1
|
Marranci A, Maresca L, Lodovichi S, Luserna di Rorà AG, Stecca B, Poliseno L. PARP1 in melanoma: Mechanistic insights and implications for basic and clinical research. Cancer Lett 2025; 617:217599. [PMID: 40024566 DOI: 10.1016/j.canlet.2025.217599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma and have set a successful example for the treatment of other cancers. A similar breakthrough was achieved with the advent of PARP inhibitors (PARPi) in breast and ovarian cancer. Recent evidence highlights the critical role of PARP1 in melanoma initiation and progression. High PARP1 expression correlates with aggressive melanoma characteristics and poor patient outcomes. Preclinical and clinical data suggest that PARPi, alone or in combination, can effectively reduce melanoma cell viability and inhibit tumor growth. However, integrating PARPi with current treatment approaches and identifying patients who could benefit the most from such combinations remain underexplored areas of investigation. This review highlights the need for further basic and clinical research on PARP1 in melanoma, to better understand its role and to tackle major challenges in the field, such as resistance to targeted therapies and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Andrea Marranci
- Oncohematology Unit, Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, 56017, Pisa, Italy. http://www.fpscience.it/
| | - Luisa Maresca
- Tumor Cell Biology Unit, Core Research Laboratory (CRL), Institute for Cancer Research and Prevention (ISPRO), 50139, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, 50139, Florence, Italy
| | - Samuele Lodovichi
- Department of Biosciences, University of Milan, 20133, Milan, Italy; Institute of Clinical Physiology, National Research Council (CNR-IFC), 56124, Pisa, Italy
| | | | - Barbara Stecca
- Tumor Cell Biology Unit, Core Research Laboratory (CRL), Institute for Cancer Research and Prevention (ISPRO), 50139, Florence, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, National Research Council (CNR-IFC), 56124, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, Institute for Cancer Research and Prevention (ISPRO), 56124, Pisa, Italy.
| |
Collapse
|
2
|
Conceição CJF, Moe E, Ribeiro PA, Raposo M. PARP1: A comprehensive review of its mechanisms, therapeutic implications and emerging cancer treatments. Biochim Biophys Acta Rev Cancer 2025; 1880:189282. [PMID: 39947443 DOI: 10.1016/j.bbcan.2025.189282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The Poly (ADP-ribose) polymerase-1 (PARP1) enzyme is involved in several signalling pathways related to homologous repair (HR), base excision repair (BER), and non-homologous end joining (NHEJ). Studies demonstrated that the deregulation of PARP1 function and control mechanisms can lead to cancer emergence. On the other side, PARP1 can be a therapeutic target to maximize cancer treatment. This is done by molecules that can modulate radiation effects, such as DNA repair inhibitors (PARPi). With this approach, tumour cell viability can be undermined by targeting DNA repair mechanisms. Thus, treatment using PARPi represents a new era for cancer therapy, and even new horizons can be attained by coupling these molecules with a nano-delivery system. For this, drug delivery systems such as liposomes encompass all the required features due to its excellent biocompatibility, biodegradability, and low toxicity. This review presents a comprehensive overview of PARP1 biological features and mechanisms, its role in cancer development, therapeutic implications, and emerging cancer treatments by PARPi-mediated therapies. Although there are a vast number of studies regarding PARP1 biological function, some PARP1 mechanisms are not clear yet, and full-length PARP1 structure is missing. Nevertheless, literature reports demonstrate already the high usefulness and vast possibilities offered by combined PARPi cancer therapy.
Collapse
Affiliation(s)
- Carlota J F Conceição
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Elin Moe
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Weaver TM, Ryan BJ, Thompson SH, Hussen AS, Spencer JJ, Xu Z, Schnicker NJ, Freudenthal BD. Structural basis of gap-filling DNA synthesis in the nucleosome by DNA Polymerase β. Nat Commun 2025; 16:2607. [PMID: 40097433 PMCID: PMC11914125 DOI: 10.1038/s41467-025-57915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Single-strand breaks (SSBs) are one of the most prevalent forms of DNA damage found in the chromatinized genome and are repaired by single-strand break repair (SSBR) or base excision repair (BER). DNA polymerase beta (Pol β) is the primary enzyme responsible for processing the 1-nt gap intermediate in chromatin during SSBR and BER. To date, the mechanism used by Pol β to process a 1-nt gap in the context of chromatin remains poorly understood. Here, we use biochemical assays and cryogenic electron microscopy (cryo-EM) to determine the kinetic and structural basis of gap-filling DNA synthesis in the nucleosome by Pol β. This work establishes that Pol β uses a global DNA sculpting mechanism for processing 1-nt gaps in the nucleosome during SSBR and BER, providing fundamental insight into DNA repair in chromatin.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Spencer H Thompson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Adil S Hussen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jonah J Spencer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Weaver TM, Ryan BJ, Thompson SH, Hussen AS, Spencer JJ, Xu Z, Schnicker NJ, Freudenthal BD. Structural basis of gap-filling DNA synthesis in the nucleosome by DNA Polymerase β. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621902. [PMID: 39574623 PMCID: PMC11580861 DOI: 10.1101/2024.11.04.621902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Single-strand breaks (SSBs) are one of the most prevalent forms of DNA damage found in the chromatinized genome and are repaired by direct single-strand break repair (SSBR) or base excision repair (BER). DNA polymerase beta (Pol β) is the primary enzyme responsible for processing the 1-nt gap intermediate in chromatin during SSBR and BER. However, the mechanism used by Pol β to process a 1-nt gap in the context of the nucleosome and chromatin remains poorly understood. Here, we use biochemical assays and cryogenic electron microscopy (cryo-EM) to determine the kinetic and structural basis of gap-filling DNA synthesis in the nucleosome by Pol β. Kinetic analysis identified that gap-filling DNA synthesis in the nucleosome by Pol β is position-dependent, where solvent exposed 1-nt gaps are processed more efficiently than histone-occluded 1-nt gaps. A series of cryo-EM structures of Pol β bound to a solvent-exposed 1-nt gap in the nucleosome reveal a global DNA sculpting mechanism for 1-nt gap recognition, which is mediated by sequential engagement of the Pol β lyase domain and polymerase domain. Finally, cryo-EM structures of Pol β bound to 1-nt gaps at two additional positions in the nucleosomal DNA define the structural basis for position-dependent nucleotide insertion in the nucleosome. This work establishes the mechanism used by Pol β for processing 1-nt gaps in the nucleosome during SSBR and BER, providing fundamental insight into DNA repair in chromatin.
Collapse
|
5
|
Sukhanova MV, Anarbaev RO, Maltseva EA, Kutuzov MM, Lavrik OI. Divalent and multivalent cations control liquid-like assembly of poly(ADP-ribosyl)ated PARP1 into multimolecular associates in vitro. Commun Biol 2024; 7:1148. [PMID: 39278937 PMCID: PMC11402994 DOI: 10.1038/s42003-024-06811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase β (Pol β) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol β-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Ekaterina A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk, Russia.
| |
Collapse
|
6
|
Engelsma SB, Nardozza AP, de Saint Aulaire P, Overkleeft HS, van der Marel GA, Ladurner AG, Filippov DV. Synthesis and Macrodomain Binding of Gln-carba-ADPr-peptide. Chembiochem 2024; 25:e202300865. [PMID: 38442082 DOI: 10.1002/cbic.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Mono-ADP-ribosylation is a dynamic post-translational modification (PTM) with important roles in cell signalling. This modification occurs on a wide variety of amino acids, and one of the canonical modification sites within proteins is the side chain of glutamic acid. Given the transient nature of this modification (acylal linkage) and the high sensitivity of ADP-ribosylated glutamic acid, stabilized isosteres are required for structural and biochemical studies. Here, we report the synthesis of a mimic of ADP-ribosylated peptide derived from histone H2B that contains carba-ADP-ribosylated glutamine as a potential mimic for Glu-ADPr. We synthesized a cyclopentitol-ribofuranosyl derivative of 5'-phosphoribosylated Fmoc-glutamine and used this in the solid-phase synthesis of the carba-ADPr-peptide mimicking the ADP-ribosylated N-terminal tail of histone H2B. Binding studies with isothermal calorimetry demonstrate that the macrodomains of human MacroD2 and TARG1 bind to carba-ADPr-peptide in the same way as ADPr-peptides containing the native ADP-riboside moiety connected to the side chain of glutamine in the same peptide sequence.
