1
|
Gentile GM, Blue RE, Goda GA, Guzman BB, Szymanski RA, Lee EY, Engels NM, Hinkle ER, Wiedner HJ, Bishop AN, Harrison JT, Zhang H, Wehrens XH, Dominguez D, Giudice J. Alternative splicing of the Snap23 microexon is regulated by MBNL, QKI, and RBFOX2 in a tissue-specific manner and is altered in striated muscle diseases. RNA Biol 2025; 22:1-20. [PMID: 40207498 PMCID: PMC12064062 DOI: 10.1080/15476286.2025.2491160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
The reprogramming of alternative splicing networks during development is a hallmark of tissue maturation and identity. Alternative splicing of microexons (small, genomic regions ≤ 51 nucleotides) functionally regulate protein-protein interactions in the brain and is altered in several neuronal diseases. However, little is known about the regulation and function of alternatively spliced microexons in striated muscle. Here, we investigated alternative splicing of a microexon in the synaptosome-associated protein 23 (Snap23) encoded gene. We found that inclusion of this microexon is developmentally regulated and tissue-specific, as it occurs exclusively in adult heart and skeletal muscle. The alternative region is highly conserved in mammalian species and encodes an in-frame sequence of 11 amino acids. Furthermore, we showed that alternative splicing of this microexon is mis-regulated in mouse models of heart and skeletal muscle diseases. We identified the RNA-binding proteins (RBPs) quaking (QKI) and RNA binding fox-1 homolog 2 (RBFOX2) as the primary splicing regulators of the Snap23 microexon. We found that QKI and RBFOX2 bind downstream of the Snap23 microexon to promote its inclusion, and this regulation can be escaped when the weak splice donor is mutated to the consensus 5' splice site. Finally, we uncovered the interplay between QKI and muscleblind-like splicing regulator (MBNL) as an additional, but minor layer of Snap23 microexon splicing control. Our results are one of the few reports detailing microexon alternative splicing regulation during mammalian striated muscle development.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grant A. Goda
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan B. Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A. Szymanski
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eunice Y. Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aubriana N. Bishop
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan T. Harrison
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- RNA Discovery Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Funayama R, Wang Y, Hosogane M, Kao W, Toyama S, Ohira M, Matsumoto M, Aizawa T, Kobayashi M, Karasawa H, Ohnuma S, Nakayama KI, Unno M, Nakayama K. Alternative Splicing of FBLN2 Generates a Prometastatic Extracellular Matrix in Gastrointestinal Cancers by Determining N-Glycosylation of Fibulin 2. Genes Cells 2025; 30:e70027. [PMID: 40400104 PMCID: PMC12095903 DOI: 10.1111/gtc.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/19/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Fibulin 2 (FBLN2) is an extracellular matrix glycoprotein. Exclusion of exon 9 of FBLN2 is one of the most recurrent splicing events across multiple types of cancer, but its functional relevance in cancer has remained unexplored. We here reveal that the exclusion of exon 9 of FBLN2 results in the loss of a single N-glycosylation site that leads to misfolding of the FBLN2 protein as well as to a reduction in both its stability and secretion efficiency. Indeed, the extracellular matrix of human colorectal cancer tissue exhibits a reduced abundance of FBLN2. This deficiency of FBLN2 together with a concomitant increase in the abundance of fibronectin 1 in the tumor microenvironment promotes the adhesion and migration of colorectal cancer cells. Our data thus suggest that the alternative splicing of FBLN2 exon 9 generates a prometastatic extracellular environment in cancer tissue by determining FBLN2 glycosylation.
Collapse
Affiliation(s)
- Ryo Funayama
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
- Anticancer Strategies Laboratory, Advanced Research InitiativeInstitute of Science TokyoTokyoJapan
| | - Yujue Wang
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
- Department of Cellular Function, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masaki Hosogane
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Wei‐Chen Kao
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Shingo Toyama
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Masahiro Ohira
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takashi Aizawa
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Minoru Kobayashi
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Hideaki Karasawa
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Shinobu Ohnuma
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Keiichi I. Nakayama
- Anticancer Strategies Laboratory, Advanced Research InitiativeInstitute of Science TokyoTokyoJapan
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Michiaki Unno
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Keiko Nakayama
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
- Research Infrastructure Management CenterInstitute of Science TokyoTokyoJapan
| |
Collapse
|
3
|
Duzgun D, Oltean S. Aberrant Splicing as a Mechanism for Resistance to Cancer Therapies. Cancers (Basel) 2025; 17:1381. [PMID: 40282556 PMCID: PMC12025770 DOI: 10.3390/cancers17081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer is biologically diverse, highly heterogeneous, and associated with molecular alterations, significantly contributing to mortality worldwide. Currently, cancer patients are subjected to single or combination treatments comprising chemotherapy, surgery, immunotherapy, radiation therapy, and targeted therapy. Chemotherapy remains the first line of treatment in cancer but faces a major obstacle in the form of chemoresistance. This obstacle has resulted in relapses and poor patient survival due to decreased treatment efficacy. Aberrant pre-mRNA alternative splicing can significantly modulate gene expression and function involved in the resistance mechanisms, potentially shaping the intricate landscape of tumour chemoresistance. Thus, novel strategies targeting abnormal pre-mRNA alternative splicing and understanding the molecular mechanisms of chemotherapy resistance could aid in overcoming the chemotherapeutic challenges. This review first highlights drug targets, drug pumps, detoxification mechanisms, DNA damage response, and evasion of apoptosis and cell death as key molecular mechanisms involved in chemotherapy resistance. Furthermore, the review discusses the progress of research on the dysregulation of alternative splicing and molecular targets involved in chemotherapy resistance in major cancer types.
Collapse
Affiliation(s)
| | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| |
Collapse
|
4
|
Zeeshan S, Dalal B, Arauz RF, Zingone A, Harris CC, Khiabanian H, Pine SR, Ryan BM. Global profiling of alternative splicing in non-small cell lung cancer reveals novel histological and population differences. Oncogene 2025; 44:958-967. [PMID: 39789165 PMCID: PMC11954671 DOI: 10.1038/s41388-024-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Lung cancer is one of the most frequently diagnosed cancers in the US. African-American (AA) men are more likely to develop lung cancer with higher incidence and mortality rates than European-American (EA) men. Herein, we report high-confidence alternative splicing (AS) events from high-throughput, high-depth total RNA sequencing of lung tumors and non-tumor adjacent tissues (NATs) in two independent cohorts of patients with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). We identified novel AS biomarkers with notable differential percent spliced in (PSI) values between lung tumors and NATs enriched in the AA and EA populations, which were associated with oncogenic signaling pathways. We also uncovered tumor subtype- and population-specific AS events associated with cell surface proteins and cancer driver genes. We highlighted significant AS events in SYNE2 specific to LUAD in both populations, as well as those in CD44 from EAs and TMBIM6 from AAs specific to LUAD. Here, we also present the validation of cancer signatures based on direct high-throughput reverse transcription-PCR. Our large survey of lung tumors presents a rich data resource that may help to understand molecular subtypes of lung tumor between AAs and EAs and reveal new therapeutic vulnerabilities that potentially advance health equity.
Collapse
Affiliation(s)
- Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, USA
- Department of Biomedical and Health Informatics, School of Medicine, University of Missouri, Kansas City, USA
| | - Bhavik Dalal
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Rony F Arauz
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, USA
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, USA.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, USA.
- Department of Medicine, University of Colorado School of Medicine, University of Colorado Cancer Center, Aurora, USA.
