1
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Ni Z, Ahmed N, Nabeel-Shah S, Guo X, Pu S, Song J, Marcon E, Burke G, Tong AH, Chan K, Ha KH, Blencowe B, Moffat J, Greenblatt J. Identifying human pre-mRNA cleavage and polyadenylation factors by genome-wide CRISPR screens using a dual fluorescence readthrough reporter. Nucleic Acids Res 2024; 52:4483-4501. [PMID: 38587191 PMCID: PMC11077057 DOI: 10.1093/nar/gkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.
Collapse
Affiliation(s)
- Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Giovanni L Burke
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Katherine Chan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| |
Collapse
|
3
|
Viera T, Abfalterer Q, Neal A, Trujillo R, Patidar PL. Molecular Basis of XRN2-Deficient Cancer Cell Sensitivity to Poly(ADP-ribose) Polymerase Inhibition. Cancers (Basel) 2024; 16:595. [PMID: 38339346 PMCID: PMC10854503 DOI: 10.3390/cancers16030595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
R-loops (RNA-DNA hybrids with displaced single-stranded DNA) have emerged as a potent source of DNA damage and genomic instability. The termination of defective RNA polymerase II (RNAPII) is one of the major sources of R-loop formation. 5'-3'-exoribonuclease 2 (XRN2) promotes genome-wide efficient RNAPII termination, and XRN2-deficient cells exhibit increased DNA damage emanating from elevated R-loops. Recently, we showed that DNA damage instigated by XRN2 depletion in human fibroblast cells resulted in enhanced poly(ADP-ribose) polymerase 1 (PARP1) activity. Additionally, we established a synthetic lethal relationship between XRN2 and PARP1. However, the underlying cellular stress response promoting this synthetic lethality remains elusive. Here, we delineate the molecular consequences leading to the synthetic lethality of XRN2-deficient cancer cells induced by PARP inhibition. We found that XRN2-deficient lung and breast cancer cells display sensitivity to two clinically relevant PARP inhibitors, Rucaparib and Olaparib. At a mechanistic level, PARP inhibition combined with XRN2 deficiency exacerbates R-loop and DNA double-strand break formation in cancer cells. Consistent with our previous findings using several different siRNAs, we also show that XRN2 deficiency in cancer cells hyperactivates PARP1. Furthermore, we observed enhanced replication stress in XRN2-deficient cancer cells treated with PARP inhibitors. Finally, the enhanced stress response instigated by compromised PARP1 catalytic function in XRN2-deficient cells activates caspase-3 to initiate cell death. Collectively, these findings provide mechanistic insights into the sensitivity of XRN2-deficient cancer cells to PARP inhibition and strengthen the underlying translational implications for targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | - Praveen L. Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| |
Collapse
|
4
|
Jackson-Jones KA, McKnight Á, Sloan RD. The innate immune factor RPRD2/REAF and its role in the Lv2 restriction of HIV. mBio 2023; 14:e0257221. [PMID: 37882563 PMCID: PMC10746242 DOI: 10.1128/mbio.02572-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Intracellular innate immunity involves co-evolved antiviral restriction factors that specifically inhibit infecting viruses. Studying these restrictions has increased our understanding of viral replication, host-pathogen interactions, and pathogenesis, and represent potential targets for novel antiviral therapies. Lentiviral restriction 2 (Lv2) was identified as an unmapped early-phase restriction of HIV-2 and later shown to also restrict HIV-1 and simian immunodeficiency virus. The viral determinants of Lv2 susceptibility have been mapped to the envelope and capsid proteins in both HIV-1 and HIV-2, and also viral protein R (Vpr) in HIV-1, and appears dependent on cellular entry mechanism. A genome-wide screen identified several likely contributing host factors including members of the polymerase-associated factor 1 (PAF1) and human silencing hub (HUSH) complexes, and the newly characterized regulation of nuclear pre-mRNA domain containing 2 (RPRD2). Subsequently, RPRD2 (or RNA-associated early-stage antiviral factor) has been shown to be upregulated upon T cell activation, is highly expressed in myeloid cells, binds viral reverse transcripts, and potently restricts HIV-1 infection. RPRD2 is also bound by HIV-1 Vpr and targeted for degradation by the proteasome upon reverse transcription, suggesting RPRD2 impedes reverse transcription and Vpr targeting overcomes this block. RPRD2 is mainly localized to the nucleus and binds RNA, DNA, and DNA:RNA hybrids. More recently, RPRD2 has been shown to negatively regulate genome-wide transcription and interact with the HUSH and PAF1 complexes which repress HIV transcription and are implicated in maintenance of HIV latency. In this review, we examine Lv2 restriction and the antiviral role of RPRD2 and consider potential mechanism(s) of action.
Collapse
Affiliation(s)
- Kathryn A. Jackson-Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- Division of Infectious Diseases & Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Áine McKnight
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Richard D. Sloan
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- ZJU-UoE Institute, Zhejiang University, Haining, China
| |
Collapse
|
5
|
Cugusi S, Bajpe PK, Mitter R, Patel H, Stewart A, Svejstrup JQ. An Important Role for RPRD1B in the Heat Shock Response. Mol Cell Biol 2022; 42:e0017322. [PMID: 36121223 PMCID: PMC9583720 DOI: 10.1128/mcb.00173-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
During the heat shock response (HSR), heat shock factor (HSF1 in mammals) binds to target gene promoters, resulting in increased expression of heat shock proteins that help maintain protein homeostasis and ensure cell survival. Besides HSF1, only a relatively few transcription factors with a specific role in ensuring correctly regulated gene expression during the HSR have been described. Here, we use proteomic and genomic (CRISPR) screening to identify a role for RPRD1B in the response to heat shock. Indeed, cells depleted for RPRD1B are heat shock sensitive and show decreased expression of key heat shock proteins (HSPs). These results add to our understanding of the connection between basic gene expression mechanisms and the HSR.
Collapse
Affiliation(s)
- Simona Cugusi
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Prashanth Kumar Bajpe
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
7
|
Dang TT, Morales JC. Loss of CENP-I Impairs Homologous Recombination and Sensitizes Cells to PARP1 Inhibition. Cancers (Basel) 2021; 13:3202. [PMID: 34206916 PMCID: PMC8267748 DOI: 10.3390/cancers13133202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Centromere Protein I (CENP-I) is a member of the CENP-H/I/K complex. CENP-H/I/K is a major component of the inner kinetochore and aids in ensuring proper chromosomal segregation during mitosis. In addition to this chromosomal segregation function, CENP-I also plays a role in DNA double-strand break (DSB) repair. Loss of CENP-I leads to increased endogenous 53BP1 foci and R-loop formation, while reducing cellular survival after ionizing radiation and Niraparib, a PARP1 small molecule inhibitor, exposures. Cells lacking CENP-I display delayed 53BP1 foci regression, an indication that DSB repair is impaired. Additionally, loss of CENP-I impairs the homologous recombination DSB repair pathway, while having no effect on the non-homologous end-joining pathway. Interestingly, we find that RNaseH1 expression restores HR capacity in CENP-I deficient cells. Importantly, CENP-I expression is elevated in glioma tissue as compared to normal brain tissue. This elevated expression also correlates with poor overall patient survival. These data highlight the multi-functional role CENP-I plays in maintaining genetic, as well as chromosomal, stability and tumor survival.
