1
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
2
|
Thongchol J, Lill Z, Hoover Z, Zhang J. Recent Advances in Structural Studies of Single-Stranded RNA Bacteriophages. Viruses 2023; 15:1985. [PMID: 37896763 PMCID: PMC10610835 DOI: 10.3390/v15101985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Positive-sense single-stranded RNA (ssRNA) bacteriophages (phages) were first isolated six decades ago. Since then, extensive research has been conducted on these ssRNA phages, particularly those infecting E. coli. With small genomes of typically 3-4 kb that usually encode four essential proteins, ssRNA phages employ a straightforward infectious cycle involving host adsorption, genome entry, genome replication, phage assembly, and host lysis. Recent advancements in metagenomics and transcriptomics have led to the identification of ~65,000 sequences from ssRNA phages, expanding our understanding of their prevalence and potential hosts. This review article illuminates significant investigations into ssRNA phages, with a focal point on their structural aspects, providing insights into the various stages of their infectious cycle.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (J.T.); (Z.L.); (Z.H.)
| |
Collapse
|
3
|
Chang JY, Gorzelnik KV, Thongchol J, Zhang J. Structural Assembly of Qβ Virion and Its Diverse Forms of Virus-like Particles. Viruses 2022; 14:225. [PMID: 35215818 PMCID: PMC8880383 DOI: 10.3390/v14020225] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
The coat proteins (CPs) of single-stranded RNA bacteriophages (ssRNA phages) directly assemble around the genomic RNA (gRNA) to form a near-icosahedral capsid with a single maturation protein (Mat) that binds the gRNA and interacts with the retractile pilus during infection of the host. Understanding the assembly of ssRNA phages is essential for their use in biotechnology, such as RNA protection and delivery. Here, we present the complete gRNA model of the ssRNA phage Qβ, revealing that the 3' untranslated region binds to the Mat and the 4127 nucleotides fold domain-by-domain, and is connected through long-range RNA-RNA interactions, such as kissing loops. Thirty-three operator-like RNA stem-loops are located and primarily interact with the asymmetric A/B CP-dimers, suggesting a pathway for the assembly of the virions. Additionally, we have discovered various forms of the virus-like particles (VLPs), including the canonical T = 3 icosahedral, larger T = 4 icosahedral, prolate, oblate forms, and a small prolate form elongated along the 3-fold axis. These particles are all produced during a normal infection, as well as when overexpressing the CPs. When overexpressing the shorter RNA fragments encoding only the CPs, we observed an increased percentage of the smaller VLPs, which may be sufficient to encapsidate a shorter RNA.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; (J.-Y.C.); (K.V.G.); (J.T.)
| |
Collapse
|
4
|
Gorzelnik KV, Zhang J. Cryo-EM reveals infection steps of single-stranded RNA bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:79-86. [PMID: 32841651 DOI: 10.1016/j.pbiomolbio.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Single-stranded RNA bacteriophages (ssRNA phages) are small spherical RNA viruses that infect bacteria with retractile pili. The single positive-sense genomic RNA of ssRNA phages, which is protected by a capsid shell, is delivered into the host via the retraction of the host pili. Structures involved in ssRNA phage infection cycle are essential for understanding the underlying mechanisms that can be used to engineer them for therapeutic applications. This review summarizes the recent breakthroughs in high-resolution structural studies of two ssRNA phages, MS2 and Qβ, and their interaction with the host, E. coli, by cryo-electron microscopy (cryo-EM). These studies revealed new cryo-EM structures, which provide insights into how MS2 and Qβ package the RNA, lyse E. coli, and adsorb to the receptor F-pili, responsible for conjugation. Methodologies described here can be expanded to study other ssRNA phages that target pathogenic bacteria.
Collapse
Affiliation(s)
- Karl Victor Gorzelnik
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Lund PE, Chatterjee S, Daher M, Walter NG. Protein unties the pseudoknot: S1-mediated unfolding of RNA higher order structure. Nucleic Acids Res 2020; 48:2107-2125. [PMID: 31832686 PMCID: PMC7038950 DOI: 10.1093/nar/gkz1166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Ribosomal protein S1 plays important roles in the translation initiation step of many Escherichia coli mRNAs, particularly those with weak Shine-Dalgarno sequences or structured 5′ UTRs, in addition to a variety of cellular processes beyond the ribosome. In all cases, the RNA-binding activity of S1 is a central feature of its function. While sequence determinants of S1 affinity and many elements of the interactions of S1 with simple secondary structures are known, mechanistic details of the protein's interactions with RNAs of more complex secondary and tertiary structure are less understood. Here, we investigate the interaction of S1 with the well-characterized H-type pseudoknot of a class-I translational preQ1 riboswitch as a highly structured RNA model whose conformation and structural dynamics can be tuned by the addition of ligands of varying binding affinity, particularly preQ1, guanine, and 2,6-diaminopurine. Combining biochemical and single molecule fluorescence approaches, we show that S1 preferentially interacts with the less folded form of the pseudoknot and promotes a dynamic, partially unfolded conformation. The ability of S1 to unfold the RNA is inversely correlated with the structural stability of the pseudoknot. These mechanistic insights delineate the scope and limitations of S1-chaperoned unfolding of structured RNAs.
