1
|
Zachayus A, Loup-Forest J, Cura V, Poterszman A. Nucleotide Excision Repair: Insights into Canonical and Emerging Functions of the Transcription/DNA Repair Factor TFIIH. Genes (Basel) 2025; 16:231. [PMID: 40004560 PMCID: PMC11855273 DOI: 10.3390/genes16020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleotide excision repair (NER) is a universal cut-and-paste DNA repair mechanism that corrects bulky DNA lesions such as those caused by UV radiation, environmental mutagens, and some chemotherapy drugs. In this review, we focus on the human transcription/DNA repair factor TFIIH, a key player of the NER pathway in eukaryotes. This 10-subunit multiprotein complex notably verifies the presence of a lesion and opens the DNA around the damage via its XPB and XPD subunits, two proteins identified in patients suffering from Xeroderma Pigmentosum syndrome. Isolated as a class II gene transcription factor in the late 1980s, TFIIH is a prototypic molecular machine that plays an essential role in both DNA repair and transcription initiation and harbors a DNA helicase, a DNA translocase, and kinase activity. More recently, TFIIH subunits have been identified as participating in other cellular processes, including chromosome segregation during mitosis, maintenance of mitochondrial DNA integrity, and telomere replication.
Collapse
Affiliation(s)
- Amélie Zachayus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Jules Loup-Forest
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France; (A.Z.); (J.L.-F.); (V.C.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Institut National De La Sante et de la Recherche Médicale (Inserm), UMR S 1258, 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
2
|
Kaneoka H, Arakawa K, Masuda Y, Ogawa D, Sugimoto K, Fukata R, Tsuge-Shoji M, Nishijima KI, Iijima S. Sequential post-translational modifications regulate damaged DNA-binding protein DDB2 function. J Biochem 2024; 176:325-338. [PMID: 39077792 PMCID: PMC11444932 DOI: 10.1093/jb/mvae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Nucleotide excision repair (NER) is a major DNA repair system and hereditary defects in this system cause critical genetic diseases (e.g. xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy). Various proteins are involved in the eukaryotic NER system and undergo several post-translational modifications. Damaged DNA-binding protein 2 (DDB2) is a DNA damage recognition factor in the NER pathway. We previously demonstrated that DDB2 was SUMOylated in response to UV irradiation; however, its physiological roles remain unclear. We herein analysed several mutants and showed that the N-terminal tail of DDB2 was the target for SUMOylation; however, this region did not contain a consensus SUMOylation sequence. We found a SUMO-interacting motif (SIM) in the N-terminal tail that facilitated SUMOylation. The ubiquitination of a SUMOylation-deficient DDB2 SIM mutant was decreased, and its retention of chromatin was prolonged. The SIM mutant showed impaired NER, possibly due to a decline in the timely handover of the lesion site to XP complementation group C. These results suggest that the SUMOylation of DDB2 facilitates NER through enhancements in ubiquitination.
Collapse
Affiliation(s)
- Hidenori Kaneoka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuhiko Arakawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Masuda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daiki Ogawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kota Sugimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Risako Fukata
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Maasa Tsuge-Shoji
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ken-ichi Nishijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinji Iijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Yu W, Peng X, Cai X, Xu H, Wang C, Liu F, Luo D, Tang S, Wang Y, Du X, Gao Y, Tian T, Liang S, Chen C, Kim NH, Yuan B, Zhang J, Jiang H. Transcriptome analysis of porcine oocytes during postovulatory aging. Theriogenology 2024; 226:387-399. [PMID: 38821784 DOI: 10.1016/j.theriogenology.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-β signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.
Collapse
Affiliation(s)
- Wenjie Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xinyue Peng
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoshi Cai
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hong Xu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chen Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Fengjiao Liu
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Dan Luo
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Shuhan Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yue Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xiaoxue Du
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Tian Tian
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China; Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130062, Jilin, China
| | - Shuang Liang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Chengzhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Nam-Hyung Kim
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jiabao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
4
|
Zhang C, Li W, Liu L, Li M, Sun H, Zhang C, Zhong L, Huang J, Li T. DDB2 promotes melanoma cell growth by transcriptionally regulating the expression of KMT2A and predicts a poor prognosis. FASEB J 2024; 38:e23735. [PMID: 38860936 DOI: 10.1096/fj.202302040r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Identification of potential key targets of melanoma, a fatal skin malignancy, is critical to the development of new cancer therapies. Lysine methyltransferase 2A (KMT2A) promotes melanoma growth by activating the human telomerase reverse transcriptase (hTERT) signaling pathway; however, the exact mechanism remains elusive. This study aimed to reveal new molecular targets that regulate KMT2A expression and melanoma growth. Using biotin-streptavidin-agarose pull-down and proteomics, we identified Damage-specific DNA-binding protein 2 (DDB2) as a KMT2A promoter-binding protein in melanoma cells and validated its role as a regulator of KMT2A/hTERT signaling. DDB2 knockdown inhibited the expression of KMT2A and hTERT and inhibited the growth of melanoma cells in vitro. Conversely, overexpression of DDB2 activated the expression of KMT2A and promoted the growth of melanoma cells. Additionally, we demonstrated that DDB2 expression was higher in tumor tissues of patients with melanoma than in corresponding normal tissues and was positively correlated with KMT2A expression. Kaplan-Meier analysis showed a poor prognosis in patients with high levels of DDB2 and KMT2A. Overall, our data suggest that DDB2 promotes melanoma cell growth through the transcriptional regulation of KMT2A expression and predicts poor prognosis. Therefore, targeting DDB2 may regulate the effects of KMT2A on melanoma growth and progression, providing a new potential therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Changlin Zhang
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weizhao Li
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Lixiang Liu
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Miao Li
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Haohui Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chi Zhang
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Li Zhong
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tian Li
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
5
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
6
|
Slyskova J, Muniesa-Vargas A, da Silva I, Drummond R, Park J, Häckes D, Poetsch I, Ribeiro-Silva C, Moretton A, Heffeter P, Schärer O, Vermeulen W, Lans H, Loizou J. Detection of oxaliplatin- and cisplatin-DNA lesions requires different global genome repair mechanisms that affect their clinical efficacy. NAR Cancer 2023; 5:zcad057. [PMID: 38058548 PMCID: PMC10696645 DOI: 10.1093/narcan/zcad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.
Collapse
Affiliation(s)
- Jana Slyskova
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Alba Muniesa-Vargas
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Israel Tojal da Silva
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Rodrigo Drummond
- Laboratory of Bioinformatics and Computational Biology, A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil
| | - Jiyeong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - David Häckes
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Isabella Poetsch
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, A-1090 Vienna, Austria
| | - Cristina Ribeiro-Silva
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Amandine Moretton
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, A-1090 Vienna, Austria
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joanna I Loizou
- Center for Cancer Research, Medical University of Vienna, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| |
Collapse
|
7
|
Lynch KD, Iverson DT, Bachhav NK, Call MR, Yue GE, Prasad B, Clarke JD. Involvement of the p38/MK2 Pathway in MCLR Hepatotoxicity Revealed through MAPK Pharmacological Inhibition and Phosphoproteomics in HepaRG Cells. Int J Mol Sci 2023; 24:11168. [PMID: 37446360 PMCID: PMC10342686 DOI: 10.3390/ijms241311168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Microcystin-leucine arginine (MCLR) is one of the most common and toxic microcystin variants, a class of cyanotoxins produced by cyanobacteria. A major molecular mechanism for MCLR-elicited liver toxicity involves the dysregulation of protein phosphorylation through protein phosphatase (PP) inhibition and mitogen-activated protein kinase (MAPK) modulation. In this study, specific pharmacological MAPK inhibitors were used in HepaRG cells to examine the pathways associated with MCLR cytotoxicity. SB203580 (SB), a p38 inhibitor, rescued HepaRG cell viability, whereas treatment with SP600125 (JNK inhibitor), MK2206 (AKT inhibitor), or N-acetylcysteine (reactive oxygen species scavenger) did not. Phosphoproteomic analysis revealed that phosphosites-which were altered by the addition of SB compared to MCLR treatment alone-included proteins involved in RNA processing, cytoskeletal stability, DNA damage response, protein degradation, and cell death. A closer analysis of specific proteins in some of these pathways indicated that SB reversed the MCLR-mediated phosphorylation of the necroptosis-associated proteins, the mixed lineage kinase domain-like protein (MLKL), receptor-interacting serine/threonine kinase 1 (RIP1), DNA damage response proteins, ataxia telangiectasia and Rad3-related kinase (ATR), and checkpoint kinase 1 (CHK1). Overall, these data implicate p38/MK2, DNA damage, and necroptosis in MCLR-mediated hepatotoxicity, and suggest these pathways may be targets for prevention prior to, or treatment after, MCLR toxicity.