Collapse
Affiliation(s)
| | - Julio C. Morales
- Stephenson Cancer Center, Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
8
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
9
|
Dutertre M, Sfaxi R, Vagner S. Reciprocal Links between Pre-messenger RNA 3'-End Processing and Genome Stability. Trends Biochem Sci 2021; 46:579-594. [PMID: 33653631 DOI: 10.1016/j.tibs.2021.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The 3'-end processing of most pre-messenger RNAs (pre-mRNAs) involves RNA cleavage and polyadenylation and is coupled to transcription termination. In both yeast and human cells, pre-mRNA 3'-end cleavage is globally inhibited by DNA damage. Recently, further links between pre-mRNA 3'-end processing and the control of genome stability have been uncovered, as reviewed here. Upon DNA damage, various genes related to the DNA damage response (DDR) escape 3'-end processing inhibition or are regulated through alternative polyadenylation (APA). Conversely, various pre-mRNA 3'-end processing factors prevent genome instability and are found at sites of DNA damage. Finally, the reciprocal link between pre-mRNA 3'-end processing and genome stability control seems important because it is conserved in evolution and involved in disease development.
Collapse
Affiliation(s)
- Martin Dutertre
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| | - Rym Sfaxi
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer
| | - Stéphan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipe Labellisée Ligue Nationale Contre le Cancer.
| |
Collapse
|
10
|
Yang L, Yang H, Chu Y, Song Y, Ding L, Zhu B, Zhai W, Wang X, Kuang Y, Ren F, Jia B, Wu W, Ye X, Wang Y, Chang Z. CREPT is required for murine stem cell maintenance during intestinal regeneration. Nat Commun 2021; 12:270. [PMID: 33431892 PMCID: PMC7801528 DOI: 10.1038/s41467-020-20636-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal stem cells (ISCs) residing in the crypts are critical for the continual self-renewal and rapid recovery of the intestinal epithelium. The regulatory mechanism of ISCs is not fully understood. Here we report that CREPT, a recently identified tumor-promoting protein, is required for the maintenance of murine ISCs. CREPT is preferably expressed in the crypts but not in the villi. Deletion of CREPT in the intestinal epithelium of mice (Vil-CREPTKO) results in lower body weight and slow migration of epithelial cells in the intestine. Vil-CREPTKO intestine fails to regenerate after X-ray irradiation and dextran sulfate sodium (DSS) treatment. Accordingly, the deletion of CREPT decreases the expression of genes related to the proliferation and differentiation of ISCs and reduces Lgr5+ cell numbers at homeostasis. We identify that CREPT deficiency downregulates Wnt signaling by impairing β-catenin accumulation in the nucleus of the crypt cells during regeneration. Our study provides a previously undefined regulator of ISCs.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Haiyan Yang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yunxiang Chu
- Department of Gastroenterology, Emergency General Hospital, 100028, Beijing, China
| | - Yunhao Song
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Lidan Ding
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Bingtao Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Xuning Wang
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Yanshen Kuang
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China
| | - Baoqing Jia
- Department of Gastroenterology, Chinese PLA General Hospital, 100700, Beijing, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xiongjun Ye
- Urology and Lithotripsy Center, Peking University People's Hospital, 100034, Beijing, China.
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
11
|
Yang L, Yang H, Chu Y, Song Y, Ding L, Zhu B, Zhai W, Wang X, Kuang Y, Ren F, Jia B, Wu W, Ye X, Wang Y, Chang Z. CREPT is required for murine stem cell maintenance during intestinal regeneration. Nat Commun 2021. [DOI: 10.1038/s41467-020-20636-9 order by 38439--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractIntestinal stem cells (ISCs) residing in the crypts are critical for the continual self-renewal and rapid recovery of the intestinal epithelium. The regulatory mechanism of ISCs is not fully understood. Here we report that CREPT, a recently identified tumor-promoting protein, is required for the maintenance of murine ISCs. CREPT is preferably expressed in the crypts but not in the villi. Deletion of CREPT in the intestinal epithelium of mice (Vil-CREPTKO) results in lower body weight and slow migration of epithelial cells in the intestine. Vil-CREPTKO intestine fails to regenerate after X-ray irradiation and dextran sulfate sodium (DSS) treatment. Accordingly, the deletion of CREPT decreases the expression of genes related to the proliferation and differentiation of ISCs and reduces Lgr5+ cell numbers at homeostasis. We identify that CREPT deficiency downregulates Wnt signaling by impairing β-catenin accumulation in the nucleus of the crypt cells during regeneration. Our study provides a previously undefined regulator of ISCs.
Collapse
|
12
|
Ma J, Zhang L, Shi Y, Wang T, Kong X, Bu R, Ren Y. Elevated CREPT Expression Enhances the Progression of Salivary Gland Adenoid Cystic Carcinoma. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juntao Ma
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University
| | - Lei Zhang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| | - Yueyi Shi
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| | - Tong Wang
- Department of Stomatology, Tianjin First Central Hospital
| | - Xiangpan Kong
- Department of Oral and Maxillofacial-Head and Neck Surgery, Beijing Stomatological Hospital, Capital Medical University
| | - Rongfa Bu
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| | - Yipeng Ren
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital
| |
Collapse
|
13
|
Current understanding of CREPT and p15RS, carboxy-terminal domain (CTD)-interacting proteins, in human cancers. Oncogene 2020; 40:705-716. [PMID: 33239754 DOI: 10.1038/s41388-020-01544-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
CREPT and p15RS, also named RPRD1B and RPRD1A, are RPRD (regulation of nuclear pre-mRNA-domain-containing) proteins containing C-terminal domain (CTD)-interacting domain (CID), which mediates the binding to the CTD of Rpb1, the largest subunit of RNA polymerase II (RNAPII). CREPT and p15RS are highly conserved, with a common yeast orthologue Rtt103. Intriguingly, human CREPT and p15RS possess opposite functions in the regulation of cell proliferation and tumorigenesis. While p15RS inhibits cell proliferation, CREPT promotes cell cycle and tumor growth. Aberrant expression of both CREPT and p15RS was found in numerous types of cancers. At the molecular level, both CREPT and p15RS were reported to regulate gene transcription by interacting with RNAPII. However, CREPT also exerts a key function in the processes linked to DNA damage repairs. In this review, we summarized the recent studies regarding the biological roles of CREPT and p15RS, as well as the molecular mechanisms underlying their activities. Fully revealing the mechanisms of CREPT and p15RS functions will not only provide new insights into understanding gene transcription and maintenance of DNA stability in tumors, but also promote new approach development for tumor diagnosis and therapy.
Collapse
|
14
|
XRN2 interactome reveals its synthetic lethal relationship with PARP1 inhibition. Sci Rep 2020; 10:14253. [PMID: 32859985 PMCID: PMC7455564 DOI: 10.1038/s41598-020-71203-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Persistent R-loops (RNA-DNA hybrids with a displaced single-stranded DNA) create DNA damage and lead to genomic instability. The 5'-3'-exoribonuclease 2 (XRN2) degrades RNA to resolve R-loops and promotes transcription termination. Previously, XRN2 was implicated in DNA double strand break (DSB) repair and in resolving replication stress. Here, using tandem affinity purification-mass spectrometry, bioinformatics, and biochemical approaches, we found that XRN2 associates with proteins involved in DNA repair/replication (Ku70-Ku80, DNA-PKcs, PARP1, MCM2-7, PCNA, RPA1) and RNA metabolism (RNA helicases, PRP19, p54(nrb), splicing factors). Novel major pathways linked to XRN2 include cell cycle control of chromosomal replication and DSB repair by non-homologous end joining. Investigating the biological implications of these interactions led us to discover that XRN2 depletion compromised cell survival after additional knockdown of specific DNA repair proteins, including PARP1. XRN2-deficient cells also showed enhanced PARP1 activity. Consistent with concurrent depletion of XRN2 and PARP1 promoting cell death, XRN2-deficient fibroblast and lung cancer cells also demonstrated sensitivity to PARP1 inhibition. XRN2 alterations (mutations, copy number/expression changes) are frequent in cancers. Thus, PARP1 inhibition could target cancers exhibiting XRN2 functional loss. Collectively, our data suggest XRN2's association with novel protein partners and unravel synthetic lethality between XRN2 depletion and PARP1 inhibition.
