1
|
Lee HK, Liu C, Hennighausen L. STAT5B SH2 variants disrupt mammary enhancers and the stability of genetic programs during pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592736. [PMID: 38903072 PMCID: PMC11188103 DOI: 10.1101/2024.05.06.592736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
During pregnancy, mammary tissue undergoes expansion and differentiation, leading to lactation, a process regulated by the hormone prolactin through the JAK2-STAT5 pathway. STAT5 activation is key to successful lactation making the mammary gland an ideal experimental system to investigate the impact of human missense mutations on mammary tissue homeostasis. Here, we investigated the effects of two human variants in the STAT5B SH2 domain, which convert tyrosine 665 to either phenylalanine (Y665F) or histidine (Y665H), both shown to activate STAT5B in cell culture. We ported these mutations into the mouse genome and found distinct and divergent functions. Homozygous Stat5bY665H mice failed to form functional mammary tissue, leading to lactation failure, with impaired alveolar development and greatly reduced expression of key differentiation genes. STAT5BY665H failed to recognize mammary enhancers and impeded STAT5A binding. In contrast, mice carrying the Stat5bY665F mutation exhibited abnormal precocious development, accompanied by an early activation of the mammary transcription program and the induction of otherwise silent genetic programs. Physiological adaptation was observed in Stat5bY665H mice as continued exposure to pregnancy hormones led to lactation. In summary, our findings highlight that human STAT5B variants can modulate their response to cytokines and thereby impact mammary homeostasis and lactation.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
2
|
Rubio S, Molinuevo R, Sanz-Gomez N, Zomorrodinia T, Cockrum CS, Luong E, Rivas L, Cadle K, Menendez J, Hinck L. Nuclear VANGL2 Inhibits Lactogenic Differentiation. Cells 2024; 13:222. [PMID: 38334614 PMCID: PMC10854645 DOI: 10.3390/cells13030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
Planar cell polarity (PCP) proteins coordinate tissue morphogenesis by governing cell patterning and polarity. Asymmetrically localized on the plasma membrane of cells, transmembrane PCP proteins are trafficked by endocytosis, suggesting they may have intracellular functions that are dependent or independent of their extracellular role, but whether these functions extend to transcriptional control remains unknown. Here, we show the nuclear localization of transmembrane, PCP protein, VANGL2, in the HCC1569 breast cancer cell line, and in undifferentiated, but not differentiated, HC11 cells that serve as a model for mammary lactogenic differentiation. The loss of Vangl2 function results in upregulation of pathways related to STAT5 signaling. We identify DNA binding sites and a nuclear localization signal in VANGL2, and use CUT&RUN to demonstrate recruitment of VANGL2 to specific DNA binding motifs, including one in the Stat5a promoter. Knockdown (KD) of Vangl2 in HC11 cells and primary mammary organoids results in upregulation of Stat5a, Ccnd1 and Csn2, larger acini and organoids, and precocious differentiation; phenotypes are rescued by overexpression of Vangl2, but not Vangl2ΔNLS. Together, these results advance a paradigm whereby PCP proteins coordinate tissue morphogenesis by keeping transcriptional programs governing differentiation in check.
Collapse
Affiliation(s)
- Stefany Rubio
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Rut Molinuevo
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Natalia Sanz-Gomez
- Department of Cancer Biology, Institute for Biomedical Research “Alberto Sols”, 28029 Madrid, Spain
| | - Talieh Zomorrodinia
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Chad S. Cockrum
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Elina Luong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Lucia Rivas
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Kora Cadle
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Julien Menendez
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Lindsay Hinck
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Rubio S, Molinuevo R, Sanz-Gomez N, Zomorrodinia T, Cockrum CS, Luong E, Rivas L, Cadle K, Menendez J, Hinck L. Nuclear VANGL2 Inhibits Lactogenic Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570706. [PMID: 38106173 PMCID: PMC10723439 DOI: 10.1101/2023.12.07.570706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Planar cell polarity (PCP) proteins coordinate tissue morphogenesis by governing cell patterning and polarity. Asymmetrically localized on the plasma membrane of cells, PCP proteins are also trafficked by endocytosis, suggesting they may have intracellular functions that are dependent or independent of their extracellular role, but whether these functions extend to transcriptional control remains unknown. Here, we show the nuclear localization of transmembrane, PCP protein, VANGL2, in undifferentiated, but not differentiated, HC11 cells, which serve as a model for mammary lactogenic differentiation. Loss of Vangl2 function results in upregulation of pathways related to STAT5 signaling. We identify DNA binding sites and a nuclear localization signal in VANGL2, and use CUT&RUN to demonstrate direct binding of VANGL2 to specific DNA binding motifs, including one in the Stat5a promoter. Knockdown (KD) of Vangl2 in HC11 cells and primary mammary organoids results in upregulation of Stat5a , Ccnd1 and Csn2 , larger acini and organoids, and precocious differentiation; phenotypes rescued by overexpression of Vangl2 , but not Vangl2 ΔNLS . Together, these results advance a paradigm whereby PCP proteins coordinate tissue morphogenesis by keeping transcriptional programs governing differentiation in check.
Collapse
|
4
|
Lee HK, Willi M, Liu C, Hennighausen L. Cell-specific and shared regulatory elements control a multigene locus active in mammary and salivary glands. Nat Commun 2023; 14:4992. [PMID: 37591874 PMCID: PMC10435465 DOI: 10.1038/s41467-023-40712-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
Regulation of high-density loci harboring genes with different cell-specificities remains a puzzle. Here we investigate a locus that evolved through gene duplication and contains eight genes and 20 candidate regulatory elements, including one super-enhancer. Casein genes (Csn1s1, Csn2, Csn1s2a, Csn1s2b, Csn3) are expressed in mammary glands, induced 10,000-fold during pregnancy and account for 50% of mRNAs during lactation, Prr27 and Fdcsp are salivary-specific and Odam has dual specificity. We probed the function of 12 candidate regulatory elements, individually and in combination, in the mouse genome. The super-enhancer is essential for the expression of Csn3, Csn1s2b, Odam and Fdcsp but largely dispensable for Csn1s1, Csn2 and Csn1s2a. Csn3 activation also requires its own local enhancer. Synergism between local enhancers and cytokine-responsive promoter elements facilitates activation of Csn2 during pregnancy. Our work identifies the regulatory complexity of a multigene locus with an ancestral super-enhancer active in mammary and salivary tissue and local enhancers and promoter elements unique to mammary tissue.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Michaela Willi
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
5
|
Guo H, Li J, Wang Y, Cao X, Lv X, Yang Z, Chen Z. Progress in Research on Key Factors Regulating Lactation Initiation in the Mammary Glands of Dairy Cows. Genes (Basel) 2023; 14:1163. [PMID: 37372344 DOI: 10.3390/genes14061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Lactation initiation refers to a functional change in the mammary organ from a non-lactating state to a lactating state, and a series of cytological changes in the mammary epithelium from a non-secreting state to a secreting state. Like the development of the mammary gland, it is regulated by many factors (including hormones, cytokines, signaling molecules, and proteases). In most non-pregnant animals, a certain degree of lactation also occurs after exposure to specific stimuli, promoting the development of their mammary glands. These specific stimuli can be divided into two categories: before and after parturition. The former inhibits lactation and decreases activity, and the latter promotes lactation and increases activity. Here we present a review of recent progress in research on the key factors of lactation initiation to provide a powerful rationale for the study of the lactation initiation process and mammary gland development.
