1
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2025; 12:1388-1412. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
2
|
Leckie J, Yokota T. Integrating Machine Learning-Based Approaches into the Design of ASO Therapies. Genes (Basel) 2025; 16:185. [PMID: 40004514 PMCID: PMC11855077 DOI: 10.3390/genes16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Rare diseases impose a significant burden on affected individuals, caregivers, and healthcare systems worldwide. Developing effective therapeutics for these small patient populations presents substantial challenges. Antisense oligonucleotides (ASOs) have emerged as a promising therapeutic approach that targets the underlying genetic cause of disease at the RNA level. Several ASOs have gained FDA approval for the treatment of genetic conditions, including use in personalized N-of-1 trials. However, despite their potential, ASOs often exhibit limited clinical efficacy, and optimizing their design is a complex process influenced by numerous factors. Machine learning-based platforms, including eSkip-Finder and ASOptimizer, have been developed to address these challenges by predicting optimal ASO sequences and chemical modifications to enhance efficacy. eSkip-Finder focuses on exon-skipping applications, while ASOptimizer aims to optimize ASOs for RNA degradation. Preliminary in vitro results have demonstrated the promising predictive power of these platforms. However, limitations remain, including their generalizability to alternative targets and gaps in their consideration of all factors influencing ASO efficacy and safety. Continued advancements in machine learning models, alongside efforts to incorporate additional features affecting ASO efficacy and safety, hold significant promise for the field. These platforms have the potential to streamline ASO development, reduce associated costs, and improve clinical outcomes, positioning machine learning as a key tool in the future of ASO therapeutics.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
3
|
Andersson P, Burel SA, Estrella H, Foy J, Hagedorn PH, Harper TA, Henry SP, Hoflack JC, Holgersen EM, Levin AA, Morrison E, Pavlicek A, Penso-Dolfin L, Saxena U. Assessing Hybridization-Dependent Off-Target Risk for Therapeutic Oligonucleotides: Updated Industry Recommendations. Nucleic Acid Ther 2025; 35:16-33. [PMID: 39912803 DOI: 10.1089/nat.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Hybridization-dependent off-target (OffT) effects, occurring when oligonucleotides bind via Watson-Crick-Franklin hybridization to unintended RNA transcripts, remain a critical safety concern for oligonucleotide therapeutics (ONTs). Despite the importance of OffT assessment of clinical trial ONT candidates, formal guidelines are lacking, with only brief mentions in Japanese regulatory documents (2020) and US Food and Drug Administration (FDA) recommendations for hepatitis B virus treatments (2022). This article presents updated industry recommendations for assessing OffTs of ONTs, building upon the 2012 Oligonucleotide Safety Working Group (OSWG) recommendations and accounting for recent technological advancements. A new OSWG subcommittee, comprising industry experts in RNase H-dependent and steric blocking antisense oligonucleotides and small interfering RNAs, has developed a comprehensive framework for OffT assessment. The proposed workflow encompasses five key steps: (1) OffT identification through in silico complementarity prediction and transcriptomics analysis, (2) focus on cell types with relevant ONT activity, (3) in vitro verification and margin assessment, (4) risk assessment based on the OffT biological role, and (5) management of unavoidable OffTs. The authors provide detailed considerations for various ONT classes, emphasizing the importance of ONT-specific factors such as chemistry, delivery systems, and tissue distribution in OffT evaluation. The article also explores the potential of machine learning models to enhance OffT prediction and discusses strategies for experimental verification and risk assessment. These updated recommendations aim to improve the safety profile of ONTs entering clinical trials and to manage unavoidable OffTs. The authors hope that these recommendations will serve as a valuable resource for ONT development and for the forthcoming finalization of the FDA draft guidance and the International Council for Harmonization S13 guidance on Nonclinical Safety Assessment of Oligonucleotide-Based Therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Christophe Hoflack
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | | | | | - Utsav Saxena
- Dicerna Pharmaceuticals, a Novo Nordisk Company, Lexington, Massachusetts, USA
| |
Collapse
|
4
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
5
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
6
|
Zardetto B, van Roon-Mom W, Aartsma-Rus A, Lauffer MC. Treatability of the KMT2-Associated Neurodevelopmental Disorders Using Antisense Oligonucleotide-Based Treatments. Hum Mutat 2024; 2024:9933129. [PMID: 40225946 PMCID: PMC11925151 DOI: 10.1155/2024/9933129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/15/2025]
Abstract
Neurodevelopmental disorders (NDDs) of genetic origin are a group of early-onset neurological diseases with highly heterogeneous etiology and a symptomatic spectrum that includes intellectual disability, autism spectrum disorder, and learning and language disorders. One group of rare NDDs is associated with dysregulation of the KMT2 protein family. Members of this family share a common methyl transferase function and are involved in the etiology of rare haploinsufficiency disorders. For each of the KMT2 genes, at least one distinct disorder has been reported, yet clinical manifestations often overlap for multiple of these individually very rare disorders. Clinical care is currently focused on the management of symptoms with no targeted treatments available, illustrating a high unmet medical need and the urgency of developing disease-modifying therapeutic strategies. Antisense oligonucleotides (ASOs) are one option to treat some of these rare genetic disorders. ASOs are RNA-based treatments that can be employed to modulate gene expression through various mechanisms. In this work, we discuss the phenotypic features across the KMT2-associated NDDs and which ASO approaches are most suited for the treatment of each associated disorder. We hereby address variant-specific strategies as well as options applicable to larger groups of patients.
Collapse
Affiliation(s)
- Bianca Zardetto
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Marlen C. Lauffer
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
7
|
Vandermeulen L, Geric I, Fumagalli L, Kreir M, Lu A, Nonneman A, Premereur J, Wolfs L, Policarpo R, Fattorelli N, De Bondt A, Van Den Wyngaert I, Asselbergh B, Fiers M, De Strooper B, d'Ydewalle C, Mancuso R. Regulation of human microglial gene expression and function via RNAase-H active antisense oligonucleotides in vivo in Alzheimer's disease. Mol Neurodegener 2024; 19:37. [PMID: 38654375 PMCID: PMC11040766 DOI: 10.1186/s13024-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-β plaques in vivo in a model of AD. CONCLUSIONS This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.
Collapse
Affiliation(s)
- Lina Vandermeulen
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ivana Geric
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Laura Fumagalli
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mohamed Kreir
- Preclinical Development & Safety, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ashley Lu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Annelies Nonneman
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Jessie Premereur
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Rafaela Policarpo
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - Nicola Fattorelli
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Ilse Van Den Wyngaert
- Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, University of Antwerp, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium
- UK Dementia Research Institute, University College London, London, W1T 7NF, UK
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica NV, 2340, Beerse, Belgium.
| | - Renzo Mancuso
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, 3000, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, 3000, Belgium.
- MIND Lab, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
| |
Collapse
|
8
|
Croft LV, Fisher M, Barbhuiya TK, El-Kamand S, Beard S, Rajapakse A, Gamsjaeger R, Cubeddu L, Bolderson E, O'Byrne K, Richard D, Gandhi NS. Sequence- and Structure-Dependent Cytotoxicity of Phosphorothioate and 2'- O-Methyl Modified Single-Stranded Oligonucleotides. Nucleic Acid Ther 2024; 34:143-155. [PMID: 38648015 DOI: 10.1089/nat.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Single-stranded oligonucleotides (SSOs) are a rapidly expanding class of therapeutics that comprises antisense oligonucleotides, microRNAs, and aptamers, with ten clinically approved molecules. Chemical modifications such as the phosphorothioate backbone and the 2'-O-methyl ribose can improve the stability and pharmacokinetic properties of therapeutic SSOs, but they can also lead to toxicity in vitro and in vivo through nonspecific interactions with cellular proteins, gene expression changes, disturbed RNA processing, and changes in nuclear structures and protein distribution. In this study, we screened a mini library of 277 phosphorothioate and 2'-O-methyl-modified SSOs, with or without mRNA complementarity, for cytotoxic properties in two cancer cell lines. Using circular dichroism, nucleic magnetic resonance, and molecular dynamics simulations, we show that phosphorothioate- and 2'-O-methyl-modified SSOs that form stable hairpin structures through Watson-Crick base pairing are more likely to be cytotoxic than those that exist in an extended conformation. In addition, moderate and highly cytotoxic SSOs in our dataset have a higher mean purine composition than pyrimidine. Overall, our study demonstrates a structure-cytotoxicity relationship and indicates that the formation of stable hairpins should be a consideration when designing SSOs toward optimal therapeutic profiles.
