1
|
Yildirim Z, Noll A, Martin-Hernandez K, Amé JC, Hanini N, Messaddeq N, Robert I, San Martin BR, Hildrestrand G, Bjoras M, Dantzer F. Parp3 assists muscle function and skeletal muscle differentiation by selectively adjusting H3K27me3 enrichment. iScience 2025; 28:112267. [PMID: 40248123 PMCID: PMC12005933 DOI: 10.1016/j.isci.2025.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/25/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Poly(ADP-ribose) polymerase 3 (Parp3) is known for its role in DNA repair, mitotic division, and cancer aggressiveness. Still, its physiological roles have yet to be defined. Here, we combined in vivo studies using Parp3-deficient mice with in cellulo studies to explore the involvement of Parp3 in skeletal muscle function and muscle differentiation. We show that Parp3 contributes to skeletal muscle integrity and promotes myogenic differentiation. Mechanistically, we show that Parp3 promotes the enrichment of the repressive histone mark H3K27me3 onto a panel of selected genes. For some genes, Parp3 also helps the binding of Ezh2, the histone methyltransferase that catalyzes H3K27me3. Moreover, Parp3 ADP-ribosylates Ezh2 in vitro. Altogether, these findings unveil Parp3 as a driver of efficient murine skeletal myogenesis in vitro and muscle function in young adults, and highlight an epigenetic control of gene expression.
Collapse
Affiliation(s)
- Zuleyha Yildirim
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Aurélia Noll
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Kathline Martin-Hernandez
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Jean-Christophe Amé
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Najat Hanini
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| | - Nadia Messaddeq
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
- CNRS, UMR 7104, 67400 Illkirch, France
- Inserm, UMR-S 1258, 67400 Illkirch, France
| | - Isabelle Robert
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
- CNRS, UMR 7104, 67400 Illkirch, France
- Inserm, UMR-S 1258, 67400 Illkirch, France
| | - Bernardo Reina San Martin
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
- CNRS, UMR 7104, 67400 Illkirch, France
- Inserm, UMR-S 1258, 67400 Illkirch, France
| | - Gunn Hildrestrand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnar Bjoras
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Embryology and Healthy Development, University of Oslo, 0424 Oslo, Norway
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d’Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg, 300 bld. S. Brant, CS10413, 67412 Illkirch, France
| |
Collapse
|
2
|
Li Y, Liu Y, Ma J, Yang Y, Yue Q, Zhu G, Guo W, Gao T, Shi Q, Li C. PARP4 deficiency enhances sensitivity to ATM inhibitor by impairing DNA damage repair in melanoma. Cell Death Discov 2025; 11:35. [PMID: 39885134 PMCID: PMC11782537 DOI: 10.1038/s41420-025-02296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family. The low expression of PARP4 is significantly associated with defective DSB repair markers and poor prognosis in melanoma. Further research revealed that PARP4 plays a role in DSB repair by regulating the non-homologous end joining (NHEJ) pathway through its involvement in Ku80 mono-ADP-ribosylation. Moreover, from a synthetic lethality perspective, PARP4 expression is associated with ATM inhibitor sensitivity. Overall, our study provides new and valuable insights into the function of PARP4 and melanoma pathogenesis and suggests that ATM inhibitor may be a promising therapeutic approach for treating melanoma with low PARP4 expression.
Collapse
Affiliation(s)
- Yuehua Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiao Yue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wu H, Lu A, Yuan J, Yu Y, Lv C, Lu J. Mono-ADP-ribosylation, a MARylationmultifaced modification of protein, DNA and RNA: characterizations, functions and mechanisms. Cell Death Discov 2024; 10:226. [PMID: 38734665 PMCID: PMC11088682 DOI: 10.1038/s41420-024-01994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The functional alterations of proteins and nucleic acids mainly rely on their modifications. ADP-ribosylation is a NAD+-dependent modification of proteins and, in some cases, of nucleic acids. This modification is broadly categorized as Mono(ADP-ribosyl)ation (MARylation) or poly(ADP-ribosyl)ation (PARylation). MARylation catalyzed by mono(ADP-ribosyl) transferases (MARTs) is more common in cells and the number of MARTs is much larger than poly(ADP-ribosyl) transferases. Unlike PARylation is well-characterized, research on MARylation is at the starting stage. However, growing evidence demonstrate the cellular functions of MARylation, supporting its potential roles in human health and diseases. In this review, we outlined MARylation-associated proteins including MARTs, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. We summarized up-to-date findings about MARylation onto newly identified substrates including protein, DNA and RNA, and focused on the functions of these reactions in pathophysiological conditions as well as speculated the potential mechanisms. Furthermore, new strategies of MARylation detection and the current state of MARTs inhibitors were discussed. We also provided an outlook for future study, aiming to revealing the unknown biological properties of MARylation and its relevant mechanisms, and establish a novel therapeutic perspective in human diseases.
Collapse
Affiliation(s)
- Hao Wu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Anqi Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiuzhi Yuan
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Yu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chongning Lv
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Jincai Lu
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
4
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|
5
|
Lavi ES, Lin ZP, Ratner ES. Gene expression of non-homologous end-joining pathways in the prognosis of ovarian cancer. iScience 2023; 26:107934. [PMID: 37810216 PMCID: PMC10558711 DOI: 10.1016/j.isci.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy in women, with a 46% five-year overall survival rate. The objective of the study was to investigate the effects of non-homologous end-joining (NHEJ) genes on clinical outcomes of ovarian cancer patients. To determine if these genes act as prognostic biomarkers of mortality and disease progression, the expression profiles of 48 NHEJ-associated genes were analyzed using an array of statistical and machine learning techniques: logistic regression models, decision trees, naive-Bayes, two sample t-tests, support vector machines, hierarchical clustering, principal component analysis, and neural networks. In this process, the correlation of genes with patient survival and disease progression and recurrence was noted. Also, multiple features from the gene set were found to have significant predictive capabilities. APTX, BRCA1, PAXX, LIG1, and TP53 were identified as most important out of all the candidate genes for predicting clinical outcomes of ovarian cancer patients.
Collapse
Affiliation(s)
- Ethan S. Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Z. Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Elena S. Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Lovsund T, Mashayekhi F, Fitieh A, Stafford J, Ismail IH. Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance. Cells 2023; 12:1904. [PMID: 37508568 PMCID: PMC10378431 DOI: 10.3390/cells12141904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to our understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy. In this review, we summarize the updated understanding of the vast homeostatic functions the PARP family mediates and pin the importance of PARPi therapies as anti-cancer agents while discussing resistance mechanisms and current up-and-coming counter-strategies for countering such resistance.
Collapse
Affiliation(s)
- Taylor Lovsund
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Fitieh
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - James Stafford
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
8
|
Svetlova M, Solovjeva L, Kropotov A, Nikiforov A. The Impact of NAD Bioavailability on DNA Double-Strand Break Repair Capacity in Human Dermal Fibroblasts after Ionizing Radiation. Cells 2023; 12:1518. [PMID: 37296639 PMCID: PMC10252650 DOI: 10.3390/cells12111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) serves as a substrate for protein deacetylases sirtuins and poly(ADP-ribose) polymerases, which are involved in the regulation of DNA double-strand break (DSB) repair molecular machinery by various mechanisms. However, the impact of NAD bioavailability on DSB repair remains poorly characterized. Herein, using immunocytochemical analysis of γH2AX, a marker for DSB, we investigated the effect of the pharmacological modulation of NAD levels on DSB repair capacity in human dermal fibroblasts exposed to moderate doses of ionizing radiation (IR). We demonstrated that NAD boosting with nicotinamide riboside did not affect the efficiency of DSB elimination after the exposure of cells to IR at 1 Gy. Moreover, even after irradiation at 5 Gy, we did not observe any decrease in intracellular NAD content. We also showed that, when the NAD pool was almost completely depleted by inhibition of its biosynthesis from nicotinamide, cells were still able to eliminate IR-induced DSB, though the activation of ATM kinase, its colocalization with γH2AX and DSB repair capacity were reduced in comparison to cells with normal NAD levels. Our results suggest that NAD-dependent processes, such as protein deacetylation and ADP-ribosylation, are important but not indispensable for DSB repair induced by moderate doses of IR.