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA.
| |
Collapse
|
5
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
6
|
Mann KM. POGK is a domesticated KRAB domain-containing transposable element with tumor suppressive functions in breast cancer. Trends Cell Biol 2025; 35:4-5. [PMID: 39547880 DOI: 10.1016/j.tcb.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Transposable elements (TEs) account for 50% of the human genome and have essential functions as gene promoters. A subset of TEs is expressed in normal cells and differentially expressed in cancers, yet their biological significance is understudied. In a recent article, Tu et al. describe the tumor suppressive function of POGK, an expressed TE with a KRAB domain, and its cooperation with TRIM28 to repress ribosomal gene transcription in triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
8
|
Shen J, Shentu J, Zhong C, Huang Q, Duan S. RNA splicing factor RBFOX2 is a key factor in the progression of cancer and cardiomyopathy. Clin Transl Med 2024; 14:e1788. [PMID: 39243148 PMCID: PMC11380049 DOI: 10.1002/ctm2.1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Jianqiao Shentu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Chenming Zhong
- Medical Genetics Center, School of MedicineNingbo UniversityNingboChina
| | - Qiankai Huang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouChina
| |
Collapse
|
9
|
Lu Y, Yang Z, Zhang J, Ma X, Bi X, Xu L, Feng K, Wu Z, Ma X, Zhuang L. RNA-binding protein QKI promotes the progression of HCC by interacting with long non-coding RNA EGOT. Int Immunopharmacol 2024; 136:112297. [PMID: 38810307 DOI: 10.1016/j.intimp.2024.112297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND RNA-binding proteins are revealed to play important roles during the progression of hepatocellular carcinoma (HCC). However, the regulatory mechanisms of RNA-binding protein Quaking (QKI) in the expression and role of long non-coding RNAs (lncRNAs) in HCC cells remain not well understood. METHODS Cell Counting Kit-8, wound-healing, Transwell and colony-forming assays were performed to evaluate the effects of QKI and lncRNA EGOT on proliferation and migration of HCC cells. Tumor growth of HCC was analyzed using a mouse xenograft model. Immunoprecipitation (RIP) assay was used to investigate the interaction between QKI and EGOT. RESULTS The expression of QKI was significantly upregulated in HCC tissues and the higher QKI level was significantly associated with a poorer prognosis. Overexpression of QKI promoted the proliferation, migration, and colony-forming ability of HCC cells in vitro and tumor growth of HCC in vivo. Mechanistically, QKI protein could bind to EGOT RNA and increase its expression. Inhibition of EGOT attenuated the effects of QKI on the malignant phenotypes of HCC cells. In addition, both QKI and EGOT could activate the SAPK/JNK signaling pathway in HCC cells. CONCLUSIONS Our findings indicated that QKI exerted promotive effects on the malignant phenotypes of HCC through its interaction with EGOT.
Collapse
Affiliation(s)
- Yi Lu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zhenpeng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Jie Zhang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xuefeng Ma
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xiaoye Bi
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Longhai Xu
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Keqing Feng
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Zehua Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Xiang Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266071, China.
| | - Likun Zhuang
- Central Laboratory, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Sun L, Liu Y, Guo X, Cui T, Wu C, Tao J, Cheng C, Chu Q, Ji C, Li X, Guo H, Liang S, Zhou H, Zhou S, Ma K, Zhang N, Wang J, Liu Y, Liu L. Acetylation-dependent regulation of core spliceosome modulates hepatocellular carcinoma cassette exons and sensitivity to PARP inhibitors. Nat Commun 2024; 15:5209. [PMID: 38890388 PMCID: PMC11189467 DOI: 10.1038/s41467-024-49573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Despite the importance of spliceosome core components in cellular processes, their roles in cancer development, including hepatocellular carcinoma (HCC), remain poorly understood. In this study, we uncover a critical role for SmD2, a core component of the spliceosome machinery, in modulating DNA damage in HCC through its impact on BRCA1/FANC cassette exons and expression. Our findings reveal that SmD2 depletion sensitizes HCC cells to PARP inhibitors, expanding the potential therapeutic targets. We also demonstrate that SmD2 acetylation by p300 leads to its degradation, while HDAC2-mediated deacetylation stabilizes SmD2. Importantly, we show that the combination of Romidepsin and Olaparib exhibits significant therapeutic potential in multiple HCC models, highlighting the promise of targeting SmD2 acetylation and HDAC2 inhibition alongside PARP inhibitors for HCC treatment.
Collapse
Affiliation(s)
- Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Yufeng Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Xinyu Guo
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Jie Tao
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Hongrui Guo
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Shuhang Liang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huanran Zhou
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Kun Ma
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China
| | - Ning Zhang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, Anhui, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, 230001, Anhui, China.
| |
Collapse
|
11
|
Huang F, Jin L, Zhang X, Wang M, Zhou C. Integrated pan-cancer analysis reveals the immunological and prognostic potential of RBFOX2 in human tumors. Front Pharmacol 2024; 15:1302134. [PMID: 38881877 PMCID: PMC11176534 DOI: 10.3389/fphar.2024.1302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background The role of RNA-binding fox one homolog 2 (RBFOX2) in the progression of multiple tumors is increasingly supported by evidence. However, the unclearness pertaining to the expression of RBFOX2, its prognostic potential, and its correlation with the tumor microenvironment (TME) in pan-cancer persists. This study aims to comprehensively investigate the immunological prognostic value of RBFOX2. Methods The Cancer Genome Atlas Gene Expression Omnibus Genotype-Tissue Expression (GTEx), TIMER2.0, Kaplan-Meier (K-M) Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were utilized for a systematic analysis of RBFOX2. This analysis included studying its expression, prognostic value, DNA methylation, enrichment analysis, immune infiltration cells, and immune-related genes. Additionally, qRT-PCR, CCK-8, colony formation, transwell assays, and immunohistochemistry were employed to analyze the expression and biological function of RBFOX2 in liver cancer. Results Variations in RBFOX2 expression have been observed across diverse tumors and have been identified as indicators of unfavorable prognosis. It is closely linked to immune infiltration cells, immune checkpoints, chemokines, and chemokine receptors in the TME. Higher levels of RBFOX2 have been significantly associated with low response and poor prognosis in patients with non-small cell lung cancer (NSCLC) and melanoma who receive immunotherapy. Furthermore, the DNA methylation of RBFOX2 varies across different types of cancer and has shown better prognosis in patients with BLCA, BRCA, CESC, COAD, DLBC, HNSC, LAML, LGG, LUAD, PAAD, SKCM and THYM. Interestingly, RBFOX2 expression was found to be lower in hepatocellular carcinoma (HCC) patients' tumor tissues compared to their paired adjacent tissues. In vitro studies have shown that knockdown of RBFOX2 significantly promotes the growth and metastasis of liver cancer cells. Conclusion This study investigates the correlation between DNA methylation, prognostic value, and immune cell infiltration with the expression of RBFOX2 in pan-cancer and indicates its potential role to inhibit metastasis of liver cancer.
Collapse
Affiliation(s)
- Fengxian Huang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, Xi'an, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
12
|
Yang L, Wang M, Wang Y, Zhu Y, Wang J, Wu M, Guo Q, Han X, Pandey V, Wu Z, Lobie PE, Zhu T. LINC00460-FUS-MYC feedback loop drives breast cancer metastasis and doxorubicin resistance. Oncogene 2024; 43:1249-1262. [PMID: 38418543 DOI: 10.1038/s41388-024-02972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Therapeutic resistance and metastasis largely contribute to mortality from breast cancer and therefore understanding the underlying mechanisms of such remains an urgent challenge. By cross-analysis of TCGA and GEO databases, LINC00460 was identified as an oncogenic long non-coding RNA, highly expressed in Doxorubicin resistant breast cancer. LINC00460 was further demonstrated to promote stem cell-like and epithelial-mesenchymal transition (EMT) characteristics in breast cancer cells. LINC00460 interacts with FUS protein with consequent enhanced stabilization, which further promotes MYC mRNA maturation. LINC00460 expression was transcriptionally enhanced by c-MYC protein, forming a positive feedback loop to promote metastasis and Doxorubicin resistance. LINC00460 depletion in Doxorubicin-resistant breast cancer cells restored sensitivity to Doxorubicin and increased the efficacy of c-MYC inhibitor therapy. Collectively, these findings implicate LINC00460 as a promising prognostic biomarker and potential therapeutic target to overcome Doxorubicin resistance in breast cancer.