Collapse
Affiliation(s)
- Paul E Lund
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Surajit Chatterjee
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - May Daher
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.,Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. Expansion of known ssRNA phage genomes: From tens to over a thousand. SCIENCE ADVANCES 2020; 6:eaay5981. [PMID: 32083183 PMCID: PMC7007245 DOI: 10.1126/sciadv.aay5981] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 05/27/2023]
Abstract
The first sequenced genome was that of the 3569-nucleotide single-stranded RNA (ssRNA) bacteriophage MS2. Despite the recent accumulation of vast amounts of DNA and RNA sequence data, only 12 representative ssRNA phage genome sequences are available from the NCBI Genome database (June 2019). The difficulty in detecting RNA phages in metagenomic datasets raises questions as to their abundance, taxonomic structure, and ecological importance. In this study, we iteratively applied profile hidden Markov models to detect conserved ssRNA phage proteins in 82 publicly available metatranscriptomic datasets generated from activated sludge and aquatic environments. We identified 15,611 nonredundant ssRNA phage sequences, including 1015 near-complete genomes. This expansion in the number of known sequences enabled us to complete a phylogenetic assessment of both sequences identified in this study and known ssRNA phage genomes. Our expansion of these viruses from two environments suggests that they have been overlooked within microbiome studies.
Collapse
Affiliation(s)
- J. Callanan
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
| | - S. R. Stockdale
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - A. Shkoporov
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - L. A. Draper
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - R. P. Ross
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
- Teagasc Agricultural and Food Development Authority, Moorepark, Fermoy, County Cork, Ireland
| | - C. Hill
- APC Microbiome Ireland, University College Cork, County Cork, Ireland
- School of Microbiology, University College Cork, County Cork, Ireland
| |
Collapse
|
7
|
Mizuuchi R, Usui K, Ichihashi N. Structural transition of replicable RNAs during in vitro evolution with Qβ replicase. RNA (NEW YORK, N.Y.) 2020; 26:83-90. [PMID: 31690585 PMCID: PMC6913131 DOI: 10.1261/rna.073106.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Single-stranded RNAs (ssRNAs) are utilized as genomes in some viruses and also in experimental models of ancient life-forms, owing to their simplicity. One of the largest problems for ssRNA replication is the formation of double-stranded RNA (dsRNA), a dead-end product for ssRNA replication. A possible strategy to avoid dsRNA formation is to create strong intramolecular secondary structures of ssRNA. To design ssRNAs that efficiently replicate by Qβ replicase with minimum dsRNA formation, we previously proposed the "fewer unpaired GC rule." According to this rule, ssRNAs that have fewer unpaired G and C bases in the secondary structure should efficiently replicate with less dsRNA formation. However, the validity of this rule still needs to be examined, especially for longer ssRNAs. Here, we analyze nine long ssRNAs that successively appeared during an in vitro evolution of replicable ssRNA by Qβ replicase and examine whether this rule can explain the structural transitions of the RNAs. We found that these ssRNAs improved their template abilities step-by-step with decreasing dsRNA formation as mutations accumulated. We then examine the secondary structures of all the RNAs by a chemical modification method. The analysis of the structures revealed that the probabilities of unpaired G and C bases tended to decrease gradually in the course of evolution. The decreases were caused by the local structural changes around the mutation sites in most of the cases. These results support the validity of the "fewer unpaired GC rule" to efficiently design replicable ssRNAs by Qβ replicase, useful for more complex ssRNA replication systems.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Kimihito Usui
- Japan Science and Technology Agency, Suita, Osaka, 565-0871, Japan
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
8
|
|
9
|
Weise LI, Heymann M, Mayr V, Mutschler H. Cell-free expression of RNA encoded genes using MS2 replicase. Nucleic Acids Res 2019; 47:10956-10967. [PMID: 31566241 PMCID: PMC6847885 DOI: 10.1093/nar/gkz817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
RNA replicases catalyse transcription and replication of viral RNA genomes. Of particular interest for in vitro studies are phage replicases due to their small number of host factors required for activity and their ability to initiate replication in the absence of any primers. However, the requirements for template recognition by most phage replicases are still only poorly understood. Here, we show that the active replicase of the archetypical RNA phage MS2 can be produced in a recombinant cell-free expression system. We find that the 3' terminal fusion of antisense RNAs with a domain derived from the reverse complement of the wild type MS2 genome generates efficient templates for transcription by the MS2 replicase. The new system enables DNA-independent gene expression both in batch reactions and in microcompartments. Finally, we demonstrate that MS2-based RNA-dependent transcription-translation reactions can be used to control DNA-dependent gene expression by encoding a viral DNA-dependent RNA polymerase on a MS2 RNA template. Our study sheds light on the template requirements of the MS2 replicase and paves the way for new in vitro applications including the design of genetic circuits combining both DNA- and RNA-encoded systems.