Collapse
|
15
|
Cai S, Bai Y, Wang H, Zhao Z, Ding X, Zhang H, Zhang X, Liu Y, Jia Y, Li Y, Chen S, Zhou H, Liu H, Yang C, Sun T. Knockdown of THOC1 reduces the proliferation of hepatocellular carcinoma and increases the sensitivity to cisplatin. J Exp Clin Cancer Res 2020; 39:135. [PMID: 32669125 PMCID: PMC7362638 DOI: 10.1186/s13046-020-01634-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers with poor prognosis and high incidence. The clinical data analysis of liver hepatocellular carcinoma samples downloaded from The Cancer Genome Atlas reveals that the THO Complex 1 (THOC1) is remarkable upregulated in HCC and associated with poor prognosis. However, the underlying mechanism remains to be elucidated. We hypothesize that THOC1 can promote the proliferation of HCC. The present study aims to identify THOC1 as the target for HCC treatment and broaden our sights into therapeutic strategy for this disease. METHODS Quantitative RT-PCR, Western blot, immunofluorescence and immunohistochemistry were used to measure gene and protein expression. Colony formation and cell cycle analysis were performed to evaluate the proliferation. The gene set enrichment analysis were performed to identify the function which THOC1 was involved in. The effects of THOC1 on the malignant phenotypes of hepatocellular cells were examined in vitro and in vivo. RESULTS The gene set enrichment analysis reveals that THOC1 can promote the proliferation and G2/M cell cycle transition of HCC. Similarly, experimental results demonstrate that THOC1 promotes HCC cell proliferation and cell cycle progression. The knockdown of THOC1 leads to R-loop formation and DNA damage and confers sensitivity to cisplatin. In addition, in vivo data demonstrate that THOC1 can enhance tumorigenesis by increasing tumor cell proliferation. Furthermore, virtual screening predicts that THOC1 as a direct target of luteolin. Luteolin can induce DNA damage and suppress the proliferation of HCC by targeting THOC1. Furthermore, the inhibition of THOC1 activity by luteolin enhances the chemosensitivity of HCC tumor cells to cisplatin. CONCLUSIONS THOC1 was identified as a predictive biomarker vital for HCC-targeted treatments and improvement of clinical prognosis. Luteolin combined with cisplatin can effectively suppress HCC tumor growth, indicating a potential and effective therapeutic strategy that uses luteolin in combination with conventional cytotoxic agents for HCC treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Cisplatin/pharmacology
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shijiao Cai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
| | - Yunpeng Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
| | - Huan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zihan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiujuan Ding
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
| | - Yantao Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yan Jia
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Huijuan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
- College of Life Sciences, Nankai University, Tianjin, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38, Tongyan Road, Tianjin, 300350, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
16
|
Involvement of POLA2 in Double Strand Break Repair and Genotoxic Stress. Int J Mol Sci 2020; 21:ijms21124245. [PMID: 32549188 PMCID: PMC7352189 DOI: 10.3390/ijms21124245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/04/2023] Open
Abstract
Cellular survival is dependent on the efficient replication and transmission of genomic information. DNA damage can be introduced into the genome by several different methods, one being the act of DNA replication. Replication is a potent source of DNA damage and genomic instability, especially through the formation of DNA double strand breaks (DSBs). DNA polymerase alpha is responsible for replication initiation. One subunit of the DNA polymerase alpha replication machinery is POLA2. Given the connection between replication and genomic instability, we decided to examine the role of POLA2 in DSB repair, as little is known about this topic. We found that loss of POLA2 leads to an increase in spontaneous DSB formation. Loss of POLA2 also slows DSB repair kinetics after treatment with etoposide and inhibits both of the major double strand break repair pathways: non-homologous end-joining and homologous recombination. In addition, loss of POLA2 leads to increased sensitivity to ionizing radiation and PARP1 inhibition. Lastly, POLA2 expression is elevated in glioblastoma multiforme tumors and correlates with poor overall patient survival. These data demonstrate a role for POLA2 in DSB repair and resistance to genotoxic stress.
Collapse
|
17
|
Lyons DE, McMahon S, Ott M. A combinatorial view of old and new RNA polymerase II modifications. Transcription 2020; 11:66-82. [PMID: 32401151 DOI: 10.1080/21541264.2020.1762468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The production of mRNA is a dynamic process that is highly regulated by reversible post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II. The CTD is a highly repetitive domain consisting mostly of the consensus heptad sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Phosphorylation of serine residues within this repeat sequence is well studied, but modifications of all residues have been described. Here, we focus on integrating newly identified and lesser-studied CTD post-translational modifications into the existing framework. We also review the growing body of work demonstrating crosstalk between different CTD modifications and the functional consequences of such crosstalk on the dynamics of transcriptional regulation.
Collapse
Affiliation(s)
- Danielle E Lyons
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Sarah McMahon
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
18
|
Wenquan L, Hongqing X, Yuhua L, Lili W, Wang Z, Ziwei Z, Chuang W, Aizhen C, Xiaosong W, Bo W, Lin C. MiR-139-5p inhibits the proliferation of gastric cancer cells by targeting Regulation of Nuclear Pre-mRNA Domain Containing 1B. Biochem Biophys Res Commun 2020; 527:393-400. [PMID: 32327260 DOI: 10.1016/j.bbrc.2020.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Regulation of Nuclear Pre-mRNA Domain Containing 1B (RPRD1B) has been of great interest in the field of oncology in recent years. The relationship between miRNAs and RPRD1B in gastric cancer (GC) has not been adequately reported. This study was designed to screen RPRD1B-targeted miRNAs and investigate its regulatory mechanism in GC cells. Quantitative RT-PCR and in situ hybridization were used to detect miRNA expression in GC tissues. Colony formation, EdU cell proliferation assay, and flow cytometry were used to analyze the cell cycle. Database-assisted gene expression analysis revealed that RPRD1B was targeted and regulated by miRNA-139-5p in GC. miRNA-139-5p expression was higher in GC tissue than in normal tissues and significantly correlated with tumor size, pathological stage, and disease-free survival of GC (p < 0.05). MiRNA-139-5p regulates GC cell proliferation and affects the transition from G1 to S phase. It binds explicitly to the 2013-2019 sites of the 3'UTR of RPRD1B and negatively regulates RPRD1B expression. We demonstrated that the ability of miR-139-5p to regulate GC cell proliferation depends on RPRD1B. This process is accompanied by changes in Cyclin D1 protein expression. We established a miR-139-5p/RPRD1B/tumor proliferation axis in GC, which may serve as novel biomarkers and drug targets for GC.