Collapse
Affiliation(s)
- Leiyan Yang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Miaomiao Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ya Wang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Jiarui Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Mingming Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Qianying Guo
- Department of Pathology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Wang HF, Zhou XF, Zhang QM, Wu JQ, Hou JH, Xu XL, Li XM, Liu YL. Involvement of circRNA Regulators MBNL1 and QKI in the Progression of Esophageal Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241257142. [PMID: 38769028 PMCID: PMC11107321 DOI: 10.1177/10732748241257142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Feng Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Feng Zhou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qun-Mei Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie-Qing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing-Han Hou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue-Lian Xu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu-Min Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Long Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
14
|
Maurin M, Ranjouri M, Megino-Luque C, Newberg JY, Du D, Martin K, Miner RE, Prater MS, Wee DKB, Centeno B, Pruett-Miller SM, Stewart P, Fleming JB, Yu X, Bravo-Cordero JJ, Guccione E, Black MA, Mann KM. RBFOX2 deregulation promotes pancreatic cancer progression and metastasis through alternative splicing. Nat Commun 2023; 14:8444. [PMID: 38114498 PMCID: PMC10730836 DOI: 10.1038/s41467-023-44126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
RNA splicing is an important biological process associated with cancer initiation and progression. However, the contribution of alternative splicing to pancreatic cancer (PDAC) development is not well understood. Here, we identify an enrichment of RNA binding proteins (RBPs) involved in splicing regulation linked to PDAC progression from a forward genetic screen using Sleeping Beauty insertional mutagenesis in a mouse model of pancreatic cancer. We demonstrate downregulation of RBFOX2, an RBP of the FOX family, promotes pancreatic cancer progression and liver metastasis. Specifically, we show RBFOX2 regulates exon splicing events in transcripts encoding proteins involved in cytoskeletal remodeling programs. These exons are differentially spliced in PDAC patients, with enhanced exon skipping in the classical subtype for several RBFOX2 targets. RBFOX2 mediated splicing of ABI1, encoding the Abelson-interactor 1 adapter protein, controls the abundance and localization of ABI1 protein isoforms in pancreatic cancer cells and promotes the relocalization of ABI1 from the cytoplasm to the periphery of migrating cells. Using splice-switching antisense oligonucleotides (AONs) we demonstrate the ABI1 ∆Ex9 isoform enhances cell migration. Together, our data identify a role for RBFOX2 in promoting PDAC progression through alternative splicing regulation.
Collapse
Affiliation(s)
- Michelle Maurin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Cristina Megino-Luque
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Y Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Katelyn Martin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Robert E Miner
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Mollie S Prater
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Dave Keng Boon Wee
- Institute for Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Republic of Singapore
| | - Barbara Centeno
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|
15
|
Maltseva D, Tonevitsky A. RNA-binding proteins regulating the CD44 alternative splicing. Front Mol Biosci 2023; 10:1326148. [PMID: 38106992 PMCID: PMC10722200 DOI: 10.3389/fmolb.2023.1326148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Alternative splicing is often deregulated in cancer, and cancer-specific isoform switches are part of the oncogenic transformation of cells. Accumulating evidence indicates that isoforms of the multifunctional cell-surface glycoprotein CD44 play different roles in cancer cells as compared to normal cells. In particular, the shift of CD44 isoforms is required for epithelial to mesenchymal transition (EMT) and is crucial for the maintenance of pluripotency in normal human cells and the acquisition of cancer stem cells phenotype for malignant cells. The growing and seemingly promising use of splicing inhibitors for treating cancer and other pathologies gives hope for the prospect of using such an approach to regulate CD44 alternative splicing. This review integrates current knowledge about regulating CD44 alternative splicing by RNA-binding proteins.
Collapse
Affiliation(s)
- Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Ulaganathan K, Puranam K, Mukta S, Hanumanth SR. Expression profiling of luminal B breast tumor in Indian women. J Cancer Res Clin Oncol 2023; 149:13645-13664. [PMID: 37516983 DOI: 10.1007/s00432-023-05195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
PURPOSE In this study, we aimed at profiling of luminal B breast cancer specific gene expression pattern in Indian women using mRNA-seq and validation based on TCGA expression data. METHODS RNA isolated from luminal B tumor and adjacent normal tissues was used for library construction and sequencing. Reference-based assemblies of these reads were used for differential gene expression analysis using DeSeq2. The DEGs were evaluated using TCGA expression data. Kaplan-Meier survival method was used to evaluate association between genes showing luminal B specific differential expression pattern and breast cancer prognosis and statistical significance was assessed using log-rank test. Alternate splicing analysis was done using rmats. RESULTS Differential expression analysis identified 2371 differentially expressed genes (DEGs) in luminal B breast tumors in comparison with adjacent normal tissues of Indian Women. Of them, 1692 DEGs were validated using TCGA luminal B paired samples. Integration of this data with the DEGs obtained by comparative analysis of unpaired luminal B with luminal A unpaired samples from TCGA resulted in 291 DEGs showing luminal B specific expression pattern. Further, 26 genes of prognostic value were identified. Differential splicing analysis between luminal B tumors and adjacent normal tissues in our cohort led to the identification of 687 genes showing significant differential alternate splicing events. CONCLUSION This study profiled gene expression pattern of luminal B tumors of Indian women and identified 26 key genes of prognostic value for luminal B breast cancer. This study also profiled differential alternate splicing and identified important alternate splicing events in luminal B breast cancer.
Collapse
Affiliation(s)
| | - Kaushik Puranam
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Srinivasulu Mukta
- Department of Surgical Oncology, MNJ Institute of Oncology and RCC, Hyderabad, Telangana, India
| | | |
Collapse
|
17
|
Zheng J, Wu S, Tang M, Xi S, Wang Y, Ren J, Luo H, Hu P, Sun L, Du Y, Yang H, Wang F, Gao H, Dai Z, Ou X, Li Y. USP39 promotes hepatocellular carcinogenesis through regulating alternative splicing in cooperation with SRSF6/HNRNPC. Cell Death Dis 2023; 14:670. [PMID: 37821439 PMCID: PMC10567755 DOI: 10.1038/s41419-023-06210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Abnormal alternative splicing (AS) caused by alterations in spliceosomal factors is implicated in cancers. Standard models posit that splice site selection is mainly determined by early spliceosomal U1 and U2 snRNPs. Whether and how other mid/late-acting spliceosome components such as USP39 modulate tumorigenic splice site choice remains largely elusive. We observed that hepatocyte-specific overexpression of USP39 promoted hepatocarcinogenesis and potently regulated splice site selection in transgenic mice. In human liver cancer cells, USP39 promoted tumor proliferation in a spliceosome-dependent manner. USP39 depletion deregulated hundreds of AS events, including the oncogenic splice-switching of KANK2. Mechanistically, we developed a novel RBP-motif enrichment analysis and found that USP39 modulated exon inclusion/exclusion by interacting with SRSF6/HNRNPC in both humans and mice. Our data represented a paradigm for the control of splice site selection by mid/late-acting spliceosome proteins and their interacting RBPs. USP39 and possibly other mid/late-acting spliceosome proteins may represent potential prognostic biomarkers and targets for cancer therapy.
Collapse
Affiliation(s)
- Jingyi Zheng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shasha Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mao Tang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanchen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jun Ren
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hao Luo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Pengchao Hu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liangzhan Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hui Yang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fenfen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Han Gao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ziwei Dai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xijun Ou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
18
|
Newman JRB, Long SA, Speake C, Greenbaum CJ, Cerosaletti K, Rich SS, Onengut-Gumuscu S, McIntyre LM, Buckner JH, Concannon P. Shifts in isoform usage underlie transcriptional differences in regulatory T cells in type 1 diabetes. Commun Biol 2023; 6:988. [PMID: 37758901 PMCID: PMC10533491 DOI: 10.1038/s42003-023-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies have identified numerous loci with allelic associations to Type 1 Diabetes (T1D) risk. Most disease-associated variants are enriched in regulatory sequences active in lymphoid cell types, suggesting that lymphocyte gene expression is altered in T1D. Here we assay gene expression between T1D cases and healthy controls in two autoimmunity-relevant lymphocyte cell types, memory CD4+/CD25+ regulatory T cells (Treg) and memory CD4+/CD25- T cells, using a splicing event-based approach to characterize tissue-specific transcriptomes. Limited differences in isoform usage between T1D cases and controls are observed in memory CD4+/CD25- T-cells. In Tregs, 402 genes demonstrate differences in isoform usage between cases and controls, particularly RNA recognition and splicing factor genes. Many of these genes are regulated by the variable inclusion of exons that can trigger nonsense mediated decay. Our results suggest that dysregulation of gene expression, through shifts in alternative splicing in Tregs, contributes to T1D pathophysiology.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lauren M McIntyre
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA.
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
19
|
Schertzer MD, Stirn A, Isaev K, Pereira L, Das A, Harbison C, Park SH, Wessels HH, Sanjana NE, Knowles DA. Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557474. [PMID: 37745416 PMCID: PMC10515814 DOI: 10.1101/2023.09.12.557474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Alternative splicing is an essential mechanism for diversifying proteins, in which mature RNA isoforms produce proteins with potentially distinct functions. Two major challenges in characterizing the cellular function of isoforms are the lack of experimental methods to specifically and efficiently modulate isoform expression and computational tools for complex experimental design. To address these gaps, we developed and methodically tested a strategy which pairs the RNA-targeting CRISPR/Cas13d system with guide RNAs that span exon-exon junctions in the mature RNA. We performed a high-throughput essentiality screen, quantitative RT-PCR assays, and PacBio long read sequencing to affirm our ability to specifically target and robustly knockdown individual RNA isoforms. In parallel, we provide computational tools for experimental design and screen analysis. Considering all possible splice junctions annotated in GENCODE for multi-isoform genes and our gRNA efficacy predictions, we estimate that our junction-centric strategy can uniquely target up to 89% of human RNA isoforms, including 50,066 protein-coding and 11,415 lncRNA isoforms. Importantly, this specificity spans all splicing and transcriptional events, including exon skipping and inclusion, alternative 5' and 3' splice sites, and alternative starts and ends.