Collapse
Affiliation(s)
- Laura V Croft
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Mark Fisher
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Tabassum Khair Barbhuiya
- School of Chemistry and Physics, Centre for Genomics and Personalised Health, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Serene El-Kamand
- School of Science, Western Sydney University, Penrith, Australia
| | - Samuel Beard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Aleksandra Rajapakse
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | | | - Liza Cubeddu
- School of Science, Western Sydney University, Penrith, Australia
| | - Emma Bolderson
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Ken O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Princess Alexandra Hospital, Woolloongabba, Australia
| | - Derek Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Neha S Gandhi
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at Translational Research Institute, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- School of Chemistry and Physics, Centre for Genomics and Personalised Health, Faculty of Science, Queensland University of Technology, Brisbane, Australia
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
9
|
Singh S, Pandey AK, Malemnganba T, Prajapati VK. Technological advancements in viral vector designing and optimization for therapeutic applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:57-87. [PMID: 38448144 DOI: 10.1016/bs.apcsb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Viral vector engineering is critical to the advancement of several sectors of biotechnology, gene therapy, and vaccine development. These vectors were produced from viruses, were employed to deliver therapeutic genes or to alter biological processes. The potential for viral vectors to improve the precision, safety, and efficiency of therapeutic interventions has boosted their demand. The dynamic interplay between technological advancements and computational tools in establishing the landscape of viral vector engineering and vector optimization for therapeutic reasons is discussed in this chapter. It also emphasizes the importance of in silico techniques in maximizing vector potential for therapeutics and many phases of viral vector engineering, from genomic analysis to computer modelling and advancements to improve precise gene delivery. High-throughput screening propels the expedited process of vector selection, and computational techniques to analyze complex omics data to further enhance vector capabilities have been discussed. As in silico models reveal insights into off-target effects and integration sites, vector safety (biodistribution and toxicity) remains a crucial part and bridges the gap between preclinical and clinical investigations. Despite the limitations, this chapter depicts a future in which technology and computing merge to catapult viral vector therapy into an era of boundless possibilities.
Collapse
Affiliation(s)
- Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Anurag Kumar Pandey
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | | | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
10
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Terada C, Oh K, Tsubaki R, Chan B, Aibara N, Ohyama K, Shibata MA, Wada T, Harada-Shiba M, Yamayoshi A, Yamamoto T. Dynamic and static control of the off-target interactions of antisense oligonucleotides using toehold chemistry. Nat Commun 2023; 14:7972. [PMID: 38042877 PMCID: PMC10693639 DOI: 10.1038/s41467-023-43714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Off-target interactions between antisense oligonucleotides (ASOs) with state-of-the-art modifications and biological components still pose clinical safety liabilities. To mitigate a broad spectrum of off-target interactions and enhance the safety profile of ASO drugs, we here devise a nanoarchitecture named BRace On a THERapeutic aSo (BROTHERS or BRO), which is composed of a standard gapmer ASO paired with a partially complementary peptide nucleic acid (PNA) strand. We show that these non-canonical ASO/PNA hybrids have reduced non-specific protein-binding capacity. The optimization of the structural and thermodynamic characteristics of this duplex system enables the operation of an in vivo toehold-mediated strand displacement (TMSD) reaction, effectively reducing hybridization with RNA off-targets. The optimized BROs dramatically mitigate hepatotoxicity while maintaining the on-target knockdown activity of their parent ASOs in vivo. This technique not only introduces a BRO class of drugs that could have a transformative impact on the extrahepatic delivery of ASOs, but can also help uncover the toxicity mechanism of ASOs.
Collapse
Affiliation(s)
- Chisato Terada
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- JSPS Research Fellow (DC1), Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kaho Oh
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryutaro Tsubaki
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi, Japan
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Asako Yamayoshi
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tsuyoshi Yamamoto
- Department of Chemistry of Biofunctional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
12
|
Chen L, Wang Y. Interdisciplinary advances reshape the delivery tools for effective NASH treatment. Mol Metab 2023; 73:101730. [PMID: 37142161 DOI: 10.1016/j.molmet.2023.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe systemic and inflammatory subtype of nonalcoholic fatty liver disease, eventually develops into cirrhosis and hepatocellular carcinoma with few options for effective treatment. Currently potent small molecules identified in preclinical studies are confronted with adverse effects and long-term ineffectiveness in clinical trials. Nevertheless, highly specific delivery tools designed from interdisciplinary concepts may address the significant challenges by either effectively increasing the concentrations of drugs in target cell types, or selectively manipulating the gene expression in liver to resolve NASH. SCOPE OF REVIEW We focus on dissecting the detailed principles of the latest interdisciplinary advances and concepts that direct the design of future delivery tools to enhance the efficacy. Recent advances have indicated that cell and organelle-specific vehicles, non-coding RNA research (e.g. saRNA, hybrid miRNA) improve the specificity, while small extracellular vesicles and coacervates increase the cellular uptake of therapeutics. Moreover, strategies based on interdisciplinary advances drastically elevate drug loading capacity and delivery efficiency and ameliorate NASH and other liver diseases. MAJOR CONCLUSIONS The latest concepts and advances in chemistry, biochemistry and machine learning technology provide the framework and strategies for the design of more effective tools to treat NASH, other pivotal liver diseases and metabolic disorders.
Collapse
Affiliation(s)
- Linshan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health.
| |
Collapse
|
13
|
Li Y, Zhu S, Chen Y, Ma Q, Kan D, Yu W, Zhang B, Chen X, Wei W, Shao Y, Wang K, Zhang M, Deng S, Niu Y, Shang Z. Post-transcriptional modification of m 6A methylase METTL3 regulates ERK-induced androgen-deprived treatment resistance prostate cancer. Cell Death Dis 2023; 14:289. [PMID: 37095108 PMCID: PMC10126012 DOI: 10.1038/s41419-023-05773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/26/2023]
Abstract
As the most common modification of RNA, N6-methyladenosin (m6A) has been confirmed to be involved in the occurrence and development of various cancers. However, the relationship between m6A and castration resistance prostate cancer (CRPC), has not been fully studied. By m6A-sequencing of patient cancer tissues, we identified that the overall level of m6A in CRPC was up-regulated than castration sensitive prostate cancer (CSPC). Based on the analysis of m6A-sequencing data, we found m6A modification level of HRas proto-oncogene, GTPase (HRAS) and mitogen-activated protein kinase kinase 2 (MEK2 or MAP2K2) were enhanced in CRPC. Specifically, tissue microarray analysis and molecular biology experiments confirmed that METTL3, an m6A "writer" up-regulated after castration, activated the ERK pathway to contribute to malignant phenotype including ADT resistance, cell proliferation and invasion. We revealed that METTL3-mediated ERK phosphorylation by stabilizing the transcription of HRAS and positively regulating the translation of MEK2. In the Enzalutamide-resistant (Enz-R) C4-2 and LNCap cell line (C4-2R, LNCapR) established in the current study, the ERK pathway was confirmed to be regulated by METTL3. We also found that applying antisense oligonucleotides (ASOs) to target the METTL3/ERK axis can restore Enzalutamide resistance in vitro and in vivo. In conclusion, METTL3 activated the ERK pathway and induced the resistance to Enzalutamide by regulating the m6A level of critical gene transcription in the ERK pathway.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yutong Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qianwang Ma
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Duo Kan
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenyue Yu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuanrong Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wanqing Wei
- Lianshui People's Hospital of Kangda College affiliated with Nanjing Medical University, Huai'an, China
| | - Yi Shao
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Keruo Wang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shu Deng
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
14
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
15
|
Lu K, Fan Q, Zou X. Antisense oligonucleotide is a promising intervention for liver diseases. Front Pharmacol 2022; 13:1061842. [PMID: 36569303 PMCID: PMC9780395 DOI: 10.3389/fphar.2022.1061842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
As the body's critical metabolic organ, the liver plays an essential role in maintaining proper body homeostasis. However, as people's living standards have improved and the number of unhealthy lifestyles has increased, the liver has become overburdened. These have made liver disease one of the leading causes of death worldwide. Under the influence of adverse factors, liver disease progresses from simple steatosis to hepatitis, to liver fibrosis, and finally to cirrhosis and cancer, followed by increased mortality. Until now, there has been a lack of accepted effective treatments for liver disease. Based on current research, antisense oligonucleotide (ASO), as an alternative intervention for liver diseases, is expected to be an effective treatment due to its high efficiency, low toxicity, low dosage, strong specificity, and additional positive characteristics. In this review, we will first introduce the design, modification, delivery, and the mechanisms of ASO, and then summarize the application of ASO in liver disease treatment, including in non-alcoholic fatty liver disease (NAFLD), hepatitis, liver fibrosis, and liver cancer. Finally, we discuss challenges and perspectives on the transfer of ASO drugs into clinical use. This review provides a current and comprehensive understanding of the integrative and systematic functions of ASO for its use in liver disease.
