1
|
Vinogradov AA, Bashiri G, Suga H. Illuminating Substrate Preferences of Promiscuous F 420H 2-Dependent Dehydroamino Acid Reductases with 4-Track mRNA Display. J Am Chem Soc 2024; 146:31124-31136. [PMID: 39474650 DOI: 10.1021/jacs.4c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Stereoselective reduction of dehydroamino acids is a common biosynthetic strategy to introduce d-amino acids into peptidic natural products. The reduction, often observed during the biosynthesis of lanthipeptides, is performed by dedicated dehydroamino acid reductases (dhAARs). Enzymes from the three known dhAAR families utilize nicotinamide, flavin, or F420H2 coenzymes as hydride donors, and little is known about the catalysis performed by the latter family proteins. Here, we perform a bioinformatics-guided identification and large-scale in vitro characterization of five F420H2-dependent dhAARs. We construct an mRNA display-based pipeline for ultrahigh throughput substrate specificity profiling of the enzymes. The pipeline relies on a 4-track selection strategy to deliver large quantities of clean data, which were leveraged to build accurate substrate fitness models. Our results identify a remarkably promiscuous enzyme, referred to as MaeJC, that is capable of installing d-Ala residues into arbitrary substrates with minimal recognition requirements. We integrate MaeJC into a thiopeptide biosynthetic pathway to produce d-amino acids-containing thiopeptides, demonstrating the utility of MaeJC for the programmable installation of d-amino acids in ribosomal peptides.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
3
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
4
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Cruz-Navarrete FA, Griffin WC, Chan YC, Martin MI, Alejo JL, Brady RA, Natchiar SK, Knudson IJ, Altman RB, Schepartz A, Miller SJ, Blanchard SC. β-Amino Acids Reduce Ternary Complex Stability and Alter the Translation Elongation Mechanism. ACS CENTRAL SCIENCE 2024; 10:1262-1275. [PMID: 38947208 PMCID: PMC11212133 DOI: 10.1021/acscentsci.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024]
Abstract
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to expand the chemical space available to biological therapeutics and materials, but existing technologies are still limiting. Addressing these limitations requires a deeper understanding of the mechanism of protein synthesis and how it is perturbed by nnAAs. Here we examine the impact of nnAAs on the formation and ribosome utilization of the central elongation substrate: the ternary complex of native, aminoacylated tRNA, thermally unstable elongation factor, and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer measurements, we reveal that both the (R)- and (S)-β2 isomers of phenylalanine (Phe) disrupt ternary complex formation to levels below in vitro detection limits, while (R)- and (S)-β3-Phe reduce ternary complex stability by 1 order of magnitude. Consistent with these findings, (R)- and (S)-β2-Phe-charged tRNAs were not utilized by the ribosome, while (R)- and (S)-β3-Phe stereoisomers were utilized inefficiently. (R)-β3-Phe but not (S)-β3-Phe also exhibited order of magnitude defects in the rate of translocation after mRNA decoding. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include the consideration of the efficiency and stability of ternary complex formation.
Collapse
Affiliation(s)
- F. Aaron Cruz-Navarrete
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Wezley C. Griffin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Yuk-Cheung Chan
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Maxwell I. Martin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Jose L. Alejo
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Ryan A. Brady
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - S. Kundhavai Natchiar
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Isaac J. Knudson
- College
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Roger B. Altman
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Alanna Schepartz
- College
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
- Innovation
Investigator, ARC Institute, Palo Alto, California 94304, United States
| | - Scott J. Miller
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Scott C. Blanchard
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
6
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Thaenert A, Sevostyanova A, Chung CZ, Vargas-Rodriguez O, Melnikov SV, Söll D. Engineered mRNA-ribosome fusions for facile biosynthesis of selenoproteins. Proc Natl Acad Sci U S A 2024; 121:e2321700121. [PMID: 38442159 PMCID: PMC10945757 DOI: 10.1073/pnas.2321700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.
Collapse
Affiliation(s)
- Anna Thaenert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
| | | | - Christina Z. Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
| | | | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
- Biosciences Institute, Newcastle University Medical School, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
- Department of Chemistry, Yale University, New Haven, CT06511
| |
Collapse
|
9
|
Cruz-Navarrete FA, Griffin WC, Chan YC, Martin MI, Alejo JL, Natchiar SK, Knudson IJ, Altman RB, Schepartz A, Miller SJ, Blanchard SC. β-amino acids reduce ternary complex stability and alter the translation elongation mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581891. [PMID: 38464221 PMCID: PMC10925103 DOI: 10.1101/2024.02.24.581891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to vastly expand the chemical space available to biological therapeutics and materials. Existing technologies limit the identity and number of nnAAs than can be incorporated into a given protein. Addressing these bottlenecks requires deeper understanding of the mechanism of messenger RNA (mRNA) templated protein synthesis and how this mechanism is perturbed by nnAAs. Here we examine the impact of both monomer backbone and side chain on formation and ribosome-utilization of the central protein synthesis substate: the ternary complex of native, aminoacylated transfer RNA (aa-tRNA), thermally unstable elongation factor (EF-Tu), and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer (FRET) measurements, we reveal the dramatic effect of monomer backbone on ternary complex formation and protein synthesis. Both the (R) and (S)-β2 isomers of Phe disrupt ternary complex formation to levels below in vitro detection limits, while (R)- and (S)-β3-Phe reduce ternary complex stability by approximately one order of magnitude. Consistent with these findings, (R)- and (S)-β2-Phe-charged tRNAs were not utilized by the ribosome, while (R)- and (S)-β3-Phe stereoisomers were utilized inefficiently. The reduced affinities of both species for EF-Tu ostensibly bypassed the proofreading stage of mRNA decoding. (R)-β3-Phe but not (S)-β3-Phe also exhibited order of magnitude defects in the rate of substrate translocation after mRNA decoding, in line with defects in peptide bond formation that have been observed for D-α-Phe. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include consideration of the efficiency and stability of ternary complex formation.