Collapse
Affiliation(s)
- Haoyue Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
6
|
Lee HK, Willi M, Liu C, Hennighausen L. Cell-specific and shared enhancers control a high-density multi-gene locus active in mammary and salivary glands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527373. [PMID: 36945503 PMCID: PMC10028738 DOI: 10.1101/2023.02.06.527373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Regulation of high-density loci harboring genes with different cell-specificities remains a puzzle. Here we investigate a locus that evolved through gene duplication 1 and contains eight genes and 20 candidate regulatory elements, including a super-enhancer. Five genes are expressed in mammary glands and account for 50% of all mRNAs during lactation, two are salivary-specific and one has dual specificity. We probed the function of eight candidate enhancers through experimental mouse genetics. Deletion of the super-enhancer led to a 98% reduced expression of Csn3 and Fdcsp in mammary and salivary glands, respectively, and Odam expression was abolished in both tissues. The other three casein genes were only marginally affected. Notably, super-enhancer activity requires the additional presence of a distal Csn3 -specific enhancer. Our work identifies an evolutionary playground on which regulatory duality of a multigene locus was attained through an ancestral super-enhancer active in mammary and salivary tissue and gene-specific mammary enhancers.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Hennighausen L, Lee HK, Willi M, Liu C. Cell-specific and shared enhancers control a high-density multi-gene locus active in mammary and salivary glands. RESEARCH SQUARE 2023:rs.3.rs-2533579. [PMID: 36789414 PMCID: PMC9928059 DOI: 10.21203/rs.3.rs-2533579/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Regulation of high-density loci harboring genes with different cell-specificities remains a puzzle. Here we investigate a locus that evolved through gene duplication 1 and contains eight genes and 20 candidate regulatory elements, including a super-enhancer. Five genes are expressed in mammary glands and account for 50% of all mRNAs during lactation, two are salivary-specific and one has dual specificity. We probed the function of eight candidate enhancers through experimental mouse genetics. Deletion of the super-enhancer led to a 98% reduced expression of Csn3 and Fdcsp in mammary and salivary glands, respectively, and Odam expression was abolished in both tissues. The other three casein genes were only marginally affected. Notably, super-enhancer activity requires the additional presence of a distal Csn3 -specific enhancer. Our work identifies an evolutionary playground on which regulatory duality of a multigene locus was attained through an ancestral super-enhancer active in mammary and salivary tissue and gene-specific mammary enhancers.
Collapse
Affiliation(s)
| | - Hye Kyung Lee
- National Institute of Diabetes and Digestive and Kidney Diseases
| | - Michaela Willi
- Laboratory of Genetics and Physiology, NIDDK, NIH, Bethesda
| | | |
Collapse
|
8
|
Lee HK, Liu C, Hennighausen L. A cytokine-responsive promoter is required for distal enhancer function mediating the hundreds-fold increase in milk protein gene expression during lactation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527375. [PMID: 36945539 PMCID: PMC10028739 DOI: 10.1101/2023.02.06.527375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
During lactation, specialized cells in the mammary gland produce milk to nourish the young. Milk protein genes are controlled by distal enhancers activating expression several hundred-fold during lactation. However, the role of promoter elements is not understood. We addressed this issue using the Csn2 gene, which accounts for 10% of mRNA in mammary tissue. We identified STAT5 and other mammary transcription factors binding to three distal candidate enhancers and a cytokine-response promoter element. While deletion of the enhancers or the introduction of an inactivating mutation in a single promoter element had a marginable effect, their combined loss led to a 99.99% reduction of Csn2 expression. Our findings reveal the essential role of a promoter element in the exceptional activation of a milk protein gene and highlight the importance of analyzing regulatory elements in their native genomic context to fully understand the multifaceted functions of enhancer clusters and promoters.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Lin M, Ku AT, Dong J, Yue F, Jiang W, Ibrahim AA, Peng F, Creighton CJ, Nagi C, Gutierrez C, Rosen JM, Zhang XHF, Hilsenbeck SG, Chen X, Du YCN, Huang S, Shi A, Fan Z, Li Y. STAT5 confers lactogenic properties in breast tumorigenesis and restricts metastatic potential. Oncogene 2022; 41:5214-5222. [PMID: 36261627 PMCID: PMC9701164 DOI: 10.1038/s41388-022-02500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates breast tumor formation, and in the normal breast it also drives alveolar differentiation and lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis and therefore impacts cancer spread and metastasis is unclear. We found in two genetically engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused precancerous mammary epithelial cells to become lactogenic and evolve into tumors with diminished potential to metastasize. We also showed that STAT5aca reduced the migratory and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.
Collapse
Affiliation(s)
- Meng Lin
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Amy T Ku
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Fei Yue
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Weiyu Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ahmed Atef Ibrahim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shixia Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Education, Innovation & Technology, Houston, TX, USA
| | - Aiping Shi
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Genomic Mutations of the STAT5 Transcription Factor Are Associated with Human Cancer and Immune Diseases. Int J Mol Sci 2022; 23:ijms231911297. [PMID: 36232600 PMCID: PMC9569778 DOI: 10.3390/ijms231911297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Signal transducer and activation of transcription 5 (STAT5) is a key transcription factor that regulates various biological processes in mammalian development. Aberrant regulation of STAT5 has also been causally linked to many diseases, including cancers and immune-related diseases. Although persistent activation of STAT5 due to dysregulation of the signaling cascade has been reported to be associated with the progression of solid tumors and leukemia, various genomic mutations of STAT5 have also been found to cause a wide range of diseases. The present review comprehensively summarizes results of recent studies evaluating the intrinsic function of STAT5 and the link between STAT5 mutations and human diseases. This review also describes the types of disease models useful for investigating the mechanism underlying STAT5-driven disease progression. These findings provide basic knowledge for understanding the regulatory mechanisms of STAT5 and the progression of various diseases resulting from aberrant regulation of STAT5. Moreover, this review may provide insights needed to create optimal disease models that reflect human disease associated STAT5 mutations and to design gene therapies to correct STAT5 mutations.