Collapse
Affiliation(s)
- Kailing Lu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qijing Fan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China,*Correspondence: Xiaoju Zou,
| |
Collapse
|
16
|
Kim J, Jeon SG, Jeong HR, Park H, Kim JI, Hoe HS. L-Type Ca 2+ Channel Inhibition Rescues the LPS-Induced Neuroinflammatory Response and Impairments in Spatial Memory and Dendritic Spine Formation. Int J Mol Sci 2022; 23:13606. [PMID: 36362394 PMCID: PMC9655622 DOI: 10.3390/ijms232113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 08/11/2023] Open
Abstract
Ca2+ signaling is implicated in the transition between microglial surveillance and activation. Several L-type Ca2+ channel blockers (CCBs) have been shown to ameliorate neuroinflammation by modulating microglial activity. In this study, we examined the effects of the L-type CCB felodipine on LPS-mediated proinflammatory responses. We found that felodipine treatment significantly diminished LPS-evoked proinflammatory cytokine levels in BV2 microglial cells in an L-type Ca2+ channel-dependent manner. In addition, felodipine leads to the inhibition of TLR4/AKT/STAT3 signaling in BV2 microglial cells. We further examined the effects of felodipine on LPS-stimulated neuroinflammation in vivo and found that daily administration (3 or 7 days, i.p.) significantly reduced LPS-mediated gliosis and COX-2 and IL-1β levels in C57BL/6 (wild-type) mice. Moreover, felodipine administration significantly reduced chronic neuroinflammation-induced spatial memory impairment, dendritic spine number, and microgliosis in C57BL/6 mice. Taken together, our results suggest that the L-type CCB felodipine could be repurposed for the treatment of neuroinflammation/cognitive function-associated diseases.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Seong Gak Jeon
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Ha-Ram Jeong
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - HyunHee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea
- Department of Brain and Cognitive Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno Jungang-Daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Korea
| |
Collapse
|
17
|
Nedorezova DD, Dubovichenko MV, Belyaeva EP, Grigorieva ED, Peresadina AV, Kolpashchikov DM. Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics 2022; 12:7132-7157. [PMID: 36276652 PMCID: PMC9576606 DOI: 10.7150/thno.77830] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.
Collapse
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Mikhail V. Dubovichenko
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina P. Belyaeva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina D. Grigorieva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Arina V. Peresadina
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
18
|
Yoshida T, Morihiro K, Naito Y, Mikami A, Kasahara Y, Inoue T, Obika S. Identification of nucleobase chemical modifications that reduce the hepatotoxicity of gapmer antisense oligonucleotides. Nucleic Acids Res 2022; 50:7224-7234. [PMID: 35801870 PMCID: PMC9303313 DOI: 10.1093/nar/gkac562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/26/2022] Open
Abstract
Currently, gapmer antisense oligonucleotide (ASO) therapeutics are under clinical development for the treatment of various diseases, including previously intractable human disorders; however, they have the potential to induce hepatotoxicity. Although several groups have reported the reduced hepatotoxicity of gapmer ASOs following chemical modifications of sugar residues or internucleotide linkages, only few studies have described nucleobase modifications to reduce hepatotoxicity. In this study, we introduced single or multiple combinations of 17 nucleobase derivatives, including four novel derivatives, into hepatotoxic locked nucleic acid gapmer ASOs and examined their effects on hepatotoxicity. The results demonstrated successful identification of chemical modifications that strongly reduced the hepatotoxicity of gapmer ASOs. This approach expands the ability to design gapmer ASOs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Tokuyuki Yoshida
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Yuki Naito
- Database Center for Life Science (DBCLS), 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Mikami
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yuuya Kasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
| |
Collapse
|
19
|
Shin JW, Shin A, Park SS, Lee JM. Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease. Mol Ther Methods Clin Dev 2022; 25:84-95. [PMID: 35356757 PMCID: PMC8933729 DOI: 10.1016/j.omtm.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in huntingtin (HTT). Given an important role for HTT in development and significant neurodegeneration at the time of clinical manifestation in HD, early treatment of allele-specific drugs represents a promising strategy. The feasibility of an allele-specific antisense oligonucleotide (ASO) targeting single-nucleotide polymorphisms (SNPs) has been demonstrated in models of HD. Here, we constructed a map of haplotype-specific insertion-deletion variations (indels) to develop alternative mutant-HTT-specific strategies. We mapped indels annotated in the 1000 Genomes Project data on common HTT haplotypes, revealing candidate indels for mutant-specific HTT targeting. Subsequent sequencing of an HD family confirmed candidate sites and revealed additional allele-specific indels. Interestingly, the most common normal HTT haplotype carries indels of big allele length differences at many sites, further uncovering promising haplotype-specific targets. When patient-derived cells carrying the most common HTT diplotype were treated with ASOs targeting the mutant alleles of candidate indels (rs772629195 or rs72239206), complete mutant specificity was observed. In summary, our map of haplotype-specific indels permits the identification of allele-specific targets in HD subjects, potentially contributing to the development of safe HTT-lowering therapeutics that are suitable for early treatment in HD.
Collapse
Affiliation(s)
- Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Aram Shin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seri S Park
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:355-370. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the last decade, therapeutic oligonucleotide drugs (OND) have witnessed a tremendous development in chemistry and mechanistic understanding that have translated into successful clinical applications. Depending on the specific OND mechanism, chemistry, and design, the DMPK and toxicity properties can vary significantly between different OND classes and delivery approaches, the latter including lipid formulations or conjugation approaches to enhance productive OND uptake. At the same time, with the only difference between compounds being the nucleobase sequence, ONDs with same mechanism of action, chemistry, and design show relatively consistent behavior, allowing certain extrapolations between compounds within an OND class. This chapter provides a summary of the most common toxicities, the improved mechanistic understanding and the safety assessment activities performed for therapeutic oligonucleotides during the drug discovery and development process. Several of the considerations described for therapeutic applications should also be of value for the scientists mainly using oligonucleotides as research tools to explore various biological processes.
Collapse
Affiliation(s)
- Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
21
|
Yasuhara H, Yoshida T, Sasaki K, Obika S, Inoue T. Reduction of Off-Target Effects of Gapmer Antisense Oligonucleotides by Oligonucleotide Extension. Mol Diagn Ther 2022; 26:117-127. [PMID: 34994962 PMCID: PMC8766371 DOI: 10.1007/s40291-021-00573-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2021] [Indexed: 12/03/2022]
Abstract
Aim Antisense oligonucleotide (ASO) has the potential to induce off-target effects by inadvertent binding of ASOs to unintended RNAs that have a sequence similar to the target RNA. In the present study, we focused on the association between oligonucleotide length and off-target effects. Oligonucleotide extension is assumed to have bilateral effects on hybridization-dependent changes in gene expression, i.e., one is the decrease of off-target effects based on the reduced number of off-target candidate genes with perfect matches, and the other is the increase of off-target effects based on the increased binding affinity between the ASO and the complementary RNAs that leads to better tolerability for mismatches. Methods To determine the effects of oligonucleotide extension of gapmer ASOs on off-target effects, an extensive microarray analysis was performed using human cells treated with a 14-mer gapmer ASO and the extended 18-mer derivatives with the same core 14-mer region. Results and Discussion Our data indicated that change in gene expression in the cells treated with 18-mer ASOs was significantly smaller than those with a 14-mer ASO, showing the decrease of off-target effects by oligonucleotide extension. Supplementary Information The online version contains supplementary material available at 10.1007/s40291-021-00573-z.