Collapse
Affiliation(s)
- Megan D Schertzer
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Andrew Stirn
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | - Keren Isaev
- New York Genome Center, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Anjali Das
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
| | | | - Stella H Park
- New York Genome Center, New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - Neville E Sanjana
- New York Genome Center, New York, NY
- Department of Biology, New York University, New York, NY
| | - David A Knowles
- New York Genome Center, New York, NY
- Department of Computer Science, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
- Data Science Institute, Columbia University, New York, NY
| |
Collapse
|
20
|
Feng Y, Zhu S, Liu T, Zhi G, Shao B, Liu J, Li B, Jiang C, Feng Q, Wu P, Wang D. Surmounting Cancer Drug Resistance: New Perspective on RNA-Binding Proteins. Pharmaceuticals (Basel) 2023; 16:1114. [PMID: 37631029 PMCID: PMC10458901 DOI: 10.3390/ph16081114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
RNA-binding proteins (RBPs), being pivotal elements in both physiological and pathological processes, possess the ability to directly impact RNA, thereby exerting a profound influence on cellular life. Furthermore, the dysregulation of RBPs not only induces alterations in the expression levels of genes associated with cancer but also impairs the occurrence of post-transcriptional regulatory mechanisms. Consequently, these circumstances can give rise to aberrations in cellular processes, ultimately resulting in alterations within the proteome. An aberrant proteome can disrupt the equilibrium between oncogenes and tumor suppressor genes, promoting cancer progression. Given their significant role in modulating gene expression and post-transcriptional regulation, directing therapeutic interventions towards RBPs represents a viable strategy for combating drug resistance in cancer treatment. RBPs possess significant potential as diagnostic and prognostic markers for diverse cancer types. Gaining comprehensive insights into the structure and functionality of RBPs, along with delving deeper into the molecular mechanisms underlying RBPs in tumor drug resistance, can enhance cancer treatment strategies and augment the prognostic outcomes for individuals afflicted with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| |
Collapse
|
21
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
22
|
Di Matteo A, Belloni E, Pradella D, Chiaravalli AM, Pini GM, Bugatti M, Alfieri R, Barzan C, Franganillo Tena E, Bione S, Terenzani E, Sessa F, Wyatt CDR, Vermi W, Ghigna C. Alternative Splicing Changes Promoted by NOVA2 Upregulation in Endothelial Cells and Relevance for Gastric Cancer. Int J Mol Sci 2023; 24:ijms24098102. [PMID: 37175811 PMCID: PMC10178952 DOI: 10.3390/ijms24098102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.
Collapse
Affiliation(s)
- Anna Di Matteo
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Belloni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Davide Pradella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Giacomo Maria Pini
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Chiara Barzan
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Istituto Universitario di Studi Superiori (IUSS), Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Elena Franganillo Tena
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Elisa Terenzani
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo, ASST-Sette Laghi, 21100 Varese, Italy
- Department of Medicine and Surgery, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | - Christopher D R Wyatt
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25100 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Claudia Ghigna
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| |
Collapse
|
23
|
Park J, Park J, Chung YJ. Alternative splicing: a new breakthrough for understanding tumorigenesis and potential clinical applications. Genes Genomics 2023; 45:393-400. [PMID: 36656436 DOI: 10.1007/s13258-023-01365-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional process that produces transcript variants, thus leading to transcriptome complexity. Recently, the scope of AS studies has been greatly expanded toward clinical applications owing to the abundance of RNA sequencing data. OBJECTIVE This review consists of two parts. We first summarize bioinformatic resources that are useful for large-scale cancer-related AS studies. We then highlight the research efforts to utilize AS events for predicting clinical outcomes and planning therapeutic strategies. RESULTS Computational approaches to interrogate AS events have been reviewed under three categories: (1) databases to provide functional and clinical annotation of AS events, (2) analytical tools to identify cancer-associated AS event, and (3) methods to identify splicing-related DNA variants and splicing-derived neoantigens. We also present the recent progress in exploring the clinical utility of AS under four categories: (1) identification of AS events for cancer prognosis, (2) utilization of AS events in molecular classification of various cancers, (3) regulatory mechanisms of AS underlying drug resistance, and (4) potential use of AS in cancer therapy. CONCLUSION This review will be helpful for understanding the biological implications of AS in cancer and facilitate the development of AS markers for cancer prognosis and treatment. We anticipate that future studies will lead to the application of genome-wide AS profiles in cancer precision medicine.
Collapse
Affiliation(s)
- Jiyeon Park
- Precision Medicine Research Center, Seoul, Republic of Korea
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea
| | - Joonhyuck Park
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- 4Department of Medical Life science, Seoul, Republic of Korea.
- Department of Medical Life science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| | - Yeun-Jun Chung
- Precision Medicine Research Center, Seoul, Republic of Korea.
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Abstract
Alternative splicing (AS) of mRNAs is an essential regulatory mechanism in eukaryotic gene expression. AS misregulation, caused by either dysregulation or mutation of splicing factors, has been shown to be involved in cancer development and progression, making splicing factors suitable targets for cancer therapy. In recent years, various types of pharmacological modulators, such as small molecules and oligonucleotides, targeting distinct components of the splicing machinery, have been under development to treat multiple disorders. Although these approaches have promise, targeting the core spliceosome components disrupts the early stages of spliceosome assembly and can lead to nonspecific and toxic effects. New research directions have been focused on targeting specific splicing factors for a more precise effect. In this Perspective, we will highlight several approaches for targeting splicing factors and their functions and suggest ways to improve their specificity.
Collapse
Affiliation(s)
- Ariel Bashari
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Zahava Siegfried
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem 9112001, Israel
| |
Collapse
|
25
|
Gao Y, Cao H, Huang D, Zheng L, Nie Z, Zhang S. RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15041150. [PMID: 36831493 PMCID: PMC9953953 DOI: 10.3390/cancers15041150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are key regulators of transcription and translation, with highly dynamic spatio-temporal regulation. They are usually involved in the regulation of RNA splicing, polyadenylation, and mRNA stability and mediate processes such as mRNA localization and translation, thereby affecting the RNA life cycle and causing the production of abnormal protein phenotypes that lead to tumorigenesis and development. Accumulating evidence supports that RBPs play critical roles in vital life processes, such as bladder cancer initiation, progression, metastasis, and drug resistance. Uncovering the regulatory mechanisms of RBPs in bladder cancer is aimed at addressing the occurrence and progression of bladder cancer and finding new therapies for cancer treatment. This article reviews the effects and mechanisms of several RBPs on bladder cancer and summarizes the different types of RBPs involved in the progression of bladder cancer and the potential molecular mechanisms by which they are regulated, with a view to providing information for basic and clinical researchers.
Collapse
|
26
|
Chang A, Chakiryan NH, Du D, Stewart PA, Zhang Y, Tian Y, Soupir AC, Bowers K, Fang B, Morganti A, Teer JK, Kim Y, Spiess PE, Chahoud J, Noble JD, Putney RM, Berglund AE, Robinson TJ, Koomen JM, Wang L, Manley BJ. Proteogenomic, Epigenetic, and Clinical Implications of Recurrent Aberrant Splice Variants in Clear Cell Renal Cell Carcinoma. Eur Urol 2022; 82:354-362. [PMID: 35718636 PMCID: PMC11075093 DOI: 10.1016/j.eururo.2022.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alternative mRNA splicing can be dysregulated in cancer, resulting in the generation of aberrant splice variants (SVs). Given the paucity of actionable genomic mutations in clear cell renal cell carcinoma (ccRCC), aberrant SVs may be an avenue to novel mechanisms of pathogenesis. OBJECTIVE To identify and characterize aberrant SVs enriched in ccRCC. DESIGN, SETTING, AND PARTICIPANTS Using RNA-seq data from the Cancer Cell Line Encyclopedia, we identified neojunctions uniquely expressed in ccRCC. Candidate SVs were then checked for expression across normal tissue in the Genotype-Tissue Expression Project and primary tumor tissue from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and our institutional Total Cancer Care database. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Clinicopathologic, genomic, and survival data were available for all cohorts. Epigenetic data were available for the TCGA and CPTAC cohorts. Proteomic data were available for the CPTAC cohort. The association of aberrant SV expression with these variables was examined using the Kruskal-Wallis test, pairwise t test, Spearman correlation test, and Cox regression analysis. RESULTS AND LIMITATIONS Our pipeline identified 16 ccRCC-enriched SVs. EGFR, HPCAL1-SV and RNASET2-SV expression was negatively correlated with gene-specific CpG methylation. We derived a survival risk score based primarily on the expression of five SVs (RNASET2, FGD1, PDZD2, COBLL1, and PTPN14), which was consistent and applicable across multiple cohorts on multivariate analysis. The splicing factor RBM4, which modulates splicing of HIF-1α, exhibited significantly lower expression at the protein level in the high-risk group, as defined by our SV-based score. CONCLUSIONS We describe 16 aberrant SVs enriched in ccRCC, many of which are associated with disease biology and/or clinical outcomes. This study provides a novel strategy for identifying and characterizing disease-specific aberrant SVs. PATIENT SUMMARY We describe a method to identify disease targets and biomarkers using transcriptomic analysis beyond somatic mutations or gene expression. Kidney tumors express unique splice variants that may provide additional prognostic information following surgery.