Collapse
|
11
|
Grinman DY, Boras-Granic K, Takyar FM, Dann P, Hens JR, Marmol C, Lee J, Choi J, Chodosh LA, Sola MEG, Wysolmerski JJ. PTHrP induces STAT5 activation, secretory differentiation and accelerates mammary tumor development. Breast Cancer Res 2022; 24:30. [PMID: 35440032 PMCID: PMC9020078 DOI: 10.1186/s13058-022-01523-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Parathyroid hormone-related protein (PTHrP) is required for embryonic breast development and has important functions during lactation, when it is produced by alveolar epithelial cells and secreted into the maternal circulation to mobilize skeletal calcium used for milk production. PTHrP is also produced by breast cancers, and GWAS studies suggest that it influences breast cancer risk. However, the exact functions of PTHrP in breast cancer biology remain unsettled. METHODS We developed a tetracycline-regulated, MMTV (mouse mammary tumor virus)-driven model of PTHrP overexpression in mammary epithelial cells (Tet-PTHrP mice) and bred these mice with the MMTV-PyMT (polyoma middle tumor-antigen) breast cancer model to analyze the impact of PTHrP overexpression on normal mammary gland biology and in breast cancer progression. RESULTS Overexpression of PTHrP in luminal epithelial cells caused alveolar hyperplasia and secretory differentiation of the mammary epithelium with milk production. This was accompanied by activation of Stat5 and increased expression of E74-like factor-5 (Elf5) as well as a delay in post-lactation involution. In MMTV-PyMT mice, overexpression of PTHrP (Tet-PTHrP;PyMT mice) shortened tumor latency and accelerated tumor growth, ultimately reducing overall survival. Tumors overproducing PTHrP also displayed increased expression of nuclear pSTAT5 and Elf5, increased expression of markers of secretory differentiation and milk constituents, and histologically resembled secretory carcinomas of the breast. Overexpression of PTHrP within cells isolated from tumors, but not PTHrP exogenously added to cell culture media, led to activation of STAT5 and milk protein gene expression. In addition, neither ablating the Type 1 PTH/PTHrP receptor (PTH1R) in epithelial cells nor treating Tet-PTHrP;PyMT mice with an anti-PTH1R antibody prevented secretory differentiation or altered tumor latency. These data suggest that PTHrP acts in a cell-autonomous, intracrine manner. Finally, expression of PTHrP in human breast cancers is associated with expression of genes involved in milk production and STAT5 signaling. CONCLUSIONS Our study suggests that PTHrP promotes pathways leading to secretory differentiation and proliferation in both normal mammary epithelial cells and in breast tumor cells.
Collapse
Affiliation(s)
- Diego Y Grinman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA.
| | - Kata Boras-Granic
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| | - Farzin M Takyar
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| | - Julie R Hens
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| | | | - Jongwon Lee
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Martin E Garcia Sola
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, 300 Cedar Street, TAC S120, Box 208020, New Haven, CT, 06520-8020, USA
| |
Collapse
|
12
|
Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. Br J Cancer 2022; 126:551-561. [PMID: 34671127 PMCID: PMC8854383 DOI: 10.1038/s41416-021-01588-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/08/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
NEAT1 is a highly abundant nuclear architectural long non-coding RNA. There are two overlapping NEAT1 isoforms, NEAT1_1 and NEAT1_2, of which the latter is an essential scaffold for the assembly of a class of nuclear ribonucleoprotein bodies called paraspeckles. Paraspeckle formation is elevated by a wide variety of cellular stressors and in certain developmental processes, either through transcriptional upregulation of the NEAT1 gene or through a switch from NEAT1_1 to NEAT1_2 isoform production. In such conditions, paraspeckles modulate cellular processes by sequestering proteins or RNA molecules. NEAT1 is abnormally expressed in many cancers and a growing body of evidence suggests that, in many cases, high NEAT1 levels are associated with therapy resistance and poor clinical outcome. Here we review the current knowledge of NEAT1 expression and functions in breast cancer, highlighting its established role in postnatal mammary gland development. We will discuss possible isoform-specific roles of NEAT1_1 and NEAT1_2 in different breast cancer subtypes, which critically needs to be considered when studying NEAT1 and breast cancer.
Collapse
|
13
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
14
|
Redundant and non-redundant cytokine-activated enhancers control Csn1s2b expression in the lactating mouse mammary gland. Nat Commun 2021; 12:2239. [PMID: 33854063 PMCID: PMC8047016 DOI: 10.1038/s41467-021-22500-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Enhancers are transcription factor platforms that synergize with promoters to control gene expression. Here, we investigate enhancers that activate gene expression several hundred-fold exclusively in the lactating mouse mammary gland. Using ChIP-seq for activating histone marks and transcription factors, we identify two candidate enhancers and one super-enhancer in the Csn1s2b locus. Through experimental mouse genetics, we dissect the lactation-specific distal enhancer bound by the mammary-enriched transcription factors STAT5 and NFIB and the glucocorticoid receptor. While deletions of canonical binding motifs for NFIB and STAT5, individually or combined, have a limited biological impact, a non-canonical STAT5 site is essential for enhancer activity during lactation. In contrast, the intronic enhancer contributes to gene expression only in late pregnancy and early lactation, possibly by interacting with the distal enhancer. A downstream super-enhancer, which physically interacts with the distal enhancer, is required for the functional establishment of the Csn1s2b promoter and gene activation. Lastly, NFIB binding in the promoter region fine-tunes Csn1s2b expression. Our study provides comprehensive insight into the anatomy and biology of regulatory elements that employ the JAK/STAT signaling pathway and preferentially activate gene expression during lactation. Enhancers and promoters work together to actively regulate gene expression affecting several biological processes. Here, the authors provide molecular insights into the regulation of enhancers and super-enhancers in the Csn1s2b locus during lactation.
Collapse
|
15
|
Lee HK, Jung O, Hennighausen L. Activation of Interferon-Stimulated Transcriptomes and ACE2 Isoforms in Human Airway Epithelium Is Curbed by Janus Kinase Inhibitors. RESEARCH SQUARE 2020. [PMID: 33330857 PMCID: PMC7743079 DOI: 10.21203/rs.3.rs-119695/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 infection of human airway epithelium activates genetic programs that lead to progressive hyperinflammation in COVID-19 patients. Here we report on genetic programs activated by interferons and the suppression by Janus kinase (JAK) inhibitors. The angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2 and deciphering its regulation is paramount for understanding the cell tropism of SARS-CoV-2 infection. We identified candidate regulatory elements in the ACE2 locus in human primary airway cells and lung tissue. Activating histone and promoter marks and Pol II loading characterize the intronic dACE2 and define novel candidate enhancers distal to the genuine ACE2 promoter and within additional introns. dACE2, and to a lesser extent ACE2, RNA levels increased in primary cells treated with interferons and this induction was mitigated by JAK inhibitors that are used therapeutically in COVID-19 patients. Our analyses provide insight into ACE2 regulatory elements and highlight JAK inhibitors as suitable tools to suppress interferon-activated genetic programs in bronchial cells.