Collapse
Affiliation(s)
- Laura I Weise
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Michael Heymann
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Viktoria Mayr
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Hannes Mutschler
- Biomimetic Systems, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
10
|
Gilman MSA, Liu C, Fung A, Behera I, Jordan P, Rigaux P, Ysebaert N, Tcherniuk S, Sourimant J, Eléouët JF, Sutto-Ortiz P, Decroly E, Roymans D, Jin Z, McLellan JS. Structure of the Respiratory Syncytial Virus Polymerase Complex. Cell 2019; 179:193-204.e14. [PMID: 31495574 PMCID: PMC7111336 DOI: 10.1016/j.cell.2019.08.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.
Collapse
Affiliation(s)
- Morgan S A Gilman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Cheng Liu
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Amy Fung
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Ishani Behera
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Paul Jordan
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Nina Ysebaert
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Julien Sourimant
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Zhinan Jin
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Machulin AV, Deryusheva EI, Selivanova OM, Galzitskaya OV. The number of domains in the ribosomal protein S1 as a hallmark of the phylogenetic grouping of bacteria. PLoS One 2019; 14:e0221370. [PMID: 31437214 PMCID: PMC6705787 DOI: 10.1371/journal.pone.0221370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 01/18/2023] Open
Abstract
The family of ribosomal proteins S1 contains about 20% of all bacterial proteins including the S1 domain. An important feature of this family is multiple copies of structural domains in bacteria, the number of which changes in a strictly limited range from one to six. In this study, the automated exhaustive analysis of 1453 sequences of S1 allowed us to demonstrate that the number of domains in S1 is a distinctive characteristic for phylogenetic bacterial grouping in main phyla. 1453 sequences of S1 were identified in 25 out of 30 different phyla according to the List of Prokaryotic Names with Standing in Nomenclature. About 62% of all records are identified as six-domain S1 proteins, which belong to phylum Proteobacteria. Four-domain S1 are identified mainly in proteins from phylum Firmicutes and Actinobacteria. Records belonging to these phyla are 33% of all records. The least represented two-domain S1 are about 0.6% of all records. The third and fourth domains for the most representative four- and six-domain S1 have the highest percentage of identity with the S1 domain from polynucleotide phosphorylase and S1 domains from one-domain S1. In addition, for these groups, the central part of S1 (the third domain) is more conserved than the terminal domains.
Collapse
Affiliation(s)
- Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
12
|
Ding K, Celma CC, Zhang X, Chang T, Shen W, Atanasov I, Roy P, Zhou ZH. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat Commun 2019; 10:2216. [PMID: 31101900 PMCID: PMC6525196 DOI: 10.1038/s41467-019-10236-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 01/11/2023] Open
Abstract
Transcribing and replicating a double-stranded genome require protein modules to unwind, transcribe/replicate nucleic acid substrates, and release products. Here we present in situ cryo-electron microscopy structures of rotavirus dsRNA-dependent RNA polymerase (RdRp) in two states pertaining to transcription. In addition to the previously discovered universal "hand-shaped" polymerase core domain shared by DNA polymerases and telomerases, our results show the function of N- and C-terminal domains of RdRp: the former opens the genome duplex to isolate the template strand; the latter splits the emerging template-transcript hybrid, guides genome reannealing to form a transcription bubble, and opens a capsid shell protein (CSP) to release the transcript. These two "helicase" domains also extensively interact with CSP, which has a switchable N-terminal helix that, like cellular transcriptional factors, either inhibits or promotes RdRp activity. The in situ structures of RdRp, CSP, and RNA in action inform mechanisms of not only transcription, but also replication.
Collapse
Affiliation(s)
- Ke Ding
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Cristina C Celma
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Xing Zhang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Thomas Chang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Wesley Shen
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Ivo Atanasov
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Z Hong Zhou
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Crowley EL, Rafferty SP. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr Purif 2019; 157:70-85. [PMID: 30708035 DOI: 10.1016/j.pep.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.