Collapse
Affiliation(s)
- Andrew Chang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Nicholas H Chakiryan
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yonghong Zhang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alex C Soupir
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kiah Bowers
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Bin Fang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ashley Morganti
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jerald D Noble
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Timothy J Robinson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
27
|
A critical update on the strategies towards small molecule inhibitors targeting Serine/arginine-rich (SR) proteins and Serine/arginine-rich proteins related kinases in alternative splicing. Bioorg Med Chem 2022; 70:116921. [PMID: 35863237 DOI: 10.1016/j.bmc.2022.116921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
>90% of genes in the human body undergo alternative splicing (AS) after transcription, which enriches protein species and regulates protein levels. However, there is growing evidence that various genetic isoforms resulting from dysregulated alternative splicing are prevalent in various types of cancers. Dysregulated alternative splicing leads to cancer generation and maintenance of cancer properties such as proliferation differentiation, apoptosis inhibition, invasion metastasis, and angiogenesis. Serine/arginine-rich proteins and SR protein-associated kinases mediate splice site recognition and splice complex assembly during variable splicing. Based on the impact of dysregulated alternative splicing on disease onset and progression, the search for small molecule inhibitors targeting alternative splicing is imminent. In this review, we discuss the structure and specific biological functions of SR proteins and describe the regulation of SR protein function by SR protein related kinases meticulously, which are closely related to the occurrence and development of various types of cancers. On this basis, we summarize the reported small molecule inhibitors targeting SR proteins and SR protein related kinases from the perspective of medicinal chemistry. We mainly categorize small molecule inhibitors from four aspects, including targeting SR proteins, targeting Serine/arginine-rich protein-specific kinases (SRPKs), targeting Cdc2-like kinases (CLKs) and targeting dual-specificity tyrosine-regulated kinases (DYRKs), in terms of structure, inhibition target, specific mechanism of action, biological activity, and applicable diseases. With this review, we are expected to provide a timely summary of recent advances in alternative splicing regulated by kinases and a preliminary introduction to relevant small molecule inhibitors.
Collapse
|
28
|
Stanley RF, Abdel-Wahab O. Dysregulation and therapeutic targeting of RNA splicing in cancer. NATURE CANCER 2022; 3:536-546. [PMID: 35624337 PMCID: PMC9551392 DOI: 10.1038/s43018-022-00384-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/22/2022] [Indexed: 05/15/2023]
Abstract
High-throughput sequencing and functional characterization of the cancer transcriptome have uncovered cancer-specific dysregulation of RNA splicing across a variety of cancers. Alterations in the cancer genome and dysregulation of RNA splicing factors lead to missplicing, splicing alteration-dependent gene expression and, in some cases, generation of novel splicing-derived proteins. Here, we review recent advances in our understanding of aberrant splicing in cancer pathogenesis and present strategies to harness cancer-specific aberrant splicing for therapeutic intent.
Collapse
Affiliation(s)
- Robert F Stanley
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
29
|
Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, Cascioferro S, Diana P, Peters GJ, Giovannetti E. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics 2022; 17:381-404. [PMID: 34057028 PMCID: PMC8993068 DOI: 10.1080/15592294.2021.1916697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient's survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Ittai B. Muller
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| |
Collapse
|
30
|
Hinkle ER, Wiedner HJ, Torres EV, Jackson M, Black AJ, Blue RE, Harris SE, Guzman BB, Gentile GM, Lee EY, Tsai YH, Parker J, Dominguez D, Giudice J. Alternative splicing regulation of membrane trafficking genes during myogenesis. RNA (NEW YORK, N.Y.) 2022; 28:523-540. [PMID: 35082143 PMCID: PMC8925968 DOI: 10.1261/rna.078993.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Alternative splicing transitions occur during organ development, and, in numerous diseases, splicing programs revert to fetal isoform expression. We previously found that extensive splicing changes occur during postnatal mouse heart development in genes encoding proteins involved in vesicle-mediated trafficking. However, the regulatory mechanisms of this splicing-trafficking network are unknown. Here, we found that membrane trafficking genes are alternatively spliced in a tissue-specific manner, with striated muscles exhibiting the highest levels of alternative exon inclusion. Treatment of differentiated muscle cells with chromatin-modifying drugs altered exon inclusion in muscle cells. Examination of several RNA-binding proteins revealed that the poly-pyrimidine tract binding protein 1 (PTBP1) and quaking regulate splicing of trafficking genes during myogenesis, and that removal of PTBP1 motifs prevented PTBP1 from binding its RNA target. These findings enhance our understanding of developmental splicing regulation of membrane trafficking proteins which might have implications for muscle disease pathogenesis.
Collapse
Affiliation(s)
- Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hannah J Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eduardo V Torres
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Micaela Jackson
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Adam J Black
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bryan B Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gabrielle M Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eunice Y Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joel Parker
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
31
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
32
|
Abstract
BACKGROUND: Alternative splicing is a mechanism to produce different proteins with diverse functions from one gene. Many splicing factors play an important role in cancer progression. PRPF8 is a core protein component of the spliceosome complex, U4/U6-U5 tri-snRNP. OBJECTIVE: However, PRPF8 involved in mRNA alternative splicing are rarely included in the prognosis. METHODS: We found that PRPF8 was expressed in all examined cancer types. Further analyses found that PRPF8 expression was significantly different between the breast cancer and paracancerous tissues. RESULTS: Survival analyses showed that PRPF8-high patients had a poor prognosis, and the expression of PRPF8 is associated with distant metastasis-free survival (DMFS) and post progression survival (PPS). Gene Set Enrichment Analysis (GSEA) has revealed that PRPF8 expression is correlated with TGF-β, JAK-STAT, and cell cycle control pathways. Consistent with these results, upon PRPF8 silencing, the growth of MCF-7 cells was reduced, the ability of cell clone formation was weakened, and p21 expression was increased. CONCLUSIONS: These results have revealed that PRPF8 is a significant factor for splicing in breast cancer progression.
Collapse
Affiliation(s)
- Difei Cao
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Jiaying Xue
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, Heilongjiang, China
| | - Jing An
- Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Heilongjiang Province Academy of Medical Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers (Basel) 2021; 14:cancers14010018. [PMID: 35008179 PMCID: PMC8750444 DOI: 10.3390/cancers14010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Among the top ten deadly solid tumors are the two most frequent liver cancers, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, whose development and malignancy are favored by multifactorial conditions, which include aberrant maturation of pre-mRNA due to abnormalities in either the machinery involved in the splicing, i.e., the spliceosome and associated factors, or the nucleotide sequences of essential sites for the exon recognition process. As a consequence of cancer-associated aberrant splicing in hepatocytes- and cholangiocytes-derived cancer cells, abnormal proteins are synthesized. They contribute to the dysregulated proliferation and eventually transformation of these cells to phenotypes with enhanced invasiveness, migration, and multidrug resistance, which contributes to the poor prognosis that characterizes these liver cancers. Abstract The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.