Collapse
Affiliation(s)
- Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (K.D.L.); (B.P.)
| | | | | | | | | | | | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (K.D.L.); (B.P.)
| |
Collapse
|
8
|
Le J, Min JH. Structural modeling and analyses of genetic variations in the human XPC nucleotide excision repair protein. J Biomol Struct Dyn 2023; 41:13535-13562. [PMID: 36890638 PMCID: PMC10485178 DOI: 10.1080/07391102.2023.2177349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
Xeroderma pigmentosum C (XPC) is a key initiator in the global genome nucleotide excision repair pathway in mammalian cells. Inherited mutations in the XPC gene can cause xeroderma pigmentosum (XP) cancer predisposition syndrome that dramatically increases the susceptibility to sunlight-induced cancers. Various genetic variants and mutations of the protein have been reported in cancer databases and literature. The current lack of a high-resolution 3-D structure of human XPC makes it difficult to assess the structural impact of the mutations/genetic variations. Using the available high-resolution crystal structure of its yeast ortholog, Rad4, we built a homology model of human XPC protein and compared it with a model generated by AlphaFold. The two models are largely consistent with each other in the structured domains. We have also assessed the degree of conservation for each residue using 966 sequences of XPC orthologs. Our structure- and sequence conservation-based assessments largely agree with the variant's impact on the protein's structural stability, computed by FoldX and SDM. Known XP missense mutations such as Y585C, W690S, and C771Y are consistently predicted to destabilize the protein's structure. Our analyses also reveal several highly conserved hydrophobic regions that are surface-exposed, which may indicate novel intermolecular interfaces that are yet to be characterized.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jennifer Le
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
9
|
Paul D, Mu H, Tavakoli A, Dai Q, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Impact of DNA sequences on DNA 'opening' by the Rad4/XPC nucleotide excision repair complex. DNA Repair (Amst) 2021; 107:103194. [PMID: 34428697 PMCID: PMC8934541 DOI: 10.1016/j.dnarep.2021.103194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Rad4/XPC recognizes diverse DNA lesions to initiate nucleotide excision repair (NER). However, NER propensities among lesions vary widely and repair-resistant lesions are persistent and thus highly mutagenic. Rad4 recognizes repair-proficient lesions by unwinding ('opening') the damaged DNA site. Such 'opening' is also observed on a normal DNA sequence containing consecutive C/G's (CCC/GGG) when tethered to Rad4 to prevent protein diffusion. However, it was unknown if such tethering-facilitated DNA 'opening' could occur on any DNA or if certain structures/sequences would resist being 'opened'. Here, we report that DNA containing alternating C/G's (CGC/GCG) failed to be opened even when tethered; instead, Rad4 bound in a 180°-reversed manner, capping the DNA end. Fluorescence lifetime studies of DNA conformations in solution showed that CCC/GGG exhibits local pre-melting that is absent in CGC/GCG. In MD simulations, CGC/GCG failed to engage Rad4 to promote 'opening' contrary to CCC/GGG. Altogether, our study illustrates how local sequences can impact DNA recognition by Rad4/XPC and how certain DNA sites resist being 'opened' even with Rad4 held at that site indefinitely. The contrast between CCC/GGG and CGC/GCG sequences in Rad4-DNA recognition may help decipher a lesion's mutagenicity in various genomic sequence contexts to explain lesion-determined mutational hot and cold spots.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY, 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY, 10003, USA.
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
10
|
Proteomic Analysis of Nuclear HBV rcDNA Associated Proteins Identifies UV-DDB as a Host Factor Involved in cccDNA Formation. J Virol 2021; 96:e0136021. [PMID: 34705558 DOI: 10.1128/jvi.01360-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) utilizes host DNA repair mechanisms to convert viral relaxed circular DNA (rcDNA) into a persistent viral genome, the covalently closed circular DNA (cccDNA). To identify said host factors involved in cccDNA formation, we developed an unbiased approach to discover proteins involved in cccDNA formation by precipitating nuclear rcDNA from induced HepAD38 cells and identifying the co-precipitated proteins by mass spectrometry. The DNA damage binding protein 1 (DDB1) surfaced as a hit, coinciding with our previously reported shRNA screen in which shRNA-DDB1 in HepDES19 cells reduced cccDNA production. DDB1 binding to nuclear rcDNA was confirmed in HepAD38 cells via ChIP-qPCR. DDB1 and DNA damage binding protein 2 (DDB2) form the UV-DDB complex and the latter senses DNA damage to initiate the global genome nucleotide excision repair (GG-NER) pathway. To investigate the role of DDB complex in cccDNA formation, DDB2 was knocked out in HepAD38 and HepG2-NTCP cells. In both knockout cell lines, cccDNA formation was stunted significantly, and in HepG2-NTCP-DDB2 knockout cells, downstream indicators of cccDNA such as HBV RNA, HBcAg, and HBeAg were similarly reduced. Knockdown of DDB2 in HBV-infected HepG2-NTCP cells and primary human hepatocytes (PHH) also resulted in cccDNA reduction. Trans-complementation of wild type DDB2 in HepG2-NTCP-DDB2 knockout cells rescued cccDNA formation and its downstream indicators. However, ectopic expression of DDB2 mutants deficient in DNA-binding, DDB1-binding, or ubiquitination failed to rescue cccDNA formation. Our study thus suggests an integral role of UV-DDB, specifically DDB2, in the formation of HBV cccDNA. IMPORTANCE Serving as a key viral factor for chronic hepatitis B virus (HBV) infection, HBV covalently closed circular DNA (cccDNA) is formed in the cell nucleus from viral relaxed circular DNA (rcDNA) by hijacking host DNA repair machinery. Previous studies have identified a handful of host DNA repair factors involved in cccDNA formation through hypothesis-driven research with some help from RNAi screening and/or biochemistry approaches. To enrich the landscape of tools for discovering host factors responsible for rcDNA-to-cccDNA conversion, we developed an rcDNA immunoprecipitation paired mass spectrometry assay, which allowed us to pull down nuclear rcDNA in its transitional state to cccDNA and observe the associated host factors. From this assay we discovered a novel relationship between the UV-DDB complex and cccDNA formation, hence, providing a proof-of-concept for a more direct discovery of novel HBV DNA-host interactions that can be exploited to develop new cccDNA-targeting antivirals.