Collapse
Affiliation(s)
- F. Aaron Cruz-Navarrete
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wezley C. Griffin
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Maxwell I. Martin
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jose L. Alejo
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Isaac J. Knudson
- College of Chemistry, University of California, Berkeley, California, USA
| | - Roger B. Altman
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alanna Schepartz
- College of Chemistry, University of California, Berkeley, California, USA
- Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovation Investigator, ARC Institute, Palo Alto, CA 94304, USA
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Dunkelmann DL, Piedrafita C, Dickson A, Liu KC, Elliott TS, Fiedler M, Bellini D, Zhou A, Cervettini D, Chin JW. Adding α,α-disubstituted and β-linked monomers to the genetic code of an organism. Nature 2024; 625:603-610. [PMID: 38200312 PMCID: PMC10794150 DOI: 10.1038/s41586-023-06897-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several β-amino acids, α,α-disubstituted-amino acids and β-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of β-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.
Collapse
Affiliation(s)
| | - Carlos Piedrafita
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandre Dickson
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Marc Fiedler
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dom Bellini
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Zhou
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
11
|
Jiang HK, Weng JH, Wang YH, Tsou JC, Chen PJ, Ko ALA, Söll D, Tsai MD, Wang YS. Rational design of the genetic code expansion toolkit for in vivo encoding of D-amino acids. Front Genet 2023; 14:1277489. [PMID: 37904728 PMCID: PMC10613524 DOI: 10.3389/fgene.2023.1277489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
Once thought to be non-naturally occurring, D-amino acids (DAAs) have in recent years been revealed to play a wide range of physiological roles across the tree of life, including in human systems. Synthetic biologists have since exploited DAAs' unique biophysical properties to generate peptides and proteins with novel or enhanced functions. However, while peptides and small proteins containing DAAs can be efficiently prepared in vitro, producing large-sized heterochiral proteins poses as a major challenge mainly due to absence of pre-existing DAA translational machinery and presence of endogenous chiral discriminators. Based on our previous work demonstrating pyrrolysyl-tRNA synthetase's (PylRS') remarkable substrate polyspecificity, this work attempts to increase PylRS' ability in directly charging tRNAPyl with D-phenylalanine analogs (DFAs). We here report a novel, polyspecific Methanosarcina mazei PylRS mutant, DFRS2, capable of incorporating DFAs into proteins via ribosomal synthesis in vivo. To validate its utility, in vivo translational DAA substitution were performed in superfolder green fluorescent protein and human heavy chain ferritin, successfully altering both proteins' physiochemical properties. Furthermore, aminoacylation kinetic assays further demonstrated aminoacylation of DFAs by DFRS2 in vitro.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program Chemical Biology and Molecular Biophysics, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Hui Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - An-Li Andrea Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program Chemical Biology and Molecular Biophysics, Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Katoh T, Suga H. Ribosomal incorporation of negatively charged d-α- and N-methyl-l-α-amino acids enhanced by EF-Sep. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220038. [PMID: 36633283 PMCID: PMC9835608 DOI: 10.1098/rstb.2022.0038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023] Open
Abstract
Ribosomal incorporation of d-α-amino acids (dAA) and N-methyl-l-α-amino acids (MeAA) with negatively charged sidechains, such as d-Asp, d-Glu, MeAsp and MeGlu, into nascent peptides is far more inefficient compared to those with neutral or positively charged ones. This is because of low binding affinity of their aminoacyl-transfer RNA (tRNA) to elongation factor-thermo unstable (EF-Tu), a translation factor responsible for accommodation of aminoacyl-tRNA onto ribosome. It is well known that EF-Tu binds to two parts of aminoacyl-tRNA, the amino acid moiety and the T-stem; however, the amino acid binding pocket of EF-Tu bearing Glu and Asp causes electric repulsion against the negatively charged amino acid charged on tRNA. To circumvent this issue, here we adopted two strategies: (i) use of an EF-Tu variant, called EF-Sep, in which the Glu216 and Asp217 residues in EF-Tu are substituted with Asn216 and Gly217, respectively; and (ii) reinforcement of the T-stem affinity using an artificially developed chimeric tRNA, tRNAPro1E2, whose T-stem is derived from Escherichia coli tRNAGlu that has high affinity to EF-Tu. Consequently, we could successfully enhance the incorporation efficiencies of d-Asp, d-Glu, MeAsp and MeGlu and demonstrated for the first time, to our knowledge, ribosomal synthesis of macrocyclic peptides containing multiple d-Asp or MeAsp. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Katoh T, Suga H. In Vitro Genetic Code Reprogramming for the Expansion of Usable Noncanonical Amino Acids. Annu Rev Biochem 2022; 91:221-243. [PMID: 35729073 DOI: 10.1146/annurev-biochem-040320-103817] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| |
Collapse
|
14
|