Collapse
Affiliation(s)
- Liang Wenquan
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Xi Hongqing
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Liu Yuhua
- Institute of Army Hospital Management, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wang Lili
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zhang Wang
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Zhuang Ziwei
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Wang Chuang
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Cai Aizhen
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wu Xiaosong
- Medical Management Office, Chinese PLA General Hospital, Beijing, China.
| | - Wei Bo
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Chen Lin
- Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
19
|
Ali I, Ruiz DG, Ni Z, Johnson JR, Zhang H, Li PC, Khalid MM, Conrad RJ, Guo X, Min J, Greenblatt J, Jacobson M, Krogan NJ, Ott M. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins. Mol Cell 2019; 74:1164-1174.e4. [PMID: 31054975 DOI: 10.1016/j.molcel.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 01/01/2023]
Abstract
Post-translational modifications of the RNA polymerase II C-terminal domain (CTD) coordinate the transcription cycle. Crosstalk between different modifications is poorly understood. Here, we show how acetylation of lysine residues at position 7 of characteristic heptad repeats (K7ac)-only found in higher eukaryotes-regulates phosphorylation of serines at position 5 (S5p), a conserved mark of polymerases initiating transcription. We identified the regulator of pre-mRNA-domain-containing (RPRD) proteins as reader proteins of K7ac. K7ac enhanced CTD peptide binding to the CTD-interacting domain (CID) of RPRD1A and RPRD1B proteins in isothermal calorimetry and molecular modeling experiments. Deacetylase inhibitors increased K7ac- and decreased S5-phosphorylated polymerases, consistent with acetylation-dependent S5 dephosphorylation by an RPRD-associated S5 phosphatase. Consistent with this model, RPRD1B knockdown increased S5p but enhanced K7ac, indicating that RPRD proteins recruit K7 deacetylases, including HDAC1. We also report autoregulatory crosstalk between K7ac and S5p via RPRD proteins and their interactions with acetyl- and phospho-eraser proteins.
Collapse
Affiliation(s)
- Ibraheem Ali
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zuyao Ni
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Heng Zhang
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | - Pao-Chen Li
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mir M Khalid
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Xinghua Guo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, ON, Canada
| | | | - Matthew Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences (QBC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
21
|
Katahira J, Ishikawa H, Tsujimura K, Kurono S, Hieda M. Human THO coordinates transcription termination and subsequent transcript release from the
HSP70
locus. Genes Cells 2019; 24:272-283. [DOI: 10.1111/gtc.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Hiroki Ishikawa
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Kakeru Tsujimura
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences Osaka Prefecture University Izumisano Osaka Japan
| | - Sadamu Kurono
- Graduate School of Medicine and Health Sciences Osaka University Suita Osaka Japan
- Laboratory Chemicals Division Wako Pure Chemical Industries Ltd Osaka Japan
| | - Miki Hieda
- Graduate School of Health Sciences Ehime Prefectural University of Health Sciences Iyo‐gun Ehime Japan
| |
Collapse
|
22
|
Trendowski MR, El Charif O, Dinh PC, Travis LB, Dolan ME. Genetic and Modifiable Risk Factors Contributing to Cisplatin-induced Toxicities. Clin Cancer Res 2018; 25:1147-1155. [PMID: 30305294 DOI: 10.1158/1078-0432.ccr-18-2244] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022]
Abstract
Effective administration of traditional cytotoxic chemotherapy is often limited by off-target toxicities. This clinical dilemma is epitomized by cisplatin, a platinating agent, which has potent antineoplastic activity due to its affinity for DNA and other intracellular nucleophiles. Despite its efficacy against many adult-onset and pediatric malignancies, cisplatin elicits multiple off-target toxicities that can not only severely impact a patient's quality of life but also lead to dose reductions or the selection of alternative therapies that can ultimately affect outcomes. Without an effective therapeutic measure by which to successfully mitigate many of these symptoms, there have been attempts to identify a priori those individuals who are more susceptible to developing these sequelae through studies of genetic and nongenetic risk factors. Older age is associated with cisplatin-induced ototoxicity, neurotoxicity, and nephrotoxicity. Traditional genome-wide association studies have identified single-nucleotide polymorphisms in ACYP2 and WFS1 associated with cisplatin-induced hearing loss. However, validating associations between specific genotypes and cisplatin-induced toxicities with enough stringency to warrant clinical application remains challenging. This review summarizes the current state of knowledge with regard to specific adverse sequelae following cisplatin-based therapy, with a focus on ototoxicity, neurotoxicity, nephrotoxicity, myelosuppression, and nausea/emesis. We discuss variables (genetic and nongenetic) contributing to these detrimental toxicities and currently available means to prevent or treat their occurrence.
Collapse
Affiliation(s)
- Matthew R Trendowski
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Omar El Charif
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Paul C Dinh
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Lois B Travis
- Indiana University, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
23
|
Li J, Smith AR, Marquez RT, Li J, Li K, Lan L, Wu X, Zhao L, Ren F, Wang Y, Wang Y, Jia B, Xu L, Chang Z. MicroRNA-383 acts as a tumor suppressor in colorectal cancer by modulating CREPT/RPRD1B expression. Mol Carcinog 2018; 57:1408-1420. [PMID: 29938829 PMCID: PMC6324535 DOI: 10.1002/mc.22866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Abstract
CREPT (Cell-cycle-related and expression-elevated protein in tumor)/RPRD1B, a novel protein that enhances the transcription of Cyclin D1 to promote cell proliferation during tumorigenesis, was demonstrated highly expressed in most of tumors. However, it remains unclear how CREPT is regulated in colorectal cancers. In this study, we report that miR-383 negatively regulates CREPT expression. We observed that CREPT was up-regulated but the expression of miR-383 was down regulated in both colon cancer cell lines and colon tumor tissues. Intriguingly, we found that enforced expression of miR-383 inhibited the expression of CREPT at both the mRNA and protein level. Using a luciferase reporter, we showed that miR-383 targeted the 3'-UTR of CREPT mRNA directly. Consistently we observed that over expression of miR-383 shortened the half-life of CREPT mRNA in varieties of colorectal cancer cells. Furthermore, restoration of miR-383 inhibited cell growth and colony formation of colon cancer cells accompanied by inhibition of expression of CREPT and related downstream genes. Finally, we demonstrated that stable over expression of miR-383 in colon cancer cells decreased the growth of the tumors. Our results revealed that the abundant expression of CREPT in colorectal cancers is attributed to the decreased level of miR-383. This study shed a new light on the potential therapeutic therapy strategy for colorectal cancers using introduced miRNA.
Collapse
Affiliation(s)
- Jian Li
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Amber R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Rebecca T. Marquez
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jun Li
- Institute of Immunology, Medical School, Third Military Medical University, Chongqing, China
| | - Kun Li
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Lan Lan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Xiaoqing Wu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Linxi Zhao
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| | - Baoqing Jia
- Department of General Surgery and Pathology, Chinese PLA General Hospital, Beijing, China
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for anti-tumor Therapeutics, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Peripheral neuropathy in children and adolescents treated for cancer. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:744-754. [PMID: 30236383 DOI: 10.1016/s2352-4642(18)30236-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
Abstract
Peripheral neuropathy is a well recognised treatment-related toxicity in children with cancer, associated with exposure to neurotoxic chemotherapy agents. Acute damage can occur in sensory, motor, or autonomic neurons, with symptoms that are rarely life threatening, but often severe enough to interfere with function during therapy and after treatment ends. The type of neuropathy and specific symptoms are associated with multiple factors including age at time of therapy, genetic predisposition, chemotherapy type and cumulative dose, and exposure to other agents during therapy. In this Review, we describe the peripheral neuropathy phenotype in children during cancer therapy and among survivors who have completed therapy, to summarise genetic and treatment-related risk factors for neuropathy, and to outline strategies to monitor and detect neuropathy during and after therapy. Additionally, we outline strategies for medical management of neuropathy during treatment and potential rehabilitation interventions to prevent or remediate functional loss.