Collapse
|
11
|
Feltes BC. Every protagonist has a sidekick: Structural aspects of human xeroderma pigmentosum-binding proteins in nucleotide excision repair. Protein Sci 2021; 30:2187-2205. [PMID: 34420242 DOI: 10.1002/pro.4173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
The seven xeroderma pigmentosum proteins (XPps), XPA-XPG, coordinate the nucleotide excision repair (NER) pathway, promoting the excision of DNA lesions caused by exposition to ionizing radiation, majorly from ultraviolet light. Significant efforts are made to investigate NER since mutations in any of the seven XPps may cause the xeroderma pigmentosum and trichothiodystrophy diseases. However, these proteins collaborate with other pivotal players in all known NER steps to accurately exert their purposes. Therefore, in the old and ever-evolving field of DNA repair, it is imperative to reexamine and describe their structures to understand NER properly. This work provides an up-to-date review of the protein structural aspects of the closest partners that directly interact and influence XPps: RAD23B, CETN2, DDB1, RPA (RPA70, 32, and 14), p8 (GTF2H5), and ERCC1. Structurally and functionally vital domains, regions, and critical residues are reexamined, providing structural lessons and perspectives about these indispensable proteins in the NER and other DNA repair pathways. By gathering all data related to the major human xeroderma pigmentosum-interacting proteins, this review will aid newcomers on the subject and guide structural and functional future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Theoretical Informatics, Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Genetics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biophysics, Institute of Bioscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Chung Y, Jeong S, Lee IK, Yun BS, Lee JS, Ro S, Park JK. Regulation of p53 Activity by (+)-Epiloliolide Isolated from Ulva lactuca. Mar Drugs 2021; 19:450. [PMID: 34436289 PMCID: PMC8399812 DOI: 10.3390/md19080450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Ulva lactuca (U. lactuca) is a green alga distributed worldwide and used as a food and cosmetic material. In our previous study, we determined the effects of U. lactuca methanol extracts on the UVB-induced DNA repair. In the present study, we fractionated U. lactuca methanol extracts to identify the effective compound for the DNA repair. MTT assay demonstrated that (+)-epiloliolide showed no cytotoxicity up to 100 μM in BJ-5ta human dermal fibroblast. Upon no treatment, exposure to UVB 400 J/m2 decreased cell viability by 45%, whereas (+)-epiloliolide treatment for 24 h after UVB exposure significantly increased the cell viability. In GO and GESA analysis, a number of differentially expressed genes were uniquely expressed in (+)-epiloliolide treated cells, which were enriched in the p53 signaling pathway and excision repair. Immunofluorescence demonstrated that (+)-epiloliolide increased the nuclear localization of p53. Comet assay demonstrated that (+)-epiloliolide decreased tail moment increased by UVB. Western blot analysis demonstrated that (+)-epiloliolide decreased the levels of p-p53, p21, Bax, and Bim, but increased that of Bcl-2. Reverse transcription PCR (RT-PCR) demonstrated that (+)-epiloliolide decreased the levels of MMP 1, 9, and 13, but increased that of COL1A1. These results suggest that (+)-epiloliolide regulates p53 activity and has protective effects against UVB.
Collapse
Affiliation(s)
- Yuheon Chung
- Division of Biological Science, Wonkwang University, Ikasn 54538, Korea; (Y.C.); (S.J.)
| | - Seula Jeong
- Division of Biological Science, Wonkwang University, Ikasn 54538, Korea; (Y.C.); (S.J.)
| | - In-Kyoung Lee
- Division of Biotechnoloy, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea; (I.-K.L.); (B.-S.Y.)
| | - Bong-Sik Yun
- Division of Biotechnoloy, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Korea; (I.-K.L.); (B.-S.Y.)
| | - Jung Sup Lee
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea;
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Jong Kun Park
- Division of Biological Science, Wonkwang University, Ikasn 54538, Korea; (Y.C.); (S.J.)
| |
Collapse
|
13
|
Manganelli M, Guida S, Ferretta A, Pellacani G, Porcelli L, Azzariti A, Guida G. Behind the Scene: Exploiting MC1R in Skin Cancer Risk and Prevention. Genes (Basel) 2021; 12:1093. [PMID: 34356109 PMCID: PMC8305013 DOI: 10.3390/genes12071093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma and non-melanoma skin cancers (NMSCs) are the most frequent cancers of the skin in white populations. An increased risk in the development of skin cancers has been associated with the combination of several environmental factors (i.e., ultraviolet exposure) and genetic background, including melanocortin-1 receptor (MC1R) status. In the last few years, advances in the diagnosis of skin cancers provided a great impact on clinical practice. Despite these advances, NMSCs are still the most common malignancy in humans and melanoma still shows a rising incidence and a poor prognosis when diagnosed at an advanced stage. Efforts are required to underlie the genetic and clinical heterogeneity of melanoma and NMSCs, leading to an optimization of the management of affected patients. The clinical implications of the impact of germline MC1R variants in melanoma and NMSCs' risk, together with the additional risk conferred by somatic mutations in other peculiar genes, as well as the role of MC1R screening in skin cancers' prevention will be addressed in the current review.
Collapse
Affiliation(s)
- Michele Manganelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
- DMMT-Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefania Guida
- Department of Surgical-Medical-Dental and Morphological Science with Interest Transplant-Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00161 Rome, Italy;
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| |
Collapse
|
14
|
Chauhan AK, Sun Y, Zhu Q, Wani AA. Timely upstream events regulating nucleotide excision repair by ubiquitin-proteasome system: ubiquitin guides the way. DNA Repair (Amst) 2021; 103:103128. [PMID: 33991872 DOI: 10.1016/j.dnarep.2021.103128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of multiple DNA repair pathways, including nucleotide excision repair (NER), which eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause deleterious mutations and genomic instability. In mammalian NER, DNA damage sensors, DDB and XPC acting in global genomic NER (GG-NER), and, CSB and RNAPII acting in transcription-coupled NER (TC-NER) sub-pathways, undergo an array of post-translational ubiquitination at the DNA lesion sites. Accumulating evidence indicates that ubiquitination orchestrates the productive assembly of NER preincision complex by driving well-timed compositional changes in DNA damage-assembled sensor complexes. Conversely, the deubiquitination is also intimately involved in regulating the damage sensing aftermath, via removal of degradative ubiquitin modification on XPC and CSB to prevent their proteolysis for the factor recycling. This review summaries the relevant research efforts and latest findings in our understanding of ubiquitin-mediated regulation of NER and active participation by new regulators of NER, e.g., Cullin-Ring ubiquitin ligases (CRLs), ubiquitin-specific proteases (USPs) and ubiquitin-dependent segregase, valosin-containing protein (VCP)/p97. We project hypothetical step-by-step models in which VCP/p97-mediated timely extraction of damage sensors is integral to overall productive NER. The USPs and proteasome subtly counteract in fine-tuning the vital stability and function of NER damage sensors.
Collapse
Affiliation(s)
- Anil K Chauhan
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Yingming Sun
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States.