Collapse
Affiliation(s)
- Sander B Engelsma
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Aurelio Pio Nardozza
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Street 9, 82152, Planegg-Martinsried, Germany
| | - Pieter de Saint Aulaire
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Street 9, 82152, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Butenandt Street 5-13, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität München, Feodor Lynen Street 17, 81377, Munich, Germany
| | - Dmitri V Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Faculty of Science, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
7
|
Bastos IM, Rebelo S, Silva VLM. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem Pharmacol 2024; 221:116045. [PMID: 38336156 DOI: 10.1016/j.bcp.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a disease with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. The hallmarks of cancer evidence the acquired cells characteristics that promote the growth of malignant tumours, including genomic instability and mutations, the ability to evade cellular death and the capacity of sustaining proliferative signalization. Poly(ADP-ribose) polymerase-1 (PARP1) is a protein that plays key roles in cellular regulation, namely in DNA damage repair and cell survival. The inhibition of PARP1 promotes cellular death in cells with homologous recombination deficiency, and therefore, the interest in PARP protein has been rising as a target for anticancer therapies. There are already some PARP1 inhibitors approved by Food and Drug Administration (FDA), such as Olaparib and Niraparib. The last compound presents in its structure an indazole core. In fact, pyrazoles and indazoles have been raising interest due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as inhibitors of PARP1 and presented promising results. Therefore, this review aims to address the importance of PARP1 in cell regulation and its role in cancer. Moreover, it intends to report a comprehensive literature review of PARP1 inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PARP1 inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Wang C, Tian L, He Q, Lin S, Wu Y, Qiao Y, Zhu B, Li D, Chen G. Targeting CK2-mediated phosphorylation of p53R2 sensitizes BRCA-proficient cancer cells to PARP inhibitors. Oncogene 2023; 42:2971-2984. [PMID: 37620447 DOI: 10.1038/s41388-023-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Poly[ADP-ribose] polymerase (PARP) inhibitors, which selectively kills homologous recombination (HR) repair-deficient cancer cells, are widely employed to treat cancer patients harboring BRCA1/2 mutations. However, they display limited efficacy in tumors with wild-type (WT) BRCA1/2. Thus, it is crucial to identify new druggable HR repair regulators and improve the therapeutic efficacy of PARP inhibitors via combination therapies in BRCA1/2-WT tumors. Here, we show that the depletion of ribonucleotide reductase (RNR) subunit p53R2 impairs HR repair and sensitizes BRCA1/2-WT cancer cells to PARP inhibition. We further demonstrate that the loss of p53R2 leads to a decrease of HR repair factor CtIP, as a result of dNTPs shortage-induced ubiquitination of CtIP. Moreover, we identify that casein kinase II (CK2) phosphorylates p53R2 at its ser20, which subsequently activates RNR for dNTPs production. Therefore, pharmacologic inhibition of the CK2-mediated phosphorylation of p53R2 compromises its HR repair capacity in BRCA1/2-WT cancer cells, which renders these cells susceptible to PARP inhibition in vitro and in vivo. Therefore, our study reveals a novel strategy to inhibit HR repair activity and convert BRCA1/2-proficient cancers to be susceptible to PARP inhibitors via synthetic lethal combination.
Collapse
Affiliation(s)
- Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ling Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China
| | - Qiang He
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China
| | - Shengbin Lin
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China
| | - Yue Wu
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Yiting Qiao
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Dake Li
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China.
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
- Department of Medical Biochemistry and Molecular Biology, School of Medicine Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
9
|
Lovsund T, Mashayekhi F, Fitieh A, Stafford J, Ismail IH. Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance. Cells 2023; 12:1904. [PMID: 37508568 PMCID: PMC10378431 DOI: 10.3390/cells12141904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Detailing the connection between homeostatic functions of enzymatic families and eventual progression into tumorigenesis is crucial to our understanding of anti-cancer therapies. One key enzyme group involved in this process is the Poly (ADP-ribose) polymerase (PARP) family, responsible for an expansive number of cellular functions, featuring members well established as regulators of DNA repair, genomic stability and beyond. Several PARP inhibitors (PARPi) have been approved for clinical use in a range of cancers, with many more still in trials. Unfortunately, the occurrence of resistance to PARPi therapy is growing in prevalence and requires the introduction of novel counter-resistance mechanisms to maintain efficacy. In this review, we summarize the updated understanding of the vast homeostatic functions the PARP family mediates and pin the importance of PARPi therapies as anti-cancer agents while discussing resistance mechanisms and current up-and-coming counter-strategies for countering such resistance.
Collapse
Affiliation(s)
- Taylor Lovsund
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Fitieh
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - James Stafford
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Ismail Hassan Ismail
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
10
|
Gorini F, Ambrosio S, Lania L, Majello B, Amente S. The Intertwined Role of 8-oxodG and G4 in Transcription Regulation. Int J Mol Sci 2023; 24:ijms24032031. [PMID: 36768357 PMCID: PMC9916577 DOI: 10.3390/ijms24032031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The guanine base in nucleic acids is, among the other bases, the most susceptible to being converted into 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) when exposed to reactive oxygen species. In double-helix DNA, 8-oxodG can pair with adenine; hence, it may cause a G > T (C > A) mutation; it is frequently referred to as a form of DNA damage and promptly corrected by DNA repair mechanisms. Moreover, 8-oxodG has recently been redefined as an epigenetic factor that impacts transcriptional regulatory elements and other epigenetic modifications. It has been proposed that 8-oxodG exerts epigenetic control through interplay with the G-quadruplex (G4), a non-canonical DNA structure, in transcription regulatory regions. In this review, we focused on the epigenetic roles of 8-oxodG and the G4 and explored their interplay at the genomic level.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Susanna Ambrosio
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
11
|
Li C, Xue Y, Ba X, Wang R. The Role of 8-oxoG Repair Systems in Tumorigenesis and Cancer Therapy. Cells 2022; 11:cells11233798. [PMID: 36497058 PMCID: PMC9735852 DOI: 10.3390/cells11233798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Tumorigenesis is highly correlated with the accumulation of mutations. The abundant and extensive DNA oxidation product, 8-Oxoguanine (8-oxoG), can cause mutations if it is not repaired by 8-oxoG repair systems. Therefore, the accumulation of 8-oxoG plays an essential role in tumorigenesis. To avoid the accumulation of 8-oxoG in the genome, base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase1 (OGG1), is responsible for the removal of genomic 8-oxoG. It has been proven that 8-oxoG levels are significantly elevated in cancer cells compared with cells of normal tissues, and the induction of DNA damage by some antitumor drugs involves direct or indirect interference with BER, especially through inducing the production and accumulation of reactive oxygen species (ROS), which can lead to tumor cell death. In addition, the absence of the core components of BER can result in embryonic or early post-natal lethality in mice. Therefore, targeting 8-oxoG repair systems with inhibitors is a promising avenue for tumor therapy. In this study, we summarize the impact of 8-oxoG accumulation on tumorigenesis and the current status of cancer therapy approaches exploiting 8-oxoG repair enzyme targeting, as well as possible synergistic lethality strategies involving exogenous ROS-inducing agents.
Collapse
Affiliation(s)
- Chunshuang Li
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Xue
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
| | - Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Education, School of Life Science, Northeast Normal University, Changchun 130024, China
- Correspondence: (X.B.); (R.W.)
| | - Ruoxi Wang
- Center for Cell Structure and Function, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (X.B.); (R.W.)
| |
Collapse
|
12
|
Soni A, Lin X, Mladenov E, Mladenova V, Stuschke M, Iliakis G. BMN673 Is a PARP Inhibitor with Unique Radiosensitizing Properties: Mechanisms and Potential in Radiation Therapy. Cancers (Basel) 2022; 14:cancers14225619. [PMID: 36428712 PMCID: PMC9688666 DOI: 10.3390/cancers14225619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
BMN673 is a relatively new PARP inhibitor (PARPi) that exhibits superior efficacy in vitro compared to olaparib and other clinically relevant PARPi. BMN673, similar to most clinical PARPi, inhibits the catalytic activities of PARP-1 and PARP-2 and shows impressive anticancer potential as monotherapy in several pre-clinical and clinical studies. Tumor resistance to PARPi poses a significant challenge in the clinic. Thus, combining PARPi with other treatment modalities, such as radiotherapy (RT), is being actively pursued to overcome such resistance. However, the modest to intermediate radiosensitization exerted by olaparib, rucaparib, and veliparib, limits the rationale and the scope of such combinations. The recently reported strong radiosensitizing potential of BMN673 forecasts a paradigm shift on this front. Evidence accumulates that BMN673 may radiosensitize via unique mechanisms causing profound shifts in the balance among DNA double-strand break (DSB) repair pathways. According to one of the emerging models, BMN673 strongly inhibits classical non-homologous end-joining (c-NHEJ) and increases reciprocally and profoundly DSB end-resection, enhancing error-prone DSB processing that robustly potentiates cell killing. In this review, we outline and summarize the work that helped to formulate this model of BMN673 action on DSB repair, analyze the causes of radiosensitization and discuss its potential as a radiosensitizer in the clinic. Finally, we highlight strategies for combining BMN673 with other inhibitors of DNA damage response for further improvements.