Dantsu Y, Zhang Y, Zhang W. Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes (Basel) 2021; 13:46. [PMID: 35052385 PMCID: PMC8774879 DOI: 10.3390/genes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleic-acid-based small molecule and oligonucleotide therapies are attractive topics due to their potential for effective target of disease-related modules and specific control of disease gene expression. As the non-naturally occurring biomolecules, modified DNA/RNA nucleoside and oligonucleotide analogues composed of L-(deoxy)riboses, have been designed and applied as innovative therapeutics with superior plasma stability, weakened cytotoxicity, and inexistent immunogenicity. Although all the chiral centers in the backbone are mirror converted from the natural D-nucleic acids, L-nucleic acids are equipped with the same nucleobases (A, G, C and U or T), which are critical to maintain the programmability and form adaptable tertiary structures for target binding. The types of L-nucleic acid drugs are increasingly varied, from chemically modified nucleoside analogues that interact with pathogenic polymerases to nanoparticles containing hundreds of repeating L-nucleotides that circulate durably in vivo. This article mainly reviews three different aspects of L-nucleic acid therapies, including pharmacological L-nucleosides, Spiegelmers as specific target-binding aptamers, and L-nanostructures as effective drug-delivery devices.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Incorporation of backbone modifications in mRNA-displayable peptides. Methods Enzymol 2021; 656:521-544. [PMID: 34325797 DOI: 10.1016/bs.mie.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we comprehensively summarize the most recent efforts in our research team, aiming at installing N-methyl and azole backbones into peptides expressed in translation. The genetic code reprogramming using the Flexible In-vitro Translation system (FIT system) has proven to be the most reliable and versatile approach for ribosomally installing various exotic amino acids. However, it had been yet difficult in translating diverse kinds of multiple and consecutive sequences of N-methyl amino acids (MeAAs). We have recently reported that a semi-rational fine tuning of MeAA-tRNA affinities for EF-Tu by altering tRNA T-stem sequence achieves efficient delivery of MeAA-tRNAs to the ribosome. Indeed, this approach has made it possible to express N-methyl-peptides containing multiple MeAAs with a remarkably high fidelity. Another interesting backbone modification in peptides is azole moieties often found in natural products, but they are explicitly installed by post-translational modifying enzymes. We have recently devised a method to bypass such enzymatic processes where a bromovinyl group-containing amino acid is incorporated into the peptide by genetic code reprogramming and then chemically converted to an azole group via an intramolecular heterocyclization reaction. These methods will grant more drug-like properties to peptides than ordinary peptides in terms of protease resistance and cell membrane permeability. Particularly when they can be integrated with in vitro mRNA display, such as the RaPID system, the discovery of de novo bioactive peptides can be realized.
Collapse
|
16
|
Iwane Y, Kimura H, Katoh T, Suga H. Uniform affinity-tuning of N-methyl-aminoacyl-tRNAs to EF-Tu enhances their multiple incorporation. Nucleic Acids Res 2021; 49:10807-10817. [PMID: 33997906 PMCID: PMC8565323 DOI: 10.1093/nar/gkab288] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 01/13/2023] Open
Abstract
In ribosomal translation, the accommodation of aminoacyl-tRNAs into the ribosome is mediated by elongation factor thermo unstable (EF-Tu). The structures of proteinogenic aminoacyl-tRNAs (pAA-tRNAs) are fine-tuned to have uniform binding affinities to EF-Tu in order that all proteinogenic amino acids can be incorporated into the nascent peptide chain with similar efficiencies. Although genetic code reprogramming has enabled the incorporation of non-proteinogenic amino acids (npAAs) into the nascent peptide chain, the incorporation of some npAAs, such as N-methyl-amino acids (MeAAs), is less efficient, especially when MeAAs frequently and/or consecutively appear in a peptide sequence. Such poor incorporation efficiencies can be attributed to inadequate affinities of MeAA-tRNAs to EF-Tu. Taking advantage of flexizymes, here we have experimentally verified that the affinities of MeAA-tRNAs to EF-Tu are indeed weaker than those of pAA-tRNAs. Since the T-stem of tRNA plays a major role in interacting with EF-Tu, we have engineered the T-stem sequence to tune the affinity of MeAA-tRNAs to EF-Tu. The uniform affinity-tuning of the individual pairs has successfully enhanced the incorporation of MeAAs, achieving the incorporation of nine distinct MeAAs into both linear and thioether-macrocyclic peptide scaffolds.
Collapse
Affiliation(s)
- Yoshihiko Iwane
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
17
|
Imanishi S, Katoh T, Yin Y, Yamada M, Kawai M, Suga H. In Vitro Selection of Macrocyclic d/l-Hybrid Peptides against Human EGFR. J Am Chem Soc 2021; 143:5680-5684. [PMID: 33822597 DOI: 10.1021/jacs.1c02593] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
d/l-Hybrid peptides are an attractive class of molecular modality because they are able to exhibit high proteolytic stability and unique structural diversity which cannot be accessed by those consisting of only proteinogenic l-amino acids. Despite such an expectation, it has not been possible to devise de novo d/l-hybrid peptides capable of disrupting the function of a protein target(s) due to the lack of an effective method that reliably constructs a highly diverse library and screens active species. Here we report for the first time construction of a library consisting of 1012 members of macrocyclic d/l-hybrid peptides containing five kinds of d-amino acids and performance of the RaPID selection against human EGFR as a showcase to uncover PPI (protein-protein interaction) inhibitors.