Collapse
Affiliation(s)
- Maria Svetlova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| | | | | | - Andrey Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (L.S.); (A.K.)
| |
Collapse
|
9
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
10
|
Vo-Ho MP, Pham-Thi HD, Nguyen TV. Effect of Helicobacter pylori on non-homologous end joining-mediated repair of proximal DNA double-strand breaks in GCV6 cells. Microb Pathog 2023; 180:106154. [PMID: 37178726 DOI: 10.1016/j.micpath.2023.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Infection with Helicobacter pylori is the strongest known risk factor for gastric cancer, which is one of the leading causes of cancer-related mortality worldwide. H. pylori can contribute to carcinogenesis by inducing the genomic instability of infected cells through increasing accumulation of DNA double-stranded breaks (DSBs) and deregulating DSB repair systems. However, the mechanism of this phenomenon is still being elucidated. This study aims to investigate the impact of H. pylori on the efficacy of non-homologous end joining (NHEJ)-mediated repair of DSB. In this study, we used a human fibroblast cell line bearing a single copy of an NHEJ-reporter substrate stably inserted into the genome, which provides a quantitative measurement of NHEJ. Our results indicated the potential abilities of H. pylori strains to alter the NHEJ-mediated repair of proximal DSB in infected cells. In addition, we found an association between the alteration in the NHEJ efficiency, and the inflammation responses of infected cells caused by H. pylori.
Collapse
Affiliation(s)
- My-Phuc Vo-Ho
- VNUHCM-University of Science, Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh, Viet Nam
| | - Hong-Dao Pham-Thi
- VNUHCM-University of Science, Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh, Viet Nam
| | - Thuy-Vy Nguyen
- VNUHCM-University of Science, Department of Genetics, Faculty of Biology and Biotechnology, Ho Chi Minh, Viet Nam; VNUHCM-University of Science, Cancer Research Laboratory, Viet Nam.
| |
Collapse
|
11
|
Amé JC, Nguekeu-Zebase L, Harwood D, Yildirim Z, Roegel L, Boos A, Dantzer F. Purification of Recombinant Human PARP-3. Methods Mol Biol 2022; 2609:419-441. [PMID: 36515851 DOI: 10.1007/978-1-0716-2891-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purification of poly(ADP-ribose) polymerase-3 (PARP-3) from overexpressing cells (Sf9 insect cells, Escherichia coli) has been updated to a fast and reproducible two-chromatographic-step protocol. After cell lysis, PARP-3 protein from the crude extract is affinity purified on a 3-aminobenzamide Sepharose™ chromatographic step. The last contaminants and the 3-methoxybenzamide used to elute PARP-3 from the previous affinity column are removed on the high-performance strong cation exchanger MonoQ™ matrix. This step allows also the concentration of the protein. The columns connected to an A° KTA™ purifier system allow the purification of the protein in three days with a high-yield recovery. As described in the protocol, more than 3 mg of pure and active human PARP-3 can be obtained from 1.5 L of E. coli culture.
Collapse
Affiliation(s)
- Jean-Christophe Amé
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France.
| | - Leonel Nguekeu-Zebase
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Daisy Harwood
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Zuleyha Yildirim
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Lisa Roegel
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Agathe Boos
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| | - Françoise Dantzer
- Groupe Poly (ADP-ribosyl)ation et Intégrité du Génome, UMR7242 du CNRS É cole Supérieure de Biotechnologie de Strasbourg Parc d'innovation, Illkirch Cedex, France
| |
Collapse
|
12
|
PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Sci Rep 2022; 12:15534. [PMID: 36109561 PMCID: PMC9478127 DOI: 10.1038/s41598-022-19525-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIn breast cancer, Poly(ADP-ribose) polymerase 3 (PARP3) has been identified as a key driver of tumor aggressiveness exemplifying its selective inhibition as a promising surrogate for clinical activity onto difficult-to-treat cancers. Here we explored the role of PARP3 in the oncogenicity of glioblastoma, the most aggressive type of brain cancer. The absence of PARP3 did not alter cell proliferation nor the in vivo tumorigenic potential of glioblastoma cells. We identified a physical and functional interaction of PARP3 with the histone H3 lysine 9 methyltransferase G9a. We show that PARP3 helps to adjust G9a-dependent repression of the adhesion genes Nfasc and Parvb and the hypoxia-responsive genes Hif-2α, Runx3, Mlh1, Ndrg1, Ndrg2 and Ndrg4. Specifically for Nfasc, Parvb and Ndrg4, PARP3/G9a cooperate for an adjusted establishment of the repressive mark H3K9me2. While examining the functional consequence in cell response to hypoxia, we discovered that PARP3 acts to maintain the cytoskeletal microtubule stability. As a result, the absence of PARP3 markedly increases the sensitivity of glioblastoma cells to microtubule-destabilizing agents providing a new therapeutic avenue for PARP3 inhibition in brain cancer therapy.
Collapse
|
13
|
Gan Y, Sha H, Zou R, Xu M, Zhang Y, Feng J, Wu J. Research Progress on Mono-ADP-Ribosyltransferases in Human Cell Biology. Front Cell Dev Biol 2022; 10:864101. [PMID: 35652091 PMCID: PMC9149570 DOI: 10.3389/fcell.2022.864101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
ADP-ribosylation is a well-established post-translational modification that is inherently connected to diverse processes, including DNA repair, transcription, and cell signaling. The crucial roles of mono-ADP-ribosyltransferases (mono-ARTs) in biological processes have been identified in recent years by the comprehensive use of genetic engineering, chemical genetics, and proteomics. This review provides an update on current methodological advances in the study of these modifiers. Furthermore, the review provides details on the function of mono ADP-ribosylation. Several mono-ARTs have been implicated in the development of cancer, and this review discusses the role and therapeutic potential of some mono-ARTs in cancer.
Collapse
Affiliation(s)
- Yujie Gan
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Huanhuan Sha
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Renrui Zou
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Miao Xu
- Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
- *Correspondence: Jifeng Feng,
| | - Jianzhong Wu
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
14
|
Muoio D, Laspata N, Fouquerel E. Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cell Mol Life Sci 2022; 79:215. [PMID: 35348914 PMCID: PMC8964661 DOI: 10.1007/s00018-022-04235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial for maintaining the integrity of telomeres. Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, utilize their unique structure and associated set of proteins to orchestrate the mechanisms necessary for their own protection and replication. While the functions of tankyrases 1 and 2 at telomeres are well known, several studies have also brought PARP1, 2 and 3 to the forefront of telomere protection. The singular quality of the telomeric environment has highlighted protein interactions and molecular pathways distinct from those described throughout the genome. The aim of this review is to provide an overview of the current knowledge on the multiple roles of PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 in the maintenance and preservation of telomere integrity.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th street, Philadelphia, PA, 19107, USA
| | - Elise Fouquerel
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022; 13:793884. [PMID: 35173769 PMCID: PMC8841529 DOI: 10.3389/fgene.2022.793884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Loss or rearrangement of genetic information can result from incorrect responses to DNA double strand breaks (DSBs). The cellular responses to DSBs encompass a range of highly coordinated events designed to detect and respond appropriately to the damage, thereby preserving genomic integrity. In analogy with events occurring during viral infection, we appropriate the terms Immediate-Early, Early, and Late to describe the pre-repair responses to DSBs. A distinguishing feature of the Immediate-Early response is that the large protein condensates that form during the Early and Late response and are resolved upon repair, termed foci, are not visible. The Immediate-Early response encompasses initial lesion sensing, involving poly (ADP-ribose) polymerases (PARPs), KU70/80, and MRN, as well as rapid repair by so-called ‘fast-kinetic’ canonical non-homologous end joining (cNHEJ). Initial binding of PARPs and the KU70/80 complex to breaks appears to be mutually exclusive at easily ligatable DSBs that are repaired efficiently by fast-kinetic cNHEJ; a process that is PARP-, ATM-, 53BP1-, Artemis-, and resection-independent. However, at more complex breaks requiring processing, the Immediate-Early response involving PARPs and the ensuing highly dynamic PARylation (polyADP ribosylation) of many substrates may aid recruitment of both KU70/80 and MRN to DSBs. Complex DSBs rely upon the Early response, largely defined by ATM-dependent focal recruitment of many signalling molecules into large condensates, and regulated by complex chromatin dynamics. Finally, the Late response integrates information from cell cycle phase, chromatin context, and type of DSB to determine appropriate pathway choice. Critical to pathway choice is the recruitment of p53 binding protein 1 (53BP1) and breast cancer associated 1 (BRCA1). However, additional factors recruited throughout the DSB response also impact upon pathway choice, although these remain to be fully characterised. The Late response somehow channels DSBs into the appropriate high-fidelity repair pathway, typically either ‘slow-kinetic’ cNHEJ or homologous recombination (HR). Loss of specific components of the DSB repair machinery results in cells utilising remaining factors to effect repair, but often at the cost of increased mutagenesis. Here we discuss the complex regulation of the Immediate-Early, Early, and Late responses to DSBs proceeding repair itself.