Collapse
|
34
|
Zhao YJ, Wu LY, Pang JS, Liao W, Chen YJ, He Y, Yang H. Integrated multi-omics analysis of the clinical relevance and potential regulatory mechanisms of splicing factors in hepatocellular carcinoma. Bioengineered 2021; 12:3978-3992. [PMID: 34288818 PMCID: PMC8806902 DOI: 10.1080/21655979.2021.1948949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Splicing factors (SFs) have been increasingly documented to perturb the genome of cancers. However, little is known about the alterations of SFs in hepatocellular carcinoma (HCC). This study comprehensively delineated the genomic and epigenomic characteristics of 404 SFs in HCC based on the multi-omics data from the Cancer Genome Atlas database. The analysis revealed several clinically relevant SFs that could be effective biomarkers for monitoring the onset and prognosis of HCC (such as, HSPB1, DDX39A, and NELFE, which were the three most significant clinically relevant SFs). Functional enrichment analysis of these indicators showed the enrichment of pathways related to splicing and mRNA processes. Furthermore, the study found that SF copy number variation is common in HCC and could be a typical characteristic of hepato-carcinogenesis; the complex expression regulation of SFs was significantly affected by copy number variant and methylation. Several SFs with significant mutation patterns were identified (such as, RNF213, SF3B1, SPEN, NOVA1, and EEF1A1), and the potential regulatory network of SFs was constructed to identify their potential mechanisms for regulating clinically relevant alternative splicing events. Therefore, this study established a foundation to uncover the broad molecular spectrum of SFs for future functional and therapeutic studies of HCC.
Collapse
Affiliation(s)
- Yu-jia Zhao
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Lin-Yong Wu
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jin-shu Pang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wei Liao
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu-ji Chen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
35
|
Namba S, Ueno T, Kojima S, Kobayashi K, Kawase K, Tanaka Y, Inoue S, Kishigami F, Kawashima S, Maeda N, Ogawa T, Hazama S, Togashi Y, Ando M, Shiraishi Y, Mano H, Kawazu M. Transcript-targeted analysis reveals isoform alterations and double-hop fusions in breast cancer. Commun Biol 2021; 4:1320. [PMID: 34811492 PMCID: PMC8608905 DOI: 10.1038/s42003-021-02833-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Although transcriptome alteration is an essential driver of carcinogenesis, the effects of chromosomal structural alterations on the cancer transcriptome are not yet fully understood. Short-read transcript sequencing has prevented researchers from directly exploring full-length transcripts, forcing them to focus on individual splice sites. Here, we develop a pipeline for Multi-Sample long-read Transcriptome Assembly (MuSTA), which enables construction of a transcriptome from long-read sequence data. Using the constructed transcriptome as a reference, we analyze RNA extracted from 22 clinical breast cancer specimens. We identify a comprehensive set of subtype-specific and differentially used isoforms, which extended our knowledge of isoform regulation to unannotated isoforms including a short form TNS3. We also find that the exon-intron structure of fusion transcripts depends on their genomic context, and we identify double-hop fusion transcripts that are transcribed from complex structural rearrangements. For example, a double-hop fusion results in aberrant expression of an endogenous retroviral gene, ERVFRD-1, which is normally expressed exclusively in placenta and is thought to protect fetus from maternal rejection; expression is elevated in several TCGA samples with ERVFRD-1 fusions. Our analyses provide direct evidence that full-length transcript sequencing of clinical samples can add to our understanding of cancer biology and genomics in general.
Collapse
Affiliation(s)
- Shinichi Namba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Kenya Kobayashi
- Department of Head and Neck Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Katsushige Kawase
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Fumishi Kishigami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shusuke Kawashima
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Tomoko Ogawa
- Department of Breast Surgery, Mie University Hospital, Mie, 514-8507, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Yosuke Togashi
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Mizuo Ando
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo Hospital, Tokyo, 113-8654, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan.
| |
Collapse
|
36
|
Ma Y, Nenkov M, Schröder DC, Abubrig M, Gassler N, Chen Y. Fibulin 2 Is Hypermethylated and Suppresses Tumor Cell Proliferation through Inhibition of Cell Adhesion and Extracellular Matrix Genes in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:11834. [PMID: 34769264 PMCID: PMC8584407 DOI: 10.3390/ijms222111834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Fibulins (FBLNs), interacting with cell adhesion receptors and extracellular matrix (ECM) components, play multiple roles in ECM structures and tissue functions. Abnormal expression of FBLN2, one of the fibulin family members, contributes to tumor initiation and development. However, the function of FBLN2 in human non-small cell lung cancer (NSCLC) has not yet been elucidated. In this study, we found that FBLN2 was downregulated in 9 out of 11 lung cancer cell lines compared to normal bronchial epithelial cells, which was associated with DNA hypermethylation. Primary lung squamous cell carcinoma expressed significantly more FBLN2 protein compared to adenocarcinoma (p = 0.047). Ectopic expression of FBLN2 led to decreased cell proliferation, migration and invasion, accompanied by inactivated MAPK/ERK and AKT/mTOR pathways, while FBLN2 siRNA knockdown resulted in an opposite biological behaviour in NSCLC cells. Additionally, overexpression of FBLN2 led to dysregulation of cell adhesion molecules, ECM markers and a panel of lysate/exosome-derived-microRNAs, which are involved in cell adhesion and ECM remodelling. Taken together, our data indicate that FBLN2 is methylated and exerts a tumor suppressor function through modulation of MAPK/ERK and AKT pathways and regulation of cell adhesion and ECM genes. Moreover, FBLN2 might be a potential biomarker for the sub-classification of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (M.N.); (D.C.S.); (M.A.); (N.G.)
| |
Collapse
|
37
|
Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem Pharmacol 2021; 193:114810. [PMID: 34673012 DOI: 10.1016/j.bcp.2021.114810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.
Collapse
|
38
|
Zhang D, Zou D, Deng Y, Yang L. Systematic analysis of the relationship between ovarian cancer prognosis and alternative splicing. J Ovarian Res 2021; 14:120. [PMID: 34526089 PMCID: PMC8442315 DOI: 10.1186/s13048-021-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian cancer(OC) is the gynecological tumor with the highest mortality rate, effective biomarkers are of great significance in improving its prognosis. In recent years, there have been many studies on alternative splicing (AS) events, and the role of AS events in tumor has become a focus of attention. Methods Data were downloaded from the TCGA database and Univariate Cox regression analysis was performed to determine AS events associated with OC prognosis.Eight prognostic models of OC were constructed in R package, and the accuracy of the models were evaluated by the time-dependent receiver operating characteristic (ROC) curves.Eight types of survival curves were drawn to evaluate the differences between the high and low risk groups.Independent prognostic factors of OC were analyzed by single factor independent analysis and multi-factor independent prognostic analysis.Again, Univariate Cox regression analysis was used to analyze the relationship between splicing factors(SF) and AS events, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on OS-related SFs to understand the pathways. Results Univariate Cox regression analysis showed that among the 15,278 genes, there were 31,286 overall survival (OS) related AS events, among which 1524 AS events were significantly correlated with OS. The area under the time-dependent receiver operating characteristic curve (AUC) of AT and ME were the largest and the RI was the smallest,which were 0.757 and 0.68 respectively. The constructed models have good value for the prognosis assessment of OC patients. Among the eight survival curves, AP was the most significant difference between the high and low risk groups, with a P value of 1.61e − 1.The results of single factor independent analysis and multi-factor independent prognostic analysis showed that risk score calculated by the model and age could be used as independent risk factors.According to univariate COX regression analysis,109 SFs were correlated with AS events and adjusted in two ways: positive and negative. Conclusions SFs and AS events can directly or indirectly affect the prognosis of OC patients. It is very important to find effective prognostic markers to improve the survival rate of OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00866-1.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dan Zou
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yue Deng
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lihua Yang
- Department of Gynaecology, the 2nd Afliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
39
|
Mochizuki Y, Funayama R, Shirota M, Kikukawa Y, Ohira M, Karasawa H, Kobayashi M, Ohnuma S, Unno M, Nakayama K. Alternative microexon splicing by RBFOX2 and PTBP1 is associated with metastasis in colorectal cancer. Int J Cancer 2021; 149:1787-1800. [PMID: 34346508 DOI: 10.1002/ijc.33758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Abstract
The splicing of microexons (very small exons) is frequently dysregulated in the brain of individuals with autism spectrum disorder. However, little is known of the patterns, regulatory mechanisms and roles of microexon splicing in cancer. We here examined the transcriptome-wide profile of microexon splicing in matched colorectal cancer (CRC) and normal tissue specimens. Out of 1492 microexons comprising 3 to 15 nucleotides, 21 (1%) manifested differential splicing between CRC and normal tissue. The 21 genes harboring the differentially spliced microexons were enriched in gene ontology terms related to cell adhesion and migration. RNA interference-mediated knockdown experiments identified two splicing factors, RBFOX2 and PTBP1, as regulators of microexon splicing in CRC cells. RBFOX2 and PTBP1 were found to directly bind to microexon-containing pre-mRNAs and to control their splicing in such cells. Differential microexon splicing was shown to be due, at least in part, to altered expression of RBFOX2 and PTBP1 in CRC tissue compared to matched normal tissue. Finally, we found that changes in the pattern of microexon splicing were associated with CRC metastasis. Our data thus suggest that altered expression of RBFOX2 and PTBP1 might influence CRC metastasis through the regulation of microexon splicing.