Collapse
Affiliation(s)
- Sayaka Imanishi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yizhen Yin
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mituhiro Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Marina Kawai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Abstract
Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.
Collapse
|
19
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
20
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
22
|
D Amino Acids Highlight the Catalytic Power of the Ribosome. Cell Chem Biol 2019; 26:1639-1641. [PMID: 31680066 DOI: 10.1016/j.chembiol.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
The possible mechanism(s) by which ribosomes make peptide bonds during protein synthesis have been explored for decades. Yet, there is no agreement on how the catalytic site, the peptidyl transferase center (PTC), promotes this reaction. Here, we discuss the results of recent investigations of translation with D amino acids that provide fresh insights into that longstanding question.
Collapse
|
23
|
Kuncha SK, Kruparani SP, Sankaranarayanan R. Chiral checkpoints during protein biosynthesis. J Biol Chem 2019; 294:16535-16548. [PMID: 31591268 DOI: 10.1074/jbc.rev119.008166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Protein chains contain only l-amino acids, with the exception of the achiral glycine, making the chains homochiral. This homochirality is a prerequisite for proper protein folding and, hence, normal cellular function. The importance of d-amino acids as a component of the bacterial cell wall and their roles in neurotransmission in higher eukaryotes are well-established. However, the wider presence and the corresponding physiological roles of these specific amino acid stereoisomers have been appreciated only recently. Therefore, it is expected that enantiomeric fidelity has to be a key component of all of the steps in translation. Cells employ various molecular mechanisms for keeping d-amino acids away from the synthesis of nascent polypeptide chains. The major factors involved in this exclusion are aminoacyl-tRNA synthetases (aaRSs), elongation factor thermo-unstable (EF-Tu), the ribosome, and d-aminoacyl-tRNA deacylase (DTD). aaRS, EF-Tu, and the ribosome act as "chiral checkpoints" by preferentially binding to l-amino acids or l-aminoacyl-tRNAs, thereby excluding d-amino acids. Interestingly, DTD, which is conserved across all life forms, performs "chiral proofreading," as it removes d-amino acids erroneously added to tRNA. Here, we comprehensively review d-amino acids with respect to their occurrence and physiological roles, implications for chiral checkpoints required for translation fidelity, and potential use in synthetic biology.
Collapse
Affiliation(s)
- Santosh Kumar Kuncha
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, CSIR-CCMB Campus, Hyderabad, Telangana 500007, India
| | - Shobha P Kruparani
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| | - Rajan Sankaranarayanan
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana 500007, India
| |
Collapse
|
24
|
Hirose H, Tsiamantas C, Katoh T, Suga H. In vitro expression of genetically encoded non-standard peptides consisting of exotic amino acid building blocks. Curr Opin Biotechnol 2019; 58:28-36. [DOI: 10.1016/j.copbio.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
|
25
|
Fujino T, Kondo T, Suga H, Murakami H. Exploring the Minimal RNA Substrate of Flexizymes. Chembiochem 2019; 20:1959-1965. [PMID: 30950544 DOI: 10.1002/cbic.201900150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Flexizymes are tRNA acylation ribozymes that have been successfully used to facilitate genetic code reprogramming. They are capable of charging acid substrates onto various tRNAs and tRNA analogues. However, their minimal RNA substrate has not been investigated. Here we have designed fluorescently labeled short RNAs corresponding to the four, three, and two bases (4bRNA, 3bRNA, 2bRNA) at the tRNA 3'-end and explored the minimal RNA substrate of flexizymes, dFx and eFx. 3bRNA was the observed minimal RNA substrate of the flexizymes, but the efficiency of acylation of this short RNA was two to three times lower than that of 4bRNA. The efficiency of acylation of 4bRNA was comparable with that of the microhelix, a 22-base RNA conventionally used as a tRNA analogue for analyzing acylation efficiency. We also compared the efficiencies of acylation of the microhelix and 4bRNA with various acid substrates. Thanks to the short length of 4bRNA, its acyl-4bRNA products exhibited larger mobility shifts in gel electrophoresis than those exhibited by acyl-microhelix products with every substrate tested. This indicated that 4bRNA was an ideal RNA substrate for analyzing the efficiency of acylation by flexizymes.
Collapse
Affiliation(s)
- Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Taishi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
26
|
Iqbal ES, Dods KK, Hartman MCT. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase. Org Biomol Chem 2019; 16:1073-1078. [PMID: 29367962 DOI: 10.1039/c7ob02931d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.
Collapse
Affiliation(s)
- Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, Virginia 23284, USA.