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH, 43210, United States; Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH, 43210, United States; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
15
|
Zhang Y, Mandemaker IK, Matsumoto S, Foreman O, Holland CP, Lloyd WR, Sugasawa K, Vermeulen W, Marteijn JA, Galardy PJ. USP44 Stabilizes DDB2 to Facilitate Nucleotide Excision Repair and Prevent Tumors. Front Cell Dev Biol 2021; 9:663411. [PMID: 33937266 PMCID: PMC8085418 DOI: 10.3389/fcell.2021.663411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Nucleotide excision repair (NER) is a pathway involved in the repair of a variety of potentially mutagenic lesions that distort the DNA double helix. The ubiquitin E3-ligase complex UV-DDB is required for the recognition and repair of UV-induced cyclobutane pyrimidine dimers (CPDs) lesions through NER. DDB2 directly binds CPDs and subsequently undergoes ubiquitination and proteasomal degradation. DDB2 must remain on damaged chromatin, however, for sufficient time to recruit and hand-off lesions to XPC, a factor essential in the assembly of downstream repair components. Here we show that the tumor suppressor USP44 directly deubiquitinates DDB2 to prevent its premature degradation and is selectively required for CPD repair. Cells lacking USP44 have impaired DDB2 accumulation on DNA lesions with subsequent defects in XPC retention. The physiological importance of this mechanism is evident in that mice lacking Usp44 are prone to tumors induced by NER lesions introduced by DMBA or UV light. These data reveal the requirement for highly regulated ubiquitin addition and removal in the recognition and repair of helix-distorting DNA damage and identify another mechanism by which USP44 protects genomic integrity and prevents tumors.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Imke K Mandemaker
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, Netherlands
| | | | - Oded Foreman
- Department of Pathology, Genentech, South San Francisco, CA, United States
| | - Christopher P Holland
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Whitney R Lloyd
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Hyogo, Japan
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, Rotterdam, Netherlands
| | - Paul J Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States.,Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
16
|
Chen X, Li P, Zhang G, Kang L, Qin B, Mao X, Qin M, Cao Y, Wang Y, Guan H. Comprehensive Profiling of Proteome and Ubiquitome Changes in Human Lens Epithelial Cell Line after Ultraviolet-B Irradiation. ACS OMEGA 2020; 5:32171-32182. [PMID: 33376855 PMCID: PMC7758888 DOI: 10.1021/acsomega.0c03088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/20/2020] [Indexed: 05/08/2023]
Abstract
Ultraviolet-B (UVB) is a recognized risk factor for age-related cataract (ARC) and can cause various changes, including ubiquitination, in lens epithelial cells (LECs). However, the relationship between ubiquitination and ARC is unclear. Herein, we used UVB-irradiated human lens epithelial cell line (SRA01/04) representing the cell model of ARC to investigate the profile changes in the proteome and ubiquitome. A total of 552 differentially expressed proteins (DEPs) and 871 differentially ubiquitinated proteins (DUPs) were identified, and 9 ubiquitination motifs were found. Bioinformatics analysis revealed diverse pathways and biological processes of differential proteins and several DNA damage repair proteins that were potentially mediated via ubiquitin-proteasome pathway. We validated the decreased protein expression of DNA-directed RNA polymerase II subunit RPB2 (POLR2B) in both human cataract capsule tissues and UVB-treated SRA01/04 cells and found that treatment with proteasome inhibitor (MG-132) could reverse the protein level of POLR2B in UVB-irradiated SRA01/04 cells. Our data provide novel information regarding protein expressions and ubiquitination modifications in UVB-induced oxidative damage model. This study might offer a cell-level reference to further investigate the pathogenesis of ARC.
Collapse
|
17
|
Robu M, Shah RG, Shah GM. Methods to Study Intracellular Movement and Localization of the Nucleotide Excision Repair Proteins at the DNA Lesions in Mammalian Cells. Front Cell Dev Biol 2020; 8:590242. [PMID: 33282869 PMCID: PMC7705073 DOI: 10.3389/fcell.2020.590242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway that removes a wide variety of DNA lesions caused by different types of physical and chemical agents, such as ultraviolet radiation (UV), environmental carcinogen benzo[a]pyrene and anti-cancer drug carboplatin. The mammalian NER utilizes more than 30 proteins, in a multi-step process that begins with the lesion recognition within seconds of DNA damage to completion of repair after few hours to several days. The core proteins and their biochemical reactions are known from in vitro DNA repair assays using purified proteins, but challenge was to understand the dynamics of their rapid recruitment and departure from the lesion site and their coordination with other proteins and post-translational modifications to execute the sequential steps of repair. Here, we provide a brief overview of various techniques developed by different groups over last 20 years to overcome these challenges. However, more work is needed for a comprehensive knowledge of all aspects of mammalian NER. With this aim, here we provide detailed protocols of three simple yet innovative methods developed by many teams that range from local UVC irradiation to in situ extraction and sub-cellular fractionation that will permit study of endogenous as well as exogenous NER proteins in any cellular model. These methods do not require unique reagents or specialized instruments, and will allow many more laboratories to explore this repair pathway in different models. These techniques would reveal intracellular movement of these proteins to the DNA lesion site, their interactions with other proteins during repair and the effect of post-translational modifications on their functions. We also describe how these methods led us to identify hitherto unexpected role of poly(ADP-ribose) polymerase-1 (PARP1) in NER. Collectively these three simple techniques can provide an initial assessment of the functions of known and unknown proteins in the core or auxiliary events associated with mammalian NER. The results from these techniques could serve as a solid foundation and a justification for more detailed studies in NER using specialized reagents and more sophisticated tools. They can also be suitably modified to study other cellular processes beyond DNA repair.
Collapse
Affiliation(s)
- Mihaela Robu
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| | - Rashmi G Shah
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| | - Girish M Shah
- CHU de Québec Université Laval Research Centre (site CHUL), Laboratory for Skin Cancer Research and Axe Neuroscience, Québec, QC, Canada
| |
Collapse
|
18
|
Functional impacts of the ubiquitin-proteasome system on DNA damage recognition in global genome nucleotide excision repair. Sci Rep 2020; 10:19704. [PMID: 33184426 PMCID: PMC7665181 DOI: 10.1038/s41598-020-76898-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in regulation of various biological processes, including DNA repair. In mammalian global genome nucleotide excision repair (GG-NER), activation of the DDB2-associated ubiquitin ligase upon UV-induced DNA damage is necessary for efficient recognition of lesions. To date, however, the precise roles of UPS in GG-NER remain incompletely understood. Here, we show that the proteasome subunit PSMD14 and the UPS shuttle factor RAD23B can be recruited to sites with UV-induced photolesions even in the absence of XPC, suggesting that proteolysis occurs at DNA damage sites. Unexpectedly, sustained inhibition of proteasome activity results in aggregation of PSMD14 (presumably with other proteasome components) at the periphery of nucleoli, by which DDB2 is immobilized and sequestered from its lesion recognition functions. Although depletion of PSMD14 alleviates such DDB2 immobilization induced by proteasome inhibitors, recruitment of DDB2 to DNA damage sites is then severely compromised in the absence of PSMD14. Because all of these proteasome dysfunctions selectively impair removal of cyclobutane pyrimidine dimers, but not (6-4) photoproducts, our results indicate that the functional integrity of the proteasome is essential for the DDB2-mediated lesion recognition sub-pathway, but not for GG-NER initiated through direct lesion recognition by XPC.
Collapse
|
19
|
Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Nat Commun 2020; 11:4868. [PMID: 32985517 PMCID: PMC7522231 DOI: 10.1038/s41467-020-18705-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
DNA damage sensors DDB2 and XPC initiate global genome nucleotide excision repair (NER) to protect DNA from mutagenesis caused by helix-distorting lesions. XPC recognizes helical distortions by binding to unpaired ssDNA opposite DNA lesions. DDB2 binds to UV-induced lesions directly and facilitates efficient recognition by XPC. We show that not only lesion-binding but also timely DDB2 dissociation is required for DNA damage handover to XPC and swift progression of the multistep repair reaction. DNA-binding-induced DDB2 ubiquitylation and ensuing degradation regulate its homeostasis to prevent excessive lesion (re)binding. Additionally, damage handover from DDB2 to XPC coincides with the arrival of the TFIIH complex, which further promotes DDB2 dissociation and formation of a stable XPC-TFIIH damage verification complex. Our results reveal a reciprocal coordination between DNA damage recognition and verification within NER and illustrate that timely repair factor dissociation is vital for correct spatiotemporal control of a multistep repair process.
Collapse
|
20
|
Protection from Ultraviolet Damage and Photocarcinogenesis by Vitamin D Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:227-253. [PMID: 32918222 DOI: 10.1007/978-3-030-46227-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds.