Collapse
|
16
|
Kim U, Kim N, Shin HY. Modeling Non-Alcoholic Fatty Liver Disease (NAFLD) Using "Good-Fit" Genome-Editing Tools. Cells 2020; 9:cells9122572. [PMID: 33271878 PMCID: PMC7760008 DOI: 10.3390/cells9122572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which affects both adults and children, is the most common liver disorder worldwide. NAFLD is characterized by excess fat accumulation in the liver in the absence of significant alcohol use. NAFLD is strongly associated with obesity, insulin resistance, metabolic syndrome, as well as specific genetic polymorphisms. Severe NAFLD cases can further progress to cirrhosis, hepatocellular carcinoma (HCC), or cardiovascular complications. Here, we describe the pathophysiological features and critical genetic variants associated with NAFLD. Recent advances in genome-engineering technology have provided a new opportunity to generate in vitro and in vivo models that reflect the genetic abnormalities of NAFLD. We review the currently developed NAFLD models generated using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing. We further discuss unique features of CRISPR/Cas9 and Cas9 variants, including base editors and prime editor, that are useful for replicating genetic features specific to NAFLD. We also compare advantages and limitations of currently available methods for delivering genome-editing tools necessary for optimal genome editing. This review should provide helpful guidance for selecting “good fit” genome-editing tools and appropriate gene-delivery methods for the successful development of NAFLD models and clinical therapeutics.
Collapse
|
17
|
Lee HK, Jung O, Hennighausen L. Regulation of the ACE2 locus in human airways cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33052350 PMCID: PMC7553184 DOI: 10.1101/2020.10.04.325415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The angiotensin-converting enzyme 2 (ACE2) receptor is the gateway for SARS-CoV-2 to airway epithelium1,2 and the strong inflammatory response after viral infection is a hallmark in COVID-19 patients. Deciphering the regulation of the ACE2 gene is paramount for understanding the cell tropism of SARS-CoV-2 infection. Here we identify candidate regulatory elements in the ACE2 locus in human primary airway cells and lung tissue. Activating histone and promoter marks and Pol II loading characterize the intronic dACE2 and define novel candidate enhancers distal to the genuine ACE2 promoter and within additional introns. dACE2, and to a lesser extent ACE2, RNA levels increased in primary bronchial cells treated with interferons and this induction was mitigated by Janus kinase (JAK) inhibitors that are used therapeutically in COVID-19 patients. Our analyses provide insight into regulatory elements governing the ACE2 locus and highlight that JAK inhibitors are suitable tools to suppress interferon-activated genetic programs in bronchial cells.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Olive Jung
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
18
|
A Bioinformatic Pipeline Places STAT5A as a miR-650 Target in Poorly Differentiated Aggressive Breast Cancer. Int J Mol Sci 2020; 21:ijms21207720. [PMID: 33086498 PMCID: PMC7589888 DOI: 10.3390/ijms21207720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
Breast cancer (BRCA) is a leading cause of mortality among women. Tumors often acquire aggressive features through genomic aberrations affecting cellular programs, e.g., the epithelial to mesenchymal transition (EMT). EMT facilitates metastasis leading to poor prognosis. We previously observed a correlation between an amplification of miR-650 (Amp-650) and EMT features in BRCA samples isolated from Mexican patients. In this study, we explored the cBioportal database aiming to extend that observation and better understand the importance of Amp-650 for BRCA aggressiveness. We found that Amp-650 is more frequent in aggressive molecular subtypes of BRCA, as well as in high grade poorly differentiated tumors, which we confirmed in an external miRNA expression database. We performed differential expression analysis on samples harboring Amp-650, taking advantage of gene target prediction tools and tumor suppressor gene databases to mine several hundreds of differentially underexpressed genes. We observed STAT5A as a likely putative target gene for miR-650 in aggressive poorly differentiated BRCA. Samples with both Amp-650 and low expression of STAT5A had less overall survival than samples with either or none of the alterations. No target gene has been described for miR-650 in BRCA, thus, this bioinformatic study provides valuable information that should be corroborated experimentally.
Collapse
|
19
|
Hennighausen L, Lee HK. Activation of the SARS-CoV-2 Receptor Ace2 through JAK/STAT-Dependent Enhancers during Pregnancy. Cell Rep 2020; 32:108199. [PMID: 32966801 PMCID: PMC7474886 DOI: 10.1016/j.celrep.2020.108199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
ACE2 binds the coronavirus SARS-CoV-2 and facilitates its cellular entry. Interferons activate ACE2 expression in pneumocytes, suggesting a critical role of cytokines in SARS-CoV-2 target cells. Viral RNA was detected in breast milk in at least seven studies, raising the possibility that ACE2 is expressed in mammary tissue during lactation. Here, we show that Ace2 expression in mouse mammary tissue is induced during pregnancy and lactation, which coincides with the activation of intronic enhancers. These enhancers are occupied by the prolactin-activated transcription factor STAT5 and additional regulatory factors, including RNA polymerase II. Deletion of Stat5a results in decommissioning of the enhancers and an 83% reduction of Ace2 mRNA. We also demonstrate that Ace2 expression increases during lactation in lung, but not in kidney and intestine. JAK/STAT components are present in a range of SARS-CoV-2 target cells, opening the possibility that cytokines contribute to the viral load and extrapulmonary pathophysiology. Ace2 expression is induced in the mammary glands of pregnant and lactating mice Gene enhancers are activated by the prolactin-activated transcription factors STAT5A/B Deletion of the Stat5a gene mitigates enhancer formation and Ace2 expression Ace2 levels also increase in lung tissue during lactation
Collapse
Affiliation(s)
- Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Holloran SM, Nosirov B, Walter KR, Trinca GM, Lai Z, Jin VX, Hagan CR. Reciprocal fine-tuning of progesterone and prolactin-regulated gene expression in breast cancer cells. Mol Cell Endocrinol 2020; 511:110859. [PMID: 32407979 PMCID: PMC8941988 DOI: 10.1016/j.mce.2020.110859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Progesterone and prolactin are two key hormones involved in development and remodeling of the mammary gland. As such, both hormones have been linked to breast cancer. Despite the overlap between biological processes ascribed to these two hormones, little is known about how co-expression of both hormones affects their individual actions. Progesterone and prolactin exert many of their effects on the mammary gland through activation of gene expression, either directly (progesterone, binding to the progesterone receptor [PR]) or indirectly (multiple transcription factors being activated downstream of prolactin, most notably STAT5). Using RNA-seq in T47D breast cancer cells, we characterized the gene expression programs regulated by progestin and prolactin, either alone or in combination. We found significant crosstalk and fine-tuning between the transcriptional programs executed by each hormone independently and in combination. We divided and characterized the transcriptional programs into four broad categories. All crosstalk/fine-tuning shown to be modulated by progesterone was dependent upon the expression of PR. Moreover, PR was recruited to enhancer regions of all regulated genes. Interestingly, despite the canonical role for STAT5 in transducing prolactin-signaling in the normal and lactating mammary gland, very few of the prolactin-regulated transcriptional programs fine-tuned by progesterone in this breast cancer cell line model system were in fact dependent upon STAT5. Cumulatively, these data suggest that the interplay of progesterone and prolactin in breast cancer impacts gene expression in a more complex and nuanced manner than previously thought, and likely through different transcriptional regulators than those observed in the normal mammary gland. Studying gene regulation when both hormones are present is most clinically relevant, particularly in the context of breast cancer.