Collapse
Affiliation(s)
- Hidenori Yasuhara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tokuyuki Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kiyomi Sasaki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| | - Takao Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
22
|
Abstract
This introduction charts the history of the development of the major chemical modifications that have influenced the development of nucleic acids therapeutics focusing in particular on antisense oligonucleotide analogues carrying modifications in the backbone and sugar. Brief mention is made of siRNA development and other applications that have by and large utilized the same modifications. We also point out the pitfalls of the use of nucleic acids as drugs, such as their unwanted interactions with pattern recognition receptors, which can be mitigated by chemical modification or used as immunotherapeutic agents.
Collapse
|
23
|
Hazan J, Bester AC. CRISPR-Based Approaches for the High-Throughput Characterization of Long Non-Coding RNAs. Noncoding RNA 2021; 7:79. [PMID: 34940760 PMCID: PMC8704461 DOI: 10.3390/ncrna7040079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, tens of thousands of new long non-coding RNAs (lncRNAs) have been identified in the human genome. Nevertheless, except for a handful of genes, the genetic characteristics and functions of most of these lncRNAs remain elusive; this is partially due to their relatively low expression, high tissue specificity, and low conservation across species. A major limitation for determining the function of lncRNAs was the lack of methodologies suitable for studying these genes. The recent development of CRISPR/Cas9 technology has opened unprecedented opportunities to uncover the genetic and functional characteristics of the non-coding genome via targeted and high-throughput approaches. Specific CRISPR/Cas9-based approaches were developed to target lncRNA loci. Some of these approaches involve modifying the sequence, but others were developed to study lncRNAs by inducing transcriptional and epigenetic changes. The discovery of other programable Cas proteins broaden our possibilities to target RNA molecules with greater precision and accuracy. These approaches allow for the knock-down and characterization of lncRNAs. Here, we review how various CRISPR-based strategies have been used to characterize lncRNAs with important functions in different biological contexts and how these approaches can be further utilized to improve our understanding of the non-coding genome.
Collapse
|
24
|
Holgersen EM, Gandhi S, Zhou Y, Kim J, Vaz B, Bogojeski J, Bugno M, Shalev Z, Cheung-Ong K, Gonçalves J, O'Hara M, Kron K, Verby M, Sun M, Kakaradov B, Delong A, Merico D, Deshwar AG. Transcriptome-Wide Off-Target Effects of Steric-Blocking Oligonucleotides. Nucleic Acid Ther 2021; 31:392-403. [PMID: 34388351 PMCID: PMC8713556 DOI: 10.1089/nat.2020.0921] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Steric-blocking oligonucleotides (SBOs) are short, single-stranded nucleic acids designed to modulate gene expression by binding to RNA transcripts and blocking access from cellular machinery such as splicing factors. SBOs have the potential to bind to near-complementary sites in the transcriptome, causing off-target effects. In this study, we used RNA-seq to evaluate the off-target differential splicing events of 81 SBOs and differential expression events of 46 SBOs. Our results suggest that differential splicing events are predominantly hybridization driven, whereas differential expression events are more common and driven by other mechanisms (including spurious experimental variation). We further evaluated the performance of in silico screens for off-target splicing events, and found an edit distance cutoff of three to result in a sensitivity of 14% and false discovery rate (FDR) of 99%. A machine learning model incorporating splicing predictions substantially improved the ability to prioritize low edit distance hits, increasing sensitivity from 4% to 26% at a fixed FDR of 90%. Despite these large improvements in performance, this approach does not detect the majority of events at an FDR <99%. Our results suggest that in silico methods are currently of limited use for predicting the off-target effects of SBOs, and experimental screening by RNA-seq should be the preferred approach.
Collapse
Affiliation(s)
- Erle M. Holgersen
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Shreshth Gandhi
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Yongchao Zhou
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Jinkuk Kim
- Deep Genomics, Inc., Toronto,
Canada
- Graduate School of Medical Science and
Engineering, KAIST, Daejeon, Republic of Korea
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Brandon Vaz
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Jovanka Bogojeski
- Deep Genomics, Inc., Toronto,
Canada
- Providence Therapeutics, Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Magdalena Bugno
- Deep Genomics, Inc., Toronto,
Canada
- The Hospital for Sick Children, Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Zvi Shalev
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Kahlin Cheung-Ong
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - João Gonçalves
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Matthew O'Hara
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Ken Kron
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Marta Verby
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Mark Sun
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Boyko Kakaradov
- Deep Genomics, Inc., Toronto,
Canada
- Skyhawk Therapeutics, Waltham,
Massachusetts, USA
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Andrew Delong
- Deep Genomics, Inc., Toronto,
Canada
- Department of Computer Science and
Software Engineering, Concordia University, Montreal, Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Daniele Merico
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| | - Amit G. Deshwar
- Deep Genomics, Inc., Toronto,
Canada
- This article was previously published in bioRxiv, Preprint DOI: https://doi.org/10.1101/2020.09.03.281667
| |
Collapse
|
25
|
Hara RI, Wada T. Inhibition of off-target cleavage by RNase H using an artificial cationic oligosaccharide. Org Biomol Chem 2021; 19:6865-6870. [PMID: 34323246 DOI: 10.1039/d1ob00983d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-dependent off-target effects are a serious problem of antisense oligonucleotide-based drugs. Some of these side effects are induced by ribonuclease H (RNase H)-mediated cleavage of non-target RNAs with base sequences similar to that of the target RNA. We found that an artificial cationic oligosaccharide, ODAGal4, improved single-base discrimination for RNase H cleavage.
Collapse
Affiliation(s)
- Rintaro Iwata Hara
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | |
Collapse
|
26
|
Carvill GL, Matheny T, Hesselberth J, Demarest S. Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics 2021; 18:1500-1514. [PMID: 34648141 PMCID: PMC8608973 DOI: 10.1007/s13311-021-01137-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 02/04/2023] Open
Abstract
This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathogenic mechanism(s) that underlie each genetic epilepsy is pivotal to design precision therapies that are most likely to be beneficial for the patient. Novel therapeutics discussed include gene therapy, gene editing, antisense oligonucleotides, and protein replacement. Discussions are illustrated and reinforced with examples from the literature.
Collapse
Affiliation(s)
- Gemma L Carvill
- Departments of Neurology, Pharmacology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tyler Matheny
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Jay Hesselberth
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
27
|
Vancura A, Lanzós A, Bosch-Guiteras N, Esteban MT, Gutierrez AH, Haefliger S, Johnson R. Cancer LncRNA Census 2 (CLC2): an enhanced resource reveals clinical features of cancer lncRNAs. NAR Cancer 2021; 3:zcab013. [PMID: 34316704 PMCID: PMC8210278 DOI: 10.1093/narcan/zcab013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in cancer and are at the vanguard of precision therapeutic development. These efforts depend on large and high-confidence collections of cancer lncRNAs. Here, we present the Cancer LncRNA Census 2 (CLC2). With 492 cancer lncRNAs, CLC2 is 4-fold greater in size than its predecessor, without compromising on strict criteria of confident functional/genetic roles and inclusion in the GENCODE annotation scheme. This increase was enabled by leveraging high-throughput transposon insertional mutagenesis screening data, yielding 92 novel cancer lncRNAs. CLC2 makes a valuable addition to existing collections: it is amongst the largest, contains numerous unique genes (not found in other databases) and carries functional labels (oncogene/tumour suppressor). Analysis of this dataset reveals that cancer lncRNAs are impacted by germline variants, somatic mutations and changes in expression consistent with inferred disease functions. Furthermore, we show how clinical/genomic features can be used to vet prospective gene sets from high-throughput sources. The combination of size and quality makes CLC2 a foundation for precision medicine, demonstrating cancer lncRNAs’ evolutionary and clinical significance.