Collapse
|
25
|
Motea EA, Fattah FJ, Xiao L, Girard L, Rommel A, Morales JC, Patidar P, Zhou Y, Porter A, Xie Y, Minna JD, Boothman DA. Kub5-Hera RPRD1B Deficiency Promotes "BRCAness" and Vulnerability to PARP Inhibition in BRCA-proficient Breast Cancers. Clin Cancer Res 2018; 24:6459-6470. [PMID: 30108102 DOI: 10.1158/1078-0432.ccr-17-1118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/05/2017] [Accepted: 08/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Identification of novel strategies to expand the use of PARP inhibitors beyond BRCA deficiency is of great interest in personalized medicine. Here, we investigated the unannotated role of Kub5-HeraRPRD1B (K-H) in homologous recombination (HR) repair and its potential clinical significance in targeted cancer therapy. EXPERIMENTAL DESIGN Functional characterization of K-H alterations on HR repair of double-strand breaks (DSB) were assessed by targeted gene silencing, plasmid reporter assays, immunofluorescence, and Western blots. Cell survival with PARP inhibitors was evaluated through colony-forming assays and statistically analyzed for correlation with K-H expression in various BRCA1/2 nonmutated breast cancers. Gene expression microarray/qPCR analyses, chromatin immunoprecipitation, and rescue experiments were used to investigate molecular mechanisms of action. RESULTS K-H expression loss correlates with rucaparib LD50 values in a panel of BRCA1/2 nonmutated breast cancers. Mechanistically, K-H depletion promotes BRCAness, where extensive upregulation of PARP1 activity was required for the survival of breast cancer cells. PARP inhibition in these cells led to synthetic lethality that was rescued by wild-type K-H reexpression, but not by a mutant K-H (p.R106A) that weakly binds RNAPII. K-H mediates HR by facilitating recruitment of RNAPII to the promoter region of a critical DNA damage response and repair effector, cyclin-dependent kinase 1 (CDK1). CONCLUSIONS Cancer cells with low K-H expression may have exploitable BRCAness properties that greatly expand the use of PARP inhibitors beyond BRCA mutations. Our results suggest that aberrant K-H alterations may have vital translational implications in cellular responses/survival to DNA damage, carcinogenesis, and personalized medicine.
Collapse
Affiliation(s)
- Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ling Xiao
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amy Rommel
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Praveen Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, New Mexico
| | - Yunyun Zhou
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Porter
- Center for Hematology, Imperial College, London, United Kingdom
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
26
|
Genome instability is a consequence of transcription deficiency in patients with bone marrow failure harboring biallelic ERCC6L2 variants. Proc Natl Acad Sci U S A 2018; 115:7777-7782. [PMID: 29987015 PMCID: PMC6064997 DOI: 10.1073/pnas.1803275115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bone marrow failure (BMF) is an inherited life-threatening condition characterized by defective hematopoiesis, developmental abnormalities, and predisposition to cancer. BMF caused by ERCC6L2 mutations is considered to be a genome instability syndrome, because DNA repair is compromised in patient cells. In this study, we report BMF cases with biallelic disease-causing variants and provide evidence from patients’ cells that transcription deficiency can explain the genome instability. Specifically, we demonstrate that ERCC6L2 participates in RNA polymerase II-mediated transcription via interaction with DNA-dependent protein kinase (DNA-PK) and resolves DNA–RNA hybrids (R loops). Collectively, our data point to a causal mechanism in BMF in which patients with ERCC6L2 mutations are defective in the repair of transcription-associated DNA damage. Biallelic variants in the ERCC excision repair 6 like 2 gene (ERCC6L2) are known to cause bone marrow failure (BMF) due to defects in DNA repair and mitochondrial function. Here, we report on eight cases of BMF from five families harboring biallelic variants in ERCC6L2, two of whom present with myelodysplasia. We confirm that ERCC6L2 patients’ lymphoblastoid cell lines (LCLs) are hypersensitive to DNA-damaging agents that specifically activate the transcription coupled nucleotide excision repair (TCNER) pathway. Interestingly, patients’ LCLs are also hypersensitive to transcription inhibitors that interfere with RNA polymerase II (RNA Pol II) and display an abnormal delay in transcription recovery. Using affinity-based mass spectrometry we found that ERCC6L2 interacts with DNA-dependent protein kinase (DNA-PK), a regulatory component of the RNA Pol II transcription complex. Chromatin immunoprecipitation PCR studies revealed ERCC6L2 occupancy on gene bodies along with RNA Pol II and DNA-PK. Patients’ LCLs fail to terminate transcript elongation accurately upon DNA damage and display a significant increase in nuclear DNA–RNA hybrids (R loops). Collectively, we conclude that ERCC6L2 is involved in regulating RNA Pol II-mediated transcription via its interaction with DNA-PK to resolve R loops and minimize transcription-associated genome instability. The inherited BMF syndrome caused by biallelic variants in ERCC6L2 can be considered as a primary transcription deficiency rather than a DNA repair defect.
Collapse
|
27
|
Toxicities Associated with Cisplatin-Based Chemotherapy and Radiotherapy in Long-Term Testicular Cancer Survivors. Adv Urol 2018; 2018:8671832. [PMID: 29670654 PMCID: PMC5835297 DOI: 10.1155/2018/8671832] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
Testicular cancer has become the paradigm of adult-onset cancer survivorship, due to the young age at diagnosis and 10-year relative survival of 95%. This clinical review presents the current status of various treatment-related complications experienced by long-term testicular cancer survivors (TCS) free of disease for 5 or more years after primary treatment. Cardiovascular disease and second malignant neoplasms represent the most common potentially life-threatening late effects. Other long-term adverse outcomes include neuro- and ototoxicity, pulmonary complications, nephrotoxicity, hypogonadism, infertility, and avascular necrosis. Future research efforts should focus on delineation of the genetic underpinning of these long-term toxicities to understand their biologic basis and etiopathogenetic pathways, with the goal of developing targeted prevention and intervention strategies to optimize risk-based care and minimize chronic morbidities. In the interim, health care providers should advise TCS to adhere to national guidelines for the management of cardiovascular disease risk factors, as well as to adopt behaviors consistent with a healthy lifestyle, including smoking cessation, a balanced diet, and a moderate to vigorous intensity exercise program. TCS should also follow national guidelines for cancer screening as currently applied to the general population.
Collapse
|
28
|
Yurko NM, Manley JL. The RNA polymerase II CTD "orphan" residues: Emerging insights into the functions of Tyr-1, Thr-4, and Ser-7. Transcription 2017; 9:30-40. [PMID: 28771071 DOI: 10.1080/21541264.2017.1338176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of a unique repeated heptad sequence of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. An important function of the CTD is to couple transcription with RNA processing reactions that occur during the initiation, elongation, and termination phases of transcription. During this transcription cycle, the CTD is subject to extensive modification, primarily phosphorylation, on its non-proline residues. Reversible phosphorylation of Ser2 and Ser5 is well known to play important and general functions during transcription in all eukaryotes. More recent studies have enhanced our understanding of Tyr1, Thr4, and Ser7, and what have been previously characterized as unknown or specialized functions for these residues has changed to a more fine-detailed map of transcriptional regulation that highlights similarities as well as significant differences between organisms. Here, we review recent findings on the function and modification of these three residues, which further illustrate the importance of the CTD in precisely modulating gene expression.