| | | | | |
Collapse
|
27
|
Melnikov SV, Khabibullina NF, Mairhofer E, Vargas-Rodriguez O, Reynolds NM, Micura R, Söll D, Polikanov YS. Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Nucleic Acids Res 2019; 47:2089-2100. [PMID: 30520988 PMCID: PMC6393236 DOI: 10.1093/nar/gky1211] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
During protein synthesis, ribosomes discriminate chirality of amino acids and prevent incorporation of D-amino acids into nascent proteins by slowing down the rate of peptide bond formation. Despite this phenomenon being known for nearly forty years, no structures have ever been reported that would explain the poor reactivity of D-amino acids. Here we report a 3.7Å-resolution crystal structure of a bacterial ribosome in complex with a D-aminoacyl-tRNA analog bound to the A site. Although at this resolution we could not observe individual chemical groups, we could unambiguously define the positions of the D-amino acid side chain and the amino group based on chemical restraints. The structure reveals that similarly to L-amino acids, the D-amino acid binds the ribosome by inserting its side chain into the ribosomal A-site cleft. This binding mode does not allow optimal nucleophilic attack of the peptidyl-tRNA by the reactive α-amino group of a D-amino acid. Also, our structure suggests that the D-amino acid cannot participate in hydrogen-bonding with the P-site tRNA that is required for the efficient proton transfer during peptide bond formation. Overall, our work provides the first mechanistic insight into the ancient mechanism that helps living cells ensure the stereochemistry of protein synthesis.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ronald Micura
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
28
|
Liljeruhm J, Wang J, Kwiatkowski M, Sabari S, Forster AC. Kinetics of d-Amino Acid Incorporation in Translation. ACS Chem Biol 2019; 14:204-213. [PMID: 30648860 DOI: 10.1021/acschembio.8b00952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the stereospecificity of translation for l-amino acids (l-AAs) in vivo, synthetic biologists have enabled ribosomal incorporation of d-AAs in vitro toward encoding polypeptides with pharmacologically desirable properties. However, the steps in translation limiting d-AA incorporation need clarification. In this work, we compared d- and l-Phe incorporation in translation by quench-flow kinetics, measuring 250-fold slower incorporation into the dipeptide for the d isomer from a tRNAPhe-based adaptor (tRNAPheB). Incorporation was moderately hastened by tRNA body swaps and higher EF-Tu concentrations, indicating that binding by EF-Tu can be rate-limiting. However, from tRNAAlaB with a saturating concentration of EF-Tu, the slow d-Phe incorporation was unexpectedly very efficient in competition with incorporation of the l isomer, indicating fast binding to EF-Tu, fast binding of the resulting complex to the ribosome, and rate-limiting accommodation/peptide bond formation. Subsequent elongation with an l-AA was confirmed to be very slow and inefficient. This understanding helps rationalize incorporation efficiencies in vitro and stereospecific mechanisms in vivo and suggests approaches for improving incorporation.
Collapse
Affiliation(s)
- Josefine Liljeruhm
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Jinfan Wang
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Marek Kwiatkowski
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Samudra Sabari
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| | - Anthony C. Forster
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 751 24 Uppsala, Sweden
| |
Collapse
|
29
|
Katoh T, Suga H. Engineering Translation Components Improve Incorporation of Exotic Amino Acids. Int J Mol Sci 2019; 20:ijms20030522. [PMID: 30691159 PMCID: PMC6386890 DOI: 10.3390/ijms20030522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Methods of genetic code manipulation, such as nonsense codon suppression and genetic code reprogramming, have enabled the incorporation of various nonproteinogenic amino acids into the peptide nascent chain. However, the incorporation efficiency of such amino acids largely varies depending on their structural characteristics. For instance, l-α-amino acids with artificial, bulky side chains are poorer substrates for ribosomal incorporation into the nascent peptide chain, mainly owing to the lower affinity of their aminoacyl-tRNA toward elongation factor-thermo unstable (EF-Tu). Phosphorylated Ser and Tyr are also poorer substrates for the same reason; engineering EF-Tu has turned out to be effective in improving their incorporation efficiencies. On the other hand, exotic amino acids such as d-amino acids and β-amino acids are even poorer substrates owing to their low affinity to EF-Tu and poor compatibility to the ribosome active site. Moreover, their consecutive incorporation is extremely difficult. To solve these problems, the engineering of ribosomes and tRNAs has been executed, leading to successful but limited improvement of their incorporation efficiency. In this review, we comprehensively summarize recent attempts to engineer the translation systems, resulting in a significant improvement of the incorporation of exotic amino acids.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
30
|
Charon J, Manteca A, Innis CA. Using the Bacterial Ribosome as a Discovery Platform for Peptide-Based Antibiotics. Biochemistry 2019; 58:75-84. [PMID: 30372045 PMCID: PMC7615898 DOI: 10.1021/acs.biochem.8b00927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The threat of bacteria resistant to multiple antibiotics poses a major public health problem requiring immediate and coordinated action worldwide. While infectious pathogens have become increasingly resistant to commercially available drugs, antibiotic discovery programs in major pharmaceutical companies have produced no new antibiotic scaffolds in 40 years. As a result, new strategies must be sought to obtain a steady supply of novel scaffolds capable of countering the spread of resistance. The bacterial ribosome is a major target for antimicrobials and is inhibited by more than half of the antibiotics used today. Recent studies showing that the ribosome is a target for several classes of ribosomally synthesized antimicrobial peptides point to ribosome-targeting peptides as a promising source of antibiotic scaffolds. In this Perspective, we revisit the current paradigm of antibiotic discovery by proposing that the bacterial ribosome can be used both as a target and as a tool for the production and selection of peptide-based antimicrobials. Turning the ribosome into a high-throughput platform for the directed evolution of peptide-based antibiotics could be achieved in different ways. One possibility would be to use a combination of state-of-the-art microfluidics and genetic reprogramming techniques, which we will review briefly. If it is successful, this strategy has the potential to produce new classes of antibiotics for treating multi-drug-resistant pathogens.