Collapse
|
21
|
Koyen AE, Madden MZ, Park D, Minten EV, Kapoor-Vazirani P, Werner E, Pfister NT, Haji-Seyed-Javadi R, Zhang H, Xu J, Deng N, Duong DM, Pecen TJ, Frazier Z, Nagel ZD, Lazaro JB, Mouw KW, Seyfried NT, Moreno CS, Owonikoko TK, Deng X, Yu DS. EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair. Oncogene 2020; 39:4798-4813. [PMID: 32457468 PMCID: PMC7305988 DOI: 10.1038/s41388-020-1332-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive malignancy with poor outcomes associated with resistance to cisplatin-based chemotherapy. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2), which silences transcription through trimethylation of histone H3 lysine 27 (H3K27me3) and has emerged as an important therapeutic target with inhibitors targeting its methyltransferase activity under clinical investigation. Here, we show that EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair (NER) and govern cisplatin resistance in SCLC. Using a synthetic lethality screen, we identified important regulators of cisplatin resistance in SCLC cells, including EZH2. EZH2 depletion causes cellular cisplatin and UV hypersensitivity in an epistatic manner with DDB1-DDB2. EZH2 complexes with DDB1-DDB2 and promotes DDB2 stability by impairing its ubiquitination independent of methyltransferase activity or PRC2, thereby facilitating DDB2 localization to cyclobutane pyrimidine dimer crosslinks to govern their repair. Furthermore, targeting EZH2 for depletion with DZNep strongly sensitizes SCLC cells and tumors to cisplatin. Our findings reveal a non-catalytic and PRC2-independent function for EZH2 in promoting NER through DDB2 stabilization, suggesting a rationale for targeting EZH2 beyond its catalytic activity for overcoming cisplatin resistance in SCLC.
Collapse
Affiliation(s)
- Allyson E Koyen
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Matthew Z Madden
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erica Werner
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Neil T Pfister
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Hui Zhang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jie Xu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nikita Deng
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Turner J Pecen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zoë Frazier
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
22
|
Rechkunova NI, Maltseva EA, Lavrik OI. Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair. BIOCHEMISTRY (MOSCOW) 2019; 84:1008-1020. [PMID: 31693460 DOI: 10.1134/s0006297919090037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - E A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
23
|
Aberrations in DNA repair pathways in cancer and therapeutic significances. Semin Cancer Biol 2019; 58:29-46. [PMID: 30922960 DOI: 10.1016/j.semcancer.2019.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023]
Abstract
Cancer cells show various types of mutations and aberrant expression in genes involved in DNA repair responses. These alterations induce genome instability and promote carcinogenesis steps and cancer progression processes. These defects in DNA repair have also been considered as suitable targets for cancer therapies. A most effective target so far clinically demonstrated is "homologous recombination repair defect", such as BRCA1/2 mutations, shown to cause synthetic lethality with inhibitors of poly(ADP-ribose) polymerase (PARP), which in turn is involved in DNA repair as well as multiple physiological processes. Different approaches targeting genomic instability, including immune therapy targeting mismatch-repair deficiency, have also recently been demonstrated to be promising strategies. In these DNA repair targeting-strategies, common issues could be how to optimize treatment and suppress/conquer the development of drug resistance. In this article, we review the extending framework of DNA repair response pathways and the potential impact of exploiting those defects on cancer treatments, including chemotherapy, radiation therapy and immune therapy.
Collapse
|
24
|
Sugasawa K. Mechanism and regulation of DNA damage recognition in mammalian nucleotide excision repair. DNA Repair (Amst) 2019; 45:99-138. [DOI: 10.1016/bs.enz.2019.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Li P, Ma Y. Correlation of xeroderma pigmentosum complementation group F expression with gastric cancer and prognosis. Oncol Lett 2018; 16:6971-6976. [PMID: 30546430 PMCID: PMC6256733 DOI: 10.3892/ol.2018.9529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/09/2018] [Indexed: 11/06/2022] Open
Abstract
Correlation of xeroderma pigmentosum complementation group F (XPF) expression with gastric cancer and prognosis was investigated. We randomly selected 76 gastric cancer patients who were admitted to the Second People's Hospital of Dezhou City and received treatment, and detected XPF expression in gastric cancer tissues (observation group) and normal gastric mucosa adjacent to tumor (control group) via immunohistochemistry. Correlation between XPF expression and clinicopathological indicators of gastric cancer was verified via single-factor Chi-square test. Cox's proportional hazard regression model was used in the analysis of influencing factors of patient's prognosis, and Kaplan-Meier was used to analyze the survival rates of XPF-positive and -negative patients. In the observation group, the XPF-positive rate was significantly higher than that in the control group with a statistically significant difference (P<0.05). Single-factor analysis showed that XPF expression was correlated with the family history and Laurén classification (P<0.05). Kaplan-Meier survival analysis revealed that the survival time of XPF-positive patients was shorter than that of XPF-negative patients (P<0.05). Multifactorial analysis using Cox's hazards model suggested that XPF was an independent factor affecting the prognosis of gastric cancer (P<0.05). In conclusion, XPF expression plays an important role in the occurrence and development of gastric cancer, and a high expression of XPF suggests a poor prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Peilin Li
- Department of General Surgery, The Second People's Hospital of Dezhou City, Dezhou, Shandong 253000, P.R. China
| | - Yuanzhong Ma
- Department of Anesthesia, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| |
Collapse
|
26
|
Tan SC. Low penetrance genetic polymorphisms as potential biomarkers for colorectal cancer predisposition. J Gene Med 2018; 20:e3010. [PMID: 29424105 DOI: 10.1002/jgm.3010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is a leading form of cancer in both males and females. Early detection of individuals at risk of colorectal cancer allows proper treatment and management of the disease to be implemented, which can potentially reduce the burden of colorectal cancer incidence, morbidity and mortality. In recent years, the role of genetic susceptibility factors in mediating predisposition to colorectal cancer has become more and more apparent. Identification of high-frequency, low-penetrance genetic polymorphisms associated with the cancer has therefore emerged as an important approach which can potentially aid prediction of colorectal cancer risk. However, the overwhelming amount of genetic epidemiology data generated over the past decades has made it difficult for one to assimilate the information and determine the exact genetic polymorphisms that can potentially be used as biomarkers for colorectal cancer. This review comprehensively consolidates, based primarily on results from meta-analyses, the recent progresses in the search of colorectal cancer-associated genetic polymorphisms, and discusses the possible mechanisms involved.
Collapse
Affiliation(s)
- Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Enhancement of UVB-induced DNA damage repair after a chronic low-dose UVB pre-stimulation. DNA Repair (Amst) 2018; 63:56-62. [PMID: 29448173 DOI: 10.1016/j.dnarep.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/27/2017] [Accepted: 01/19/2018] [Indexed: 01/13/2023]
Abstract
Absorption of solar ultraviolet (UV) radiation by DNA leads to the formation of the highly mutagenic cyclobutane pyrimidine dimer (CPD). The mutagenicity of CPD is caused, in part, by the fact that their recognition and repair by the nucleotide excision repair (NER) pathway is challenging and slow. It has been previously shown that a pre-stimulation with genotoxic agents improve NER efficiency of CPD, indicating a potential adaptive response of this repair pathway. We have pre-treated human dermal fibroblasts with repeated subletal low doses of UVB (chronic low-dose of UVB; CLUV) to determine whether it could enhance NER capacity to repair CPD. Our results show that CLUV pre-treatment greatly enhances CPD repair but have little effect on the repair of another UV-induced bypirimidine photoproduct, the pyrimidine (6-4) pyrimidone photoproducts (6-4 PP). We have determined that the CLUV treatment activates p53 and we found an increase of DDB2 and XPC gene expression. This is consistent with an increasing level of NER recognition proteins, DDB2 and XPC, we found concentrated at the chromatin. This study represents the first demonstration that chronic UVB exposure can stimulate NER pathway. Altogether, these results shed light on the potential adaptability of the NER by chronic UVB irradiation and the mechanisms involved.