Collapse
Affiliation(s)
- Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-4152
| |
Collapse
|
13
|
Qiu Y, Hu X, Zeng X, Wang H. Triple kill: DDR inhibitors, radiotherapy and immunotherapy leave cancer cells with no escape. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1569-1576. [PMID: 36305726 PMCID: PMC9828448 DOI: 10.3724/abbs.2022153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy (RT) has been widely used in the clinical treatment of cancers, but radiotherapy resistance (RR) leads to RT failure, tumor recurrence and metastasis. Many studies have been performed on the potential mechanisms behind RR, and a strong link has been found between RR and DNA damage. RT-induced DNA damage triggers a protective mechanism called the DNA damage response (DDR). DDR consists of several aspects, including the detection of DNA damage and induction of cell cycle checkpoint, DNA repair, and eventual induction of cell death. A large number of studies have shown that DDR inhibition leads to significantly enhanced sensitivity of cancer cells to RT. DDR may be an effective target for radio- and chemo-sensitization during cancer treatment. Therefore, many inhibitors of important enzymes involved in the DDR have been developed, such as PARP inhibitors, DNA-PK inhibitors, and ATM/ATR inhibitors. In addition, DNA damage also triggers the cGAS-STING signaling pathway and the ATM/ATR (CHK)/STAT pathway to induce immune infiltration and T-cell activation. This review discusses the effects of DDR pathway dysregulation on the tumor response to RT and the strategies for targeting these pathways to increase tumor susceptibility to RT. Finally, the potential for the combination treatment of radiation, DDR inhibition, and immunotherapy is described.
Collapse
Affiliation(s)
- Yuyue Qiu
- School of Basic Medical SciencesNanchang UniversityNanchang330006China,Queen Mary SchoolNanchang UniversityNanchang330006China
| | - Xinru Hu
- School of Basic Medical SciencesNanchang UniversityNanchang330006China,Queen Mary SchoolNanchang UniversityNanchang330006China
| | - Xiaoping Zeng
- School of Basic Medical SciencesNanchang UniversityNanchang330006China
| | - Hongmei Wang
- School of Basic Medical SciencesNanchang UniversityNanchang330006China,Correspondence address. Tel: +86-13767004966;
| |
Collapse
|
14
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
15
|
Li H, Wang C, Lan L, Yan L, Li W, Evans I, Ruiz EJ, Su Q, Zhao G, Wu W, Zhang H, Zhou Z, Hu Z, Chen W, Oliveira JM, Behrens A, Reis RL, Zhang C. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci 2022; 79:135. [PMID: 35179655 PMCID: PMC11072755 DOI: 10.1007/s00018-022-04129-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Oxaliplatin is the first-line regime for advanced gastric cancer treatment, while its resistance is a major problem that leads to the failure of clinical treatments. Tumor cell heterogeneity has been considered as one of the main causes for drug resistance in cancer. In this study, the mechanism of oxaliplatin resistance was investigated through in vitro human gastric cancer organoids and gastric cancer oxaliplatin-resistant cell lines and in vivo subcutaneous tumorigenicity experiments. The in vitro and in vivo results indicated that CD133+ stem cell-like cells are the main subpopulation and PARP1 is the central gene mediating oxaliplatin resistance in gastric cancer. It was found that PARP1 can effectively repair DNA damage caused by oxaliplatin by means of mediating the opening of base excision repair pathway, leading to the occurrence of drug resistance. The CD133+ stem cells also exhibited upregulated expression of N6-methyladenosine (m6A) mRNA and its writer METTL3 as showed by immunoprecipitation followed by sequencing and transcriptome analysis. METTTL3 enhances the stability of PARP1 by recruiting YTHDF1 to target the 3'-untranslated Region (3'-UTR) of PARP1 mRNA. The CD133+ tumor stem cells can regulate the stability and expression of m6A to PARP1 through METTL3, and thus exerting the PARP1-mediated DNA damage repair ability. Therefore, our study demonstrated that m6A Methyltransferase METTL3 facilitates oxaliplatin resistance in CD133+ gastric cancer stem cells by Promoting PARP1 mRNA stability which increases base excision repair pathway activity.
Collapse
Affiliation(s)
- Huafu Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming Dist., Shenzhen, 518107, China
- The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chunming Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming Dist., Shenzhen, 518107, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Linxiang Lan
- The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Leping Yan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming Dist., Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wuguo Li
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ian Evans
- The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - E Josue Ruiz
- The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guangying Zhao
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenhui Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming Dist., Shenzhen, 518107, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haiyong Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhenran Hu
- Scientific Research Center, The Seventh Affiliated Hospital Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming Dist., Shenzhen, 518107, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Axel Behrens
- The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK.
- Adult Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628, Zhenyuan Rd, Guangming Dist., Shenzhen, 518107, China.
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
16
|
Cooper KL, Volk LB, Dominguez DR, Duran AD, Ke Jian Liu KJ, Hudson LG. Contribution of NADPH oxidase to the retention of UVR-induced DNA damage by arsenic. Toxicol Appl Pharmacol 2022; 434:115799. [PMID: 34798142 PMCID: PMC10115133 DOI: 10.1016/j.taap.2021.115799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
Arsenic is a naturally occurring element present in food, soil and water and human exposure is associated with increased cancer risk. Arsenic inhibits DNA repair at low, non-cytotoxic concentrations and amplifies the mutagenic and carcinogenic impact of other DNA-damaging agents, such as ultraviolet radiation (UVR). Arsenic exposure leads to oxidation of zinc coordinating cysteine residues, zinc loss and decreased activity of the DNA repair protein poly(ADP)ribose polymerase (PARP)-1. Because arsenic stimulates NADPH oxidase (NOX) activity leading to generation of reactive oxygen species (ROS), the goal of this study was to investigate the role of NOX in arsenic-induced inhibition of PARP activity and retention of DNA damage. NOX involvement in the arsenic response was assessed in vitro and in vivo. Keratinocytes were treated with or without arsenite, solar-simulated UVR, NOX inhibitors and/or isoform specific NOX siRNA. Knockdown or inhibition of NOX decreased arsenite-induced ROS, PARP-1 oxidation and DNA damage retention, while restoring arsenite inhibition of PARP-1 activity. The NOX2 isoform was determined to be the major contributor to arsenite-induced ROS generation and DNA damage retention. In vivo DNA damage was measured by immunohistochemical staining and analysis of dorsal epidermis sections from C57BI/6 and p91phox knockout (NOX2-/-) mice. There was no significant difference in solar-simulated UVR DNA damage as detected by percent PH2AX positive cells within NOX2-/- mice versus control. In contrast, arsenite-dependent retention of UVR-induced DNA damage was markedly reduced. Altogether, the in vitro and in vivo findings indicate that NOX is involved in arsenic enhancement of UVR-induced DNA damage.