Collapse
Affiliation(s)
- Nathan M Yurko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - James L Manley
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
29
|
Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kim J, Fossa SD, Hertz DL, Mushiroda T, Kubo M, Einhorn LH, Cox NJ, Travis LB. Clinical and Genome-Wide Analysis of Cisplatin-Induced Peripheral Neuropathy in Survivors of Adult-Onset Cancer. Clin Cancer Res 2017; 23:5757-5768. [PMID: 28611204 PMCID: PMC5626588 DOI: 10.1158/1078-0432.ccr-16-3224] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/17/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Abstract
Purpose: Our purpose was to characterize the clinical influences, genetic risk factors, and gene mechanisms contributing to persistent cisplatin-induced peripheral neuropathy (CisIPN) in testicular cancer survivors (TCSs).Experimental Design: TCS given cisplatin-based therapy completed the validated EORTC QLQ-CIPN20 questionnaire. An ordinal CisIPN phenotype was derived, and associations with age, smoking, excess drinking, hypertension, body mass index, diabetes, hypercholesterolemia, cumulative cisplatin dose, and self-reported health were examined for 680 TCS. Genotyping was performed on the Illumina HumanOmniExpressExome chip. Following quality control and imputation, 5.1 million SNPs in 680 genetically European TCS formed the input set. GWAS and PrediXcan were used to identify genetic variation and genetically determined gene expression traits, respectively, contributing to CisIPN. We evaluated two independent datasets for replication: Vanderbilt's electronic health database (BioVU) and the CALGB 90401 trial.Results: Eight sensory items formed a subscale with good internal consistency (Cronbach α = 0.88). Variables significantly associated with CisIPN included age at diagnosis (OR per year, 1.06; P = 2 × 10-9), smoking (OR, 1.54; P = 0.004), excess drinking (OR, 1.83; P = 0.007), and hypertension (OR, 1.61; P = 0.03). CisIPN was correlated with lower self-reported health (OR, 0.56; P = 2.6 × 10-9) and weight gain adjusted for years since treatment (OR per Δkg/m2, 1.05; P = 0.004). PrediXcan identified lower expressions of MIDN and RPRD1B, and higher THEM5 expression as associated with CisIPN (P value for each < 5 × 10-6) with replication of RPRD1B meeting significance criteria (Fisher combined P = 0.0089).Conclusions: CisIPN is associated with age, modifiable risk factors, and genetically determined expression level of RPRD1B Further study of implicated genes could elucidate the pathophysiologic underpinnings of CisIPN. Clin Cancer Res; 23(19); 5757-68. ©2017 AACR.
Collapse
Affiliation(s)
- M Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois.
| | - Omar El Charif
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Heather E Wheeler
- Departments of Biology and Computer Science, Loyola University Chicago, Chicago, Illinois
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Patrick Monahan
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Darren R Feldman
- Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Robert J Hamilton
- Department of Surgical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David J Vaughn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clair J Beard
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chunkit Fung
- J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sophie D Fossa
- Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | | | - Michiaki Kubo
- RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Lawrence H Einhorn
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| | - Nancy J Cox
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee
| | - Lois B Travis
- Department of Medical Oncology, Indiana University, Indianapolis, Indiana
| |
Collapse
|
30
|
Ma J, Ren Y, Zhang L, Kong X, Wang T, Shi Y, Bu R. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. PLoS One 2017; 12:e0174309. [PMID: 28369091 PMCID: PMC5378318 DOI: 10.1371/journal.pone.0174309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background As a regulator essential for many cell cycle-related proteins, the robust expression of Cell cycle-Related and Expression-elevated Protein in Tumor (CREPT) implicates a poor diagnosis of endoderm and mesoderm-derived tumors. Whether CREPT plays the same role in the tumorigenesis derived from ectodermal tissues remains elusive. Methods To explore the role of CREPT in ectoderm-derived tumors, cells from 7oral squamous cell carcinoma (OSCC) lines and 84clinical OSCC samples were exploited in this study. Quantitative PCR, Western blot assay and immunohistochemistry were applied in the evaluation of CREPT, cyclin D1 and c-Myc expression. Knocking-down of CREPT was performed by lentivirus delivering specific shRNA of CREPT. The effects of CREPT on OSCC were examined by cell proliferation, colony formation, apoptosis, cell migration and xenograft implantation experiments. Results Compared with human normal oral keratinocytes, OSCC cell lines showed a significantly elevated expression of CREPT in both mRNA and protein levels. Consistently, samples from OSCC patients also exhibited a noticeably stronger CREPT expression than the noncancerous samples. In contrast, knocking down of CREPT in OSCC cell lines significantly reduced proliferation, colony formation and migration as well as the expression of cyclin D1 and c-Myc, but promoted apoptosis. Statistical analysis also suggested that CREPT expression was significantly correlated with the T and N classification of OSCC. Furthermore, CAL27 mouse xenograft model confirmed that down-regulation of CREPT prohibited cyclin D1 and c-Myc expression, through which decreased the in vivo tumor growth, but increased the survival ratio of hosts. Conclusion In OSCC cell lines, up-regulated CREPT expression enhanced cell proliferation, migration and cell cycle as well as promoted cyclin D1 and c-Myc expression as it did in endoderm and mesoderm-origin tumors. Our study strongly suggests that CREPT could be used as a marker for the OSCC prognosis and might work as a potential target in future OSCC therapy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cyclin D1/genetics
- Disease Progression
- Down-Regulation
- Female
- Gene Expression
- Gene Knockdown Techniques
- Genes, myc
- Humans
- Male
- Mice
- Mice, Nude
- Middle Aged
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Tumor Stem Cell Assay
Collapse
Affiliation(s)
- Juntao Ma
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yipeng Ren
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Lei Zhang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Xiangpan Kong
- Department of Oral and Maxillofacial-Head and Neck Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Tong Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yueyi Shi
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Rongfa Bu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Morales JC, Richard P, Patidar PL, Motea EA, Dang TT, Manley JL, Boothman DA. XRN2 Links Transcription Termination to DNA Damage and Replication Stress. PLoS Genet 2016; 12:e1006107. [PMID: 27437695 PMCID: PMC4954731 DOI: 10.1371/journal.pgen.1006107] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/14/2016] [Indexed: 11/18/2022] Open
Abstract
XRN2 is a 5’-3’ exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process. XRN2 loss leads to increased R loops, genomic instability, replication stress, DSBs and hypersensitivity of cells to various DNA damaging agents. We demonstrate that the DSBs that arise with XRN2 loss occur at transcriptional pause sites. XRN2-deficient cells also exhibited an R-loop- and transcription-dependent delay in DSB repair after ionizing radiation, suggesting a novel role for XRN2 in R-loop resolution, suppression of replication stress, and maintenance of genomic stability. Our study highlights the importance of regulating transcription-related activities as a critical component in maintaining genetic stability. Genomic instability is one of the primary causes of disease states, in particular cancer. One major cause of genomic instability is the formation of DNA double strand breaks (DSBs), which are one of the most dangerous types of DNA lesions the cell can encounter. If not repaired in a timely manner, one DSB can lead not only to cell death. If misrepaired, one DSB can lead to a hazardous chromosomal aberration, such as a translocation, that can eventually lead to cancer. The cell encounters and repairs DSBs that arise from naturally occurring cellular processes on a daily basis. A number of studies have demonstrated that aberrant structures that form during transcription under certain circumstances, in particular RNA:DNA hybrids (R loops), can lead to DSB formation and genomic instability, especially during DNA synthesis. Thus, it is important to understand how the cell responds and repairs transcription-mediated DNA damage in general and R loop-related DNA damage in particular. This paper both demonstrates that the XRN transcription termination factor links transcription and DNA damage, but also provides a better understanding of how the cell prevents transcription-related DNA damage.