Collapse
Affiliation(s)
- Sean M Holloran
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bakhtiyor Nosirov
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Katherine R Walter
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
21
|
Igelmann S, Neubauer HA, Ferbeyre G. STAT3 and STAT5 Activation in Solid Cancers. Cancers (Basel) 2019; 11:cancers11101428. [PMID: 31557897 PMCID: PMC6826753 DOI: 10.3390/cancers11101428] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.
Collapse
Affiliation(s)
- Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
22
|
Lee HK, Willi M, Shin HY, Liu C, Hennighausen L. Progressing super-enhancer landscape during mammary differentiation controls tissue-specific gene regulation. Nucleic Acids Res 2019; 46:10796-10809. [PMID: 30285185 PMCID: PMC6237736 DOI: 10.1093/nar/gky891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022] Open
Abstract
The mammary luminal lineage relies on the common cytokine-sensing transcription factor STAT5 to establish super-enhancers during pregnancy and initiate a genetic program that activates milk production. As pups grow, the greatly increasing demand for milk requires progressive differentiation of mammary cells with advancing lactation. Here we investigate how persistent hormonal exposure during lactation shapes an evolving enhancer landscape and impacts the biology of mammary cells. Employing ChIP-seq, we uncover a changing transcription factor occupancy at mammary enhancers, suggesting that their activities evolve with advancing differentiation. Using mouse genetics, we demonstrate that the functions of individual enhancers within the Wap super-enhancer evolve as lactation progresses. Most profoundly, a seed enhancer, which is mandatory for the activation of the Wap super-enhancer during pregnancy, is not required during lactation, suggesting compensatory flexibility. Combinatorial deletions of structurally equivalent constituent enhancers demonstrated differentiation-specific compensatory activities during lactation. We also demonstrate that the Wap super-enhancer, which is built on STAT5 and other common transcription factors, retains its exquisite mammary specificity when placed into globally permissive chromatin, suggesting a limited role of chromatin in controlling cell specificity. Our studies unveil a previously unrecognized progressive enhancer landscape where structurally equivalent components serve unique and differentiation-specific functions.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Shin HY, Hennighausen L, Yoo KH. STAT5-Driven Enhancers Tightly Control Temporal Expression of Mammary-Specific Genes. J Mammary Gland Biol Neoplasia 2019; 24:61-71. [PMID: 30328555 DOI: 10.1007/s10911-018-9418-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
The de novo formation of milk-secreting mammary epithelium during pregnancy is regulated by prolactin through activation of the transcription factor STAT5, which stimulates the expression of several hundred mammary-specific genes. In addition to its key role in activating gene expression in mammary tissue, STAT5, which is ubiquitously expressed in most cell types, implements T cell-specific programs controlled by interleukins. However, the mechanisms by which STAT5 controls cell-specific genetic programs activated by distinct cytokines remain relatively unknown. Integration of data from genome-wide surveys of chromatin markers and transcription factor binding at regulatory elements may shed light on the mechanisms that drive cell-specific programs. Here, we have illustrated how STAT5 controls cell-specific gene expression through its concentration and an auto-regulatory enhancer supporting its high levels in mammary tissue. The unique genomic features of STAT5-driven enhancers or super-enhancers that regulate mammary-specific genes and their dynamic remodeling in response to pregnancy hormone levels are described. We have further provided biological evidence supporting the in vivo function of a STAT5-driven super-enhancer with the aid of CRISPR/Cas9 genome editing. Finally, we discuss how the functions of mammary-specific super-enhancers are confined by the zinc finger protein, CTCF, to allow exclusive activation of mammary-specific genes without affecting common neighboring genes. This review comprehensively summarizes the molecular pathways underlying differential control of cell-specific gene sets by STAT5 and provides novel insights into STAT5-dependent mammary physiology.
Collapse
Affiliation(s)
- Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- BK21 PLUS Project, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
24
|
Yoo KH, Hennighausen L, Shin HY. Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and CRISPR/Cas9 Genome Editing. J Mammary Gland Biol Neoplasia 2019; 24:47-59. [PMID: 30291498 DOI: 10.1007/s10911-018-9417-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Recent advances in genome-wide sequencing technologies have provided researchers with unprecedented opportunities to discover the genomic structures of gene regulatory units in living organisms. In particular, the integration of ChIP-seq, RNA-seq, and DNase-seq techniques has facilitated the mapping of a new class of regulatory elements. These elements, called super-enhancers, can regulate cell-type-specific gene sets and even fine-tune gene expression regulation in response to external stimuli, and have become a hot topic in genome biology. However, there is scant genetic evidence demonstrating their unique biological relevance and the mechanisms underlying these biological functions. In this review, we describe a robust genome-wide strategy for mapping cell-type-specific enhancers or super-enhancers in the mammary genome. In this strategy, genome-wide screening of active enhancer clusters that are co-occupied by mammary-enriched transcription factors, co-factors, and active enhancer marks is used to identify bona fide mammary tissue-specific super-enhancers. The in vivo function of these super-enhancers and their associated regulatory elements may then be investigated in various ways using the advanced CRISPR/Cas9 genome-editing technology. Based on our experience targeting various mammary genomic sites using CRISPR/Cas9 in mice, we comprehensively discuss the molecular consequences of the different targeting methods, such as the number of gRNAs and the dependence on their simultaneous or sequential injections. We also mention the considerations that are essential for obtaining accurate results and shed light on recent progress that has been made in developing modified CRISPR/Cas9 genome-editing techniques. In the future, the coupling of advanced genome-wide sequencing and genome-editing technologies could provide new insights into the complex genetic regulatory networks involved in mammary-gland development.
