 from nucleus to cytoplasm. PARG was upregulated in HCMV-infected cells and this upregulation was independent of viral DNA replication. Moreover, we found that HCMV UL76, a true late protein of HCMV, inhibited the overactivation of PARP-1 through direct binding to the BRCT domain of PARP-1. In addition, UL76 also physically interacted with poly (ADP-ribose) (PAR) polymers through the RG/RGG motifs of UL76 which mediates its recruitment to DNA damage sites. Finally, PARP-1 inhibition or depletion potentiated HCMV-triggered induction of type I interferons. Our results uncovered the critical role of PARP-1 and PARP-1-mediated protein PARylation in HCMV replication.
Collapse
Affiliation(s)
| | | | - Qiang Chen
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
42
|
Caldecott KW. DNA single-strand break repair and human genetic disease. Trends Cell Biol 2022; 32:733-745. [PMID: 35643889 DOI: 10.1016/j.tcb.2022.04.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
DNA single-strand breaks (SSBs) are amongst the commonest DNA lesions arising in cells, with many tens of thousands induced in each cell each day. SSBs arise not only from exposure to intracellular and environmental genotoxins but also as intermediates of normal DNA metabolic processes, such as the removal of torsional stress in DNA by topoisomerase enzymes and the epigenetic regulation of gene expression by DNA base excision repair (BER). If not rapidly detected and repaired, SSBs can result in RNA polymerase stalling, DNA replication fork collapse, and hyperactivation of the SSB sensor protein poly(ADP-ribose) polymerase 1 (PARP1). The potential impact of unrepaired SSBs is illustrated by the existence of genetic diseases in which proteins involved in SSB repair (SSBR) are mutated, and which are typified by hereditary neurodevelopmental and/or neurodegenerative disease. Here, I review our current understanding of SSBR and its impact on human neurological disease, with a focus on recent developments and concepts.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
43
|
Konopka A, Atkin JD. DNA Damage, Defective DNA Repair, and Neurodegeneration in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:786420. [PMID: 35572138 PMCID: PMC9093740 DOI: 10.3389/fnagi.2022.786420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is under constant attack from both endogenous and exogenous sources, and when damaged, specific cellular signalling pathways respond, collectively termed the “DNA damage response.” Efficient DNA repair processes are essential for cellular viability, although they decline significantly during aging. Not surprisingly, DNA damage and defective DNA repair are now increasingly implicated in age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). ALS affects both upper and lower motor neurons in the brain, brainstem and spinal cord, leading to muscle wasting due to denervation. DNA damage is increasingly implicated in the pathophysiology of ALS, and interestingly, the number of DNA damage or repair proteins linked to ALS is steadily growing. This includes TAR DNA binding protein 43 (TDP-43), a DNA/RNA binding protein that is present in a pathological form in almost all (97%) cases of ALS. Hence TDP-43 pathology is central to neurodegeneration in this condition. Fused in Sarcoma (FUS) bears structural and functional similarities to TDP-43 and it also functions in DNA repair. Chromosome 9 open reading frame 72 (C9orf72) is also fundamental to ALS because mutations in C9orf72 are the most frequent genetic cause of both ALS and related condition frontotemporal dementia, in European and North American populations. Genetic variants encoding other proteins involved in the DNA damage response (DDR) have also been described in ALS, including FUS, SOD1, SETX, VCP, CCNF, and NEK1. Here we review recent evidence highlighting DNA damage and defective DNA repair as an important mechanism linked to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Anna Konopka,
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Macquarie Medical School, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Julie D. Atkin,
| |
Collapse
|
44
|
Neuroprotective Effects of PARP Inhibitors in Drosophila Models of Alzheimer’s Disease. Cells 2022; 11:cells11081284. [PMID: 35455964 PMCID: PMC9027574 DOI: 10.3390/cells11081284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer’s disease (AD) is an irreversible age-related neurodegenerative disorder clinically characterized by severe memory impairment, language deficits and cognitive decline. The major neuropathological hallmarks of AD include extracellular deposits of the β-amyloid (Aβ) peptides and cytoplasmic neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein. The accumulation of plaques and tangles in the brain triggers a cascade of molecular events that culminate in neuronal damage and cell death. Despite extensive research, our understanding of the molecular basis of AD pathogenesis remains incomplete and a cure for this devastating disease is still not available. A growing body of evidence in different experimental models suggests that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation might be a crucial component of the molecular network of interactions responsible for AD pathogenesis. In this work, we combined genetic, molecular and biochemical approaches to investigate the effects of two different PARP-1 inhibitors (olaparib and MC2050) in Drosophila models of Alzheimer’s disease by exploring their neuroprotective and therapeutic potential in vivo. We found that both pharmacological inhibition and genetic inactivation of PARP-1 significantly extend lifespan and improve the climbing ability of transgenic AD flies. Consistently, PARP-1 inhibitors lead to a significant decrease of Aβ42 aggregates and partially rescue the epigenetic alterations associated with AD in the brain. Interestingly, olaparib and MC2050 also suppress the AD-associated aberrant activation of transposable elements in neuronal tissues of AD flies.