Collapse
|
28
|
Krasikova YS, Rechkunova NI, Maltseva EA, Lavrik OI. RPA and XPA interaction with DNA structures mimicking intermediates of the late stages in nucleotide excision repair. PLoS One 2018; 13:e0190782. [PMID: 29320546 PMCID: PMC5761895 DOI: 10.1371/journal.pone.0190782] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/20/2017] [Indexed: 12/26/2022] Open
Abstract
Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.
Collapse
Affiliation(s)
| | - Nadejda I. Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | | | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
29
|
Córdoba-Cañero D, Cognat V, Ariza RR, Roldán Arjona T, Molinier J. Dual control of ROS1-mediated active DNA demethylation by DNA damage-binding protein 2 (DDB2). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1170-1181. [PMID: 29078035 DOI: 10.1111/tpj.13753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
By controlling gene expression, DNA methylation contributes to key regulatory processes during plant development. Genomic methylation patterns are dynamic and must be properly maintained and/or re-established upon DNA replication and active removal, and therefore require sophisticated control mechanisms. Here we identify direct interplay between the DNA repair factor DNA damage-binding protein 2 (DDB2) and the ROS1-mediated active DNA demethylation pathway in Arabidopsis thaliana. We show that DDB2 forms a complex with ROS1 and AGO4 and that they act at the ROS1 locus to modulate levels of DNA methylation and therefore ROS1 expression. We found that DDB2 represses enzymatic activity of ROS1. DNA demethylation intermediates generated by ROS1 are processed by the DNA 3'-phosphatase ZDP and the apurinic/apyrimidinic endonuclease APE1L, and we also show that DDB2 interacts with both enzymes and stimulates their activities. Taken together, our results indicate that DDB2 acts as a critical regulator of ROS1-mediated active DNA demethylation.
Collapse
Affiliation(s)
- Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Av. Menéndez Pidal, 14004, Córdoba, Spain
- University of Córdoba, Campus de Rabanales, Edif. C5, 14071, Córdoba, Spain
- Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Av. Menéndez Pidal, 14004, Córdoba, Spain
- University of Córdoba, Campus de Rabanales, Edif. C5, 14071, Córdoba, Spain
- Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Teresa Roldán Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Av. Menéndez Pidal, 14004, Córdoba, Spain
- University of Córdoba, Campus de Rabanales, Edif. C5, 14071, Córdoba, Spain
- Reina Sofia University Hospital, Av. Menéndez Pidal, 14004, Córdoba, Spain
| | - Jean Molinier
- Institut de Biologie Moléculaire des Plantes, 12 Rue du Général Zimmer, 67000, Strasbourg, France
| |
Collapse
|
30
|
Nakamura T, Murakami K, Tada H, Uehara Y, Nogami J, Maehara K, Ohkawa Y, Saitoh H, Nishitani H, Ono T, Nishi R, Yokoi M, Sakai W, Sugasawa K. Thymine DNA glycosylase modulates DNA damage response and gene expression by base excision repair-dependent and independent mechanisms. Genes Cells 2017; 22:392-405. [PMID: 28318075 DOI: 10.1111/gtc.12481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/01/2017] [Indexed: 02/04/2023]
Abstract
Thymine DNA glycosylase (TDG) is a base excision repair (BER) enzyme, which is implicated in correction of deamination-induced DNA mismatches, the DNA demethylation process and regulation of gene expression. Because of these pivotal roles associated, it is crucial to elucidate how the TDG functions are appropriately regulated in vivo. Here, we present evidence that the TDG protein undergoes degradation upon various types of DNA damage, including ultraviolet light (UV). The UV-induced degradation of TDG was dependent on proficiency in nucleotide excision repair and on CRL4CDT2 -mediated ubiquitination that requires a physical interaction between TDG and DNA polymerase clamp PCNA. Using the Tdg-deficient mouse embryonic fibroblasts, we found that ectopic expression of TDG compromised cellular survival after UV irradiation and repair of UV-induced DNA lesions. These negative effects on cellular UV responses were alleviated by introducing mutations in TDG that impaired its BER function. The expression of TDG induced a large-scale alteration in the gene expression profile independently of its DNA glycosylase activity, whereas a subset of genes was affected by the catalytic activity of TDG. Our results indicate the presence of BER-dependent and BER-independent functions of TDG, which are involved in regulation of cellular DNA damage responses and gene expression patterns.
Collapse
Affiliation(s)
- Tomohumi Nakamura
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Kouichi Murakami
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruto Tada
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshihiko Uehara
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Jumpei Nogami
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Kazumitsu Maehara
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Hisato Saitoh
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, 678-1297, Japan
| | - Tetsuya Ono
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryotaro Nishi
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Masayuki Yokoi
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Wataru Sakai
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
31
|
Kakumu E, Nakanishi S, Shiratori HM, Kato A, Kobayashi W, Machida S, Yasuda T, Adachi N, Saito N, Ikura T, Kurumizaka H, Kimura H, Yokoi M, Sakai W, Sugasawa K. Xeroderma pigmentosum group C protein interacts with histones: regulation by acetylated states of histone H3. Genes Cells 2017; 22:310-327. [PMID: 28233440 DOI: 10.1111/gtc.12479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
In the mammalian global genome nucleotide excision repair pathway, two damage recognition factors, XPC and UV-DDB, play pivotal roles in the initiation of the repair reaction. However, the molecular mechanisms underlying regulation of the lesion recognition process in the context of chromatin structures remain to be understood. Here, we show evidence that damage recognition factors tend to associate with chromatin regions devoid of certain types of acetylated histones. Treatment of cells with histone deacetylase inhibitors retarded recruitment of XPC to sites of UV-induced DNA damage and the subsequent repair process. Biochemical studies showed novel multifaceted interactions of XPC with histone H3, which were profoundly impaired by deletion of the N-terminal tail of histone H3. In addition, histone H1 also interacted with XPC. Importantly, acetylation of histone H3 markedly attenuated the interaction with XPC in vitro, and local UV irradiation of cells decreased the level of H3K27ac in the damaged areas. Our results suggest that histone deacetylation plays a significant role in the process of DNA damage recognition for nucleotide excision repair and that the localization and functions of XPC can be regulated by acetylated states of histones.