Collapse
|
17
|
Brustel J, Muramoto T, Fumimoto K, Ellins J, Pears CJ, Lakin ND. Linking DNA repair and cell cycle progression through serine ADP-ribosylation of histones. Nat Commun 2022; 13:185. [PMID: 35027540 PMCID: PMC8758696 DOI: 10.1038/s41467-021-27867-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/19/2021] [Indexed: 01/24/2023] Open
Abstract
Although serine ADP-ribosylation (Ser-ADPr) by Poly(ADP-ribose)-polymerases is a cornerstone of the DNA damage response, how this regulates DNA repair and genome stability is unknown. Here, we exploit the ability to manipulate histone genes in Dictyostelium to identify that ADPr of the histone variant H3b at S10 and S28 maintains genome stability by integrating double strand break (DSB) repair with mitotic entry. Given the critical requirement for mitotic H3S10/28 phosphorylation, we develop separation of function mutations that maintain S10 phosphorylation whilst disrupting ADPr. Mechanistically, this reveals a requirement for H3bS10/28 ADPr in non-homologous end-joining by recruiting Ku to DSBs. Moreover, this also identifies H3bS10/S28 ADPr is critical to prevent premature mitotic entry with unresolved DNA damage, thus maintaining genome stability. Together, these data demonstrate how serine ADPr of histones coordinates DNA repair with cell cycle progression to maintain genome stability.
Collapse
Affiliation(s)
- Julien Brustel
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Kazuki Fumimoto
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Jessica Ellins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
18
|
Linke R, Limmer M, Juranek SA, Heine A, Paeschke K. The Relevance of G-Quadruplexes for DNA Repair. Int J Mol Sci 2021; 22:12599. [PMID: 34830478 PMCID: PMC8620898 DOI: 10.3390/ijms222212599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023] Open
Abstract
DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.
Collapse
Affiliation(s)
- Rebecca Linke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaela Limmer
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Stefan A. Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127 Bonn, Germany; (R.L.); (M.L.); (S.A.J.); (A.H.)
| |
Collapse
|
19
|
Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D’Augustin O, Kim RQ, Qian H, Krawczyk PM, González-Prieto R, Vertegaal ACO, Lamers M, Huet S, van Attikum H. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Nat Commun 2021; 12:6560. [PMID: 34772923 PMCID: PMC8589989 DOI: 10.1038/s41467-021-26691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a 'Ku-adaptor' that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.
Collapse
Affiliation(s)
- Jenny Kaur Singh
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Smith
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France
| | - Magdalena B. Rother
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton J. L. de Groot
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter W. Wiegant
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ostiane D’Augustin
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.457349.80000 0004 0623 0579Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, F-92265 Fontenay-aux-Roses, France
| | - Robbert Q. Kim
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Haibin Qian
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Przemek M. Krawczyk
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Román González-Prieto
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alfred C. O. Vertegaal
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Meindert Lamers
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sébastien Huet
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France, F-75000 Paris, France
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
20
|
Pears CJ, Brustel J, Lakin ND. Dictyostelium discoideum as a Model to Assess Genome Stability Through DNA Repair. Front Cell Dev Biol 2021; 9:752175. [PMID: 34692705 PMCID: PMC8529158 DOI: 10.3389/fcell.2021.752175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Preserving genome integrity through repair of DNA damage is critical for human health and defects in these pathways lead to a variety of pathologies, most notably cancer. The social amoeba Dictyostelium discoideum is remarkably resistant to DNA damaging agents and genome analysis reveals it contains orthologs of several DNA repair pathway components otherwise limited to vertebrates. These include the Fanconi Anemia DNA inter-strand crosslink and DNA strand break repair pathways. Loss of function of these not only results in malignancy, but also neurodegeneration, immune-deficiencies and congenital abnormalities. Additionally, D. discoideum displays remarkable conservations of DNA repair factors that are targets in cancer and other therapies, including poly(ADP-ribose) polymerases that are targeted to treat breast and ovarian cancers. This, taken together with the genetic tractability of D. discoideum, make it an attractive model to assess the mechanistic basis of DNA repair to provide novel insights into how these pathways can be targeted to treat a variety of pathologies. Here we describe progress in understanding the mechanisms of DNA repair in D. discoideum, and how these impact on genome stability with implications for understanding development of malignancy.
Collapse
Affiliation(s)
- Catherine J. Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
21
|
Therapeutic Potential of PARP Inhibitors in the Treatment of Gastrointestinal Cancers. Biomedicines 2021; 9:biomedicines9081024. [PMID: 34440228 PMCID: PMC8392860 DOI: 10.3390/biomedicines9081024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal (GI) malignancies are a major global health burden, with high mortality rates. The identification of novel therapeutic strategies is crucial to improve treatment and survival of patients. The poly (ADP-ribose) polymerase (PARP) enzymes involved in the DNA damage response (DDR) play major roles in the development, progression and treatment response of cancer, with PARP inhibitors (PARPi) currently used in the clinic for breast, ovarian, fallopian, primary peritoneal, pancreatic and prostate cancers with deficiencies in homologous recombination (HR) DNA repair. This article examines the current evidence for the role of the DDR PARP enzymes (PARP1, 2, 3 and 4) in the development, progression and treatment response of GI cancers. Furthermore, we discuss the role of HR status as a predictive biomarker of PARPi efficacy in GI cancer patients and examine the pre-clinical and clinical evidence for PARPi and cytotoxic therapy combination strategies in GI cancer. We also include an analysis of the genomic and transcriptomic landscape of the DDR PARP genes and key HR genes (BRCA1, BRCA2, ATM, RAD51, MRE11, PALB2) in GI patient tumours (n = 1744) using publicly available datasets to identify patients that may benefit from PARPi therapeutic approaches.
Collapse
|
22
|
Song B, Liu D, Greco TM, Cristea IM. Post-translational modification control of viral DNA sensors and innate immune signaling. Adv Virus Res 2021; 109:163-199. [PMID: 33934827 PMCID: PMC8489191 DOI: 10.1016/bs.aivir.2021.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate innate immune system confers host cells with mechanisms to protect against both evolutionarily ancient pathogens and newly emerging pathogenic strains. Innate immunity relies on the host cell's ability to distinguish between self and pathogen-derived molecules. To achieve this, the innate immune system uses germline encoded receptors called pattern recognition receptors (PRRs), which recognize various molecular signatures, including nucleic acids, proteins, lipids, glycans and glycolipids. Among these molecules, the recognition of pathogenic, mislocalized, or damaged DNA by cellular protein receptors, commonly called DNA sensors, represents a major surveillance pathway for initiating immune signaling. The ability of cells to temporally regulate DNA sensor activation and subsequent signal termination is critical for effective immune signaling. These same mechanisms are also co-opted by pathogens to promote their replication. Therefore, there is significant interest in understanding DNA sensor regulatory networks during microbial infections and autoimmune disease. One emerging aspect of DNA sensor regulation is through post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, ADP-ribosylation, SUMOylation, methylation, deamidation, glutamylation. In this chapter, we discuss how PTMs have been shown to positively or negatively impact DNA sensor functions via diverse mechanisms, including direct regulation of enzymatic activity, protein-protein and protein-DNA interactions, protein translocations and protein turnover. In addition, we highlight the ability of virus-induced PTMs to promote immune evasion. We also discuss the recent evidence linking PTMs on DNA sensors with human diseases and more broadly, highlight promising directions for future research on PTM-mediated regulation of DNA sensor-dependent immune signaling.
Collapse
Affiliation(s)
- Bokai Song
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Dawei Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
23
|
Kvízová J, Pavlíčková V, Kmoníčková E, Ruml T, Rimpelová S. Quo Vadis Advanced Prostate Cancer Therapy? Novel Treatment Perspectives and Possible Future Directions. Molecules 2021; 26:2228. [PMID: 33921501 PMCID: PMC8069564 DOI: 10.3390/molecules26082228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Prostate cancer is a very common disease, which is, unfortunately, often the cause of many male deaths. This is underlined by the fact that the early stages of prostate cancer are often asymptomatic. Therefore, the disease is usually detected and diagnosed at late advanced or even metastasized stages, which are already difficult to treat. Hence, it is important to pursue research and development not only in terms of novel diagnostic methods but also of therapeutic ones, as well as to increase the effectiveness of the treatment by combinational medicinal approach. Therefore, in this review article, we focus on recent approaches and novel potential tools for the treatment of advanced prostate cancer; these include not only androgen deprivation therapy, antiandrogen therapy, photodynamic therapy, photothermal therapy, immunotherapy, multimodal therapy, but also poly(ADP-ribose) polymerase, Akt and cyclin-dependent kinase inhibitors.