Collapse
Affiliation(s)
- Justine Charon
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| | - Aitor Manteca
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| | - C. Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| |
Collapse
|
31
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
32
|
Wang J, Forster AC. Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies. Curr Opin Chem Biol 2018; 46:180-187. [DOI: 10.1016/j.cbpa.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
|
33
|
Richardson SL, Dods KK, Abrigo NA, Iqbal ES, Hartman MC. In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands. Curr Opin Chem Biol 2018; 46:172-179. [PMID: 30077877 DOI: 10.1016/j.cbpa.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 01/26/2023]
Abstract
The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Kara K Dods
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Nicolas A Abrigo
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Matthew Ct Hartman
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA.
| |
Collapse
|
34
|
Arranz-Gibert P, Vanderschuren K, Isaacs FJ. Next-generation genetic code expansion. Curr Opin Chem Biol 2018; 46:203-211. [PMID: 30072242 DOI: 10.1016/j.cbpa.2018.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Engineering of the translation apparatus has permitted the site-specific incorporation of nonstandard amino acids (nsAAs) into proteins, thereby expanding the genetic code of organisms. Conventional approaches have focused on porting tRNAs and aminoacyl-tRNA synthetases (aaRS) from archaea into bacterial and eukaryotic systems where they have been engineered to site-specifically encode nsAAs. More recent work in genome engineering has opened up the possibilities of whole genome recoding, in which organisms with alternative genetic codes have been constructed whereby codons removed from the genetic code can be repurposed as new sense codons dedicated for incorporation of nsAAs. These advances, together with the advent of engineered ribosomes and new molecular evolution methods, enable multisite incorporation of nsAAs and nonstandard monomers (nsM) paving the way for the template-directed production of functionalized proteins, new classes of polymers, and genetically encoded materials.
Collapse
Affiliation(s)
- Pol Arranz-Gibert
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Equal contribution
| | - Koen Vanderschuren
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Equal contribution
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
35
|
Uhlenbeck OC, Schrader JM. Evolutionary tuning impacts the design of bacterial tRNAs for the incorporation of unnatural amino acids by ribosomes. Curr Opin Chem Biol 2018; 46:138-145. [PMID: 30059836 DOI: 10.1016/j.cbpa.2018.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/27/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
Abstract
In order to function on the ribosome with uniform rate and adequate accuracy, each bacterial tRNA has evolved to have a characteristic sequence and set of modifications that compensate for the differing physical properties of its esterified amino acid and its codon-anticodon interaction. The sequence of the T-stem of each tRNA compensates for the differential effect of the esterified amino acid on the binding and release of EF-Tu during decoding. The sequence and modifications in the anticodon loop and core of tRNA impact the codon-anticodon strength and the ability of the tRNA to bend during codon recognition. These discoveries impact the design of tRNAs for the efficient and accurate incorporation of unnatural amino acids into proteins using bacterial translation systems.
Collapse
Affiliation(s)
- Olke C Uhlenbeck
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
36
|
Fleisher RC, Cornish VW, Gonzalez RL. d-Amino Acid-Mediated Translation Arrest Is Modulated by the Identity of the Incoming Aminoacyl-tRNA. Biochemistry 2018; 57:4241-4246. [PMID: 29979035 DOI: 10.1021/acs.biochem.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A complete understanding of the determinants that restrict d-amino acid incorporation by the ribosome, which is of interest to both basic biologists and the protein engineering community, remains elusive. Previously, we demonstrated that d-amino acids are successfully incorporated into the C-terminus of the nascent polypeptide chain. Ribosomes carrying the resulting peptidyl-d-aminoacyl-tRNA (peptidyl-d-aa-tRNA) donor substrate, however, partition into subpopulations that either undergo translation arrest through inactivation of the ribosomal peptidyl-transferase center (PTC) or remain translationally competent. The proportion of each subpopulation is determined by the identity of the d-amino acid side chain. Here, we demonstrate that the identity of the aminoacyl-tRNA (aa-tRNA) acceptor substrate that is delivered to ribosomes carrying a peptidyl-d-aa-tRNA donor further modulates this partitioning. Our discovery demonstrates that it is the pairing of the peptidyl-d-aa-tRNA donor and the aa-tRNA acceptor that determines the activity of the PTC. Moreover, we provide evidence that both the amino acid and tRNA components of the aa-tRNA acceptor contribute synergistically to the extent of arrest. The results of this work deepen our understanding of the mechanism of d-amino acid-mediated translation arrest and how cells avoid this precarious obstacle, reveal similarities to other translation arrest mechanisms involving the PTC, and provide a new route for improving the yields of engineered proteins containing d-amino acids.
Collapse
Affiliation(s)
- Rachel C Fleisher
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Virginia W Cornish
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Ruben L Gonzalez
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
37
|
Reitz C, Fan Q, Neubauer P. Synthesis of non-canonical branched-chain amino acids in Escherichia coli and approaches to avoid their incorporation into recombinant proteins. Curr Opin Biotechnol 2018; 53:248-253. [PMID: 29870877 DOI: 10.1016/j.copbio.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
In E. coli the non-canonical amino acids acids norvaline, norleucine, and β-methylnorleucine, which derive from an off-pathway of the branched-chain amino acid synthesis route are synthesized and incorporated into cellular and recombinant proteins. The synthesis of these amino acids is supported by a high flux of glucose through the glycolytic pathway in combination with a derepression of the enzymes of the branched chain amino acid pathway, for example, when leucine-rich proteins are produced. Avoiding the synthesis and misincorporation of these amino acids has been challenging, especially in large-scale pharmaceutical processes where the problem is boosted by the typical fed-batch production and the technical limitation of mass transfer in the bioreactors. Despite its industrial importance, so far this issue has not been discussed comprehensively. Therefore this paper reviews, firstly, the specific pathway of the non-canonical branched chain amino acids starting at pyruvate, secondly, the molecular factors for their misincorporation, and thirdly, approaches to avoid this misincoporation. While the synthesis of these amino acids is difficult to prevent due to the broad promiscuity of the connected enzymes, recent studies on the control mechanisms of aminoacyl tRNA synthetases open new opportunities to avoid this misincorporation.