Collapse
Affiliation(s)
- Karen L Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Dayna R Dominguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Antonia D Duran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States of America; Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, United States of America
| | - K J Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States of America.
| |
Collapse
|
17
|
Alemasova EE, Naumenko KN, Sukhanova MV, Lavrik OI. Role of YB-1 in Regulation of Poly(ADP-Ribosylation) Catalyzed by Poly(ADP-Ribose) Polymerases. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S32-S0. [PMID: 35501985 DOI: 10.1134/s0006297922140048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of proteins that performs an essential regulatory function in the cellular response to DNA damage. The key enzyme synthesizing poly(ADP-ribose) (PAR) in the cells is poly(ADP-ribose) polymerase 1 (PARP1). Understanding the mechanisms of the PARP1 activity regulation within the cells is necessary for development of the PARP1-targeted antitumor therapy. This review is devoted to the studies of the role of the RNA-binding protein YB-1 in the PARP1-catalyzed PARylation. The mechanisms of PARP1 activity stimulation by YB-1 protein can possibly be extended to other RNA-binding proteins involved in the maintenance of the genome stability.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Konstantin N Naumenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Hindi NN, Elsakrmy N, Ramotar D. The base excision repair process: comparison between higher and lower eukaryotes. Cell Mol Life Sci 2021; 78:7943-7965. [PMID: 34734296 PMCID: PMC11071731 DOI: 10.1007/s00018-021-03990-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023]
Abstract
The base excision repair (BER) pathway is essential for maintaining the stability of DNA in all organisms and defects in this process are associated with life-threatening diseases. It is involved in removing specific types of DNA lesions that are induced by both exogenous and endogenous genotoxic substances. BER is a multi-step mechanism that is often initiated by the removal of a damaged base leading to a genotoxic intermediate that is further processed before the reinsertion of the correct nucleotide and the restoration of the genome to a stable structure. Studies in human and yeast cells, as well as fruit fly and nematode worms, have played important roles in identifying the components of this conserved DNA repair pathway that maintains the integrity of the eukaryotic genome. This review will focus on the components of base excision repair, namely, the DNA glycosylases, the apurinic/apyrimidinic endonucleases, the DNA polymerase, and the ligases, as well as other protein cofactors. Functional insights into these conserved proteins will be provided from humans, Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans, and the implications of genetic polymorphisms and knockouts of the corresponding genes.
Collapse
Affiliation(s)
- Nagham Nafiz Hindi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar.
| |
Collapse
|
19
|
Paulsen T, Malapati P, Shibata Y, Wilson B, Eki R, Benamar M, Abbas T, Dutta A. MicroDNA levels are dependent on MMEJ, repressed by c-NHEJ pathway, and stimulated by DNA damage. Nucleic Acids Res 2021; 49:11787-11799. [PMID: 34718766 PMCID: PMC8599734 DOI: 10.1093/nar/gkab984] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) are present within all eukaryotic organisms and actively contribute to gene expression changes. MicroDNA (200-1000bp) are the most abundant type of eccDNA and can amplify tRNA, microRNA, and novel si-like RNA sequences. Due to the heterogeneity of microDNA and the limited technology to directly quantify circular DNA molecules, the specific DNA repair pathways that contribute to microDNA formation have not been fully elucidated. Using a sensitive and quantitative assay that quantifies eight known abundant microDNA, we report that microDNA levels are dependent on resection after double-strand DNA break (DSB) and repair by Microhomology Mediated End Joining (MMEJ). Further, repair of DSB without resection by canonical Non-Homologous End Joining (c-NHEJ) diminishes microDNA formation. MicroDNA levels are induced locally even by a single site-directed DSB, suggesting that excision of genomic DNA by two closely spaced DSB is not necessary for microDNA formation. Consistent with all this, microDNA levels accumulate as cells undergo replication in S-phase, when DNA breaks and repair are elevated, and microDNA levels are decreased if DNA synthesis is prevented. Thus, formation of microDNA occurs during the repair of endogenous or induced DNA breaks by resection-based DNA repair pathways.
Collapse
Affiliation(s)
- Teressa Paulsen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pumoli Malapati
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rebeka Eki
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mouadh Benamar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| |
Collapse
|
20
|
Visser H, Thomas AD. MicroRNAs and the DNA damage response: How is cell fate determined? DNA Repair (Amst) 2021; 108:103245. [PMID: 34773895 DOI: 10.1016/j.dnarep.2021.103245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
It is becoming clear that the DNA damage response orchestrates an appropriate response to a given level of DNA damage, whether that is cell cycle arrest and repair, senescence or apoptosis. It is plausible that the alternative regulation of the DNA damage response (DDR) plays a role in deciding cell fate following damage. MicroRNAs (miRNAs) are associated with the transcriptional regulation of many cellular processes. They have diverse functions, affecting, presumably, all aspects of cell biology. Many have been shown to be DNA damage inducible and it is conceivable that miRNA species play a role in deciding cell fate following DNA damage by regulating the expression and activation of key DDR proteins. From a clinical perspective, miRNAs are attractive targets to improve cancer patient outcomes to DNA-damaging chemotherapy. However, cancer tissue is known to be, or to become, well adapted to DNA damage as a means of inducing chemoresistance. This frequently results from an altered DDR, possibly owing to miRNA dysregulation. Though many studies provide an overview of miRNAs that are dysregulated within cancerous tissues, a tangible, functional association is often lacking. While miRNAs are well-documented in 'ectopic biology', the physiological significance of endogenous miRNAs in the context of the DDR requires clarification. This review discusses miRNAs of biological relevance and their role in DNA damage response by potentially 'fine-tuning' the DDR towards a particular cell fate in response to DNA damage. MiRNAs are thus potential therapeutic targets/strategies to limit chemoresistance, or improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Hartwig Visser
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
21
|
Zhou X, Speer RM, Volk L, Hudson LG, Liu KJ. Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins. Semin Cancer Biol 2021; 76:86-98. [PMID: 33984503 PMCID: PMC8578584 DOI: 10.1016/j.semcancer.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could inform the prevention and intervention strategies of arsenic carcinogenesis and co-carcinogenesis. Arsenic inhibition of DNA repair has been demonstrated to be an important mechanism, and certain DNA repair proteins have been identified to be extremely sensitive to arsenic exposure. This review will summarize the recent advances in understanding the mechanisms of arsenic carcinogenesis and co-carcinogenesis, including DNA damage induction and ROS generation, particularly how arsenic inhibits DNA repair through an integrated molecular mechanism which includes its interactions with sensitive zinc finger DNA repair proteins.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Lindsay Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
22
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Li H, Wang C, Lan L, Wu W, Evans I, Ruiz EJ, Yan L, Zhou Z, Oliveira JM, Reis RL, Hu Z, Chen W, Behrens A, He Y, Zhang C. PARP1 Inhibitor Combined With Oxaliplatin Efficiently Suppresses Oxaliplatin Resistance in Gastric Cancer-Derived Organoids via Homologous Recombination and the Base Excision Repair Pathway. Front Cell Dev Biol 2021; 9:719192. [PMID: 34497808 PMCID: PMC8419238 DOI: 10.3389/fcell.2021.719192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Oxaliplatin (OXA) resistance in the treatment of different types of cancer is an important and complex problem. The culture of tumor organoids derived from gastric cancer can help us to provide a deeper understanding of the underlying mechanisms that lead to OXA resistance. In this study, our purpose was to understand the mechanisms that lead to OXA resistance, and to provide survival benefits to patients with OXA through targeted combination therapies. Using sequence analysis of OXA-resistant and non-OXA-resistant organoids, we found that PARP1 is an important gene that mediates OXA resistance. Through the patients’ follow-up data, it was observed that the expression level of PARP1 was significantly correlated with OXA resistance. This was confirmed by genetic manipulation of PARP1 expression in OXA-resistant organoids used in subcutaneous tumor formation. Results further showed that PARP1 mediated OXA resistance by inhibiting the base excision repair pathway. OXA also inhibited homologous recombination by CDK1 activity and importantly made cancers with normal BRCA1 function sensitive to PARP inhibition. As a result, combination of OXA and Olaparib (PARP-1/2/3 inhibitor), inhibited in vivo and in vitro OXA resistant organoid growth and viability.
Collapse
Affiliation(s)
- Huafu Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunming Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linxiang Lan
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Wenhui Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ian Evans
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - E Josue Ruiz
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Leping Yan
- Center of Scientific Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, University of Minho, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Zhenran Hu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Robinson J, Raguseo F, Nuccio SP, Liano D, Di Antonio M. DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res 2021; 49:8419-8431. [PMID: 34255847 PMCID: PMC8421137 DOI: 10.1093/nar/gkab609] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
It has been >20 years since the formation of G-quadruplex (G4) secondary structures in gene promoters was first linked to the regulation of gene expression. Since then, the development of small molecules to selectively target G4s and their cellular application have contributed to an improved understanding of how G4s regulate transcription. One model that arose from this work placed these non-canonical DNA structures as repressors of transcription by preventing polymerase processivity. Although a considerable number of studies have recently provided sufficient evidence to reconsider this simplistic model, there is still a misrepresentation of G4s as transcriptional roadblocks. In this review, we will challenge this model depicting G4s as simple 'off switches' for gene expression by articulating how their formation has the potential to alter gene expression at many different levels, acting as a key regulatory element perturbing the nature of epigenetic marks and chromatin architecture.