Collapse
Affiliation(s)
- Jana Kvízová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
- Bioinova, s.r.o., Vídeňská 1083, 140 20 Praha, Czech Republic
| | - Vladimíra Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
| | - Eva Kmoníčková
- Institute of Experimental Medicine of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague, Czech Republic; (J.K.); (V.P.); (T.R.)
| |
Collapse
|
24
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
25
|
Zell J, Rota Sperti F, Britton S, Monchaud D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC Chem Biol 2021; 2:47-76. [PMID: 35340894 PMCID: PMC8885165 DOI: 10.1039/d0cb00151a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022] Open
Abstract
Damaging DNA is a current and efficient strategy to fight against cancer cell proliferation. Numerous mechanisms exist to counteract DNA damage, collectively referred to as the DNA damage response (DDR) and which are commonly dysregulated in cancer cells. Precise knowledge of these mechanisms is necessary to optimise chemotherapeutic DNA targeting. New research on DDR has uncovered a series of promising therapeutic targets, proteins and nucleic acids, with application notably via an approach referred to as combination therapy or combinatorial synthetic lethality. In this review, we summarise the cornerstone discoveries which gave way to the DNA being considered as an anticancer target, and the manipulation of DDR pathways as a valuable anticancer strategy. We describe in detail the DDR signalling and repair pathways activated in response to DNA damage. We then summarise the current understanding of non-B DNA folds, such as G-quadruplexes and DNA junctions, when they are formed and why they can offer a more specific therapeutic target compared to that of canonical B-DNA. Finally, we merge these subjects to depict the new and highly promising chemotherapeutic strategy which combines enhanced-specificity DNA damaging and DDR targeting agents. This review thus highlights how chemical biology has given rise to significant scientific advances thanks to resolutely multidisciplinary research efforts combining molecular and cell biology, chemistry and biophysics. We aim to provide the non-specialist reader a gateway into this exciting field and the specialist reader with a new perspective on the latest results achieved and strategies devised.
Collapse
Affiliation(s)
- Joanna Zell
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS Toulouse France
- Équipe Labellisée la Ligue Contre le Cancer 2018 Toulouse France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon France
| |
Collapse
|
26
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
| |
Collapse
|
27
|
Parp3 promotes astrocytic differentiation through a tight regulation of Nox4-induced ROS and mTorc2 activation. Cell Death Dis 2020; 11:954. [PMID: 33159039 PMCID: PMC7648797 DOI: 10.1038/s41419-020-03167-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice. We show that the absence of Parp3 provokes Nox4-induced oxidative stress and defective mTorc2 activation leading to inefficient differentiation of post-natal neural stem/progenitor cells to astrocytes. The accumulation of ROS contributes to the decreased activity of mTorc2 as a result of an oxidation-induced and Fbxw7-mediated ubiquitination and degradation of Rictor. In vivo, mTorc2 signaling is compromised in the striatum of naïve post-natal Parp3-deficient mice and 6 h after acute hypoxia-ischemia. These findings reveal a physiological function of Parp3 in the tight regulation of striatal oxidative stress and mTorc2 during astrocytic differentiation and in the acute phase of hypoxia-ischemia.
Collapse
|
28
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol 2020; 8:564601. [PMID: 33015058 PMCID: PMC7509090 DOI: 10.3389/fcell.2020.564601] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Poly (ADP-ribose) polymerase (PARP) family has many essential functions in cellular processes, including the regulation of transcription, apoptosis and the DNA damage response. PARP1 possesses Poly (ADP-ribose) activity and when activated by DNA damage, adds branched PAR chains to facilitate the recruitment of other repair proteins to promote the repair of DNA single-strand breaks. PARP inhibitors (PARPi) were the first approved cancer drugs that specifically targeted the DNA damage response in BRCA1/2 mutated breast and ovarian cancers. Since then, there has been significant advances in our understanding of the mechanisms behind sensitization of tumors to PARP inhibitors and expansion of the use of PARPi to treat several other cancer types. Here, we review the recent advances in the proposed mechanisms of action of PARPi, biomarkers of the tumor response to PARPi, clinical advances in PARPi therapy, including the potential of combination therapies and mechanisms of tumor resistance.
Collapse
Affiliation(s)
- Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua T. Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Harrision D, Gravells P, Thompson R, Bryant HE. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) - Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front Mol Biosci 2020; 7:191. [PMID: 33005627 PMCID: PMC7485115 DOI: 10.3389/fmolb.2020.00191] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that catalyze the addition of poly(ADP-ribose) (PAR) subunits onto themselves and other acceptor proteins. PARPs are known to function in a large range of cellular processes including DNA repair, DNA replication, transcription and modulation of chromatin structure. Inhibition of PARP holds great potential for therapy, especially in cancer. Several PARP1/2/3 inhibitors (PARPi) have had success in treating ovarian, breast and prostate tumors harboring defects in the homologous recombination (HR) DNA repair pathway, especially BRCA1/2 mutated tumors. However, treatment is limited to specific sub-groups of patients and resistance can occur, limiting the use of PARPi. Poly(ADP-ribose) glycohydrolase (PARG) reverses the action of PARP enzymes, hydrolysing the ribose-ribose bonds present in poly(ADP-ribose). Like PARPs, PARG is involved in DNA replication and repair and PARG depleted/inhibited cells show increased sensitivity to DNA damaging agents. They also display an accumulation of perturbed replication intermediates which can lead to synthetic lethality in certain contexts. In addition, PARG is thought to play an important role in preventing the accumulation of cytoplasmic PAR and therefore parthanatos, a caspase-independent PAR-mediated type of cell death. In contrast to PARP, the therapeutic potential of PARG has been largely ignored. However, several recent papers have demonstrated the exciting possibilities that inhibitors of this enzyme may have for cancer treatment, both as single agents and in combination with cytotoxic drugs and radiotherapy. This article discusses what is known about the functions of PARP and PARG and the potential future implications of pharmacological inhibition in anti-cancer therapy.
Collapse
Affiliation(s)
- Daniel Harrision
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ruth Thompson
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
30
|
Kosova AA, Kutuzov MM, Evdokimov AN, Ilina ES, Belousova EA, Romanenko SA, Trifonov VA, Khodyreva SN, Lavrik OI. Poly(ADP-ribosyl)ation and DNA repair synthesis in the extracts of naked mole rat, mouse, and human cells. Aging (Albany NY) 2020; 11:2852-2873. [PMID: 31085801 PMCID: PMC6535076 DOI: 10.18632/aging.101959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
DNA repair capacity in cells of naked mole rat (Hgl), a species known for its longevity and resistance to cancer, is still poorly characterized. Here, using the whole-cell extracts (WCEs) of Hgl, mouse and human cells, we studied the interrelation between DNA synthesis on the substrates of base excision repair and the activity of poly(ADP-ribose) polymerases (PARPs) responsible for the transfer of the ADP-ribose moieties onto different targets. The level of PAR synthesis was more than ten-fold higher in human WCE as compared to rodent WCEs, while the efficiency of DNA synthesis was comparable. Under conditions of PAR synthesis, the efficiency of DNA synthesis was only slightly enhanced in all extracts and in mouse WCEs unusual products of the primer elongation were detected. The results obtained with WCEs, recombinant proteins and recently found ability of PARPs to attach the ADP-ribose moieties to DNA allowed us to attribute these products to primer mono(ADP-ribosyl)ation (MARylation) at the 5ʹ-terminal phosphate by PARP3 during the DNA synthesis. PARP1/PARP2 can then transfer the ADP-ribose moieties onto initial ADP-ribose. Our results suggest that MARylation/PARylation of DNA in the extracts depends on the ratios between PARPs and can be controlled by DNA-binding proteins.
Collapse
Affiliation(s)
- Anastasiya A Kosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexei N Evdokimov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ekaterina S Ilina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ekaterina A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Svetlana A Romanenko
- Novosibirsk State University, Novosibirsk 630090, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladimir A Trifonov
- Novosibirsk State University, Novosibirsk 630090, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Svetlana N Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Abstract
Effective maintenance and stability of our genomes is essential for normal cell division, tissue homeostasis, and cellular and organismal fitness. The processes of chromosome replication and segregation require continual surveillance to insure fidelity. Accurate and efficient repair of DNA damage preserves genome integrity, which if lost can lead to multiple diseases, including cancer. Poly(ADP-ribose) a dynamic and reversible posttranslational modification and the enzymes that catalyze it (PARP1, PARP2, tankyrase 1, and tankyrase 2) function to maintain genome stability through diverse mechanisms. Here we review the role of these enzymes and the modification in genome repair, replication, and resolution in human cells.