Collapse
Affiliation(s)
- Christian Reitz
- Technische Universität Berlin, Institute of Biotechnology, Department of Bioprocess Engineering, Ackerstr. 76, D-13355 Berlin, Germany
| | - Qin Fan
- Technische Universität Berlin, Institute of Biotechnology, Department of Bioprocess Engineering, Ackerstr. 76, D-13355 Berlin, Germany
| | - Peter Neubauer
- Technische Universität Berlin, Institute of Biotechnology, Department of Bioprocess Engineering, Ackerstr. 76, D-13355 Berlin, Germany.
| |
Collapse
|
38
|
Katoh T, Passioura T, Suga H. Advances in in vitro genetic code reprogramming in 2014-2017. Synth Biol (Oxf) 2018; 3:ysy008. [PMID: 32995516 PMCID: PMC7445766 DOI: 10.1093/synbio/ysy008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
To date, various genetic code manipulation methods have been developed to introduce non-proteinogenic amino acids into peptides by translation. However, the number of amino acids that can be used simultaneously remains limited even using these methods. Additionally, the scope of amino acid substrates that are compatible with ribosomal translation systems is also limited. For example, difficult substrates such as d-amino acids and β-amino acids are much less efficiently incorporated into peptides than l-α-amino acids. Here, we focus on three recently developed methodologies that address these issues: (i) artificial division of codon boxes to increase the number of available amino acids, (ii) orthogonal ribosomal translation systems to ‘duplicate’ the codon table and (iii) development of novel artificial tRNAs that enhance incorporation of difficult amino acid substrates.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Zhang H, Li Y, Wang C, Wang X. Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep 2018; 8:3632. [PMID: 29483542 PMCID: PMC5827029 DOI: 10.1038/s41598-018-21926-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/13/2018] [Indexed: 01/27/2023] Open
Abstract
Toward the elucidation of the advanced mechanism of l-valine production by Corynebacterium glutamicum, a highly developed industrial strain VWB-1 was analyzed, employing the combination of transcriptomics and proteomics methods. The transcriptional level of 1155 genes and expression abundance of 96 proteins were changed significantly by the transcriptome and proteome comparison of VWB-1 and ATCC 13869. It was indicated that the key genes involved in the biosynthesis of l-valine, ilvBN, ilvC, ilvD, ilvE were up-regulated in VWB-1, which together made prominent contributions in improving the carbon flow towards l-valine. The l-leucine and l-isoleucine synthesis ability were weakened according to the down-regulation of leuB and ilvA. The up-regulation of the branched chain amino acid transporter genes brnFE promoted the l-valine secretion capability of VWB-1. The NADPH and ATP generation ability of VWB-1 were strengthened through the up-regulation of the genes involved in phosphate pentose pathway and TCA pathway. Pyruvate accumulation was achieved through the weakening of the l-lactate, acetate and l-alanine pathways. The up-regulation of the genes coding for elongation factors and ribosomal proteins were beneficial for l-valine synthesis in C. glutamicum. All information acquired were useful for the genome breeding of better industrial l-valine producing strains.
Collapse
Affiliation(s)
- Hailing Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chenhui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
40
|
From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angew Chem Int Ed Engl 2018; 57:4313-4328. [DOI: 10.1002/anie.201707976] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/14/2017] [Indexed: 12/20/2022]
|
41
|
Kohman RE, Kunjapur AM, Hysolli E, Wang Y, Church GM. Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNA-Technologien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richie E. Kohman
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | | | - Eriona Hysolli
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
| | - Yu Wang
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| | - George M. Church
- Department of Genetics; Harvard Medical School; Boston MA 02115 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
| |
Collapse
|
42
|
Katoh T, Iwane Y, Suga H. Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res 2018; 45:12601-12610. [PMID: 29155943 PMCID: PMC5728406 DOI: 10.1093/nar/gkx1129] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/28/2017] [Indexed: 11/30/2022] Open
Abstract
A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA’s D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiko Iwane
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Abstract
In ribosomal translation, only 20 kinds of proteinogenic amino acids (pAAs), namely 19 l-amino acids and glycine, are exclusively incorporated into polypeptide chain. To overcome this limitation, various methods to introduce non-proteinogenic amino acids (npAAs) other than the 20 pAAs have been developed to date. However, the repertoire of amino acids that can be simultaneously introduced is still limited. Moreover, the efficiency of npAA incorporation is not always sufficient depending on their structures. Fidelity of translation is sometimes low due to misincorporation of competing pAAs and/or undesired translation termination. Here, we provide an overview of efforts to solve these issues, focusing on the engineering of tRNAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- a Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo , Japan.,b JST, PRESTO , 7-3-1 Hongo, Bunkyo-ku , Tokyo , Japan
| | - Yoshihiko Iwane
- a Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo , Japan
| | - Hiroaki Suga
- a Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo , Japan.,c JST, CREST , 7-3-1 Hongo, Bunkyo-ku , Tokyo , Japan
| |
Collapse
|
44
|
Pech A, Achenbach J, Jahnz M, Schülzchen S, Jarosch F, Bordusa F, Klussmann S. A thermostable d-polymerase for mirror-image PCR. Nucleic Acids Res 2017; 45:3997-4005. [PMID: 28158820 PMCID: PMC5605242 DOI: 10.1093/nar/gkx079] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
Biological evolution resulted in a homochiral world in which nucleic acids consist exclusively of d-nucleotides and proteins made by ribosomal translation of l-amino acids. From the perspective of synthetic biology, however, particularly anabolic enzymes that could build the mirror-image counterparts of biological macromolecules such as l-DNA or l-RNA are lacking. Based on a convergent synthesis strategy, we have chemically produced and characterized a thermostable mirror-image polymerase that efficiently replicates and amplifies mirror-image (l)-DNA. This artificial enzyme, dubbed d-Dpo4-3C, is a mutant of Sulfolobus solfataricus DNA polymerase IV consisting of 352 d-amino acids. d-Dpo4-3C was reliably deployed in classical polymerase chain reactions (PCR) and it was used to assemble a first mirror-image gene coding for the protein Sso7d. We believe that this d-polymerase provides a valuable tool to further investigate the mysteries of biological (homo)chirality and to pave the way for potential novel life forms running on a mirror-image genome.