Collapse
Affiliation(s)
- Yasushi Mochizuki
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryo Funayama
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuna Kikukawa
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masahiro Ohira
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hideaki Karasawa
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Minoru Kobayashi
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinobu Ohnuma
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
40
|
Lee JS, Lamarche-Vane N, Richard S. Microexon alternative splicing of small GTPase regulators: Implication in central nervous system diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1678. [PMID: 34155820 DOI: 10.1002/wrna.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Microexons are small sized (≤51 bp) exons which undergo extensive alternative splicing in neurons, microglia, embryonic stem cells, and cancer cells, giving rise to cell type specific protein isoforms. Due to their small sizes, microexons provide a unique challenge for the splicing machinery. They frequently lack exon splicer enhancers/repressors and require specialized neighboring trans-regulatory and cis-regulatory elements bound by RNA binding proteins (RBPs) for their inclusion. The functional consequences of including microexons within mRNAs have been extensively documented in the central nervous system (CNS) and aberrations in their inclusion have been observed to lead to abnormal processes. Despite the increasing evidence for microexons impacting cellular physiology within CNS, mechanistic details illustrating their functional importance in diseases of the CNS is still limited. In this review, we discuss the unique characteristics of microexons, and how RBPs participate in regulating their inclusion and exclusion during splicing. We consider recent findings of microexon alternative splicing and their implication for regulating the function of small GTPases in the context of the microglia, and we extrapolate these findings to what is known in neurons. We further discuss the emerging evidence for dysregulation of the Rho GTPase pathway in CNS diseases and the consequences contributed by the mis-splicing of microexons. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Jee-San Lee
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Nathalie Lamarche-Vane
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Cheng C, Liu L, Bao Y, Yi J, Quan W, Xue Y, Sun L, Zhang Y. SUVA: splicing site usage variation analysis from RNA-seq data reveals highly conserved complex splicing biomarkers in liver cancer. RNA Biol 2021; 18:157-171. [PMID: 34152934 DOI: 10.1080/15476286.2021.1940037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most of the current alternative splicing (AS) analysis tools are powerless to analyse complex splicing. To address this, we developed SUVA (Splice sites Usage Variation Analysis) that decomposes complex splicing events into five types of splice junction pairs. By analysing real and simulated data, SUVA showed higher sensitivity and accuracy in detecting AS events than the compared methods. Notably, SUVA detected extensive complex AS events and screened out 69 highly conserved and dominant AS events associated with cancer. The cancer-associated complex AS events in FN1 and the co-regulated RNA-binding proteins were significantly correlated with patient survival.
Collapse
Affiliation(s)
- Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Weili Quan
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Yaqiang Xue
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| |
Collapse
|
42
|
Hsu CJ, Meers O, Buschbeck M, Heidel FH. The Role of MacroH2A Histone Variants in Cancer. Cancers (Basel) 2021; 13:cancers13123003. [PMID: 34203934 PMCID: PMC8232725 DOI: 10.3390/cancers13123003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The structural unit of chromatin is the nucleosome that is composed of DNA wrapped around a core of eight histone proteins. Histone variants can replace ‘standard’ histones at specific sites of the genome. Thus, histone variants modulate all functions in the context of chromatin, such as gene expression. Here, we provide a concise review on a group of histone variants termed macroH2A. They contain two additional domains that contribute to their increased size. We discuss how these domains mediate molecular functions in normal cells and the role of macroH2As in gene expression and cancer. Abstract The epigenome regulates gene expression and provides a molecular memory of cellular events. A growing body of evidence has highlighted the importance of epigenetic regulation in physiological tissue homeostasis and malignant transformation. Among epigenetic mechanisms, the replacement of replication-coupled histones with histone variants is the least understood. Due to differences in protein sequence and genomic distribution, histone variants contribute to the plasticity of the epigenome. Here, we focus on the family of macroH2A histone variants that are particular in having a tripartite structure consisting of a histone fold, an intrinsically disordered linker and a globular macrodomain. We discuss how these domains mediate different molecular functions related to chromatin architecture, transcription and DNA repair. Dysregulated expression of macroH2A histone variants has been observed in different subtypes of cancer and has variable prognostic impact, depending on cellular context and molecular background. We aim to provide a concise review regarding the context- and isoform-dependent contributions of macroH2A histone variants to cancer development and progression.
Collapse
Affiliation(s)
- Chen-Jen Hsu
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain;
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| | - Florian H. Heidel
- Internal Medicine C, Greifswald University Medicine, 17475 Greifswald, Germany;
- Leibniz Institute on Aging, Fritz-Lipmann Institute, 07745 Jena, Germany
- Correspondence: (M.B.); (F.H.H.); Tel.: +34-935-572-800 (M.B.); +49-383-486-6698 (F.H.H.); Fax: +49-383-486-6713 (F.H.H.)
| |
Collapse
|
43
|
Yu H, Du Q, Campbell M, Yu B, Walia H, Zhang C. Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. THE NEW PHYTOLOGIST 2021; 230:1273-1287. [PMID: 33453070 PMCID: PMC8048671 DOI: 10.1111/nph.17189] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
Pre-mRNA splicing is an essential step for the regulation of gene expression. In order to specifically capture splicing variants in plants for genome-wide association studies (GWAS), we developed a software tool to quantify and visualise Variations of Splicing in Population (VaSP). VaSP can quantify splicing variants from short-read RNA-seq datasets and discover genotype-specific splicing (GSS) events, which can be used to prioritise causal pre-mRNA splicing events in GWAS. We applied our method to an RNA-seq dataset with 328 samples from 82 genotypes from a rice diversity panel exposed to optimal and saline growing conditions. In total, 764 significant GSS events were identified in salt stress conditions. GSS events were used as markers for a GWAS with the shoot Na+ accumulation, which identified six GSS events in five genes significantly associated with the shoot Na+ content. Two of these genes, OsNUC1 and OsRAD23 emerged as top candidate genes with splice variants that exhibited significant divergence between the variants for shoot growth under salt stress conditions. VaSP is a versatile tool for alternative splicing analysis in plants and a powerful tool for prioritising candidate causal pre-mRNA splicing and corresponding genomic variations in GWAS.
Collapse
Affiliation(s)
- Huihui Yu
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
| | - Qian Du
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
| | - Malachy Campbell
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
- Department of Plant BiologyCornell UniversityIthacaNY14850USA
| | - Bin Yu
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| | - Harkamal Walia
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| | - Chi Zhang
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| |
Collapse
|
44
|
Navvabi N, Kolikova P, Hosek P, Zitricky F, Navvabi A, Vycital O, Bruha J, Palek R, Rosendorf J, Liska V, Pitule P. Altered Expression of MBNL Family of Alternative Splicing Factors in Colorectal Cancer. Cancer Genomics Proteomics 2021; 18:295-306. [PMID: 33893082 DOI: 10.21873/cgp.20260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIM Colorectal cancer is currently the third leading cause of cancer-related deaths and recently, alternative splicing has risen as its important regulator and potential treatment target. In the present study, we analyzed gene expression of the MBNL family of regulators of alternative splicing in various stages of colorectal cancer development, together with the MBNL-target splicing events in FOXP1 and EPB41L3 genes and tumor-related CD44 variants. MATERIALS AND METHODS Samples of tumor tissue and non-malignant mucosa from 108 patients were collected. After RNA isolation and reverse transcription, the relative gene expression of a selected gene panel was tested by quantitative real-time PCR, followed by statistical analysis. RESULTS MBNL expression was decreased in tumor tissue compared to non-tumor mucosa. In addition, lower expression was observed for the variants of FOXP1 and EPB41L3, while higher expression in tumor tissue was detected both for total CD44 and its cancer-related variants 3 and 6. Transcript levels of the MBNL genes were not found to be related to any of the studied clinicopathological characteristics. Multiple significant associations were identified in the target gene panel, including higher transcript levels of FOXP1 and CD44v3 in patients with distant metastases and connections between recurrence-free survival and altered levels of FOXP1 and CD44v3. CONCLUSION Our results identified for the first-time deregulation of MBNL genes in colorectal cancer. Down-regulation of their transcripts in tumor tissue compared to matched non-tumor mucosa can lead to transition of alternative splicing patterns towards a less differentiated phenotype, which highlights the importance of alternative splicing regulation for tumor growth and propagation.