Collapse
Affiliation(s)
- Adrienne Vancura
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Andrés Lanzós
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Núria Bosch-Guiteras
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Mònica Torres Esteban
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alejandro H Gutierrez
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
28
|
Hirabayashi Y, Maki K, Kinoshita K, Nakazawa T, Obika S, Naota M, Watanabe K, Suzuki M, Arato T, Fujisaka A, Fueki O, Ito K, Onodera H. Considerations of the Japanese Research Working Group for the ICH S6 & Related Issues Regarding Nonclinical Safety Assessments of Oligonucleotide Therapeutics: Comparison with Those of Biopharmaceuticals. Nucleic Acid Ther 2021; 31:114-125. [PMID: 33470890 PMCID: PMC7997717 DOI: 10.1089/nat.2020.0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
This white paper summarizes the current consensus of the Japanese Research Working Group for the ICH S6 & Related Issues (WGS6) on strategies for the nonclinical safety assessment of oligonucleotide-based therapeutics (ONTs), specifically focused on the similarities and differences to biotechnology-derived pharmaceuticals (biopharmaceuticals). ONTs, like biopharmaceuticals, have high species and target specificities. However, ONTs have characteristic off-target effects that clearly differ from those of biopharmaceuticals. The product characteristics of ONTs necessitate specific considerations when planning nonclinical studies. Some ONTs have been approved for human use and many are currently undergoing nonclinical and/or clinical development. However, as ONTs are a rapidly evolving class of drugs, there is still much to learn to achieve optimal strategies for the development of ONTs. There are no formal specific guidelines, so safety assessments of ONTs are principally conducted by referring to published white papers and conventional guidelines for biopharmaceuticals and new chemical entities, and each ONT is assessed on a case-by-case basis. The WGS6 expects that this report will be useful in considering nonclinical safety assessments and developing appropriate guidelines specific for ONTs.
Collapse
Affiliation(s)
| | - Kazushige Maki
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kiyoshi Kinoshita
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | | | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Misaki Naota
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kazuto Watanabe
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | - Mutsumi Suzuki
- The Japan Pharmaceutical Manufacturers Association (JPMA), Chuo-ku, Japan
| | - Teruyo Arato
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Aki Fujisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Osamu Fueki
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | - Kosuke Ito
- Pharmaceuticals and Medical Devices Agency (PMDA), Chiyoda-ku, Japan
| | | |
Collapse
|
29
|
Statello L, Ali MM, Kanduri C. In Vivo Administration of Therapeutic Antisense Oligonucleotides. Methods Mol Biol 2021; 2254:273-282. [PMID: 33326082 DOI: 10.1007/978-1-0716-1158-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the rapid revolution in RNA/DNA sequencing technologies, it is evident that mammalian genomes express tens of thousands of long noncoding RNAs (lncRNAs). Since a large majority of lncRNAs have been functionally implicated in cancer development and progression, there is an increasing appreciation for the use of antisense oligonucleotide (ASO)-based therapies targeting lncRNAs in several cancers. Despite their great potential in therapeutic applications, their use is still limited due to cellular toxicity and shortcomings in achieving required stability in biological fluids and tissue uptake. To overcome these limitations, major changes in ASO chemistry have been introduced to generate second and third generation ASOs, including locked nucleic acids (LNA) technology. Here we describe two different LNA-ASO delivery approaches, a peritumoral administration and a systemic delivery in xenograft models of lung adenocarcinoma, that significantly reduced tumor growth without inducing toxicity.
Collapse
Affiliation(s)
- Luisa Statello
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohamad Moustafa Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
30
|
Lim KRQ, Yokota T. Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Front Pharmacol 2021; 12:642858. [PMID: 33776777 PMCID: PMC7996372 DOI: 10.3389/fphar.2021.642858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive, asymmetric muscle weakness at the face, shoulders, and upper limbs, which spreads to the lower body with age. It is the third most common inherited muscular disorder worldwide. Around 20% of patients are wheelchair-bound, and some present with extramuscular manifestations. FSHD is caused by aberrant expression of the double homeobox protein 4 (DUX4) gene in muscle. DUX4 codes for a transcription factor which, in skeletal muscle, dysregulates numerous signaling activities that culminate in cytotoxicity. Potential treatments for FSHD therefore aim to reduce the expression of DUX4 or the activity of its toxic protein product. In this article, we review how genetic approaches such as those based on oligonucleotide and genome editing technologies have been developed to achieve these goals. We also outline the challenges these therapies are facing on the road to translation, and discuss possible solutions and future directions.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada
| |
Collapse
|
31
|
Vangoor VR, Gomes‐Duarte A, Pasterkamp RJ. Long non-coding RNAs in motor neuron development and disease. J Neurochem 2021; 156:777-801. [PMID: 32970857 PMCID: PMC8048821 DOI: 10.1111/jnc.15198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs that exceed 200 nucleotides in length and that are not translated into proteins. Thousands of lncRNAs have been identified with functions in processes such as transcription and translation regulation, RNA processing, and RNA and protein sponging. LncRNAs show prominent expression in the nervous system and have been implicated in neural development, function and disease. Recent work has begun to report on the expression and roles of lncRNAs in motor neurons (MNs). The cell bodies of MNs are located in cortex, brainstem or spinal cord and their axons project into the brainstem, spinal cord or towards peripheral muscles, thereby controlling important functions such as movement, breathing and swallowing. Degeneration of MNs is a pathological hallmark of diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. LncRNAs influence several aspects of MN development and disruptions in these lncRNA-mediated effects are proposed to contribute to the pathogenic mechanisms underlying MN diseases (MNDs). Accumulating evidence suggests that lncRNAs may comprise valuable therapeutic targets for different MNDs. In this review, we discuss the role of lncRNAs (including circular RNAs [circRNAs]) in the development of MNs, discuss how lncRNAs may contribute to MNDs and provide directions for future research.
Collapse
Affiliation(s)
- Vamshidhar R. Vangoor
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Andreia Gomes‐Duarte
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
32
|
Gomes de Oliveira AG, Dubovichenko MV, ElDeeb AA, Wanjohi J, Zablotskaya S, Kolpashchikov DM. RNA-Cleaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker. Chembiochem 2021; 22:1750-1754. [PMID: 33433948 DOI: 10.1002/cbic.202000769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Indexed: 11/10/2022]
Abstract
Oligonucleotide gene therapy (OGT) agents suppress specific mRNAs in cells and thus reduce the expression of targeted genes. The ability to unambiguously distinguish cancer from healthy cells can solve the low selectivity problem of OGT agents. Cancer RNA markers are expressed in both healthy and cancer cells with a higher expression level in cancer cells. We have designed a DNA-based construct, named DNA thresholder (DTh) that cleaves targeted RNA only at high concentrations of cancer marker RNA and demonstrates low cleavage activity at low marker concentrations. The RNA-cleaving activity can be adjusted within one order of magnitude of the cancer marker RNA concentration by simply redesigning DTh. Importantly, DTh recognizes cancer marker RNA, while cleaving targeted RNA; this offers a possibility to suppress vital genes exclusively in cancer cells, thus triggering their death. DTh is a prototype of computation-inspired molecular device for controlling gene expression and cancer treatment.
Collapse
Affiliation(s)
- Andrey Giovanni Gomes de Oliveira
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Mikhail V Dubovichenko
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Ahmed A ElDeeb
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Joseph Wanjohi
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Sofia Zablotskaya
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, 32816-2366, Orlando, FL, USA.,Burnett School of Biomedical Sciences, University of Central Florida, 32816, Orlando, FL, USA
| |
Collapse
|
33
|
Zhang S, Chen H, Yue D, Blackwell TS, Lv C, Song X. Long non-coding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med 2021; 23:e3318. [PMID: 33533071 PMCID: PMC7988597 DOI: 10.1002/jgm.3318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary fibrosis is characterized by progressive and irreversible scarring in the lungs with poor prognosis and treatment. It is caused by various factors, including environmental and occupational exposures, and some rheumatic immune diseases. Even the rapid global spread of the COVID‐19 pandemic can also cause pulmonary fibrosis with a high probability. Functions attributed to long non‐coding RNAs (lncRNAs) make them highly attractive diagnostic and therapeutic targets in fibroproliferative diseases. Therefore, an understanding of the specific mechanisms by which lncRNAs regulate pulmonary fibrotic pathogenesis is urgently needed to identify new possibilities for therapy. In this review, we focus on the molecular mechanisms and implications of lncRNAs targeted protein‐coding and non‐coding genes during pulmonary fibrogenesis, and systematically analyze the communication of lncRNAs with various types of RNAs, including microRNA, circular RNA and mRNA. Finally, we propose the potential approach of lncRNA‐based diagnosis and therapy for pulmonary fibrosis. We hope that understanding these interactions between protein‐coding and non‐coding genes will contribute to the development of lncRNA‐based clinical applications for pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Hongbin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | | | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| |
Collapse
|
34
|
Hofmans M, Lammens T, Depreter B, Wu Y, Erlacher M, Caye A, Cavé H, Flotho C, de Haas V, Niemeyer CM, Stary J, Van Nieuwerburgh F, Deforce D, Van Loocke W, Van Vlierberghe P, Philippé J, De Moerloose B. Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia. Sci Rep 2021; 11:2801. [PMID: 33531590 PMCID: PMC7854679 DOI: 10.1038/s41598-021-82509-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50-60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.