Collapse
|
45
|
Mao K, Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J 2022; 289:2013-2024. [PMID: 33460497 DOI: 10.1111/febs.15716] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by progressive memory loss and motor impairment. Aging is a major risk factor for neurodegenerative diseases. Neurodegenerative diseases and aging often develop in an irreversible manner and cause a significant socioeconomic burden. When considering their pathogenesis, many studies usually focus on mitochondrial dysfunction and DNA damage. More recently, neuroinflammation, autophagy dysregulation, and SIRT1 inactivation were shown to be involved in the pathogenesis of neurodegenerative diseases and aging. In addition, studies uncovered the role of poly (ADP-ribose)-polymerase-1 (PARP1) in neurodegenerative diseases and aging. PARP1 links to a cluster of stress signals, including those originated by inflammation and autophagy dysregulation. In this review, we summarized the recent research progresses on PARP1 in neurodegenerative diseases and aging, with an emphasis on the relationship among PARP1, neuroinflammation, mitochondria, and autophagy. We discussed the possibilities of treating neurodegenerative diseases and aging through targeting PARP1.
Collapse
Affiliation(s)
- Kanmin Mao
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Zhang
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Wuhan, China
- Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Yuan P, Song F, Zhu P, Fan K, Liao Q, Huang L, Liu Z. Poly (ADP-ribose) polymerase 1-mediated defective mitophagy contributes to painful diabetic neuropathy in the db/db model. J Neurochem 2022; 162:276-289. [PMID: 35263449 DOI: 10.1111/jnc.15606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Studies have shown that poly (ADP-ribose) polymerase 1 (PARP1) was involved in the pathological process of diabetes. Mitophagy is widely acknowledged to be a key regulatory process in maintaining reactive oxygen species homeostasis via lysosome degradation of damaged mitochondria. However, the regulatory role of PARP1 in mitophagy-related mitochondrial oxidative injury and progression of painful diabetic neuropathy (PDN) is unclear. In this study, we studied the in vitro and in vivo mechanisms of PARP1-mediated mitophagy blockade in a leptin gene-mutation (db/db) mouse model of PDN. Db/db mice models of PDN were established by assessing the sciatic nerve conduction velocity (SNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL). The results showed that PARP1 activity and mitochondrial injury of dorsal root ganglion (DRG) neurons were increased, and mitophagy was impaired in PDN mice. PARP1 was found to mediate the impairment of mitophagy in DRG neurons isolated from PDN mice. PARP1 inhibitors (PJ34 or AG14361) attenuated diabetes-induced peripheral nerve hyperalgesia, restored DRG neuron mitophagy function and decreased mitochondrial oxidative injury. Mitophagy impairment induced by lysosome deacidificant (DC661) aggravated diabetes-induced DRG neuron mitochondrial oxidative stress and injury. Taken together, our data revealed that PARP1 induced defective mitophagy of DRG neurons is a key mechanism in diabetes-induced peripheral neuropathic injury. Inhibition of PARP1 and restoration of mitophagy function are potential therapeutic targets for PDN.