Collapse
Affiliation(s)
- Jenna Robinson
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Federica Raguseo
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Sabrina Pia Nuccio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Denise Liano
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
25
|
Therapeutic Potential of PARP Inhibitors in the Treatment of Gastrointestinal Cancers. Biomedicines 2021; 9:biomedicines9081024. [PMID: 34440228 PMCID: PMC8392860 DOI: 10.3390/biomedicines9081024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal (GI) malignancies are a major global health burden, with high mortality rates. The identification of novel therapeutic strategies is crucial to improve treatment and survival of patients. The poly (ADP-ribose) polymerase (PARP) enzymes involved in the DNA damage response (DDR) play major roles in the development, progression and treatment response of cancer, with PARP inhibitors (PARPi) currently used in the clinic for breast, ovarian, fallopian, primary peritoneal, pancreatic and prostate cancers with deficiencies in homologous recombination (HR) DNA repair. This article examines the current evidence for the role of the DDR PARP enzymes (PARP1, 2, 3 and 4) in the development, progression and treatment response of GI cancers. Furthermore, we discuss the role of HR status as a predictive biomarker of PARPi efficacy in GI cancer patients and examine the pre-clinical and clinical evidence for PARPi and cytotoxic therapy combination strategies in GI cancer. We also include an analysis of the genomic and transcriptomic landscape of the DDR PARP genes and key HR genes (BRCA1, BRCA2, ATM, RAD51, MRE11, PALB2) in GI patient tumours (n = 1744) using publicly available datasets to identify patients that may benefit from PARPi therapeutic approaches.
Collapse
|
26
|
Apurinic/Apyrimidinic Endonuclease 2 (APE2): An ancillary enzyme for contextual base excision repair mechanisms to preserve genome stability. Biochimie 2021; 190:70-90. [PMID: 34302888 DOI: 10.1016/j.biochi.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023]
Abstract
The genome of living organisms frequently undergoes various types of modifications which are recognized and repaired by the relevant repair mechanisms. These repair pathways are increasingly being deciphered to understand the mechanisms. Base excision repair (BER) is indispensable to maintain genome stability. One of the enigmatic repair proteins of BER, Apurinic/Apyrimidinic Endonuclease 2 (APE2), like APE1, is truly multifunctional and demonstrates the independent and non-redundant function in maintaining the genome integrity. APE2 is involved in ATR-Chk1 mediated DNA damage response. It also resolves topoisomerase1 mediated cleavage complex intermediate which is formed while repairing misincorporated ribonucleotides in the absence of functional RNase H2 mediated excision repair pathway. BER participates in the demethylation pathway and the role of Arabidopsis thaliana APE2 is demonstrated in this process. Moreover, APE2 is synthetically lethal to BRCA1, BRCA2, and RNase H2, and its homolog, APE1 fails to complement the function. Hence, the role of APE2 is not just an alternate to the repair mechanisms but has implications in diverse functional pathways related to the maintenance of genome integrity. This review analyses genomic features of APE2 and delineates its enzyme function as error-prone as well as efficient and accurate repair protein based on the studies on mammalian or its homolog proteins from model systems such as Arabidopsis thaliana, Schizosaccharomyces pombe, Trypanosoma curzi, Xenopus laevis, Danio rerio, Mus musculus, and Homo sapiens.
Collapse
|
27
|
Significance of base excision repair to human health. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:163-193. [PMID: 34507783 DOI: 10.1016/bs.ircmb.2021.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative and alkylating DNA damage occurs under normal physiological conditions and exogenous exposure to DNA damaging agents. To counteract DNA base damage, cells have evolved several defense mechanisms that act at different levels to prevent or repair DNA base damage. Cells combat genomic lesions like these including base modifications, abasic sites, as well as single-strand breaks, via the base excision repair (BER) pathway. In general, the core BER process involves well-coordinated five-step reactions to correct DNA base damage. In this review, we will uncover the current understanding of BER mechanisms to maintain genomic stability and the biological consequences of its failure due to repair gene mutations. The malfunction of BER can often lead to BER intermediate accumulation, which is genotoxic and can lead to different types of human disease. Finally, we will address the use of BER intermediates for targeted cancer therapy.
Collapse
|
28
|
Ding X, Zhang A, Li C, Ma L, Tang S, Wang Q, Yang G, Li J. The role of H3K9me2-regulated base excision repair genes in the repair of DNA damage induced by arsenic in HaCaT cells and the effects of Ginkgo biloba extract intervention. ENVIRONMENTAL TOXICOLOGY 2021; 36:850-860. [PMID: 33378118 DOI: 10.1002/tox.23088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is an established human carcinogen that can induce DNA damage; however, the precise mechanism remains unknown. Histone modification is of great significance in chemical toxicity and carcinogenesis. To investigate the role of histone H3K9me2 in arsenic-induced DNA damage, HaCaT cells were exposed to sodium arsenite in this study, and the results showed that the enrichment level of H3K9me2 at the N-methylated purine-DNA-glycosylase (MPG), X-ray repair cross-complementary gene 1 (XRCC1), and polyadenylate diphosphate ribose polymerase-1 (PARP1) promoter regions of base-excision repair (BER) genes was increased, which inhibited the expression of these BER genes, thereby inhibiting the repair of DNA damage and aggravating the DNA damage. Furthermore, the molecular mechanism by which H3K9me2 participates in the BER repair of arsenic-induced DNA damage was verified based on functional loss and gain experiments. In addition, Ginkgo biloba extract can upregulate the expression of MPG, XRCC1, and PARP1 and ameliorate cell DNA damage by reducing the enrichment of H3K9me2 at repair gene promoter regions.
Collapse
Affiliation(s)
- Xuejiao Ding
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- The First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Anliu Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Guiyang Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Changzhe Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Lu Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Shunfang Tang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Qi Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Guanghong Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
29
|
Zou X, Zhao Y, Liang X, Wang H, Zhu Y, Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front Immunol 2021; 12:641937. [PMID: 33868274 PMCID: PMC8047328 DOI: 10.3389/fimmu.2021.641937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is still the leading cause of death among all gynecological malignancies, despite the recent progress in cancer therapy. Immune escape and drug resistance, especially platinum-based chemotherapy, are significant factors causing disease progression, recurrence and poor prognosis in OC patients. MicroRNAs(miRNAs) are small noncoding RNAs, regulating gene expression at the transcriptional level. Accumulating evidence have indicated their crucial roles in platinum resistance. Importantly, they also act as mediators of tumor immune escape/evasion. In this review, we summarize the recent study of miRNAs involved in platinum resistance of OC and systematically analyses miRNAs involved in the regulation of OC immune escape. Further understanding of miRNAs roles and their possible mechanisms in platinum resistance and tumor escape may open new avenues for improving OC therapy.
Collapse
Affiliation(s)
- Xueqin Zou
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiuting Liang
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanling Zhu
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
30
|
Edwards AD, Marecki JC, Byrd AK, Gao J, Raney K. G-Quadruplex loops regulate PARP-1 enzymatic activation. Nucleic Acids Res 2021; 49:416-431. [PMID: 33313902 PMCID: PMC7797039 DOI: 10.1093/nar/gkaa1172] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
G-Quadruplexes are non-B form DNA structures present at regulatory regions in the genome, such as promoters of proto-oncogenes and telomeres. The prominence in such sites suggests G-quadruplexes serve an important regulatory role in the cell. Indeed, oxidized G-quadruplexes found at regulatory sites are regarded as epigenetic elements and are associated with an interlinking of DNA repair and transcription. PARP-1 binds damaged DNA and non-B form DNA, where it covalently modifies repair enzymes or chromatin-associated proteins respectively with poly(ADP-ribose) (PAR). PAR serves as a signal in regulation of transcription, chromatin remodeling, and DNA repair. PARP-1 is known to bind G-quadruplexes with stimulation of enzymatic activity. We show that PARP-1 binds several G-quadruplex structures with nanomolar affinities, but only a subset promote PARP-1 activity. The G-quadruplex forming sequence found in the proto-oncogene c-KIT promoter stimulates enzymatic activity of PARP-1. The loop-forming characteristics of the c-KIT G-quadruplex sequence regulate PARP-1 catalytic activity, whereas eliminating these loop features reduces PARP-1 activity. Oxidized G-quadruplexes that have been suggested to form unique, looped structures stimulate PARP-1 activity. Our results support a functional interaction between PARP-1 and G-quadruplexes. PARP-1 enzymatic activation by G-quadruplexes is dependent on the loop features and the presence of oxidative damage.