Collapse
Affiliation(s)
- Julio C. Morales
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
- * E-mail: (JCM); (DAB)
| | - Patricia Richard
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Praveen L. Patidar
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Edward A. Motea
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tuyen T. Dang
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - David A. Boothman
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JCM); (DAB)
| |
Collapse
|
32
|
Boeing S, Williamson L, Encheva V, Gori I, Saunders RE, Instrell R, Aygün O, Rodriguez-Martinez M, Weems JC, Kelly GP, Conaway JW, Conaway RC, Stewart A, Howell M, Snijders AP, Svejstrup JQ. Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep 2016; 15:1597-1610. [PMID: 27184836 PMCID: PMC4893159 DOI: 10.1016/j.celrep.2016.04.047] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/25/2016] [Accepted: 04/10/2016] [Indexed: 12/21/2022] Open
Abstract
In order to facilitate the identification of factors and pathways in the cellular response to UV-induced DNA damage, several descriptive proteomic screens and a functional genomics screen were performed in parallel. Numerous factors could be identified with high confidence when the screen results were superimposed and interpreted together, incorporating biological knowledge. A searchable database, bioLOGIC, which provides access to relevant information about a protein or process of interest, was established to host the results and facilitate data mining. Besides uncovering roles in the DNA damage response for numerous proteins and complexes, including Integrator, Cohesin, PHF3, ASC-1, SCAF4, SCAF8, and SCAF11, we uncovered a role for the poorly studied, melanoma-associated serine/threonine kinase 19 (STK19). Besides effectively uncovering relevant factors, the multiomic approach also provides a systems-wide overview of the diverse cellular processes connected to the transcription-related DNA damage response.
Collapse
Affiliation(s)
- Stefan Boeing
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK; Bioinformatics and Biostatistics Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Laura Williamson
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Ilaria Gori
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Rebecca E Saunders
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Rachael Instrell
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ozan Aygün
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Marta Rodriguez-Martinez
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Juston C Weems
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gavin P Kelly
- Bioinformatics and Biostatistics Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Aengus Stewart
- Bioinformatics and Biostatistics Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Michael Howell
- High Throughput Screening Laboratory, the Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, the Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK.
| |
Collapse
|
33
|
Tucker JF, Ohle C, Schermann G, Bendrin K, Zhang W, Fischer T, Zhang K. A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5'-3' Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe. PLoS Genet 2016; 12:e1005873. [PMID: 26889830 PMCID: PMC4758730 DOI: 10.1371/journal.pgen.1005873] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/26/2016] [Indexed: 01/09/2023] Open
Abstract
Epigenetic gene silencing plays a critical role in regulating gene expression and contributes to organismal development and cell fate acquisition in eukaryotes. In fission yeast, Schizosaccharomyces pombe, heterochromatin-associated gene silencing is known to be mediated by RNA processing pathways including RNA interference (RNAi) and a 3’-5’ exoribonuclease complex, the exosome. Here, we report a new RNA-processing pathway that contributes to epigenetic gene silencing and assembly of heterochromatin mediated by 5’-3’ exoribonuclease Dhp1/Rat1/Xrn2. Dhp1 mutation causes defective gene silencing both at peri-centromeric regions and at the silent mating type locus. Intriguingly, mutation in either of the two well-characterized Dhp1-interacting proteins, the Din1 pyrophosphohydrolase or the Rhn1 transcription termination factor, does not result in silencing defects at the main heterochromatic regions. We demonstrate that Dhp1 interacts with heterochromatic factors and is essential in the sequential steps of establishing silencing in a manner independent of both RNAi and the exosome. Genomic and genetic analyses suggest that Dhp1 is involved in post-transcriptional silencing of repetitive regions through its RNA processing activity. The results describe the unexpected role of Dhp1/Rat1/Xrn2 in chromatin-based silencing and elucidate how various RNA-processing pathways, acting together or independently, contribute to epigenetic regulation of the eukaryotic genome. Epigenetic mechanisms regulate when, where, and how an organism uses the genetic information stored in its genome. They are essential to many cellular processes, such as the regulation of gene expression, genome organization, and cell-fate determination. They also govern growth, development, and ultimately human health. Heterochromatin constitutes silenced chromatic domains, in which gene silencing occurs through epigenetic mechanisms. RNA processing pathways, such as RNA interference (RNAi) and the exosome, are known to mediate the silencing of genes via degradation of unwanted or aberrant transcripts. In this study, we describe a new RNA processing mechanism in epigenetic silencing using fission yeast, a premier model for studying these processes. With genetic, cell biology, and genomic approaches, we uncovered a previously unrecognized function of Dhp1, a highly conserved 5’-3’ exoribonuclease and ortholog of budding yeast Rat1 and metazoan Xrn2. We show that Dhp1 mediates a novel RNA processing mechanism in epigenetic silencing which occurs independently of both RNAi and the exosome. Our results clarify how multiple RNA processing pathways are involved in the regulation of eukaryotic gene expression and chromatin organization.
Collapse
Affiliation(s)
- James Franklin Tucker
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Corina Ohle
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Géza Schermann
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Katja Bendrin
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Wei Zhang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tamás Fischer
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Ke Zhang
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Norbury JW, Schimmerling W, Slaba TC, Azzam EI, Badavi FF, Baiocco G, Benton E, Bindi V, Blakely EA, Blattnig SR, Boothman DA, Borak TB, Britten RA, Curtis S, Dingfelder M, Durante M, Dynan WS, Eisch AJ, Robin Elgart S, Goodhead DT, Guida PM, Heilbronn LH, Hellweg CE, Huff JL, Kronenberg A, La Tessa C, Lowenstein DI, Miller J, Morita T, Narici L, Nelson GA, Norman RB, Ottolenghi A, Patel ZS, Reitz G, Rusek A, Schreurs AS, Scott-Carnell LA, Semones E, Shay JW, Shurshakov VA, Sihver L, Simonsen LC, Story MD, Turker MS, Uchihori Y, Williams J, Zeitlin CJ. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. LIFE SCIENCES IN SPACE RESEARCH 2016; 8:38-51. [PMID: 26948012 PMCID: PMC5771487 DOI: 10.1016/j.lssr.2016.02.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 05/21/2023]
Abstract
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.