Collapse
Affiliation(s)
- Mattias Hofmans
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium. .,Department of Diagnostic Sciences, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Barbara Depreter
- Department of Laboratory Medicine Hematology, University Hospital Brussels, Brussels, Belgium
| | - Ying Wu
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Aurélie Caye
- Department of Genetics, University Hospital of Robert Debré (APHP) and INSERM U1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Hélène Cavé
- Department of Genetics, University Hospital of Robert Debré (APHP) and INSERM U1131, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Valerie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium, Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Jan Stary
- Department of Pediatric Hematology/Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Michel S, Schirduan K, Shen Y, Klar R, Tost J, Jaschinski F. Using RNA-seq to Assess Off-Target Effects of Antisense Oligonucleotides in Human Cell Lines. Mol Diagn Ther 2020; 25:77-85. [DOI: 10.1007/s40291-020-00504-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
|
36
|
Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc Natl Acad Sci U S A 2020; 117:32370-32379. [PMID: 33288723 DOI: 10.1073/pnas.2016158117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21-targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21-regulated tumor suppressor proteins. This antitumoral effect is superior to the effect of the corresponding phosphorothioate. Peritumoral administration of µ-oligonucleotide results in its rapid distribution and efficient accumulation in the tumor. Blood biochemistry and morphometric studies of internal organs revealed no pronounced toxicity of µ-oligonucleotides. This new oligonucleotide class provides a powerful tool for antisense technology.
Collapse
|
37
|
Tessier Y, Achanzar W, Mihalcik L, Amuzie C, Andersson P, Parry JD, Moggs J, Whiteley LO. Outcomes of the European Federation of Pharmaceutical Industries and Associations Oligonucleotide Working Group Survey on Nonclinical Practices and Regulatory Expectations for Therapeutic Oligonucleotide Safety Assessment. Nucleic Acid Ther 2020; 31:7-20. [PMID: 33054599 DOI: 10.1089/nat.2020.0892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Oligonucleotide Working Group of the European Federation of Pharmaceutical Industries and Associations (EFPIA) conducted a survey of companies to understand the trends in nonclinical practices and regulatory expectations for oligonucleotide drug safety assessment. Twenty-two companies of different types, with varying oligonucleotide experience levels in the field, participated. The survey identified key regulatory challenges and areas of perceived health authority (HA) concern regarding nonclinical safety strategies for oligonucleotides, such as the choice of toxicology species, approaches to dose setting in toxicity studies, dose scaling from animals to humans, the implementation (and regulatory acceptability) of lean packages, and methods for dealing with impurities and human-specific off-targets. The perceived oligonucleotide experience of HAs and the relevance of guidance to oligonucleotide development were also assessed. The results showed a general lack of consensus on nonclinical safety assessment approaches being used for this growing class of medicines and highlight the need for continuing collaboration between sponsors and HAs to better define best practices.
Collapse
Affiliation(s)
- Yann Tessier
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - William Achanzar
- Drug Safety Evaluation, Bristol Myers Squibb Company, New Brunswick, New Jersey, USA
| | - Lauren Mihalcik
- Amgen Research, Translational Safety & Bioanalytical Sciences, South San Francisco, California, USA
| | - Chidozie Amuzie
- Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Patrik Andersson
- Respiratory and Immunology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Joel D Parry
- Nonclinical Safety, GSK R&D, David Jack Centre for R&D, Ware, United Kingdom
| | - Jonathan Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
38
|
Abstract
Long non-coding RNAs (lncRNAs) represent a major fraction of the transcriptome in multicellular organisms. Although a handful of well-studied lncRNAs are broadly recognized as biologically meaningful, the fraction of such transcripts out of the entire collection of lncRNAs remains a subject of vigorous debate. Here we review the evidence for and against biological functionalities of lncRNAs and attempt to arrive at potential modes of lncRNA functionality that would reconcile the contradictory conclusions. Finally, we discuss different strategies of phenotypic analyses that could be used to investigate such modes of lncRNA functionality.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Ye Cai
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| | - Dongyang Xu
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 201 Pan-Chinese S & T Building, 668 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
39
|
Scharner J, Ma WK, Zhang Q, Lin KT, Rigo F, Bennett CF, Krainer AR. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides. Nucleic Acids Res 2020; 48:802-816. [PMID: 31802121 PMCID: PMC6954394 DOI: 10.1093/nar/gkz1132] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/03/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Splice-switching antisense oligonucleotides (ASOs), which bind specific RNA-target sequences and modulate pre-mRNA splicing by sterically blocking the binding of splicing factors to the pre-mRNA, are a promising therapeutic modality to treat a range of genetic diseases. ASOs are typically 15–25 nt long and considered to be highly specific towards their intended target sequence, typically elements that control exon definition and/or splice-site recognition. However, whether or not splice-modulating ASOs also induce hybridization-dependent mis-splicing of unintended targets has not been systematically studied. Here, we tested the in vitro effects of splice-modulating ASOs on 108 potential off-targets predicted on the basis of sequence complementarity, and identified 17 mis-splicing events for one of the ASOs tested. Based on analysis of data from two overlapping ASO sequences, we conclude that off-target effects are difficult to predict, and the choice of ASO chemistry influences the extent of off-target activity. The off-target events caused by the uniformly modified ASOs tested in this study were significantly reduced with mixed-chemistry ASOs of the same sequence. Furthermore, using shorter ASOs, combining two ASOs, and delivering ASOs by free uptake also reduced off-target activity. Finally, ASOs with strategically placed mismatches can be used to reduce unwanted off-target splicing events.
Collapse
Affiliation(s)
| | - Wai Kit Ma
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Qian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | | |
Collapse
|
40
|
Watt AT, Swayze G, Swayze EE, Freier SM. Likelihood of Nonspecific Activity of Gapmer Antisense Oligonucleotides Is Associated with Relative Hybridization Free Energy. Nucleic Acid Ther 2020; 30:215-228. [PMID: 32125928 PMCID: PMC7418465 DOI: 10.1089/nat.2020.0847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reduction of matched and nearly complementary unintended transcripts was evaluated for 96 antisense oligonucleotides (ASOs) and 832 nearly matched unintended transcripts. The ASOs were 16-20 nucleotide "gapmers" with a gap of 8-10 DNA residues and 2'-O-methoxy-ethyl or constrained-ethyl substitutions in the wings. Most unintended transcripts were not reduced or were reduced with a potency more than 10-fold weaker than the intended transcript. For the unintended transcripts that were reduced, a strong correlation between relative potency of the intended versus the unintended transcript with predicted free energy of hybridization was observed. These results suggest ASO selectivity should be evaluated by testing for reduction of the unintended transcripts predicted to bind most stably to the ASO.
Collapse
Affiliation(s)
- Andrew T Watt
- Division of Antisense Research, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Grant Swayze
- Division of Antisense Research, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Eric E Swayze
- Division of Antisense Research, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Susan M Freier
- Division of Antisense Research, Ionis Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
41
|
Savary G, Dewaeles E, Diazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henaoui IS, Lemaire J, Martis N, Van der Hauwaert C, Pons N, Magnone V, Leroy S, Hofman V, Plantier L, Lebrigand K, Paquet A, Lino Cardenas CL, Vassaux G, Hofman P, Günther A, Crestani B, Wallaert B, Rezzonico R, Brousseau T, Glowacki F, Bellusci S, Perrais M, Broly F, Barbry P, Marquette CH, Cauffiez C, Mari B, Pottier N. The Long Noncoding RNA DNM3OS Is a Reservoir of FibromiRs with Major Functions in Lung Fibroblast Response to TGF-β and Pulmonary Fibrosis. Am J Respir Crit Care Med 2020; 200:184-198. [PMID: 30964696 DOI: 10.1164/rccm.201807-1237oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-β (transforming growth factor-β) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-β in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-β-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-β-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-β signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.