Collapse
Affiliation(s)
- Kyung Hyun Yoo
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- BK21 Biological Science Visiting Professor, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
25
|
Miano JM, Long X, Lyu Q. CRISPR links to long noncoding RNA function in mice: A practical approach. Vascul Pharmacol 2019; 114:1-12. [PMID: 30822570 PMCID: PMC6435418 DOI: 10.1016/j.vph.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
Next generation sequencing has uncovered a trove of short noncoding RNAs (e.g., microRNAs) and long noncoding RNAs (lncRNAs) that act as molecular rheostats in the control of diverse homeostatic processes. Meanwhile, the tsunamic emergence of clustered regularly interspaced short palindromic repeats (CRISPR) editing has transformed our influence over all DNA-carrying entities, heralding global CRISPRization. This is evident in biomedical research where the ease and low-cost of CRISPR editing has made it the preferred method of manipulating the mouse genome, facilitating rapid discovery of genome function in an in vivo context. Here, CRISPR genome editing components are updated for elucidating lncRNA function in mice. Various strategies are highlighted for understanding the function of lncRNAs residing in intergenic sequence space, as host genes that harbor microRNAs or other genes, and as natural antisense, overlapping or intronic genes. Also discussed is CRISPR editing of mice carrying human lncRNAs as well as the editing of competing endogenous RNAs. The information described herein should assist labs in the rigorous design of experiments that interrogate lncRNA function in mice where complex disease processes can be modeled thus accelerating translational discovery.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America.
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States of America
| | - Qing Lyu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| |
Collapse
|
26
|
Lee HK, Willi M, Smith HE, Miller SM, Liu DR, Liu C, Hennighausen L. Simultaneous targeting of linked loci in mouse embryos using base editing. Sci Rep 2019; 9:1662. [PMID: 30733567 PMCID: PMC6367434 DOI: 10.1038/s41598-018-33533-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022] Open
Abstract
A particular challenge in genome engineering has been the simultaneous introduction of mutations into linked (located on the same chromosome) loci. Although CRISPR/Cas9 has been widely used to mutate individual sites, its application in simultaneously targeting of linked loci is limited as multiple nearby double-stranded DNA breaks created by Cas9 routinely result in the deletion of sequences between the cleavage sites. Base editing is a newer form of genome editing that directly converts C∙G-to-T∙A, or A∙T-to-G∙C, base pairs without introducing double-stranded breaks, thus opening the possibility to generate linked mutations without disrupting the entire locus. Through the co-injection of two base editors and two sgRNAs into mouse zygotes, we introduced C∙G-to-T∙A transitions into two cytokine-sensing transcription factor binding sites separated by 9 kb. We determined that one enhancer activates the two flanking genes in mammary tissue during pregnancy and lactation. The ability to introduce linked mutations simultaneously in one step into the mammalian germline has implications for a wide range of applications, including the functional analysis of linked cis-elements creating disease models and correcting pathogenic mutations.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Harold E Smith
- Genomics Core, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Shannon M Miller
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, 02142, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
27
|
Li S, Huang S, Qiao S, Jiang J, Shi D, Li X. Cloning and functional characterization of STAT5a and STAT5b genes in buffalo mammary epithelial cells. Anim Biotechnol 2018; 31:59-66. [DOI: 10.1080/10495398.2018.1538014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Shihai Huang
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shuye Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
In silico mapping of quantitative trait loci (QTL) regulating the milk ionome in mice identifies a milk iron locus on chromosome 1. Mamm Genome 2018; 29:632-655. [DOI: 10.1007/s00335-018-9762-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 01/06/2023]
|
29
|
CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control. Mamm Genome 2018; 29:205-228. [PMID: 29196861 PMCID: PMC9881389 DOI: 10.1007/s00335-017-9727-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.
Collapse
|
30
|
Jallow F, Brockman JL, Helzer KT, Rugowski DE, Goffin V, Alarid ET, Schuler LA. 17 β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes. J Endocr Soc 2018; 2:293-309. [PMID: 29594259 PMCID: PMC5842396 DOI: 10.1210/js.2017-00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells in vitro. Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action. In this study, we examined the effect of two estrogenic ligands, 17β-estradiol (E2) and the clinical antiestrogen, ICI182,780 (ICI, fulvestrant) on expression of STAT5 isoforms and resulting crosstalk with PRL in normal and tumor murine mammary epithelial cell lines. In all cell lines, E2 and ICI significantly increased protein and corresponding nascent and mature transcripts for STAT5A and STAT5B, respectively. Transcriptional regulation of STAT5A and STAT5B by E2 and ICI, respectively, is associated with recruitment of estrogen receptor alpha and increased H3K27Ac at a common intronic enhancer 10 kb downstream of the Stat5a transcription start site. Further, E2 and ICI induced different transcripts associated with differentiation and tumor behavior. In tumor cells, E2 also significantly increased proliferation, invasion, and stem cell-like activity, whereas ICI had no effect. To evaluate the role of STAT5B in these responses, we reduced STAT5B expression using short hairpin (sh) RNA. shSTAT5B blocked ICI-induced transcripts associated with metastasis and the epithelial mesenchymal transition in both cell types. shSTAT5B also blocked E2-induced invasion of tumor epithelium without altering E2-induced transcripts. Together, these studies indicate that STAT5B mediates a subset of protumorigenic responses to both E2 and ICI, underscoring the need to understand regulation of its expression and suggesting exploration as a possible therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fatou Jallow
- Endocrinology/Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Brockman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
31
|
Zeng X, Willi M, Shin HY, Hennighausen L, Wang C. Lineage-Specific and Non-specific Cytokine-Sensing Genes Respond Differentially to the Master Regulator STAT5. Cell Rep 2017; 17:3333-3346. [PMID: 28009300 DOI: 10.1016/j.celrep.2016.11.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/25/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
STAT5, a member of the family of signal transducers and activators of transcription, senses cytokines and controls the biology of cell lineages, including mammary, liver, and T cells. Here, we show that STAT5 activates lineage-specific and widely expressed genes through different mechanisms. STAT5 preferentially binds to promoter sequences of cytokine-responsive genes expressed across cell types and to putative enhancers of lineage-specific genes. While chromatin accessibility of STAT5-based enhancers was dependent on cytokine exposure, STAT5-responsive promoters of widely expressed target genes were generally constitutively accessible. While the contribution of STAT5 to enhancers is well established, its role on promoters is poorly understood. To address this, we focused on Socs2, a widely expressed cytokine-sensing gene. Upon deletion of the STAT5 response elements from the Socs2 promoter in mice, cytokine induction was abrogated, while basal activity remained intact. Our data suggest that promoter-bound STAT5 modulates cytokine responses and enhancer-bound STAT5 is mandatory for gene activation.