Collapse
Affiliation(s)
- Andrea D Edwards
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
31
|
Chang M, Wang H, Niu J, Song Y, Zou Z. Alkannin-Induced Oxidative DNA Damage Synergizes With PARP Inhibition to Cause Cancer-Specific Cytotoxicity. Front Pharmacol 2020; 11:610205. [PMID: 33519476 PMCID: PMC7844861 DOI: 10.3389/fphar.2020.610205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Oncogenic transformation is associated with elevated oxidative stress that promotes tumor progression but also renders cancer cells vulnerable to further oxidative insult. Agents that stimulate ROS generation or suppress antioxidant systems can drive oxidative pressure to toxic levels selectively in tumor cells, resulting in oxidative DNA damage to endanger cancer cell survival. However, DNA damage response signaling protects cancer cells by activating DNA repair and genome maintenance mechanisms. In this study, we investigated the synergistic effects of combining the pro-oxidative natural naphthoquinone alkannin with inhibition of DNA repair by PARP inhibitors. Methods and Results: The results showed that sublethal doses of alkannin induced ROS elevation and oxidative DNA damage in colorectal cancer but not normal colon epithelial cells. Blocking DNA repair with the PARP inhibitor olaparib markedly synergized with alkannin to yield synergistic cytotoxicity in colorectal cancer cells at nontoxic doses of both drugs. Synergy between alkannin and olaparib resulted from interrupted repair of alkannin-induced oxidative DNA damage and PARP-trapping, as it was significantly attenuated by NAC or by OGG1 inhibition and the non-trapping PARP inhibitor veliparib did not yield synergism. Mechanistically, the combination of alkannin and olaparib caused intense replication stress and DNA strand breaks in colorectal cancer cells, leading to apoptotic cancer cell death after G2 arrest. Consequently, coadministration of alkannin and olaparib induced significant regression of tumor xenografts in vivo, while each agent alone had no effect. Conclusion: These studies clearly show that combining alkannin and olaparib can result in synergistic cancer cell lethality at nontoxic doses of the drugs. The combination exploits a cancer vulnerability driven by the intrinsic oxidative pressure in most cancer cells and hence provides a promising strategy to develop broad-spectrum anticancer therapeutics.
Collapse
Affiliation(s)
- Mingxin Chang
- Department of Gastrointestinal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongge Wang
- Department of Cell Biology and Biophysics, School of Life Sciences, Jilin University, Changchun, China
| | - Jiajing Niu
- Department of Cell Biology and Biophysics, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Song
- Department of Gastrointestinal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhihua Zou
- Department of Cell Biology and Biophysics, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
32
|
Kumar M, Jaiswal RK, Yadava PK, Singh RP. An assessment of poly (ADP-ribose) polymerase-1 role in normal and cancer cells. Biofactors 2020; 46:894-905. [PMID: 33098603 DOI: 10.1002/biof.1688] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is a superfamily of 18 proteins characterized by the PARP homology domain, the catalytic domain. This catalytic domain helps in the ADP-ribosylation of various acceptor proteins using nicotinamide adenine dinucleotide (NAD+) as a donor for ADP-ribose. PARP-1 and PARP-2 carry out 80% of poly-ADP-ribosylation of cellular protein. Hence, their combined knockout results in embryonic lethality of mice. PARP-1 consists of three major domains, namely, DNA binding domain, automodification domain, and a catalytic domain. These domains further consist of subdomains and motifs, which helps PARP-1 in a diverse function. PARP-1 is mainly involved in DNA damage detection and repair, but emerging evidence suggests its role in many other functions such as DNA synthesis, replication, apoptosis, necrosis, and cancer progression. Herein, we review the current state of the PARP-1 role in DNA damage repair and other biological processes including epithelial to mesenchymal transition (EMT). We have also observed the role of PARP-1 in modulating EMT regulators like E-cadherin, Vimentin, Claudin-1, Snail, Smad-4, Twist-1, and β-catenin. Here, we have also attempted to relate the role of PARP-1 in EMT of cancer cells.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pramod K Yadava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
33
|
Minea RO, Duc TC, Swenson SD, Cho HY, Huang M, Hartman H, Hofman FM, Schönthal AH, Chen TC. Developing a clinically relevant radiosensitizer for temozolomide-resistant gliomas. PLoS One 2020; 15:e0238238. [PMID: 32881880 PMCID: PMC7470340 DOI: 10.1371/journal.pone.0238238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/12/2020] [Indexed: 12/25/2022] Open
Abstract
The prognosis for patients with glioblastoma (GB) remains grim. Concurrent temozolomide (TMZ) radiation—the cornerstone of glioma control—extends the overall median survival of GB patients by only a few months over radiotherapy alone. While these survival gains could be partly attributed to radiosensitization, this benefit is greatly minimized in tumors expressing O6-methylguanine DNA methyltransferase (MGMT), which specifically reverses O6-methylguanine lesions. Theoretically, non-O6-methylguanine lesions (i.e., the N-methylpurine adducts), which represent up to 90% of TMZ-generated DNA adducts, could also contribute to radiosensitization. Unfortunately, at concentrations attainable in clinical practice, the alkylation capacity of TMZ cannot overwhelm the repair of N-methylpurine adducts to efficiently exploit these lesions. The current therapeutic application of TMZ therefore faces two main obstacles: (i) the stochastic presence of MGMT and (ii) a blunted radiosensitization potential at physiologic concentrations. To circumvent these limitations, we are developing a novel molecule called NEO212—a derivatization of TMZ generated by coupling TMZ to perillyl alcohol. Based on gas chromatography/mass spectrometry and high-performance liquid chromatography analyses, we determined that NEO212 had greater tumor cell uptake than TMZ. In mouse models, NEO212 was more efficient than TMZ at crossing the blood-brain barrier, preferentially accumulating in tumoral over normal brain tissue. Moreover, in vitro analyses with GB cell lines, including TMZ-resistant isogenic variants, revealed more potent cytotoxic and radiosensitizing activities for NEO212 at physiologic concentrations. Mechanistically, these advantages of NEO212 over TMZ could be attributed to its enhanced tumor uptake presumably leading to more extensive DNA alkylation at equivalent dosages which, ultimately, allows for N-methylpurine lesions to be better exploited for radiosensitization. This effect cannot be achieved with TMZ at clinically relevant concentrations and is independent of MGMT. Our findings establish NEO212 as a superior radiosensitizer and a potentially better alternative to TMZ for newly diagnosed GB patients, irrespective of their MGMT status.
Collapse
Affiliation(s)
- Radu O. Minea
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
| | - Tuan Cao Duc
- Haiphong University School of Pharmacy, Haiphong, Vietnam
| | - Stephen D. Swenson
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
| | - Hee-Yeon Cho
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
| | - Mickey Huang
- Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States of America
| | - Hannah Hartman
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Florence M. Hofman
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Thomas C. Chen
- Department of Neurological Surgery, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, California (CA), United States of America
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
34
|
Starcher CL, Pay SL, Singh N, Yeh IJ, Bhandare SB, Su X, Huang X, Bey EA, Motea EA, Boothman DA. Targeting Base Excision Repair in Cancer: NQO1-Bioactivatable Drugs Improve Tumor Selectivity and Reduce Treatment Toxicity Through Radiosensitization of Human Cancer. Front Oncol 2020; 10:1575. [PMID: 32974194 PMCID: PMC7468503 DOI: 10.3389/fonc.2020.01575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/21/2020] [Indexed: 01/23/2023] Open
Abstract
Ionizing radiation (IR) creates lethal DNA damage that can effectively kill tumor cells. However, the high dose required for a therapeutic outcome also damages healthy tissue. Thus, a therapeutic strategy with predictive biomarkers to enhance the beneficial effects of IR allowing a dose reduction without losing efficacy is highly desirable. NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in the majority of recalcitrant solid tumors in comparison with normal tissue. Studies have shown that NQO1 can bioactivate certain quinone molecules (e.g., ortho-naphthoquinone and β-lapachone) to induce a futile redox cycle leading to the formation of oxidative DNA damage, hyperactivation of poly(ADP-ribose) polymerase 1 (PARP1), and catastrophic depletion of NAD+ and ATP, which culminates in cellular lethality via NAD+-Keresis. However, NQO1-bioactivatable drugs induce methemoglobinemia and hemolytic anemia at high doses. To circumvent this, NQO1-bioactivatable agents have been shown to synergize with PARP1 inhibitors, pyrimidine radiosensitizers, and IR. This therapeutic strategy allows for a reduction in the dose of the combined agents to decrease unwanted side effects by increasing tumor selectivity. In this review, we discuss the mechanisms of radiosensitization between NQO1-bioactivatable drugs and IR with a focus on the involvement of base excision repair (BER). This combination therapeutic strategy presents a unique tumor-selective and minimally toxic approach for targeting solid tumors that overexpress NQO1.