Collapse
Affiliation(s)
- Erina Kakumu
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Seiya Nakanishi
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hiromi M Shiratori
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Akari Kato
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Wataru Kobayashi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Shinichi Machida
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Takeshi Yasuda
- National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Naoko Adachi
- Division of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoaki Saito
- Division of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Tsuyoshi Ikura
- Department of Mutagenesis, Radiation Biology Center, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masayuki Yokoi
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Wataru Sakai
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Kaoru Sugasawa
- Division of Genomic Functions and Dynamics, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.,Department of Biology, Faculty of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
32
|
Holcomb N, Goswami M, Han SG, Scott T, D'Orazio J, Orren DK, Gairola CG, Mellon I. Inorganic arsenic inhibits the nucleotide excision repair pathway and reduces the expression of XPC. DNA Repair (Amst) 2017; 52:70-80. [PMID: 28237621 DOI: 10.1016/j.dnarep.2017.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/11/2017] [Accepted: 02/12/2017] [Indexed: 11/17/2022]
Abstract
Chronic exposure to arsenic, most often through contaminated drinking water, has been linked to several types of cancer in humans, including skin and lung cancer. However, the mechanisms underlying its role in causing cancer are not well understood. There is evidence that exposure to arsenic can enhance the carcinogenicity of UV light in inducing skin cancers and may enhance the carcinogenicity of tobacco smoke in inducing lung cancers. The nucleotide excision repair (NER) pathway removes different types of DNA damage including those produced by UV light and components of tobacco smoke. The aim of the present study was to investigate the effect of sodium arsenite on the NER pathway in human lung fibroblasts (IMR-90 cells) and primary mouse keratinocytes. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts (6-4 PP) and cyclobutane pyrimidine dimers (CPDs). We find a concentration-dependent inhibition of the removal of 6-4 PPs and CPDs in both cell types treated with arsenite. Treatment of both cell types with arsenite resulted in a significant reduction in the abundance of XPC, a protein that is critical for DNA damage recognition in NER. The abundance of RNA expressed from several key NER genes was also significantly reduced by treatment of IMR-90 cells with arsenite. Finally, treatment of IMR-90 cells with MG-132 abrogated the reduction in XPC protein, suggesting an involvement of the proteasome in the reduction of XPC protein produced by treatment of cells with arsenic. The inhibition of NER by arsenic may reflect one mechanism underlying the role of arsenic exposure in enhancing cigarette smoke-induced lung carcinogenesis and UV light-induced skin cancer, and it may provide some insights into the emergence of arsenic trioxide as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Nathaniel Holcomb
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Mamta Goswami
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Tim Scott
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - John D'Orazio
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - David K Orren
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - C Gary Gairola
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Isabel Mellon
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
33
|
Chitale S, Richly H. Timing of DNA lesion recognition: Ubiquitin signaling in the NER pathway. Cell Cycle 2016; 16:163-171. [PMID: 27929739 DOI: 10.1080/15384101.2016.1261227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Damaged DNA is repaired by specialized repair factors that are recruited in a well-orchestrated manner to the damage site. The DNA damage response at UV inflicted DNA lesions is accompanied by posttranslational modifications of DNA repair factors and the chromatin environment sourrounding the lesion. In particular, mono- and poly-ubiquitylation events are an integral part of the DNA damage signaling. Whereas ubiquitin signaling at DNA doublestrand breaks has been subject to intensive studies comparatively little is known about the intricacies of ubiquitylation events occurring during nucleotide excision repair (NER), the major pathway to remove bulky helix lesions. Both, the global genomic (GG-NER) and the transcription-coupled (TC-NER) branches of NER are subject to ubiquitylation and deubiquitylation processes.Here we summarize our current knowledge of the ubiquitylation network that drives DNA repair in the NER pathway and we discuss the crosstalk of ubiquitin signaling with other prominent post-translational modfications that might be essential to time the DNA damage recognition step.
Collapse
Affiliation(s)
- Shalaka Chitale
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany.,b Faculty of Biology, Johannes Gutenberg University , Mainz , Germany
| | - Holger Richly
- a Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB) , Mainz , Germany
| |
Collapse
|
34
|
Schalk C, Molinier J. Global Genome Repair factors controls DNA methylation patterns in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2016; 11:e1253648. [PMID: 27813706 PMCID: PMC5225932 DOI: 10.1080/15592324.2016.1253648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
As obligate photosynthetic organisms plants are particularly exposed to the damaging effects of excess light and ultraviolet wavelengths, which can impact genome and epigenome dynamics by inducing DNA sequence and chromatin alterations. DNA DAMAGE-BINDING PROTEIN 2 (DDB2) is the main factor involved in the recognition of UV-induced DNA lesions during Global Genome Repair (GGR) in mammals and in plants. 1 In a recent study we reported that, in Arabidopsis, loss of DDB2 function alters DNA methylation patterns at many repeat loci and protein coding genes. We demonstrated that DDB2 acts in a complex with ARGONAUTE 4 (AGO4) to control de novo DNA methylation via the modulation of the local abundance of 24-nt small interfering RNAs (siRNAs). In addition, we found that DDB2 negatively regulates the expression of REPRESSOR OF SILENCING 1 (ROS1), a primary factor required for active DNA demethylation. Here we report that depletions of cognate GGR factors also lead to alterations of DNA methylation profiles at particular loci. Taken together, these findings reveal an interplay between GGR factors and DNA methylation patterns.
Collapse
Affiliation(s)
- Catherine Schalk
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, Strasbourg, France
| | - Jean Molinier
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, Strasbourg, France
| |
Collapse
|
35
|
Zhu Q, Wani AA. Nucleotide Excision Repair: Finely Tuned Molecular Orchestra of Early Pre-incision Events. Photochem Photobiol 2016; 93:166-177. [PMID: 27696486 DOI: 10.1111/php.12647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022]
Abstract
Nucleotide excision repair (NER) eliminates a broad variety of helix-distorting DNA lesions that can otherwise cause genomic instability. NER comprises two distinct subpathways: global genomic NER (GG-NER) operating throughout the genome, and transcription-coupled NER (TC-NER) preferentially removing DNA lesions from transcribing DNA strands of transcriptionally active genes. Several NER factors undergo post-translational modifications, including ubiquitination, occurring swiftly and reversibly at DNA lesion sites. Accumulating evidence indicates that ubiquitination not only orchestrates the spatio-temporal recruitment of key protein factors to DNA lesion sites but also the productive assembly of NER pre-incision complex. This review will be restricted to the latest conceptual understanding of ubiquitin-mediated regulation of initial damage sensors of NER, that is DDB, XPC, RNAPII and CSB. We project hypothetical NER models in which ubiquitin-specific segregase, valosin-containing protein (VCP)/p97, plays an essential role in timely extraction of the congregated DNA damage sensors to functionally facilitate the DNA lesion elimination from the genome.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, OH.,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH
| |
Collapse
|
36
|
Holcomb N, Goswami M, Han SG, Clark S, Orren DK, Gairola CG, Mellon I. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway. PLoS One 2016; 11:e0158858. [PMID: 27391141 PMCID: PMC4938567 DOI: 10.1371/journal.pone.0158858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/19/2022] Open
Abstract
Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6–4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6–4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.
Collapse
Affiliation(s)
- Nathaniel Holcomb
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Mamta Goswami
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sung Gu Han
- Toxicology Laboratory, Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Samuel Clark
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - David K. Orren
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - C. Gary Gairola
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Isabel Mellon
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
37
|
Rüthemann P, Balbo Pogliano C, Naegeli H. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. Front Genet 2016; 7:68. [PMID: 27200078 PMCID: PMC4848295 DOI: 10.3389/fgene.2016.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022] Open
Abstract
Global-genome nucleotide excision repair (GG-NER) prevents genome instability by excising a wide range of different DNA base adducts and crosslinks induced by chemical carcinogens, ultraviolet (UV) light or intracellular side products of metabolism. As a versatile damage sensor, xeroderma pigmentosum group C (XPC) protein initiates this generic defense reaction by locating the damage and recruiting the subunits of a large lesion demarcation complex that, in turn, triggers the excision of aberrant DNA by endonucleases. In the very special case of a DNA repair response to UV radiation, the function of this XPC initiator is tightly controlled by the dual action of cullin-type CRL4(DDB2) and sumo-targeted RNF111 ubiquitin ligases. This twofold protein ubiquitination system promotes GG-NER reactions by spatially and temporally regulating the interaction of XPC protein with damaged DNA across the nucleosome landscape of chromatin. In the absence of either CRL4(DDB2) or RNF111, the DNA excision repair of UV lesions is inefficient, indicating that these two ubiquitin ligases play a critical role in mitigating the adverse biological effects of UV light in the exposed skin.