Collapse
Affiliation(s)
- Pengfei Yuan
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Pian Zhu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Keke Fan
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Lijin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Zhongjie Liu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| |
Collapse
|
47
|
Rhine K, Dasovich M, Yoniles J, Badiee M, Skanchy S, Ganser L, Ge Y, Fare CM, Shorter J, Leung AKL, Myong S. Poly(ADP-ribose) drives condensation of FUS via a transient interaction. Mol Cell 2022; 82:969-985.e11. [PMID: 35182479 PMCID: PMC9330637 DOI: 10.1016/j.molcel.2022.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 μM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 μM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Morgan Dasovich
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joey Yoniles
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sophie Skanchy
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laura Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yingda Ge
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charlotte M. Fare
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony K. L. Leung
- Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.,Corresponding Authors; &
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
48
|
Milicevic K, Rankovic B, Andjus PR, Bataveljic D, Milovanovic D. Emerging Roles for Phase Separation of RNA-Binding Proteins in Cellular Pathology of ALS. Front Cell Dev Biol 2022; 10:840256. [PMID: 35372329 PMCID: PMC8965147 DOI: 10.3389/fcell.2022.840256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a major principle for the mesoscale organization of proteins, RNAs, and membrane-bound organelles into biomolecular condensates. These condensates allow for rapid cellular responses to changes in metabolic activities and signaling. Nowhere is this regulation more important than in neurons and glia, where cellular physiology occurs simultaneously on a range of time- and length-scales. In a number of neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS), misregulation of biomolecular condensates leads to the formation of insoluble aggregates-a pathological hallmark of both sporadic and familial ALS. Here, we summarize how the emerging knowledge about the LLPS of ALS-related proteins corroborates with their aggregation. Understanding the mechanisms that lead to protein aggregation in ALS and how cells respond to these aggregates promises to open new directions for drug development.
Collapse
Affiliation(s)
- Katarina Milicevic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Branislava Rankovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Pavle R. Andjus
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Danijela Bataveljic
- Center for Laser Microscopy, Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
49
|
Ruan Z, Lu Q, Wang JE, Zhou M, Liu S, Zhang H, Durvasula A, Wang Y, Wang Y, Luo W, Wang Y. MIF promotes neurodegeneration and cell death via its nuclease activity following traumatic brain injury. Cell Mol Life Sci 2021; 79:39. [DOI: 10.1007/s00018-021-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
|
50
|
Wang H, Kodavati M, Britz GW, Hegde ML. DNA Damage and Repair Deficiency in ALS/FTD-Associated Neurodegeneration: From Molecular Mechanisms to Therapeutic Implication. Front Mol Neurosci 2021; 14:784361. [PMID: 34975400 PMCID: PMC8716463 DOI: 10.3389/fnmol.2021.784361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023] Open
Abstract
Emerging studies reveal that neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are commonly linked to DNA damage accumulation and repair deficiency. Neurons are particularly vulnerable to DNA damage due to their high metabolic activity, relying primarily on oxidative phosphorylation, which leads to increased reactive oxygen species (ROS) generation and subsequent DNA damage. Efficient and timely repair of such damage is critical for guarding the integrity of genomic DNA and for cell survival. Several genes predominantly associated with RNA/DNA metabolism have been implicated in both ALS and FTD, suggesting that the two diseases share a common underlying pathology with varied clinical manifestations. Recent studies reveal that many of the gene products, including RNA/DNA binding proteins (RBPs) TDP-43 and FUS are involved in diverse DNA repair pathways. A key question in the etiology of the ALS/FTD spectrum of neurodegeneration is the mechanisms and pathways involved in genome instability caused by dysfunctions/mutations of those RBP genes and their consequences in the central nervous system. The understanding of such converging molecular mechanisms provides insights into the underlying etiology of the rapidly progressing neurodegeneration in ALS/FTD, while also revealing novel DNA repair target avenues for therapeutic development. In this review, we summarize the common mechanisms of neurodegeneration in ALS and FTD, with a particular emphasis on the DNA repair defects induced by ALS/FTD causative genes. We also highlight the consequences of DNA repair defects in ALS/FTD and the therapeutic potential of DNA damage repair-targeted amelioration of neurodegeneration.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| | - Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Gavin W. Britz
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| |
Collapse
|