Collapse
Affiliation(s)
- Colton L Starcher
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Louise Pay
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Naveen Singh
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - I-Ju Yeh
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Snehal B Bhandare
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaolin Su
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiumei Huang
- Department of Radiation Oncology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Erik A Bey
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Edward A Motea
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David A Boothman
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Atha DH, Coskun E, Erdem O, Tona A, Reipa V, Nelson BC. Genotoxic Effects of Etoposide, Bleomycin, and Ethyl Methanesulfonate on Cultured CHO Cells: Analysis by GC-MS/MS and Comet Assay. J Nucleic Acids 2020; 2020:8810105. [PMID: 32802493 PMCID: PMC7414336 DOI: 10.1155/2020/8810105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023] Open
Abstract
To evaluate methods for analysis of genotoxic effects on mammalian cell lines, we tested the effect of three common genotoxic agents on Chinese hamster ovary (CHO) cells by single-cell gel electrophoresis (comet assay) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Suspension-grown CHO cells were separately incubated with etoposide, bleomycin, and ethyl methanesulfonate and analyzed by an alkaline comet assay and GC-MS/MS. Although DNA strand breaks were detected by the comet assay after treatment with all three agents, GC-MS/MS could only detect DNA nucleobase lesions oxidatively induced by bleomycin. This demonstrates that although GC-MS/MS has limitations in detection of genotoxic effects, it can be used for selected chemical genotoxins that contribute to oxidizing processes. The comet assay, used in combination with GC-MS/MS, can be a more useful approach to screen a wide range of chemical genotoxins as well as to monitor other DNA-damaging factors.
Collapse
Affiliation(s)
- Donald H. Atha
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Erdem Coskun
- National Institute of Standards and Technology, Biomolecular Measurement Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
- University of Maryland, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Onur Erdem
- National Institute of Standards and Technology, Biomolecular Measurement Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
- University of Health Sciences Turkey, Department of Pharmaceutical Toxicology, Gulhane Faculty of Pharmacy, 06010 Ankara, Turkey
| | - Alessandro Tona
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Vytas Reipa
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Bryant C. Nelson
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Materials Measurement Laboratory, Gaithersburg, MD 20899, USA
| |
Collapse
|
36
|
Gorini F, Scala G, Di Palo G, Dellino GI, Cocozza S, Pelicci PG, Lania L, Majello B, Amente S. The genomic landscape of 8-oxodG reveals enrichment at specific inherently fragile promoters. Nucleic Acids Res 2020; 48:4309-4324. [PMID: 32198884 PMCID: PMC7192600 DOI: 10.1093/nar/gkaa175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) is the most common marker of oxidative stress and its accumulation within the genome has been associated with major human health issues such as cancer, aging, cardiovascular and neurodegenerative diseases. The characterization of the different genomic sites where 8-oxodG accumulates and the mechanisms underlying its formation are still poorly understood. Using OxiDIP-seq, we recently derived the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A). Here, we identify a subset of human promoters that accumulate 8-oxodG under steady-state condition. 8-oxodG nucleotides co-localize with double strand breaks (DSBs) at bidirectional and CG skewed promoters and their density correlate with RNA Polymerase II co-occupancy and transcription. Furthermore, by performing OxiDIP-seq in quiescent (G0) cells, we found a strong reduction of oxidatively-generated damage in the majority of 8-oxodG-positive promoters in the absence of DNA replication. Overall, our results suggest that the accumulation of 8-oxodG at gene promoters occurs through DNA replication-dependent or -independent mechanisms, with a possible contribution to the formation of cancer-associated translocation events.
Collapse
Affiliation(s)
- Francesca Gorini
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Giovanni Scala
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Giacomo Di Palo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milano, Milan, Italy
| | - Luigi Lania
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - Barbara Majello
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Stefano Amente
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
37
|
Kondratova AA, Cheon H, Dong B, Holvey-Bates EG, Hasipek M, Taran I, Gaughan C, Jha BK, Silverman RH, Stark GR. Suppressing PARylation by 2',5'-oligoadenylate synthetase 1 inhibits DNA damage-induced cell death. EMBO J 2020; 39:e101573. [PMID: 32323871 DOI: 10.15252/embj.2019101573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.
Collapse
Affiliation(s)
- Anna A Kondratova
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - HyeonJoo Cheon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Elise G Holvey-Bates
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Metis Hasipek
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Irina Taran
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Babal K Jha
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
38
|
Synergistic lethality between PARP-trapping and alantolactone-induced oxidative DNA damage in homologous recombination-proficient cancer cells. Oncogene 2020; 39:2905-2920. [PMID: 32029902 PMCID: PMC7118026 DOI: 10.1038/s41388-020-1191-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 11/08/2022]
Abstract
PARP1 and PARP2 play critical roles in regulating DNA repair and PARP inhibitors have been approved for the treatment of BRCA1/2-mutated ovarian and breast cancers. It has long been known that PARP inhibition sensitizes cancer cells to DNA-damaging cytotoxic agents independent of BRCA status, however, clinical use of PARP inhibitors in combination with DNA-damaging chemotherapy is limited by the more-than-additive cytotoxicity. The natural compound alantolactone (ATL) inhibits the thioredoxin reductase to induce ROS accumulation and oxidative DNA damage selectively in cancer cells. Here, we showed that nontoxic doses of ATL markedly synergized with the PARP inhibitor olaparib to result in synthetic lethality irrespective of homologous recombination status. Synergistic cytotoxicity was seen in cancer but not noncancerous cells and was reduced by the ROS inhibitor NAC or knockdown of OGG1, demonstrating that the cytotoxicity resulted from the repair of ATL-induced oxidative DNA damage. PARP1 knockdown suppressed the synergistic lethality and olaparib was much more toxic than veliparib when combined with ATL, suggesting PARP-trapping as the primary inducer of cytotoxicity. Consistently, combined use of ATL and olaparib caused intense signs of replication stress and formation of double strand DNA breaks, leading to S and G2 arrest followed by apoptosis. In vivo, the combination effectively induced regression of tumor xenografts, while either agent alone had no effect. Hence, PARP trapping combined with specific pro-oxidative agents may provide safe and effective ways to broaden the therapeutic potential of PARP inhibitors.
Collapse
|
39
|
Giovannini S, Weller MC, Repmann S, Moch H, Jiricny J. Synthetic lethality between BRCA1 deficiency and poly(ADP-ribose) polymerase inhibition is modulated by processing of endogenous oxidative DNA damage. Nucleic Acids Res 2019; 47:9132-9143. [PMID: 31329989 PMCID: PMC6753488 DOI: 10.1093/nar/gkz624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 01/06/2023] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) facilitate the repair of DNA single-strand breaks (SSBs). When PARPs are inhibited, unrepaired SSBs colliding with replication forks give rise to cytotoxic double-strand breaks. These are normally rescued by homologous recombination (HR), but, in cells with suboptimal HR, PARP inhibition leads to genomic instability and cell death, a phenomenon currently exploited in the therapy of ovarian cancers in BRCA1/2 mutation carriers. In spite of their promise, resistance to PARP inhibitors (PARPis) has already emerged. In order to identify the possible underlying causes of the resistance, we set out to identify the endogenous source of DNA damage that activates PARPs. We argued that if the toxicity of PARPis is indeed caused by unrepaired SSBs, these breaks must arise spontaneously, because PARPis are used as single agents. We now show that a significant contributor to PARPi toxicity is oxygen metabolism. While BRCA1-depleted or -mutated cells were hypersensitive to the clinically approved PARPi olaparib, its toxicity was significantly attenuated by depletion of OGG1 or MYH DNA glycosylases, as well as by treatment with reactive oxygen species scavengers, growth under hypoxic conditions or chemical OGG1 inhibition. Thus, clinical resistance to PARPi therapy may emerge simply through reduced efficiency of oxidative damage repair.