Collapse
Affiliation(s)
- Erika L Crowley
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| | - Steven P Rafferty
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
14
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
15
|
Chetverin AB. Thirty Years of Studies of Qβ Replicase: What Have We Learned and What Is Yet to Be Learned? BIOCHEMISTRY (MOSCOW) 2018; 83:S19-S32. [DOI: 10.1134/s0006297918140031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses 2018; 10:v10020076. [PMID: 29439438 PMCID: PMC5850383 DOI: 10.3390/v10020076] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
RNA dependent RNA polymerase (RdRp) is one of the most versatile enzymes of RNA viruses that is indispensable for replicating the genome as well as for carrying out transcription. The core structural features of RdRps are conserved, despite the divergence in their sequences. The structure of RdRp resembles that of a cupped right hand and consists of fingers, palm and thumb subdomains. The catalysis involves the participation of conserved aspartates and divalent metal ions. Complexes of RdRps with substrates, inhibitors and metal ions provide a comprehensive view of their functional mechanism and offer valuable insights regarding the development of antivirals. In this article, we provide an overview of the structural aspects of RdRps and their complexes from the Group III, IV and V viruses and their structure-based phylogeny.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India.
| | - Burra V L S Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurgaon 122413, India.
| | - Ramasamy Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli 620102, India.
| |
Collapse
|
17
|
Structures of Qβ virions, virus-like particles, and the Qβ-MurA complex reveal internal coat proteins and the mechanism of host lysis. Proc Natl Acad Sci U S A 2017; 114:11697-11702. [PMID: 29078304 DOI: 10.1073/pnas.1707102114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In single-stranded RNA bacteriophages (ssRNA phages) a single copy of the maturation protein binds the genomic RNA (gRNA) and is required for attachment of the phage to the host pilus. For the canonical Allolevivirus Qβ the maturation protein, A2, has an additional role as the lysis protein, by its ability to bind and inhibit MurA, which is involved in peptidoglycan biosynthesis. Here, we determined structures of Qβ virions, virus-like particles, and the Qβ-MurA complex using single-particle cryoelectron microscopy, at 4.7-Å, 3.3-Å, and 6.1-Å resolutions, respectively. We identified the outer surface of the β-region in A2 as the MurA-binding interface. Moreover, the pattern of MurA mutations that block Qβ lysis and the conformational changes of MurA that facilitate A2 binding were found to be due to the intimate fit between A2 and the region encompassing the closed catalytic cleft of substrate-liganded MurA. Additionally, by comparing the Qβ virion with Qβ virus-like particles that lack a maturation protein, we observed a structural rearrangement in the capsid coat proteins that is required to package the viral gRNA in its dominant conformation. Unexpectedly, we found a coat protein dimer sequestered in the interior of the virion. This coat protein dimer binds to the gRNA and interacts with the buried α-region of A2, suggesting that it is sequestered during the early stage of capsid formation to promote the gRNA condensation required for genome packaging. These internalized coat proteins are the most asymmetrically arranged major capsid proteins yet observed in virus structures.
Collapse
|
18
|
Kutlubaeva ZS, Chetverina HV, Chetverin AB. The Contribution of Ribosomal Protein S1 to the Structure and Function of Qβ Replicase. Acta Naturae 2017; 9:24-30. [PMID: 29340214 PMCID: PMC5762825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Indexed: 10/28/2022] Open
Abstract
The high resolution crystal structure of bacterial ribosome was determined more than 10 years ago; however, it contains no information on the structure of the largest ribosomal protein, S1. This unusual protein comprises six flexibly linked domains; therefore, it lacks a fixed structure and this prevents the formation of crystals. Besides being a component of the ribosome, protein S1 also serves as one of the four subunits of Qβ replicase, the RNA-directed RNA polymerase of bacteriophage Qβ. In each case, the role of this RNA-binding protein has been thought to consist in holding the template close to the active site of the enzyme. In recent years, a breakthrough was made in studies of protein S1 within Qβ replicase. This includes the discovery of its paradoxical ability to displace RNA from the replicase complex and determining the crystal structure of its fragment capable of performing this function. The new findings call for a re-examination of the contribution of protein S1 to the structure and function of the ribosome.
Collapse
Affiliation(s)
- Z. S. Kutlubaeva
- Institute of Protein Research, Institutskaya Str. 4, Pushchino, Moscow, 142290, Russia
| | - H. V. Chetverina
- Institute of Protein Research, Institutskaya Str. 4, Pushchino, Moscow, 142290, Russia
| | - A. B. Chetverin
- Institute of Protein Research, Institutskaya Str. 4, Pushchino, Moscow, 142290, Russia
| |
Collapse
|