Collapse
Affiliation(s)
- Xianke Zeng
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ha Youn Shin
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Lee HK, Willi M, Wang C, Yang CM, Smith HE, Liu C, Hennighausen L. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res 2017; 45:4606-4618. [PMID: 28334928 PMCID: PMC5416830 DOI: 10.1093/nar/gkx185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
The zinc finger protein CTCF has been invoked in establishing boundaries between genes, thereby controlling spatial and temporal enhancer activities. However, there is limited genetic evidence to support the concept that these boundaries restrict the search space of enhancers. We have addressed this question in the casein locus containing five mammary and two non-mammary genes under the control of at least seven putative enhancers. We have identified two CTCF binding sites flanking the locus and two associated with a super-enhancer. Individual deletion of these sites from the mouse genome did not alter expression of any of the genes. However, deletion of the border CTCF site separating the Csn1s1 mammary enhancer from neighboring genes resulted in the activation of Sult1d1 at a distance of more than 95 kb but not the more proximal and silent Sult1e1 gene. Loss of this CTCF site led to de novo interactions between the Sult1d1 promoter and several enhancers in the casein locus. Our study demonstrates that only one out of the four CTCF sites in the casein locus had a measurable in vivo activity. Studies on additional loci are needed to determine the biological role of CTCF sites associated with enhancers.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core,National Heart Lung and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017; 18:374-384. [PMID: 28323260 DOI: 10.1038/ni.3691] [Citation(s) in RCA: 766] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Collapse
|
34
|
STAT5 deletion in macrophages alters ductal elongation and branching during mammary gland development. Dev Biol 2017; 428:232-244. [PMID: 28606561 PMCID: PMC5621646 DOI: 10.1016/j.ydbio.2017.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/04/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022]
Abstract
Macrophages are required for proper mammary gland development and maintaining tissue homeostasis. However, the mechanisms by which macrophages regulate this process remain unclear. Here, we identify STAT5 as an important regulator of macrophage function in the developing mammary gland. Analysis of mammary glands from mice with STAT5-deficient macrophages demonstrates delayed ductal elongation, enhanced ductal branching and increased epithelial proliferation. Further analysis reveals that STAT5 deletion in macrophages leads to enhanced expression of proliferative factors such as Cyp19a1/aromatase and IL-6. Mechanistic studies demonstrate that STAT5 binds directly to the Cyp19a1 promoter in macrophages to suppress gene expression and that loss of STAT5 results in enhanced stromal expression of aromatase. Finally, we demonstrate that STAT5 deletion in macrophages cooperates with oncogenic initiation in mammary epithelium to accelerate the formation of estrogen receptor (ER)-positive hyperplasias. These studies establish the importance of STAT5 in macrophages during ductal morphogenesis in the mammary gland and demonstrate that altering STAT5 function in macrophages can affect the development of tissue-specific disease.
Collapse
|
35
|
Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 2017; 8:15464. [PMID: 28561021 PMCID: PMC5460021 DOI: 10.1038/ncomms15464] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Although CRISPR/Cas9 genome editing has provided numerous opportunities to interrogate the functional significance of any given genomic site, there is a paucity of data on the extent of molecular scars inflicted on the mouse genome. Here we interrogate the molecular consequences of CRISPR/Cas9-mediated deletions at 17 sites in four loci of the mouse genome. We sequence targeted sites in 632 founder mice and analyse 54 established lines. While the median deletion size using single sgRNAs is 9 bp, we also obtain large deletions of up to 600 bp. Furthermore, we show unreported asymmetric deletions and large insertions of middle repetitive sequences. Simultaneous targeting of distant loci results in the removal of the intervening sequences. Reliable deletion of juxtaposed sites is only achieved through two-step targeting. Our findings also demonstrate that an extended analysis of F1 genotypes is required to obtain conclusive information on the exact molecular consequences of targeting events.
Collapse
Affiliation(s)
- Ha Youn Shin
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Xianke Zeng
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tyler Kuhns
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Teresa Mohr
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
36
|
McBryan J, Howlin J. Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. Methods Mol Biol 2017; 1501:77-114. [PMID: 27796948 DOI: 10.1007/978-1-4939-6475-8_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.
Collapse
Affiliation(s)
- Jean McBryan
- Department of Molecular Medicine Royal College of Surgeons in Ireland Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland
| | - Jillian Howlin
- Division of Oncology-Pathology, Lund University Cancer Center/Medicon Village, Building 404:B2, Scheelevägen 2, 223 81, Lund, Sweden.
| |
Collapse
|
37
|
Schauwecker SM, Kim JJ, Licht JD, Clevenger CV. Histone H1 and Chromosomal Protein HMGN2 Regulate Prolactin-induced STAT5 Transcription Factor Recruitment and Function in Breast Cancer Cells. J Biol Chem 2016; 292:2237-2254. [PMID: 28035005 DOI: 10.1074/jbc.m116.764233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/28/2016] [Indexed: 01/10/2023] Open
Abstract
The hormone prolactin (PRL) contributes to breast cancer pathogenesis through various signaling pathways, one of the most notable being the JAK2/signal transducer and activator of transcription 5 (STAT5) pathway. PRL-induced activation of the transcription factor STAT5 results in the up-regulation of numerous genes implicated in breast cancer pathogenesis. However, the molecular mechanisms that enable STAT5 to access the promoters of these genes are not well understood. Here, we show that PRL signaling induces chromatin decompaction at promoter DNA, corresponding with STAT5 binding. The chromatin-modifying protein high mobility group nucleosomal binding domain 2 (HMGN2) specifically promotes STAT5 accessibility at promoter DNA by facilitating the dissociation of the linker histone H1 in response to PRL. Knockdown of H1 rescues the decrease in PRL-induced transcription following HMGN2 knockdown, and it does so by allowing increased STAT5 recruitment. Moreover, H1 and STAT5 are shown to function antagonistically in regulating PRL-induced transcription as well as breast cancer cell biology. While reduced STAT5 activation results in decreased PRL-induced transcription and cell proliferation, knockdown of H1 rescues both of these effects. Taken together, we elucidate a novel mechanism whereby the linker histone H1 prevents STAT5 binding at promoter DNA, and the PRL-induced dissociation of H1 mediated by HMGN2 is necessary to allow full STAT5 recruitment and promote the biological effects of PRL signaling.
Collapse
Affiliation(s)
| | - J Julie Kim
- the Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jonathan D Licht
- the Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida 32610, and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
38
|
Willi M, Yoo KH, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res 2016; 44:10277-10291. [PMID: 27694626 PMCID: PMC5137441 DOI: 10.1093/nar/gkw844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/28/2022] Open
Abstract
Cytokines utilize the transcription factor STAT5 to control cell-specific genes at a larger scale than universal genes, with a mechanistic explanation yet to be supplied. Genome-wide studies have identified putative STAT5-based mammary-specific and universal enhancers, an opportunity to investigate mechanisms underlying their differential response to cytokines. We have now interrogated the integrity and function of both categories of regulatory elements using biological and genetic approaches. During lactation, STAT5 occupies mammary-specific and universal cytokine-responsive elements. Following lactation, prolactin levels decline and mammary-specific STAT5-dependent enhancers are decommissioned within 24 h, while universal regulatory complexes remain intact. These differential sensitivities are linked to STAT5 concentrations and the mammary-specific Stat5 autoregulatory enhancer. In its absence, mammary-specific enhancers, but not universal elements, fail to be fully established. Upon termination of lactation STAT5 binding to a subset of mammary enhancers is substituted by STAT3. No STAT3 binding was observed at the most sensitive STAT5 enhancers suggesting that upon hormone withdrawal their chromatin becomes inaccessible. Lastly, we demonstrate that the mammary-enriched transcription factors GR, ELF5 and NFIB associate with STAT5 at sites lacking bona fide binding motifs. This study provides, for the first time, molecular insight into the differential sensitivities of mammary-specific and universal cytokine-sensing enhancers.