Collapse
Affiliation(s)
- Peter Rüthemann
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich Zurich, Switzerland
| | - Chiara Balbo Pogliano
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich Zurich, Switzerland
| |
Collapse
|
38
|
Boswell W, Boswell M, Titus J, Savage M, Lu Y, Shen J, Walter RB. Sex-specific molecular genetic response to UVB exposure in Xiphophorus maculatus skin. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:76-85. [PMID: 26256120 PMCID: PMC4662892 DOI: 10.1016/j.cbpc.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
In both Xiphophorus fishes and humans, males are reported to have a higher incidence of melanoma than females. To better understand sex-specific differences in the molecular genetic response to UVB, we performed RNA-Seq experiments in skin of female and male Xiphophorus maculatus Jp 163 B following UVB doses of 8 or 16kJ/m(2) exposure. Male X. maculatus differentially express a significantly larger number of transcripts following exposure to 16kJ/m(2) UVB (1293 genes) compared to 8kJ/m(2) UVB (324 genes). Female skin showed differential gene expression in a larger number of transcripts following 8kJ/m(2) UVB (765) than did males; however, both females and males showed similar numbers of differentially expressed genes at 16kJ/m(2) UVB (1167 and1293, respectively). Although most modulated transcripts after UVB exposure represented the same dominant pathways in both females and males (e.g., DNA repair, circadian rhythm, and fatty acid biosynthesis), we identified genes in several pathways that exhibited opposite modulation in female vs. male skin (e.g., synaptic development, cell differentiation, wound healing, and glucose metabolism). The oppositely modulated genes appear related through uncoupling protein 3 (UCP3) that is involved with the regulation of fatty acid oxidation and serves to balance glucose and lipid metabolism. Overall, these results identify gender-specific differences in UVB-induced genetic profiles in the skin of females and males and show female and male X. maculatus respond to UVB differently through pathways involved in reactive oxygen species, wound healing, and energy homeostasis.
Collapse
Affiliation(s)
- William Boswell
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Mikki Boswell
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - James Titus
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Markita Savage
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Yuan Lu
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ronald B Walter
- Department of Chemistry and Biochemistry, Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| |
Collapse
|
39
|
Abstract
XPC has long been considered instrumental in DNA damage recognition during global genome nucleotide excision repair (GG-NER). While this recognition is crucial for organismal health and survival, as XPC's recognition of lesions stimulates global genomic repair, more recent lines of research have uncovered many new non-canonical pathways in which XPC plays a role, such as base excision repair (BER), chromatin remodeling, cell signaling, proteolytic degradation, and cellular viability. Since the first discovery of its yeast homolog, Rad4, the involvement of XPC in cellular regulation has expanded considerably. Indeed, our understanding appears to barely scratch the surface of the incredible potential influence of XPC on maintaining proper cellular function. Here, we first review the canonical role of XPC in lesion recognition and then explore the new world of XPC function.
Collapse
|
40
|
Hannah J, Zhou P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 2015; 573:33-45. [PMID: 26344709 DOI: 10.1016/j.gene.2015.08.064] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 01/29/2023]
Abstract
The cullin 4 subfamily of genes includes CUL4A and CUL4B, which share a mostly identical amino acid sequence aside from the elongated N-terminal region in CUL4B. Both act as scaffolding proteins for modular cullin RING ligase 4 (CRL4) complexes which promote the ubiquitination of a variety of substrates. CRL4 function is vital to cells as loss of both genes or their shared substrate adaptor protein DDB1 halts proliferation and eventually leads to cell death. Due to their high structural similarity, CUL4A and CUL4B share a substantial overlap in function. However, in some cases, differences in subcellular localization, spatiotemporal expression patterns and stress-inducibility preclude functional compensation. In this review, we highlight the most essential functions of the CUL4 genes in: DNA repair and replication, chromatin-remodeling, cell cycle regulation, embryogenesis, hematopoiesis and spermatogenesis. CUL4 genes are also clinically relevant as dysregulation can contribute to the onset of cancer and CRL4 complexes are often hijacked by certain viruses to promote viral replication and survival. Also, mutations in CUL4B have been implicated in a subset of patients suffering from syndromic X-linked intellectual disability (AKA mental retardation). Interestingly, the antitumor effects of immunomodulatory drugs are caused by their binding to the CRL4CRBN complex and re-directing the E3 ligase towards the Ikaros transcription factors IKZF1 and IKZF3. Because of their influence over key cellular functions and relevance to human disease, CRL4s are considered promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey Hannah
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| | - Pengbo Zhou
- Department of Pathology, Weill Cornell Medical College, 1300 York Ave. NY, NY 10065, United States.
| |
Collapse
|
41
|
Okuda M, Kinoshita M, Kakumu E, Sugasawa K, Nishimura Y. Structural Insight into the Mechanism of TFIIH Recognition by the Acidic String of the Nucleotide Excision Repair Factor XPC. Structure 2015; 23:1827-1837. [PMID: 26278177 DOI: 10.1016/j.str.2015.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022]
Abstract
In global genome repair (GGR), XPC detects damaged nucleotides and recruits TFIIH complex. The small acidic region of XPC binds to the pleckstrin homology (PH) domain of TFIIH subunit p62; however, the recognition mechanism remains elusive. Here, we use nuclear magnetic resonance to present the tertiary structure of XPC bound to the PH domain. The XPC acidic region forms a long string stabilized by insertion of Trp133 and Val136 into two separate hollows of the PH domain, coupled with extensive electrostatic contacts. Analysis of several XPC mutants revealed that particularly Trp133 is essential for binding to the PH domain. In cell lines stably expressing mutant XPC, alanine substitution at Trp133 or Trp133/Val136 compromised UV resistance, recruitment of TFIIH to DNA damage, and removal of UV-induced photoproducts from genomic DNA. These findings show how TFIIH complex is recruited by XPC to damaged DNA, advancing our understanding of the early stage of GGR.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Minoru Kinoshita
- Biosignal Research Center, Organization of Advanced Science and Technology, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan; Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Erina Kakumu
- Biosignal Research Center, Organization of Advanced Science and Technology, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan; Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, Organization of Advanced Science and Technology, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan; Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
42
|
Akita M, Tak YS, Shimura T, Matsumoto S, Okuda-Shimizu Y, Shimizu Y, Nishi R, Saitoh H, Iwai S, Mori T, Ikura T, Sakai W, Hanaoka F, Sugasawa K. SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair. Sci Rep 2015; 5:10984. [PMID: 26042670 PMCID: PMC4455304 DOI: 10.1038/srep10984] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
The xeroderma pigmentosum group C (XPC) protein complex is a key factor that detects DNA damage and initiates nucleotide excision repair (NER) in mammalian cells. Although biochemical and structural studies have elucidated the interaction of XPC with damaged DNA, the mechanism of its regulation in vivo remains to be understood in more details. Here, we show that the XPC protein undergoes modification by small ubiquitin-related modifier (SUMO) proteins and the lack of this modification compromises the repair of UV-induced DNA photolesions. In the absence of SUMOylation, XPC is normally recruited to the sites with photolesions, but then immobilized profoundly by the UV-damaged DNA-binding protein (UV-DDB) complex. Since the absence of UV-DDB alleviates the NER defect caused by impaired SUMOylation of XPC, we propose that this modification is critical for functional interactions of XPC with UV-DDB, which facilitate the efficient damage handover between the two damage recognition factors and subsequent initiation of NER.
Collapse
Affiliation(s)
- Masaki Akita
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Yon-Soo Tak
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Tsutomu Shimura
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Syota Matsumoto
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | | | | | - Ryotaro Nishi
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Cellular Physiology Laboratory, RIKEN, Wako 351-0198, Japan
| | - Hisato Saitoh
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Toshio Mori
- Radioisotope Research Center, Nara Medical University, Kashihara 634-8521, Japan
| | - Tsuyoshi Ikura
- Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Wataru Sakai
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Fumio Hanaoka
- 1] Cellular Physiology Laboratory, RIKEN, Wako 351-0198, Japan [2] Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Kaoru Sugasawa
- 1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, Japan [2] Graduate School of Science, Kobe University, Kobe 657-8501, Japan [3] Cellular Physiology Laboratory, RIKEN, Wako 351-0198, Japan
| |
Collapse
|