Collapse
Affiliation(s)
- Andreas Pech
- NOXXON Pharma AG, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - John Achenbach
- NOXXON Pharma AG, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Michael Jahnz
- NOXXON Pharma AG, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | | | - Florian Jarosch
- NOXXON Pharma AG, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Frank Bordusa
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
45
|
Kubyshkin V, Budisa N. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how? Biotechnol J 2017; 12. [PMID: 28671771 DOI: 10.1002/biot.201600097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Abstract
The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| | - Nediljko Budisa
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| |
Collapse
|
46
|
Jacobsen MT, Erickson PW, Kay MS. Aligator: A computational tool for optimizing total chemical synthesis of large proteins. Bioorg Med Chem 2017; 25:4946-4952. [PMID: 28651912 DOI: 10.1016/j.bmc.2017.05.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Patrick W Erickson
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States
| | - Michael S Kay
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, United States.
| |
Collapse
|
47
|
Exploring sequence space: harnessing chemical and biological diversity towards new peptide leads. Curr Opin Chem Biol 2017; 38:52-61. [DOI: 10.1016/j.cbpa.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022]
|
48
|
Rewiring protein synthesis: From natural to synthetic amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3024-3029. [PMID: 28095316 DOI: 10.1016/j.bbagen.2017.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. SCOPE OF REVIEW This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. MAJOR CONCLUSIONS The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. GENERAL SIGNIFICANCE Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
49
|
Katoh T, Tajima K, Suga H. Consecutive Elongation of D-Amino Acids in Translation. Cell Chem Biol 2016; 24:46-54. [PMID: 28042044 DOI: 10.1016/j.chembiol.2016.11.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/01/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022]
Abstract
Recent progress in the field of genetic code reprogramming using a reconstituted cell-free translation system has made it possible to incorporate a wide array of non-proteinogenic amino acids, including N-methyl-amino acids and D-amino acids. Despite the fact that up to ten N-methyl-amino acid residues can be continuously elongated, the successive incorporation of even two D-amino acids into a nascent peptide chain remains a formidable challenge, thus far being nearly impossible. Here we report achievement of continuous D-amino acid elongation by the use of engineered tRNAs and optimized concentrations of translation factors, enabling us to incorporate up to ten consecutive D-Ser residues into a nascent peptide chain. We have also expressed macrocyclic peptides consisting of four or five consecutive D-amino acids consisting of D-Phe, D-Ser, D-Ala, or D-Cys closed by either a disulfide bond or a thioether bond.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kenya Tajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; JST, CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
50
|
Probing the stereospecificity of tyrosyl- and glutaminyl-tRNA synthetase with molecular dynamics. J Mol Graph Model 2016; 71:192-199. [PMID: 27939931 DOI: 10.1016/j.jmgm.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/28/2022]
Abstract
The stereospecificity of aminoacyl-tRNA synthetases helps exclude d-amino acids from protein synthesis and could perhaps be engineered to allow controlled d-amino acylation of tRNA. We use molecular dynamics simulations to probe the stereospecificity of the class I tyrosyl- and glutaminyl-tRNA synthetases (TyrRS, GlnRS), including wildtype enzymes and three point mutants suggested by three different protein design methods. l/d binding free energy differences are obtained by alchemically and reversibly transforming the ligand from L to D in simulations of the protein-ligand complex. The D81Q mutation in Escherichia coli TyrRS is homologous to the D81R mutant shown earlier to have inverted stereospecificity. D81Q is predicted to lead to a rotated ligand backbone and an increased, not a decreased l-Tyr preference. The E36Q mutation in Methanococcus jannaschii TyrRS has a predicted l/d binding free energy difference ΔΔG of just 0.5±0.9kcal/mol, compared to 3.1±0.8kcal/mol for the wildtype enzyme (favoring l-Tyr). The ligand ammonium position is preserved in the d-Tyr complex, while the carboxylate is shifted. Wildtype GlnRS has a similar preference for l-glutaminyl adenylate; the R260Q mutant has an increased preference, even though Arg260 makes a large contribution to the wildtype ΔΔG value.
Collapse
|