Collapse
Affiliation(s)
- Kameron Azarm
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Susan Smith
- Department of Pathology, Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
32
|
Bae W, Park JH, Lee MH, Park HW, Koo HS. Hypersensitivity to DNA double-strand breaks associated with PARG deficiency is suppressed by exo-1 and polq-1 mutations in Caenorhabditis elegans. FEBS J 2020; 287:1101-1115. [PMID: 31593615 DOI: 10.1111/febs.15082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Deficiency of either of the two homologs of poly(ADP-ribose) glycohydrolase (PARG), PARG-1 and PARG-2, in Caenorhabditis elegans leads to hypersensitivity to ionizing radiation (IR). In the germ cells of parg-2 mutant worms, the dissipation of recombinase RAD-51 foci was slower than in wild-type (WT) cells, suggesting defects in DNA double-strand break (DSB) repair via homologous recombination (HR). Nevertheless, RPA-1, the large subunit of replication protein A, accumulated faster in parg-2 worms and disappeared earlier than in WT worms. This accelerated RPA-1 accumulation may result from the enhanced expression of exonuclease-1 (EXO-1) after IR treatment. Accordingly, an exo-1 mutation reduced IR sensitivity and accumulation of RPA-1 in parg-2 worms. A mutation of polq-1, encoding for a key factor in the alternative end-joining (Alt-EJ) pathway, suppressed the IR hypersensitivity phenotype of parg-2 worms and normalized the kinetics of RAD-51 dissipation. This indicates that error-prone Alt-EJ may mediate DSB repair in parg-2 worms, causing hypersensitivity to IR. In summary, PARG-2 deficiency in C. elegans causes hyperactive DSB end resection likely through EXO-1 overproduction. DSBs with long single-stranded DNA ends in parg-2 worms are thought to be repaired by Alt-EJ instead of HR, causing genomic instability.
Collapse
Affiliation(s)
- Woori Bae
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
33
|
Onn L, Portillo M, Ilic S, Cleitman G, Stein D, Kaluski S, Shirat I, Slobodnik Z, Einav M, Erdel F, Akabayov B, Toiber D. SIRT6 is a DNA double-strand break sensor. eLife 2020; 9:51636. [PMID: 31995034 PMCID: PMC7051178 DOI: 10.7554/elife.51636] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
DNA double-strand breaks (DSB) are the most deleterious type of DNA damage. In this work, we show that SIRT6 directly recognizes DNA damage through a tunnel-like structure that has high affinity for DSB. SIRT6 relocates to sites of damage independently of signaling and known sensors. It activates downstream signaling for DSB repair by triggering ATM recruitment, H2AX phosphorylation and the recruitment of proteins of the homologous recombination and non-homologous end joining pathways. Our findings indicate that SIRT6 plays a previously uncharacterized role as a DNA damage sensor, a critical factor in initiating the DNA damage response (DDR). Moreover, other Sirtuins share some DSB-binding capacity and DDR activation. SIRT6 activates the DDR before the repair pathway is chosen, and prevents genomic instability. Our findings place SIRT6 as a sensor of DSB, and pave the road to dissecting the contributions of distinct DSB sensors in downstream signaling. DNA is a double-stranded molecule in which the two strands run in opposite directions, like the lanes on a two-lane road. Also like a road, DNA can be damaged by use and adverse conditions. Double-strand breaks – where both strands of DNA snap at once – are the most dangerous type of DNA damage, so cells have systems in place to rapidly detect and repair this kind of damage. There are three confirmed sensors for double-strand break in human cells. A fourth protein, known as SIRT6, arrives within five seconds of DNA damage, and was known to make the DNA more accessible so that it can be repaired. However, it was unclear whether SIRT6 could detect the double-strand break itself, or whether it was recruited to the damage by another double-strand break sensor. To address this issue, Onn et al. blocked the three other sensors in human cells and watched the response to DNA damage. Even when all the other sensors were inactive, SIRT6 still arrived at damaged DNA and activated the DNA damage response. To find out how SIRT6 sensed DNA damage, Onn et al. examined how purified SIRT6 interacts with different kinds of DNA. This revealed that SIRT6 sticks to broken DNA ends, especially if the end of one strand slightly overhangs the other – a common feature of double-strand breaks. A closer look at the structure of the SIRT6 protein revealed that it contains a narrow tube, which fits over the end of one broken DNA strand. When both strands break at once, two SIRT6 molecules cap the broken ends, joining together to form a pair. This pair not only protects the open ends of the DNA from further damage, it also sends signals to initiating repairs. In this way, SIRT6 could be thought of acting like a paramedic who arrives first on the scene of an accident and works to treat the injured while waiting for more specialized help to arrive. Understanding the SIRT6 sensor could improve knowledge about how cells repair their DNA. SIRT6 arrives before the cell chooses how to fix its broken DNA, so studying it further could reveal how that critical decision happens. This is important for medical research because DNA damage builds up in age-related diseases like cancer and neurodegeneration. In the long term, these findings can help us develop new treatments that target different types of DNA damage sensors.
Collapse
Affiliation(s)
- Lior Onn
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Miguel Portillo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Cleitman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shai Kaluski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ido Shirat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Slobodnik
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Monica Einav
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fabian Erdel
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), BioQuant, Heidelberg, Germany.,Centre de Biologie Intégrative, CNRS UPS, Toulouse, France
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
34
|
Impact of PARP1, PARP2 & PARP3 on the Base Excision Repair of Nucleosomal DNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:47-57. [PMID: 32383115 DOI: 10.1007/978-3-030-41283-8_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA is constantly attacked by different damaging agents; therefore, it requires frequent repair. On the one hand, the base excision repair (BER) system is responsible for the repair of the most frequent DNA lesions. On the other hand, the formation of poly(ADP-ribose) is one of the main DNA damage response reactions that is catalysed by members of the PARP family. PARP1, which belongs to the PARP family and performs approximately 90% of PAR synthesis in cells, could be considered a main regulator of the BER process. Most of the experimental data concerning BER investigation have been obtained using naked DNA. However, in the context of the eukaryotic cell, DNA is compacted in the nucleus, and the lowest compaction level is represented by the nucleosome. Thus, the organization of DNA into the nucleosome impacts the DNA-protein interactions that are involved in BER processes. Poly(ADP-ribosyl)ation (PARylation) is thought to regulate the initiation of the BER process at the chromatin level. In this review, we focus on the mechanisms involved in BER in the nucleosomal context and the potential effect of PARylation, which is catalysed by DNA-dependent PARP1, PARP2 and PARP3 proteins, on this process.
Collapse
|
35
|
Thariat J, Valable S, Laurent C, Haghdoost S, Pérès EA, Bernaudin M, Sichel F, Lesueur P, Césaire M, Petit E, Ferré AE, Saintigny Y, Skog S, Tudor M, Gérard M, Thureau S, Habrand JL, Balosso J, Chevalier F. Hadrontherapy Interactions in Molecular and Cellular Biology. Int J Mol Sci 2019; 21:E133. [PMID: 31878191 PMCID: PMC6981652 DOI: 10.3390/ijms21010133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Samuel Valable
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Carine Laurent
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Siamak Haghdoost
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Elodie A. Pérès
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Myriam Bernaudin
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - François Sichel
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Paul Lesueur
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Mathieu Césaire
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Edwige Petit
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Aurélie E. Ferré
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Yannick Saintigny
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Sven Skog
- Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen 518057, China;
| | - Mihaela Tudor
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-63, 077125 Magurele, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania
| | - Michael Gérard
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Sebastien Thureau
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- Department of Radiation Oncology, Centre Henri Becquerel, 76000 Rouen, France
| | - Jean-Louis Habrand
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - François Chevalier
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| |
Collapse
|
36
|
Hoch NC, Polo LM. ADP-ribosylation: from molecular mechanisms to human disease. Genet Mol Biol 2019; 43:e20190075. [PMID: 31930280 PMCID: PMC7198025 DOI: 10.1590/1678-4685-gmb-2019-0075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022] Open
Abstract
Post-translational modification of proteins by ADP-ribosylation, catalysed by
poly (ADP-ribose) polymerases (PARPs) using NAD+ as a substrate,
plays central roles in DNA damage signalling and repair, modulates a range of
cellular signalling cascades and initiates programmed cell death by parthanatos.
Here, we present mechanistic aspects of ADP-ribose modification, PARP activation
and the cellular functions of ADP-ribose signalling, and discuss how this
knowledge is uncovering therapeutic avenues for the treatment of increasingly
prevalent human diseases such as cancer, ischaemic damage and
neurodegeneration.