Collapse
Affiliation(s)
- Nazila Navvabi
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavla Kolikova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petr Hosek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Frantisek Zitricky
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Azita Navvabi
- Biological Center, Faculty of Marine Sciences and Technologies in Bandar Abbas, Hormozgan University, Hormozgan, Iran
| | - Ondrej Vycital
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Bruha
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Richard Palek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jachym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Pitule
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; .,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
45
|
Liu Z, Rabadan R. Computing the Role of Alternative Splicing in Cancer. Trends Cancer 2021; 7:347-358. [PMID: 33500226 PMCID: PMC7969404 DOI: 10.1016/j.trecan.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
Most human genes undergo alternative splicing (AS), and dysregulation of alternative splicing contributes to tumor initiation and progression. Computational analysis of genomic and transcriptomic data enables the systematic characterization of alternative splicing and its functional role in cancer. In this review, we summarize the latest computational approaches to studying alternative splicing in cancer and the current limitations of the most popular tools in this field. Finally, we describe some of the current computational challenges in the characterization of the role of alternative splicing in cancer.
Collapse
Affiliation(s)
- Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China.
| | - Raul Rabadan
- Program for Mathematical Genomics, Columbia University, New York, NY 10032, USA; Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
46
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
47
|
Roura AJ, Gielniewski B, Pilanc P, Szadkowska P, Maleszewska M, Krol SK, Czepko R, Kaspera W, Wojtas B, Kaminska B. Identification of the immune gene expression signature associated with recurrence of high-grade gliomas. J Mol Med (Berl) 2020; 99:241-255. [PMID: 33215304 DOI: 10.1007/s00109-020-02005-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
High-grade gliomas (HGGs), the most common and aggressive primary brain tumors in adults, inevitably recur due to incomplete surgery or resistance to therapy. Intratumoral genomic and cellular heterogeneity of HGGs contributes to therapeutic resistance, recurrence, and poor clinical outcomes. Transcriptomic profiles of HGGs at recurrence have not been investigated in detail. Using targeted sequencing of cancer-related genes and transcriptomics, we identified single nucleotide variations, small insertions and deletions, copy number aberrations (CNAs), as well as gene expression changes and pathway deregulation in 16 pairs of primary and recurrent HGGs. Most of the somatic mutations identified in primary HGGs were not detected after relapse, suggesting a subclone substitution during the tumor progression. We found a novel frameshift insertion in the ZNF384 gene which may contribute to extracellular matrix remodeling. An inverse correlation of focal CNAs in EGFR and PTEN genes was detected. Transcriptomic analysis revealed downregulation of genes involved in messenger RNA splicing, cell cycle, and DNA repair, while genes related to interferon signaling and phosphatidylinositol (PI) metabolism are upregulated in secondary HGGs when compared to primary HGGs. In silico analysis of the tumor microenvironment identified M2 macrophages and immature dendritic cells as enriched in recurrent HGGs, suggesting a prominent immunosuppressive signature. Accumulation of those cells in recurrent HGGs was validated by immunostaining. Our findings point to a substantial transcriptomic deregulation and a pronounced infiltration of immature dendritic cells in recurrent HGG, which may impact the effectiveness of frontline immunotherapies in the GBM management. KEY MESSAGES: Most of the somatic mutations identified in primary HGGs were not detected after relapse. Focal CNAs in EGFR and PTEN genes are inversely correlated in primary and recurrent HGGs. Transcriptomic changes and distinct immune-related signatures characterize HGG recurrence. Recurrent HGGs are characterized by a prominent infiltration of immature dendritic and M2 macrophages.
Collapse
Affiliation(s)
| | | | - Paulina Pilanc
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | - Sylwia K Krol
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ryszard Czepko
- Clinical Department of Neurosurgery, St. Raphael Hospital, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Wojciech Kaspera
- Department of Neurosurgery, Regional Hospital, Medical University of Silesia, Sosnowiec, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
48
|
Transcriptome-wide analysis and modelling of prognostic alternative splicing signatures in invasive breast cancer: a prospective clinical study. Sci Rep 2020; 10:16504. [PMID: 33020551 PMCID: PMC7536242 DOI: 10.1038/s41598-020-73700-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant alternative splicing (AS) has been highly involved in the tumorigenesis and progression of most cancers. The potential role of AS in invasive breast cancer (IBC) remains largely unknown. In this study, RNA sequencing of IBC samples from The Cancer Genome Atlas was acquired. AS events were screened by conducting univariate and multivariate Cox analysis and least absolute shrinkage and selection operator regression. In total, 2146 survival-related AS events were identified from 1551 parental genes, of which 93 were related to prognosis, and a prognostic marker model containing 14 AS events was constructed. We also constructed the regulatory network of splicing factors (SFs) and AS events, and identified DDX39B as the node SF gene, and verified the accuracy of the network through experiments. Next, we performed quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in triple negative breast cancer patients with different responses to neoadjuvant chemotherapy, and found that the exon-specific expression of EPHX2, C6orf141, and HERC4 was associated with the different status of patients that received neoadjuvant chemotherapy. In conclusion, this study found that DDX39B, EPHX2 (exo7), and HERC4 (exo23) can be used as potential targets for the treatment of breast cancer, which provides a new idea for the treatment of breast cancer.
Collapse
|
49
|
Kahraman A, Karakulak T, Szklarczyk D, von Mering C. Pathogenic impact of transcript isoform switching in 1,209 cancer samples covering 27 cancer types using an isoform-specific interaction network. Sci Rep 2020; 10:14453. [PMID: 32879328 PMCID: PMC7468103 DOI: 10.1038/s41598-020-71221-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Under normal conditions, cells of almost all tissue types express the same predominant canonical transcript isoform at each gene locus. In cancer, however, splicing regulation is often disturbed, leading to cancer-specific switches in the most dominant transcripts (MDT). To address the pathogenic impact of these switches, we have analyzed isoform-specific protein-protein interaction disruptions in 1,209 cancer samples covering 27 different cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International Cancer Genomics Consortium (ICGC). Our study revealed large variations in the number of cancer-specific MDT (cMDT) with the highest frequency in cancers of female reproductive organs. Interestingly, in contrast to the mutational load, cancers arising from the same primary tissue had a similar number of cMDT. Some cMDT were found in 100% of all samples in a cancer type, making them candidates for diagnostic biomarkers. cMDT tend to be located at densely populated network regions where they disrupted protein interactions in the proximity of pathogenic cancer genes. A gene ontology enrichment analysis showed that these disruptions occurred mostly in protein translation and RNA splicing pathways. Interestingly, samples with mutations in the spliceosomal complex tend to have higher number of cMDT, while other transcript expressions correlated with mutations in non-coding splice-site and promoter regions of their genes. This work demonstrates for the first time the large extent of cancer-specific alterations in alternative splicing for 27 different cancer types. It highlights distinct and common patterns of cMDT and suggests novel pathogenic transcripts and markers that induce large network disruptions in cancers.
Collapse
Affiliation(s)
- Abdullah Kahraman
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tülay Karakulak
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
50
|
Zhang Y, Ma S, Niu Q, Han Y, Liu X, Jiang J, Chen S, Lin H. Features of alternative splicing in stomach adenocarcinoma and their clinical implication: a research based on massive sequencing data. BMC Genomics 2020; 21:580. [PMID: 32831016 PMCID: PMC7443856 DOI: 10.1186/s12864-020-06997-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) offers a main mechanism to form protein polymorphism. A growing body of evidence indicates the correlation between splicing disorders and carcinoma. Nevertheless, an overall analysis of AS signatures in stomach adenocarcinoma (STAD) is absent and urgently needed. RESULTS 2042 splicing events were confirmed as prognostic molecular events. Furthermore, the final prognostic signature constructed by 10 AS events gave good result with an area under the curve (AUC) of receiver operating characteristic (ROC) curve up to 0.902 for 5 years, showing high potency in predicting patient outcome. We built the splicing regulatory network to show the internal regulation mechanism of splicing events in STAD. QKI may play a significant part in the prognosis induced by splicing events. CONCLUSIONS In our study, a high-efficiency prognostic prediction model was built for STAD patients, and the results showed that AS events could become potential prognostic biomarkers for STAD. Meanwhile, QKI may become an important target for drug design in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shengling Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Niu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Han
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingyu Liu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Jiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Simiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|