Collapse
Affiliation(s)
- Grégoire Savary
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,2 EA 4483-IMPECS and
| | | | - Serena Diazzi
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Matthieu Buscot
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | - Nicolas Nottet
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Julien Fassy
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Imène-Sarah Henaoui
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Nihal Martis
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | | | - Nicolas Pons
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Virginie Magnone
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Sylvie Leroy
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France.,3 Département de Pneumologie, CHU-Nice
| | - Véronique Hofman
- 4 Laboratory of Clinical and Experimental Pathology and Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, and.,5 CNRS, INSERM, Institute for Research on Cancer and Aging, FHU-OncoAge, Université Côte d'Azur, Nice, France
| | - Laurent Plantier
- 6 Centre d'Étude des Pathologies Respiratoires-CEPR, INSERM, UMR1100, Labex Mabimprove, Université François Rabelais, Tours, France
| | - Kevin Lebrigand
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Agnès Paquet
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | - Georges Vassaux
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Paul Hofman
- 4 Laboratory of Clinical and Experimental Pathology and Hospital-Integrated Biobank (BB-0033-00025), CHU Nice, and.,5 CNRS, INSERM, Institute for Research on Cancer and Aging, FHU-OncoAge, Université Côte d'Azur, Nice, France
| | - Andreas Günther
- 7 Center for Interstitial and Rare Diseases and Cardiopulmonary Institute and.,8 European IPF Registry and Biobank and
| | - Bruno Crestani
- 8 European IPF Registry and Biobank and.,9 Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, INSERM U1152, Université Paris Diderot, LABEX Inflamex, DHU FIRE, Paris, France; and
| | | | - Roger Rezzonico
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Thierry Brousseau
- 11 Service de Biochimie Automatisée, Protéines et Biologie Prédictive
| | | | - Saverio Bellusci
- 13 Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research, Justus-Liebig-University Gießen, Giessen, Germany
| | | | - Franck Broly
- 2 EA 4483-IMPECS and.,15 Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - Pascal Barbry
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | | | | | - Bernard Mari
- 1 CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, FHU-OncoAge, Université Côte d'Azur, Valbonne, France
| | - Nicolas Pottier
- 2 EA 4483-IMPECS and.,15 Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| |
Collapse
|
42
|
Danielsen MB, Lou C, Lisowiec-Wachnicka J, Pasternak A, Jørgensen PT, Wengel J. Gapmer Antisense Oligonucleotides Containing 2',3'-Dideoxy-2'-fluoro-3'-C-hydroxymethyl-β-d-lyxofuranosyl Nucleotides Display Site-Specific RNase H Cleavage and Induce Gene Silencing. Chemistry 2020; 26:1368-1379. [PMID: 31682037 DOI: 10.1002/chem.201904540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 01/14/2023]
Abstract
Off-target effects remain a significant challenge in the therapeutic use of gapmer antisense oligonucleotides (AONs). Over the years various modifications have been synthesized and incorporated into AONs, however, precise control of RNase H-induced cleavage and target sequence selectivity has yet to be realized. Herein, the synthesis of the uracil and cytosine derivatives of a novel class of 2'-deoxy-2'-fluoro-3'-C-hydroxymethyl-β-d-lyxo-configured nucleotides has been accomplished and the target molecules have been incorporated into AONs. Experiments on exonuclease degradation showed improved nucleolytic stability relative to the unmodified control. Upon the introduction of one or two of the novel 2'-fluoro-3'-C-hydroxymethyl nucleotides as modifications in the gap region of a gapmer AON was associated with efficient RNase H-mediated cleavage of the RNA strand of the corresponding AON:RNA duplex. Notably, a tailored single cleavage event could be engineered depending on the positioning of a single modification. The effect of single mismatched base pairs was scanned along the full gap region demonstrating that the modification enables a remarkable specificity of RNase H cleavage. A cell-based model system was used to demonstrate the potential of gapmer AONs containing the novel modification to mediate gene silencing.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jolanta Lisowiec-Wachnicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Anna Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Per T Jørgensen
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
43
|
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of gene expression networks. Over 50,000 lncRNA loci have been annotated in the human genome, but only a subset has been involved in regulation of key cellular processes, organismal development, and diseases. Hence, the functional role for the majority of the lncRNA genes remains unknown. With the recent developments of different CRISPR/Cas9 technologies, the function of lncRNAs can now be examined. CRISPR interference (CRISPRi) is one of these methods that can be used to inhibit the expression of any genomic locus including lncRNAs. This system utilizes catalytically inactive (d)Cas9 fused to KRAB repression domain and single guide RNA against targeted genomic locus. Since CRISPRi has negligible off-target effects and does not involve changes in the underlying genomic DNA sequence, it represents a valuable addition to the existing armamentarium used to investigate lncRNA biology.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, London, UK.
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
44
|
Christou M, Wengel J, Sokratous K, Kyriacou K, Nikolaou G, Phylactou LA, Mastroyiannopoulos NP. Systemic Evaluation of Chimeric LNA/2'-O-Methyl Steric Blockers for Myotonic Dystrophy Type 1 Therapy. Nucleic Acid Ther 2019; 30:80-93. [PMID: 31873063 PMCID: PMC7133450 DOI: 10.1089/nat.2019.0811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominantly inherited, multisystemic disorder characterized clinically by delayed muscle relaxation and weakness. The disease is caused by a CTG repeat expansion in the 3′ untranslated region (3′ UTR) of the DMPK gene, which leads to the expression of a toxic gain-of-function mRNA. The expanded CUG repeat mRNA sequesters the MBNL1 splicing regulator in nuclear-retained foci structures, resulting in loss of protein function and disruption of alternative splicing homeostasis. In this study, we used CAG repeat antisense oligonucleotides (ASOs), composed of locked nucleic acid (LNA)- and 2′-O-methyl (2′OMe)-modified bases in a chimeric design, to alleviate CUGexpanded-mediated toxicity. Chimeric 14–18mer LNA/2′OMe oligonucleotides, exhibiting an LNA incorporation of ∼33%, significantly ameliorated the misregulated alternative splicing of Mbnl1-dependent exons in primary DM1 mouse myoblasts and tibialis anterior muscles of DM1 mice. Subcutaneous delivery of 14mer and 18mer LNA/2′OMe chimeras in DM1 mice resulted in high levels of accumulation in all tested skeletal muscles, as well as in the diaphragm and heart tissue. Despite the efficient delivery, chimeric LNA/2′OMe oligonucleotides were not able, even at a high-dosage regimen (400 mg/kg/week), to correct the misregulated splicing of Serca1 exon 22 in skeletal muscles. Nevertheless, oligonucleotide doses were well-tolerated as determined by histological and plasma biochemistry analyses. Our results provide proof of concept that inhibition of MBNL1 sequestration by systemic delivery of a steric-blocking ASO is extremely challenging, considering the large number of target sites that need to be occupied per RNA molecule. Although not suitable for DM1 therapy, chimeric LNA/2′OMe oligonucleotides could prove to be highly beneficial for other diseases, such as Duchenne muscular dystrophy, that require inhibition of a single target site per RNA molecule.
Collapse
Affiliation(s)
- Melina Christou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense M, Denmark
| | - Kleitos Sokratous
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Georgios Nikolaou
- Veterinary Diagnostic Laboratory, Vet Ex Machina Ltd, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikolaos P Mastroyiannopoulos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
45
|
Migawa MT, Shen W, Wan WB, Vasquez G, Oestergaard ME, Low A, De Hoyos CL, Gupta R, Murray S, Tanowitz M, Bell M, Nichols JG, Gaus H, Liang XH, Swayze EE, Crooke ST, Seth PP. Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Res 2019; 47:5465-5479. [PMID: 31034558 PMCID: PMC6582325 DOI: 10.1093/nar/gkz247] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 01/04/2023] Open
Abstract
Phosphorothioate-modified antisense oligonucleotides (PS-ASOs) interact with a host of plasma, cell-surface and intracellular proteins which govern their therapeutic properties. Given the importance of PS backbone for interaction with proteins, we systematically replaced anionic PS-linkages in toxic ASOs with charge-neutral alkylphosphonate linkages. Site-specific incorporation of alkyl phosphonates altered the RNaseH1 cleavage patterns but overall rates of cleavage and activity versus the on-target gene in cells and in mice were only minimally affected. However, replacing even one PS-linkage at position 2 or 3 from the 5'-side of the DNA-gap with alkylphosphonates reduced or eliminated toxicity of several hepatotoxic gapmer ASOs. The reduction in toxicity was accompanied by the absence of nucleolar mislocalization of paraspeckle protein P54nrb, ablation of P21 mRNA elevation and caspase activation in cells, and hepatotoxicity in mice. The generality of these observations was further demonstrated for several ASOs versus multiple gene targets. Our results add to the types of structural modifications that can be used in the gap-region to enhance ASO safety and provide insights into understanding the biochemistry of PS ASO protein interactions.