Collapse
Affiliation(s)
- Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Histone Demethylase KDM6A Controls the Mammary Luminal Lineage through Enzyme-Independent Mechanisms. Mol Cell Biol 2016; 36:2108-20. [PMID: 27215382 DOI: 10.1128/mcb.00089-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/08/2016] [Indexed: 02/06/2023] Open
Abstract
Establishment of the mammary luminal cell lineage is controlled primarily by hormones and through specific transcription factors (TFs). Previous studies have linked histone methyltransferases to the differentiation of mammary epithelium, thus opening the possibility of biological significance of counteracting demethylases. We have now demonstrated an essential role for the H3K27me3 demethylase KDM6A in generating a balanced alveolar compartment. Deletion of Kdm6a in the mammary luminal cell lineage led to a paucity of luminal cells and an excessive expansion of basal cells, both in vivo and in vitro The inability to form structurally normal ducts and alveoli during pregnancy resulted in lactation failure. Mutant luminal cells did not exhibit their distinctive transcription factor pattern and displayed basal characteristics. The genomic H3K27me3 landscape was unaltered in mutant tissue, and support for a demethylase-independent mechanism came from mice expressing a catalytically inactive KDM6A. Mammary tissue developed normally in these mice. Chromatin immunoprecipitation sequencing (ChIP-seq) experiments demonstrated KDM6A binding to putative enhancers enriched for key mammary TFs and H3K27ac. This study demonstrated for the first time that the mammary luminal lineage relies on KDM6A to ensure a transcription program leading to differentiated alveoli. Failure to fully implement this program results in structurally and functionally impaired mammary tissue.
Collapse
|
40
|
Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet 2016; 48:904-911. [PMID: 27376239 PMCID: PMC4963296 DOI: 10.1038/ng.3606] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Super-enhancers comprise of dense transcription factor platforms highly enriched for active chromatin marks. A paucity of functional data led us to investigate their role in the mammary gland, an organ characterized by exceptional gene regulatory dynamics during pregnancy. ChIP-Seq for the master regulator STAT5, the glucocorticoid receptor, H3K27ac and MED1, identified 440 mammary-specific super-enhancers, half of which were associated with genes activated during pregnancy. We interrogated the Wap super-enhancer, generating mice carrying mutations in STAT5 binding sites within its three constituent enhancers. Individually, only the most distal site displayed significant enhancer activity. However, combinatorial mutations showed that the 1,000-fold gene induction relied on all enhancers. Disabling the binding sites of STAT5, NFIB and ELF5 in the proximal enhancer incapacitated the entire super-enhancer, suggesting an enhancer hierarchy. The identification of mammary-specific super-enhancers and the mechanistic exploration of the Wap locus provide insight into the complexity of cell-specific and hormone-regulated genes.
Collapse
|
41
|
Miano JM, Zhu QM, Lowenstein CJ. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Arterioscler Thromb Vasc Biol 2016; 36:1058-75. [PMID: 27102963 PMCID: PMC4882230 DOI: 10.1161/atvbaha.116.304790] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022]
Abstract
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions.
Collapse
Affiliation(s)
- Joseph M Miano
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.).
| | - Qiuyu Martin Zhu
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| | - Charles J Lowenstein
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| |
Collapse
|
42
|
Villarino A, Laurence A, Robinson GW, Bonelli M, Dema B, Afzali B, Shih HY, Sun HW, Brooks SR, Hennighausen L, Kanno Y, O'Shea JJ. Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. eLife 2016; 5. [PMID: 26999798 PMCID: PMC4856466 DOI: 10.7554/elife.08384] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/13/2022] Open
Abstract
The transcription factor STAT5 is fundamental to the mammalian immune system. However, the relationship between its two paralogs, STAT5A and STAT5B, and the extent to which they are functionally distinct, remain uncertain. Using mouse models of paralog deficiency, we demonstrate that they are not equivalent for CD4+ 'helper' T cells, the principal orchestrators of adaptive immunity. Instead, we find that STAT5B is dominant for both effector and regulatory (Treg) responses and, therefore, uniquely necessary for immunological tolerance. Comparative analysis of genomic distribution and transcriptomic output confirm that STAT5B has fargreater impact but, surprisingly, the data point towards asymmetric expression (i.e. paralog dose), rather than distinct functional properties, as the key distinguishing feature. Thus, we propose a quantitative model of STAT5 paralog activity whereby relative abundance imposes functional specificity (or dominance) in the face of widespread structural homology. DOI:http://dx.doi.org/10.7554/eLife.08384.001 The immune system in mammals is one of the most complex networks in the animal kingdom. One way that its many components communicate is via proteins called cytokines, which are released by cells and detected by receptors on the surface of other cells. This leads to the activation of signals inside the responding cells that alter the activity of genes and, ultimately, direct how they behave. STAT5 is a signal protein that is activated when certain cytokines bind to receptors on the cell surface. Consequently, it is an attractive target for drug therapies that seek to alter immune responses and there is keen interest in understanding how it works. It is an unusual protein in that there are two versions – termed STAT5A and STAT5B – that are produced by two separate genes. Together, STAT5A and STAT5B are fundamental to the immune system but there is considerable debate about whether they perform the same job or have distinct roles. Villarino et al. used a combination of genetic and genomic approaches to investigate how both versions of STAT5 work in mice. The experiments show that STAT5B plays a much bigger role in immune cells than STAT5A. Unexpectedly, the experiments indicate that the disparity is not due to differences in protein activity, but is caused by differences in the amount of these proteins in cells. Villarino et al.’s findings resolve longstanding questions about the relationship between STAT5A and STAT5B within the immune system. A logical next step is to find the molecular mechanisms responsible for causing different amounts of STAT5A and STAT5B to be produced in immune cells. Future work will also compare the roles of STAT5A and STAT5B in non-immune cells and explore whether it might be possible to develop therapies that specifically target one version and not the other. DOI:http://dx.doi.org/10.7554/eLife.08384.002
Collapse
Affiliation(s)
- Alejandro Villarino
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Gertraud W Robinson
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Michael Bonelli
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Barbara Dema
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Behdad Afzali
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Hong-Wei Sun
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen R Brooks
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|