Collapse
Affiliation(s)
- Nicolas C Hoch
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis M Polo
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK.,Institute of Histology and Embryology of Mendoza - CONICET, Mendoza, Argentina
| |
Collapse
|
37
|
Kopa P, Macieja A, Gulbas I, Pastwa E, Poplawski T. Inhibition of DNA-PK potentiates the synergistic effect of NK314 and etoposide combination on human glioblastoma cells. Mol Biol Rep 2019; 47:67-76. [PMID: 31583565 DOI: 10.1007/s11033-019-05105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Etoposide (VP-16) is the topoisomerase 2 (Top2) inhibitor used for treating of glioma patients however at high dose with serious side effects. It induces DNA double-strand breaks (DSBs). These DNA lesions are repaired by non-homologous DNA end joining (NHEJ) mediated by DNA-dependent protein kinase (DNA-PK). One possible approach to decrease the toxicity of etoposide is to reduce the dose while maintaining the anticancer potential. It could be achieved through combined therapy with other anticancer drugs. We have assumed that this objective can be obtained by (1) a parallel topo2 α inhibition and (2) sensitization of cancer cells to DSBs. In this work we investigated the effect of two Top2 inhibitors NK314 and VP-16 in glioma cell lines (MO59 K and MO59 J) sensitized by DNA-PK inhibitor, NU7441. Cytotoxic effect of VP-16, NK314 alone and in combination on human glioblastoma cell lines, was assessed by a colorimetric assay. Genotoxic effect of anticancer drugs in combination with NU7441 was assessed by comet assay. Cell cycle distribution and apoptosis were analysed by flow cytometry. Compared with VP-16 or NK314 alone, the combined treatment significantly inhibited cell proliferation. Combination treatment was associated with a strong accumulation of DSBs, modulated cell cycle phases distribution and apoptotic cell death. NU7441 potentiated these effects and additionally postponed DNA repair. Our findings suggest that NK314 could overcome resistance of MO59 cells to VP-16 and NU7441 could serve as sensitizer to VP-16/NK314 combined treatment. The combined tripartite approach of chemotherapy could reduce the overall toxicity associated with each individual therapy, while concomitantly enhancing the anticancer effect to treat human glioma cells. Thus, the use of a tripartite combinatorial approach could be promising and more efficacious than mono therapy or dual therapy to treat and increase the survival of the glioblastoma patients.
Collapse
Affiliation(s)
- Paulina Kopa
- Department of Immunopathology, Division of Allergology, Immunology and Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Anna Macieja
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Izabela Gulbas
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Elzbieta Pastwa
- Functional Genomics & Proteomics Unit, ITSI-Biosciences, Johnstown, PA, USA
| | - Tomasz Poplawski
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
38
|
Zarkovic G, Belousova EA, Talhaoui I, Saint-Pierre C, Kutuzov MM, Matkarimov BT, Biard D, Gasparutto D, Lavrik OI, Ishchenko AA. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Nucleic Acids Res 2019; 46:2417-2431. [PMID: 29361132 PMCID: PMC5861426 DOI: 10.1093/nar/gkx1318] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) act as DNA break sensors and catalyze the synthesis of polymers of ADP-ribose (PAR) covalently attached to acceptor proteins at DNA damage sites. It has been demonstrated that both mammalian PARP1 and PARP2 PARylate double-strand break termini in DNA oligonucleotide duplexes in vitro. Here, we show that mammalian PARP2 and PARP3 can PARylate and mono(ADP-ribosyl)ate (MARylate), respectively, 5′- and 3′-terminal phosphate residues at double- and single-strand break termini of a DNA molecule containing multiple strand breaks. PARP3-catalyzed DNA MARylation can be considered a new type of reversible post-replicative DNA modification. According to DNA substrate specificity of PARP3 and PARP2, we propose a putative mechanistic model of PARP-catalyzed strand break–oriented ADP-ribosylation of DNA termini. Notably, PARP-mediated DNA ADP-ribosylation can be more effective than PARPs’ auto-ADP-ribosylation depending on the DNA substrates and reaction conditions used. Finally, we show an effective PARP3- or PARP2-catalyzed ADP-ribosylation of high-molecular-weight (∼3-kb) DNA molecules, PARP-mediated DNA PARylation in cell-free extracts and a persisting signal of anti-PAR antibodies in a serially purified genomic DNA from bleomycin-treated poly(ADP-ribose) glycohydrolase-depleted HeLa cells. These results suggest that certain types of complex DNA breaks can be effectively ADP-ribosylated by PARPs in cellular response to DNA damage.
Collapse
Affiliation(s)
- Gabriella Zarkovic
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France.,Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Ekaterina A Belousova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Ibtissam Talhaoui
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France.,Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| | - Christine Saint-Pierre
- Université Grenoble Alpes, CEA, CNRS, INAC/SyMMES-UMR5819/CREAB, F-38000 Grenoble, France
| | - Mikhail M Kutuzov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Av. 8, Novosibirsk 630090, Russia
| | - Bakhyt T Matkarimov
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Denis Biard
- CEA, Institut de Biologie François Jacob, SEPIA, Team Cellular Engineering and Human Syndromes, Université Paris-Saclay, F-92265 Fontenay-aux-Roses, France
| | - Didier Gasparutto
- Université Grenoble Alpes, CEA, CNRS, INAC/SyMMES-UMR5819/CREAB, F-38000 Grenoble, France
| | - Olga I Lavrik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Av. 8, Novosibirsk 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Alexander A Ishchenko
- Laboratoire «Stabilité Génétique et Oncogenèse» CNRS, UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France.,Gustave Roussy, Université Paris-Saclay, F-94805 Villejuif, France
| |
Collapse
|
39
|
Hanzlikova H, Caldecott KW. Perspectives on PARPs in S Phase. Trends Genet 2019; 35:412-422. [PMID: 31036342 DOI: 10.1016/j.tig.2019.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/08/2023]
Abstract
Accurate copying of DNA during S phase is essential for genome stability and cell viability. During genome duplication, the progression of the DNA replication machinery is challenged by limitations in nucleotide supply and physical barriers in the DNA template that include naturally occurring DNA lesions and secondary structures that are difficult to replicate. To ensure correct and complete replication of the genome, cells have evolved several mechanisms that protect DNA replication forks and thus maintain genome integrity and stability during S phase. One class of enzymes that have recently emerged as important in this process, and therefore as promising targets in anticancer therapy, are the poly(ADP-ribose) polymerases (PARPs). We review here the roles of these enzymes during DNA replication as well as their impact on genome stability and cellular viability in normal and cancer cells.
Collapse
Affiliation(s)
- Hana Hanzlikova
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, 4, Czech Republic.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK; Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, 4, Czech Republic.
| |
Collapse
|
40
|
Rodriguez-Vargas JM, Nguekeu-Zebaze L, Dantzer F. PARP3 comes to light as a prime target in cancer therapy. Cell Cycle 2019; 18:1295-1301. [PMID: 31095444 DOI: 10.1080/15384101.2019.1617454] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Poly(ADP-ribose) polymerase 3 (PARP3) is the third member of the PARP family that catalyze a post-translational modification of proteins to promote, control or adjust numerous cellular events including genome integrity, transcription, differentiation, cell metabolism or cell death. In the late years, PARP3 has been specified for its primary functions in programmed and stress-induced double-strand break repair, chromosomal rearrangements, transcriptional regulation in the zebrafish and mitotic segregation. Still, deciphering the therapeutic value of its inhibition awaits additional investigations. In this review, we discuss the newest advancements on the specific functions of PARP3 in cancer aggressiveness exemplifying the relevance of its selective inhibition for cancer therapy.
Collapse
Affiliation(s)
- José Manuel Rodriguez-Vargas
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| | - Léonel Nguekeu-Zebaze
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| | - Françoise Dantzer
- a Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242 , Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg , Illkirch , France
| |
Collapse
|
41
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
42
|
Maertens O, Kuzmickas R, Manchester HE, Emerson CE, Gavin AG, Guild CJ, Wong TC, De Raedt T, Bowman-Colin C, Hatchi E, Garraway LA, Flaherty KT, Pathania S, Elledge SJ, Cichowski K. MAPK Pathway Suppression Unmasks Latent DNA Repair Defects and Confers a Chemical Synthetic Vulnerability in BRAF-, NRAS-, and NF1-Mutant Melanomas. Cancer Discov 2019; 9:526-545. [PMID: 30709805 PMCID: PMC10151004 DOI: 10.1158/2159-8290.cd-18-0879] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
Although the majority of BRAF-mutant melanomas respond to BRAF/MEK inhibitors, these agents are not typically curative. Moreover, they are largely ineffective in NRAS- and NF1-mutant tumors. Here we report that genetic and chemical suppression of HDAC3 potently cooperates with MAPK pathway inhibitors in all three RAS pathway-driven tumors. Specifically, we show that entinostat dramatically enhances tumor regression when combined with BRAF/MEK inhibitors, in both models that are sensitive or relatively resistant to these agents. Interestingly, MGMT expression predicts responsiveness and marks tumors with latent defects in DNA repair. BRAF/MEK inhibitors enhance these defects by suppressing homologous recombination genes, inducing a BRCA-like state; however, addition of entinostat triggers the concomitant suppression of nonhomologous end-joining genes, resulting in a chemical synthetic lethality caused by excessive DNA damage. Together, these studies identify melanomas with latent DNA repair defects, describe a promising drug combination that capitalizes on these defects, and reveal a tractable therapeutic biomarker. SIGNIFICANCE: BRAF/MEK inhibitors are not typically curative in BRAF-mutant melanomas and are ineffective in NRAS- and NF1-mutant tumors. We show that HDAC inhibitors dramatically enhance the efficacy of BRAF/MEK inhibitors in sensitive and insensitive RAS pathway-driven melanomas by coordinately suppressing two DNA repair pathways, and identify a clinical biomarker that predicts responsiveness.See related commentary by Lombard et al., p. 469.This article is highlighted in the In This Issue feature, p. 453.