Collapse
Affiliation(s)
- Michael T Migawa
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Wen Shen
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - W Brad Wan
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | | | - Audrey Low
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | | | - Ruchi Gupta
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Susan Murray
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Tanowitz
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Melanie Bell
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hans Gaus
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Eric E Swayze
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Punit P Seth
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
46
|
Pedersen L, Hagedorn P, Vikeså J, Karlsen ST, Særmark P, Koch T, Lindow M. Targeting Repeated Regions Unique to a Gene Is an Effective Strategy for Discovering Potent and Efficacious Antisense Oligonucleotides. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:124-131. [PMID: 31846799 PMCID: PMC6921215 DOI: 10.1016/j.omtn.2019.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Well-validated strategies for discovering potent and efficacious antisense oligonucleotides are central to realize the full therapeutic potential of RNA therapy. In this study, we focus on RNA targets where the same sequence of 16-20 nt is found in several regions across the RNA, and not in any other RNA. Targeting such unique repeated regions with oligonucleotides designed as gapmers and capable of recruiting RNase H has previously been proposed as a strategy for identifying potent gapmers. By sequence analysis of the human and monkey transcriptomes, we find that such unique repeated regions in RNA are often conserved between humans and monkeys, which allow pharmacodynamic effects to be evaluated in non-human primates before testing in humans. For eight potential RNA targets chosen in an unbiased fashion, we targeted their unique repeated regions with locked nucleic acid (LNA)-modified gapmers, and for six of them we identified gapmers that were significantly more potent and efficacious in vitro than non-repeat-targeting gapmer controls. We suggest a stochastic model for repeat-targeting gapmers that explains all effects observed so far and can help guide future work. Our results support the targeting of repeated regions as an effective strategy for discovering gapmer antisense oligonucleotides suitable for therapeutic development.
Collapse
Affiliation(s)
- Lykke Pedersen
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark.
| | - Peter Hagedorn
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Jonas Vikeså
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Signe Tang Karlsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Pia Særmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Troels Koch
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| | - Morten Lindow
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, 2970 Hørsholm, Denmark
| |
Collapse
|
47
|
Yoshida T, Naito Y, Yasuhara H, Sasaki K, Kawaji H, Kawai J, Naito M, Okuda H, Obika S, Inoue T. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells. Genes Cells 2019; 24:827-835. [PMID: 31637814 PMCID: PMC6915909 DOI: 10.1111/gtc.12730] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotide (ASO) has the potential to induce off‐target effects due to complementary binding between the ASO and unintended RNA with a sequence similar to the target RNA. Conventional animal studies cannot be used to assess toxicity induced by off‐target effects because of differences in the genome sequence between humans and other animals. Consequently, the assessment of off‐target effects with in silico analysis using a human RNA database and/or in vitro expression analysis using human cells has been proposed. Our previous study showed that the number of complementary regions of ASOs with mismatches in the human RNA sequences increases dramatically as the number of tolerated mismatches increases. However, to what extent the expression of genes with mismatches is affected by off‐target effects at the cellular level is not clear. In this study, we evaluated off‐target effects of gapmer ASOs, which cleave the target RNA in an RNase H‐dependent manner, by introducing the ASO into human cells and performing microarray analysis. Our data indicate that gapmer ASOs induce off‐target effects depending on the degree of complementarity between the ASO and off‐target candidate genes. Based on our results, we also propose a scheme for the assessment of off‐target effects of gapmer ASOs.
Collapse
Affiliation(s)
- Tokuyuki Yoshida
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yuki Naito
- Database Center for Life Science (DBCLS), Mishima, Shizuoka, Japan.,National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hidenori Yasuhara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kiyomi Sasaki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hideya Kawaji
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Setagaya-ku, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan.,Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jun Kawai
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Kanagawa, Japan
| | - Mikihiko Naito
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Haruhiro Okuda
- National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
48
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
49
|
Bosgra S, Sipkens J, de Kimpe S, den Besten C, Datson N, van Deutekom J. The Pharmacokinetics of 2'- O-Methyl Phosphorothioate Antisense Oligonucleotides: Experiences from Developing Exon Skipping Therapies for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2019; 29:305-322. [PMID: 31429628 DOI: 10.1089/nat.2019.0805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Delivery to the target site and adversities related to off-target exposure have made the road to clinical success and approval of antisense oligonucleotide (AON) therapies challenging. Various classes of AONs have distinct chemical features and pharmacological properties. Understanding the similarities and differences in pharmacokinetics (PKs) among AON classes is important to make future development more efficient and may facilitate regulatory guidance of AON development programs. For the class of 2'-O-methyl phosphorothioate (2OMe PS) RNA AONs, most nonclinical and clinical PK data available today are derived from development of exon skipping therapies for Duchenne muscular dystrophy (DMD). While some publications have featured PK aspects of these AONs, no comprehensive overview is available to date. This article presents a detailed review of absorption, distribution, metabolism, and excretion of 2OMe PS AONs, compiled from publicly available data and previously unpublished internal data on drisapersen and related exon skipping candidates in preclinical species and DMD patients. Considerations regarding drug-drug interactions, toxicokinetics, and pharmacodynamics are also discussed. From the data presented, the picture emerges of consistent PK properties within the 2OMe PS class, predictable behavior across species, and a considerable overlap with other single-stranded PS AONs. A level of detail on muscle as a target tissue is provided, which was not previously available. Furthermore, muscle biopsy samples taken in DMD clinical trials allowed confirmation of the applicability of interspecies scaling approaches commonly applied in the absence of clinical target tissue data.
Collapse
|
50
|
Hagedorn PH, Pontoppidan M, Bisgaard TS, Berrera M, Dieckmann A, Ebeling M, Møller MR, Hudlebusch H, Jensen ML, Hansen HF, Koch T, Lindow M. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice. Nucleic Acids Res 2019; 46:5366-5380. [PMID: 29790953 PMCID: PMC6009603 DOI: 10.1093/nar/gky397] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Antisense oligonucleotides that are dependent on RNase H for cleavage and subsequent degradation of complementary RNA are being developed as therapeutics. Besides the intended RNA target, such oligonucleotides may also cause degradation of unintended RNA off-targets by binding to partially complementary target sites. Here, we characterized the global effects on the mouse liver transcriptome of four oligonucleotides designed as gapmers, two targeting Apob and two targeting Pcsk9, all in different regions on their respective intended targets. This study design allowed separation of intended- and off-target effects on the transcriptome for each gapmer. Next, we used sequence analysis to identify possible partially complementary binding sites among the potential off-targets, and validated these by measurements of melting temperature and RNase H-cleavage rates. Generally, our observations were as expected in that fewer mismatches or bulges in the gapmer/transcript duplexes resulted in a higher chance of those duplexes being effective substrates for RNase H. Follow-up experiments in mice and cells show, that off-target effects can be mitigated by ensuring that gapmers have minimal sequence complementarity to any RNA besides the intended target, and that they do not have exaggerated binding affinity to the intended target.
Collapse
Affiliation(s)
- Peter H Hagedorn
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| | - Malene Pontoppidan
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tina S Bisgaard
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| | - Marco Berrera
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Andreas Dieckmann
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Martin Ebeling
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Marianne R Møller
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| | - Heidi Hudlebusch
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| | - Marianne L Jensen
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| | - Henrik F Hansen
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| | - Troels Koch
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| | - Morten Lindow
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Copenhagen, DK-2970 Hørsholm, Denmark
| |
Collapse
|