Collapse
Affiliation(s)
- Sara Giovannini
- Institute of Molecular Life Sciences of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Biochemistry of the Swiss Federal Institute of Technology, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Marie-Christine Weller
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simone Repmann
- Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Josef Jiricny
- Institute of Molecular Life Sciences of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Molecular Cancer Research of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Biochemistry of the Swiss Federal Institute of Technology, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| |
Collapse
|
40
|
Shining light on the response to repair intermediates in DNA of living cells. DNA Repair (Amst) 2019; 85:102749. [PMID: 31790865 DOI: 10.1016/j.dnarep.2019.102749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/03/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022]
Abstract
Fluorescently-tagged repair proteins have been widely used to probe recruitment to micro-irradiation-induced nuclear DNA damage in living cells. Here, we quantify APE1 dynamics after micro-irradiation. Markers of DNA damage are characterized and UV-A laser micro-irradiation energy conditions are selected for formation of oxidatively-induced DNA base damage and single strand breaks, but without detectable double strand breaks. Increased energy of laser micro-irradiation, compared with that used previously in our work, enables study of APE1 dynamics at the lesion site. APE1 shows rapid transient kinetics, with recruitment half-time of less than 1 s and dissociation half-time of less than 15 s. In cells co-transfected with APE1 and PARP1, the recruitment half-time of PARP1 was slower than that of APE1, indicating APE1 is a rapid responder to the damage site. While recruitment of APE1 is unchanged in the presence of co-transfected PARP1, APE1 dissociation is 3-fold slower, revealing PARP1 involvement in APE1 dynamics. Further, we find that APE1 dissociation kinetics are strongly modified in the absence of DNA polymerase β (pol β). After unchanged recruitment to the damage site, dissociation of APE1 became undetectable. This indicates a necessary role for pol β in APE1 release after its recruitment to the damage site. These observations represent an advance in our understanding of in vivo dynamics of base excision repair factors APE1, PARP1 and pol β.
Collapse
|
41
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
42
|
Fakouri NB, Hou Y, Demarest TG, Christiansen LS, Okur MN, Mohanty JG, Croteau DL, Bohr VA. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J 2018; 286:1058-1073. [PMID: 30238623 DOI: 10.1111/febs.14663] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
The biology of aging is an area of intense research, and many questions remain about how and why cell and organismal functions decline over time. In mammalian cells, genomic instability and mitochondrial dysfunction are thought to be among the primary drivers of cellular aging. This review focuses on the interrelationship between genomic instability and mitochondrial dysfunction in mammalian cells and its relevance to age-related functional decline at the molecular and cellular level. The importance of oxidative stress and key DNA damage response pathways in cellular aging is discussed, with a special focus on poly (ADP-ribose) polymerase 1, whose persistent activation depletes cellular energy reserves, leading to mitochondrial dysfunction, loss of energy homeostasis, and altered cellular metabolism. Elucidation of the relationship between genomic instability, mitochondrial dysfunction, and the signaling pathways that connect these pathways/processes are keys to the future of research on human aging. An important component of mitochondrial health preservation is mitophagy, and this and other areas that are particularly ripe for future investigation will be discussed.
Collapse
Affiliation(s)
- Nima B Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Louise S Christiansen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joy G Mohanty
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
43
|
Aydın M, Arslan M, Rencüzoğulları E, Gözaydın C, Genç A, Bayram S. Investigation of XRCC1 Arg399Gln, Arg280His, and Arg194Trp polymorphisms effects on the induction of micronucleus by Aflatoxin B1 in in vitro. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Abstract
Cells are exposed to various endogenous and exogenous insults that induce DNA damage, which, if unrepaired, impairs genome integrity and leads to the development of various diseases, including cancer. Recent evidence has implicated poly(ADP-ribose) polymerase 1 (PARP1) in various DNA repair pathways and in the maintenance of genomic stability. The inhibition of PARP1 is therefore being exploited clinically for the treatment of various cancers, which include DNA repair-deficient ovarian, breast and prostate cancers. Understanding the role of PARP1 in maintaining genome integrity is not only important for the design of novel chemotherapeutic agents, but is also crucial for gaining insights into the mechanisms of chemoresistance in cancer cells. In this Review, we discuss the roles of PARP1 in mediating various aspects of DNA metabolism, such as single-strand break repair, nucleotide excision repair, double-strand break repair and the stabilization of replication forks, and in modulating chromatin structure.
Collapse
|
45
|
Abbotts R, Wilson DM. Coordination of DNA single strand break repair. Free Radic Biol Med 2017; 107:228-244. [PMID: 27890643 PMCID: PMC5443707 DOI: 10.1016/j.freeradbiomed.2016.11.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
The genetic material of all organisms is susceptible to modification. In some instances, these changes are programmed, such as the formation of DNA double strand breaks during meiotic recombination to generate gamete variety or class switch recombination to create antibody diversity. However, in most cases, genomic damage is potentially harmful to the health of the organism, contributing to disease and aging by promoting deleterious cellular outcomes. A proportion of DNA modifications are caused by exogenous agents, both physical (namely ultraviolet sunlight and ionizing radiation) and chemical (such as benzopyrene, alkylating agents, platinum compounds and psoralens), which can produce numerous forms of DNA damage, including a range of "simple" and helix-distorting base lesions, abasic sites, crosslinks and various types of phosphodiester strand breaks. More significant in terms of frequency are endogenous mechanisms of modification, which include hydrolytic disintegration of DNA chemical bonds, attack by reactive oxygen species and other byproducts of normal cellular metabolism, or incomplete or necessary enzymatic reactions (such as topoisomerases or repair nucleases). Both exogenous and endogenous mechanisms are associated with a high risk of single strand breakage, either produced directly or generated as intermediates of DNA repair. This review will focus upon the creation, consequences and resolution of single strand breaks, with a particular focus on two major coordinating repair proteins: poly(ADP-ribose) polymerase 1 (PARP1) and X-ray repair cross-complementing protein 1 (XRCC1).
Collapse
Affiliation(s)
- Rachel Abbotts
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
46
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1169] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
47
|
Liu Y, Niu Z, Lin X, Tian Y. MiR-216b increases cisplatin sensitivity in ovarian cancer cells by targeting PARP1. Cancer Gene Ther 2017; 24:208-214. [PMID: 28281524 DOI: 10.1038/cgt.2017.6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/07/2023]
Abstract
Cisplatin resistance hinders the efficacy of chemotherapy in ovarian cancer. MicroRNAs (miRs) have been implicated in drug resistance in anti-cancer chemotherapy. We compared the expression profiles of miRs between cisplatin-resistant and cisplatin-sensitive ovarian cancer cells, and found that miR-216b was significantly downregulated in cisplatin-resistant ovarian cancer cells. To investigate its molecular mechanism, we performed cell viability and apoptosis assays in cisplatin-resistant ovarian cells, and found that miR-216b reduced cell viability and promoted apoptosis. Although 4 potential targets were obtained through bioinformatics, only the mRNA level of poly(ADP-ribose) polymerase (PARP)-1 was significantly regulated by miR-216b. Disruption of the complementary binding sequence of miR-216b on the 3'-untranslated region (3'-UTR) of the PARP1 led to the loss of miR-216b targeting. Spearman's correlation coefficient of the levels of miR-216b and PARP1 mRNA from 51 human ovarian cancer specimens also showed a significantly negative correlation between them. Importantly, the improved cisplatin sensitivity induced by miR-216b was markedly reversed by PARP1 overexpression. Tumor formation assay in nude mice further provided an evidence on the suppressive role of miR-216b in tumor growth. Taken together, this study demonstrated that a new miRNA, miR-216b, was involved in cisplatin resistance in ovarian cancer, which could be regarded as a potential sensitizer in cisplatin chemotherapy.
Collapse
Affiliation(s)
- Y Liu
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Obstetrics and Gynecology, Liaocheng people's Hospital, Liaocheng, China
| | - Z Niu
- Department of Obstetrics and Gynecology, Liaocheng people's Hospital, Liaocheng, China
| | - X Lin
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Y Tian
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
48
|
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017; 22:1493-1522. [PMID: 28199214 DOI: 10.2741/4555] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,
| |
Collapse
|
49
|
Muster B, Rapp A, Cardoso MC. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation. AIMS GENETICS 2017; 4:47-68. [PMID: 31435503 PMCID: PMC6690239 DOI: 10.3934/genet.2017.1.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/16/2017] [Indexed: 01/19/2023]
Abstract
Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.
Collapse
Affiliation(s)
- Britta Muster
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
50
|
|