Collapse
Affiliation(s)
- Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| | - Ryan Kuzmickas
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Haley E Manchester
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Chloe E Emerson
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Alessandra G Gavin
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Caroline J Guild
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Terence C Wong
- Department of Medical Oncology, Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Thomas De Raedt
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Christian Bowman-Colin
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elodie Hatchi
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Levi A Garraway
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Medical Oncology, Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Keith T Flaherty
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, Massachusetts
| | - Stephen J Elledge
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
- Department of Genetics, Howard Hughes Medical Institute, Boston, Massachusetts
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
- Ludwig Center at Harvard, Boston, Massachusetts
| |
Collapse
|
43
|
Faraoni I, Graziani G. Role of BRCA Mutations in Cancer Treatment with Poly(ADP-ribose) Polymerase (PARP) Inhibitors. Cancers (Basel) 2018; 10:E487. [PMID: 30518089 PMCID: PMC6316750 DOI: 10.3390/cancers10120487] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022] Open
Abstract
Inhibition of poly(ADP-ribose) polymerase (PARP) activity induces synthetic lethality in mutated BRCA1/2 cancers by selectively targeting tumor cells that fail to repair DNA double strand breaks (DSBs). Clinical studies have confirmed the validity of the synthetic lethality approach and four different PARP inhibitors (PARPi; olaparib, rucaparib, niraparib and talazoparib) have been approved as monotherapies for BRCA-mutated or platinum-sensitive recurrent ovarian cancer and/or for BRCA-mutated HER2-negative metastatic breast cancer. PARPi therapeutic efficacy is higher against tumors harboring deleterious germline or somatic BRCA mutations than in BRCA wild-type tumors. BRCA mutations or intrinsic tumor sensitivity to platinum compounds are both regarded as indicators of deficiency in DSB repair by homologous recombination as well as of favorable response to PARPi. However, not all BRCA-mutated or platinum-responsive patients obtain clinical benefit from these agents. Conversely, a certain percentage of patients with wild-type BRCA or platinum-resistant tumors can still get benefit from PARPi. Thus, additional reliable markers need to be validated in clinical trials to select patients potentially eligible for PARPi-based therapies, in the absence of deleterious BRCA mutations or platinum sensitivity. In this review, we summarize the mechanisms of action of PARPi and the clinical evidence supporting their use as anticancer drugs as well as the additional synthetic lethal partners that might confer sensitivity to PARPi in patients with wild-type BRCA tumors.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rom, Italy.
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00173 Rom, Italy.
| |
Collapse
|
44
|
Abstract
Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class-switch recombination in primary B cells, and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.
Collapse
|
45
|
Song Z, Wang Y, Xiao Q, Yu Z, Zhao L, Wu H, Sun M, Chai Z, Hou P, Geng X, Liu W, Wei M. Poly(ADP-ribose) polymerase-3 overexpression is associated with poor prognosis in patients with breast cancer following chemotherapy. Oncol Lett 2018; 16:5621-5630. [PMID: 30344717 PMCID: PMC6176245 DOI: 10.3892/ol.2018.9398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Double strand breaks induced by genotoxic agents, if inappropriately repaired, will cause cell death or induce cancer. Poly(ADP-ribose) polymerase-3 (PARP-3) serves a role in double strand break repair, and may be involved in tumorigenesis. To the best of our knowledge, the role of PARP-3 in breast cancer has not yet been examined. In the present study, the expression of PARP-3 was investigated in 493 breast cancer samples and 54 tumor-adjacent control samples using tissue-microarray-based immunohistochemistry. PARP-3 expression was higher in breast cancer samples compared with control samples. PARP-3 overexpression was significantly associated with histological grade II–III (P=0.012). In addition, PARP-3 overexpression was significantly associated with shorter disease-free survival (DFS; P=0.027) time and exhibited a tendency toward shorter overall survival (OS; P=0.183) time in patients with breast cancer compared with patients with lower PARP-3 expression, particularly in BRCA1-positive patients (P=0.004 for disease-free survival and P=0.095 for OS). Multivariate Cox regression analysis indicated that PARP-3 was an independent prognostic factor in patients with breast cancer. Furthermore, it was revealed that PARP-3 overexpression was associated with shorter survival time in patients with cyclophosphamide/doxorubicin or epirubicin/5-fluorouracil (CAF/CEF) chemotherapy compared with low PARP-3 expression, but not in patients with CAF/CEF + docetaxel chemotherapy. The present study suggested that PARP-3 may be used as a biomarker for predicting the clinical outcome of patients receiving chemotherapy, and targeting PARP-3 may be a potential therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhiguo Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yong Wang
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qinghuan Xiao
- Deparment of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhangguo Chai
- Outpatient Department, Shenyang Artillery Academy, Shenyang, Liaoning 110867, P.R. China
| | - Ping Hou
- Liaoning Blood Center, Shenyang, Liaoning 110044, P.R. China
| | - Xiaoqiang Geng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
46
|
Sharif-Askari B, Amrein L, Aloyz R, Panasci L. PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines. Breast Cancer Res Treat 2018; 172:23-32. [PMID: 30039287 DOI: 10.1007/s10549-018-4888-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/11/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE PARP-3 is member of the PARP family of poly (ADP-ribose) polymerases involved in ADPribosylation. PARPs are involved in the basic mechanisms of DNA repair. PARP3, a critical player for efficient mitotic progression, is required for the stabilization of the mitotic spindle by regulation of the mitotic components, NuMA and Tankyrase 1. METHODS The sensitization effect of vinorelbine on PARP3 inhibition-induced cytotoxicity was assessed by the SRB assay. The contribution of programed cell death and cell cycle arrest to the sensitization effect were determined by assessing changes in Annexin V, a marker of apoptosis. Alterations in cell cycle progression were assessed by cell cycle analysis. We used immunofluorescence to assess the effect of vinorelbine and/or PARP3 inhibitors on tubulin and microtubule depolarization. The PARP3 chemiluminescent assay kit was used for PARP3 activity. RESULTS PARP3 inhibitors sensitize breast cancer cells to vinorelbine, a vinca alkaloid used in the treatment of metastatic breast cancer. Olaparib which was originally described as a PARP1 and 2 inhibitor has recently been shown to be a potent PARP3 inhibitor while ME0328 is a more selective PARP3 inhibitor. The combination of vinorelbine with nontoxic concentrations of ME0328 or olaparib reduces vinorelbine resistance by 10 and 17 fold, respectively, potentiating vinorelbine-induced arrest at the G2/M boundary. In addition, PARP3 inhibition potentiates vinorelbine interaction with tubulin. Furthermore, olaparib or ME0328 potentiates vinorelbine-induced PARP3 inhibition, mitotic arrest, and apoptosis. CONCLUSION Our results indicated this approach with PARP3 inhibitors and vinorelbine is unique and promising for breast cancer patients with metastases. This combination could significantly increase the survival of breast cancer patients with metastases.