Collapse
Affiliation(s)
| | - Walter Schimmerling
- East Carolina University, Greenville, NC 27858, USA; Universities Space Research Association, Houston, TX 77058, USA
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA 23681, USA
| | | | | | - Giorgio Baiocco
- Department of Physics, University of Pavia, 27100, Pavia, Italy
| | - Eric Benton
- Oklahoma State University, Stillwater, OK 74074, USA
| | | | | | | | - David A Boothman
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - Stan Curtis
- 11771 Sunset Ave. NE, Bainbridge Island, WA 98110, USA
| | | | - Marco Durante
- GSI Helmholtz Center for Heavy Ion Research, 64291 Darmstadt, Germany
| | | | - Amelia J Eisch
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - Peter M Guida
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | - Janice L Huff
- Universities Space Research Association, Houston, TX 77058, USA
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Jack Miller
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Livio Narici
- University of Rome Tor Vergata & INFN, 00133 Rome, Italy
| | | | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA 23681, USA
| | | | | | | | - Adam Rusek
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Lembit Sihver
- Technische Universität Wien - Atominstitut, 1020 Vienna, Austria; EBG MedAustron GmbH, 2700 Wiener Neustadt, Austria
| | | | - Michael D Story
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Yukio Uchihori
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | - Cary J Zeitlin
- Lockheed Martin Information Systems & Global Solutions, Houston, TX 77058, USA
| |
Collapse
|
35
|
Patidar PL, Motea EA, Fattah FJ, Zhou Y, Morales JC, Xie Y, Garner HR, Boothman DA. The Kub5-Hera/RPRD1B interactome: a novel role in preserving genetic stability by regulating DNA mismatch repair. Nucleic Acids Res 2016; 44:1718-31. [PMID: 26819409 PMCID: PMC4770225 DOI: 10.1093/nar/gkv1492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022] Open
Abstract
Ku70-binding protein 5 (Kub5)-Hera (K-H)/RPRD1B maintains genetic integrity by concomitantly minimizing persistent R-loops and promoting repair of DNA double strand breaks (DSBs). We used tandem affinity purification-mass spectrometry, co-immunoprecipitation and gel-filtration chromatography to define higher-order protein complexes containing K-H scaffolding protein to gain insight into its cellular functions. We confirmed known protein partners (Ku70, RNA Pol II, p15RS) and discovered several novel associated proteins that function in RNA metabolism (Topoisomerase 1 and RNA helicases), DNA repair/replication processes (PARP1, MSH2, Ku, DNA-PKcs, MCM proteins, PCNA and DNA Pol δ) and in protein metabolic processes, including translation. Notably, this approach directed us to investigate an unpredicted involvement of K-H in DNA mismatch repair (MMR) where K-H depletion led to concomitant MMR deficiency and compromised global microsatellite stability. Mechanistically, MMR deficiency in K-H-depleted cells was a consequence of reduced stability of the core MMR proteins (MLH1 and PMS2) caused by elevated basal caspase-dependent proteolysis. Pan-caspase inhibitor treatment restored MMR protein loss. These findings represent a novel mechanism to acquire MMR deficiency/microsatellite alterations. A significant proportion of colon, endometrial and ovarian cancers exhibit k-h expression/copy number loss and may have severe mutator phenotypes with enhanced malignancies that are currently overlooked based on sporadic MSI+ screening.
Collapse
Affiliation(s)
- Praveen L Patidar
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yunyun Zhou
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Heath Science Center, Oklahoma City, OK, USA
| | - Yang Xie
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine and the MITTE Office, Virginia Tech, Blacksburg, VA, USA
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16:583-97. [PMID: 26370899 DOI: 10.1038/nrg3961] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
R loops are nucleic acid structures composed of an RNA-DNA hybrid and a displaced single-stranded DNA. Recently, evidence has emerged that R loops occur more often in the genome and have greater physiological relevance, including roles in transcription and chromatin structure, than was previously predicted. Importantly, however, R loops are also a major threat to genome stability. For this reason, several DNA and RNA metabolism factors prevent R-loop formation in cells. Dysfunction of these factors causes R-loop accumulation, which leads to replication stress, genome instability, chromatin alterations or gene silencing, phenomena that are frequently associated with cancer and a number of genetic diseases. We review the current knowledge of the mechanisms controlling R loops and their putative relationship with disease.
Collapse
Affiliation(s)
- José M Santos-Pereira
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla, Av. Américo Vespucio s/n, Seville 41092, Spain
| |
Collapse
|
37
|
Li S, Li Z, Shu FJ, Xiong H, Phillips AC, Dynan WS. Double-strand break repair deficiency in NONO knockout murine embryonic fibroblasts and compensation by spontaneous upregulation of the PSPC1 paralog. Nucleic Acids Res 2014; 42:9771-80. [PMID: 25100870 PMCID: PMC4150768 DOI: 10.1093/nar/gku650] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NONO, SFPQ and PSPC1 make up a family of proteins with diverse roles in transcription, RNA processing and DNA double-strand break (DSB) repair. To understand long-term effects of loss of NONO, we characterized murine embryonic fibroblasts (MEFs) from knockout mice. In the absence of genotoxic stress, wild-type and mutant MEFs showed similar growth rates and cell cycle distributions, and the mutants were only mildly radiosensitive. Further investigation showed that NONO deficiency led to upregulation of PSPC1, which replaced NONO in a stable complex with SFPQ. Knockdown of PSPC1 in a NONO-deficient background led to severe radiosensitivity and delayed resolution of DSB repair foci. The DNA-dependent protein kinase (DNA-PK) inhibitor, NU7741, sensitized wild-type and singly deficient MEFs, but had no additional effect on doubly deficient cells, suggesting that NONO/PSPC1 and DNA-PK function in the same pathway. We tested whether NONO and PSPC1 might also affect repair indirectly by influencing mRNA levels for other DSB repair genes. Of 12 genes tested, none were downregulated, and several were upregulated. Thus, NONO or related proteins are critical for DSB repair, NONO and PSPC1 are functional homologs with partially interchangeable functions and a compensatory response involving PSPC1 blunts the effect of NONO deficiency.
Collapse
Affiliation(s)
- Shuyi Li
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA Department of Biochemistry, Emory University, Atlanta, GA 30322, USA Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| | - Zhentian Li
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA Department of Biochemistry, Emory University, Atlanta, GA 30322, USA Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| | - Feng-Jue Shu
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA
| | - Hairong Xiong
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA State Key Laboratory of Virology/Institute of Medical Virology, Wuhan University, Wuhan 430071, China
| | - Andrew C Phillips
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA Department of Biochemistry, Emory University, Atlanta, GA 30322, USA Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
38
|
The Ku heterodimer: function in DNA repair and beyond. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:15-29. [PMID: 25795113 DOI: 10.1016/j.mrrev.2014.06.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, that is best characterized for its central role as the initial DNA end binding factor in the "classical" non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. Ku binds double-stranded DNA ends with high affinity in a sequence-independent manner through a central ring formed by the intertwined strands of the Ku70 and Ku80 subunits. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. There is also evidence that Ku is involved in signaling to the DNA damage response (DDR) machinery to modulate the activation of cell cycle checkpoints and the activation of apoptosis. Interestingly, Ku is also associated with telomeres, where, paradoxically to its DNA end-joining functions, it protects the telomere ends from being recognized as DSBs, thereby preventing their recombination and degradation. Ku, together with the silent information regulator (Sir) complex is also required for transcriptional silencing through telomere position effect (TPE). How Ku associates with telomeres, whether it is through direct DNA binding, or through protein-protein interactions with other telomere bound factors remains to be determined. Ku is central to the protection of organisms through its participation in C-NHEJ to repair DSBs generated during V(D)J recombination, a process that is indispensable for the establishment of the immune response. Ku also functions to prevent tumorigenesis and senescence since Ku-deficient mice show increased cancer incidence and early onset of aging. Overall, Ku function is critical to the maintenance of genomic integrity and to proper cellular and organismal development.
Collapse
|