Collapse
Affiliation(s)
- Bahram Sharif-Askari
- Montreal Centre for Experimental Therapeutics in Cancer Segal Cancer Center, Lawrence Panasci & Raquel Aloyz Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine, Montréal, QC, H3T 1E2, Canada
| | - Lilian Amrein
- Montreal Centre for Experimental Therapeutics in Cancer Segal Cancer Center, Lawrence Panasci & Raquel Aloyz Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine, Montréal, QC, H3T 1E2, Canada
| | - Raquel Aloyz
- Montreal Centre for Experimental Therapeutics in Cancer Segal Cancer Center, Lawrence Panasci & Raquel Aloyz Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine, Montréal, QC, H3T 1E2, Canada.
| | - Lawrence Panasci
- Montreal Centre for Experimental Therapeutics in Cancer Segal Cancer Center, Lawrence Panasci & Raquel Aloyz Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine, Montréal, QC, H3T 1E2, Canada.
| |
Collapse
|
47
|
Ji M, Wang L, Xue N, Lai F, Zhang S, Jin J, Chen X. The Development of a Biotinylated NAD +-Applied Human Poly(ADP-Ribose) Polymerase 3 (PARP3) Enzymatic Assay. SLAS DISCOVERY 2018; 23:545-553. [PMID: 29676938 DOI: 10.1177/2472555218767843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Poly(ADP-ribose) polymerase 3 (PARP3) is an important member of the PARP family and shares high structural similarities with both PARP1 and PARP2. The biological roles of PARP3 are currently under investigation; however, several key reports indicate the integral roles of PARP3 in DNA damage repair, and thus it has been investigated as a novel target in oncology. It is clear that the identification of selective PARP3 inhibitors would further advance the understanding of the biological roles of PARP3. Herein, we describe a modified PARP3 screening assay using biotinylated NAD+ as the specialized substrate. This method relies on the activity of PARP3 to transfer the biotinylated NAD+ onto a histone protein to form ADP-ribosylated histone. The biotin label on this histone protein is then detected and quantifies the intrinsic enzymatic activity of PARP3. We optimized the assay with respect to the histone, NAD+/biotinylated NAD+ mixture, DNA, and PARP3. Our developed screening system was then validated with a reported selective PARP3 inhibitor, ME0328, as well as utilizing five other clinically available PARP1/2 inhibitors. We demonstrated that our assay system was sensitive, efficient, and economical, and we reason that it could be useful for the development of highly selective PARP3 inhibitors in the future.
Collapse
Affiliation(s)
- Ming Ji
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyuan Wang
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nina Xue
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Lai
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- 1 State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,2 Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Lesueur P, Chevalier F, El-Habr EA, Junier MP, Chneiweiss H, Castera L, Müller E, Stefan D, Saintigny Y. Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on Glioblastoma Stem Cells Exposed to Low and High Linear Energy Transfer Radiation. Sci Rep 2018; 8:3664. [PMID: 29483558 PMCID: PMC5826933 DOI: 10.1038/s41598-018-22022-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/15/2018] [Indexed: 11/09/2022] Open
Abstract
Despite continuous improvements in treatment of glioblastoma, tumor recurrence and therapy resistance still occur in a high proportion of patients. One underlying reason for this radioresistance might be the presence of glioblastoma cancer stem cells (GSCs), which feature high DNA repair capability. PARP protein plays an important cellular role by detecting the presence of damaged DNA and then activating signaling pathways that promote appropriate cellular responses. Thus, PARP inhibitors (PARPi) have recently emerged as potential radiosensitizing agents. In this study, we investigated the preclinical efficacy of talazoparib, a new PARPi, in association with low and high linear energy transfer (LET) irradiation in two GSC cell lines. Reduction of GSC fraction, impact on cell proliferation, and cell cycle arrest were evaluated for each condition. All combinations were compared with a reference schedule: photonic irradiation combined with temozolomide. The use of PARPi combined with photon beam and even more carbon beam irradiation drastically reduced the GSC frequency of GBM cell lines in vitro. Furthermore, talazoparib combined with irradiation induced a marked and prolonged G2/M block, and decreased proliferation. These results show that talazoparib is a new candidate that effects radiosensitization in radioresistant GSCs, and its combination with high LET irradiation, is promising.
Collapse
Affiliation(s)
- Paul Lesueur
- LARIA, iRCM, François Jacob Institute, DRF-CEA, Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, France.
- Radiotherapy Department, Centre François Baclesse, Caen, France.
| | - François Chevalier
- LARIA, iRCM, François Jacob Institute, DRF-CEA, Caen, France
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, France
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Seine-IBPS, Sorbonne Universities, 75005, Paris, France
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Seine-IBPS, Sorbonne Universities, 75005, Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Seine-IBPS, Sorbonne Universities, 75005, Paris, France
| | - Laurent Castera
- Plateforme de sequencage haut debit, Centre François Baclesse, Caen, France
| | - Etienne Müller
- Plateforme de sequencage haut debit, Centre François Baclesse, Caen, France
| | - Dinu Stefan
- Radiotherapy Department, Centre François Baclesse, Caen, France
| | - Yannick Saintigny
- LARIA, iRCM, François Jacob Institute, DRF-CEA, Caen, France
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, France
| |
Collapse
|
49
|
Karicheva O, Rodriguez-Vargas JM, Wadier N, Martin-Hernandez K, Vauchelles R, Magroun N, Tissier A, Schreiber V, Dantzer F. PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis. Oncotarget 2018; 7:64109-64123. [PMID: 27579892 PMCID: PMC5325429 DOI: 10.18632/oncotarget.11627] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022] Open
Abstract
Several members of the Poly(ADP-ribose) polymerase (PARP) family are essential regulators of genome integrity, actively prospected as drug targets for cancer therapy. Among them, PARP3 is well characterized for its functions in double-strand break repair and mitotis. Here we report that PARP3 also plays an integral role in TGFβ and reactive oxygen species (ROS) dependent epithelial-to-mesenchymal transition (EMT) and stem-like cell properties in human mammary epithelial and breast cancer cells. PARP3 expression is higher in breast cancer cells of the mesenchymal phenotype and correlates with the expression of the mesenchymal marker Vimentin while being in inverse correlation with the epithelial marker E-cadherin. Furthermore, PARP3 expression is significantly upregulated during TGFβ-induced EMT in various human epithelial cells. In line with this observation, PARP3 depletion alters TGFβ-dependent EMT of mammary epithelial cells by preventing the induction of the Snail-E-cadherin axis, the dissolution of cell junctions, the acquisition of cell motility and chemoresistance. PARP3 responds to TGFβ-induced ROS to promote a TG2-Snail-E-cadherin axis during EMT. Considering the link between EMT and cancer stem cells, we show that PARP3 promotes stem-like cell properties in mammary epithelial and breast cancer cells by inducing the expression of the stem cell markers SOX2 and OCT4, by increasing the proportion of tumor initiating CD44high/CD24low population and the formation of tumor spheroid bodies, and by promoting stem cell self-renewal. These findings point to a novel role of PARP3 in the control of TGFβ-induced EMT and acquisition of stem-like cell features and further motivate efforts to identify PARP3 specific inhibitors.
Collapse
Affiliation(s)
- Olga Karicheva
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France
| | - José Manuel Rodriguez-Vargas
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France
| | - Nadège Wadier
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France
| | - Kathline Martin-Hernandez
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France
| | - Romain Vauchelles
- Laboratoire de Biophotonique et Pharmacologie, UMR7213, Centre National de la Recherche Scientifique/Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Najat Magroun
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France
| | - Agnès Tissier
- EMT and Cancer Cell Plasticity, Laboratoire d'Excellence DevWeCan, Equipe labellisée Ligue Nationale Contre Le Cancer, Centre de Recherche en Cancérologie, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, F-69008 Lyon, France
| | - Valérie Schreiber
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Laboratoire d'Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, 67412 Illkirch, France
| |
Collapse
|
50
|
Fouquin A, Guirouilh-Barbat J, Lopez B, Hall J, Amor-Guéret M, Pennaneach V. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Nucleic Acids Res 2017; 45:12325-12339. [PMID: 29036662 PMCID: PMC5716083 DOI: 10.1093/nar/gkx881] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to the regulation to the choice of DSB repair pathway. Therefore, understanding the mechanisms which regulate the initiation of DNA end-resection is of prime importance. Our findings reveal that poly(ADP-ribose) polymerase 2 (PARP2) is involved in DSBR pathway choice independently of its PAR synthesis activity. We show that PARP2 favors repair by homologous recombination (HR), single strand annealing (SSA) and alternative-end joining (A-EJ) rather than the C-EJ pathway and increases the deletion sizes at A-EJ junctions. We demonstrate that PARP2 specifically limits the accumulation of the resection barrier factor 53BP1 at DNA damage sites, allowing efficient CtIP-dependent DNA end-resection. Collectively, we have identified a new PARP2 function, independent of its PAR synthesis activity, which directs DSBs toward resection-dependent repair pathways.
Collapse
Affiliation(s)
- Alexis Fouquin
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Josée Guirouilh-Barbat
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Bernard Lopez
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM, CNRS, UMR 1052-5286, 69424 Lyon, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Vincent Pennaneach
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| |
Collapse
|