1
|
Zheng H, Zhao P, Tan Z, Yu WM, Werner J, Stieglitz E, Porter C, Chandrakasan S, Wechsler D, Mendez-Ferrer S, Qu CK. Prototypical innate immune mechanism hijacked by leukemia-initiating mutant stem cells for selective advantage and immune evasion in Ptpn11-associated juvenile myelomonocytic leukemia. RESEARCH SQUARE 2024:rs.3.rs-4450642. [PMID: 39149498 PMCID: PMC11326406 DOI: 10.21203/rs.3.rs-4450642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Juvenile myelomonocytic leukemia (JMML), a clonal hematologic malignancy, originates from mutated hematopoietic stem cells (HSCs). The mechanism sustaining the persistence of mutant stem cells, leading to leukemia development, remains elusive. In this study, we conducted comprehensive examination of gene expression profiles, transcriptional factor regulons, and cell compositions/interactions throughout various stages of tumor cell development in Ptpn11 mutation-associated JMML. Our analyses revealed that leukemia-initiating Ptpn11 E76K/+ mutant stem cells exhibited de novo activation of the myeloid transcriptional program and aberrant developmental trajectories. These mutant stem cells displayed significantly elevated expression of innate immunity-associated anti-microbial peptides and pro-inflammatory proteins, particularly S100a9 and S100a8. Biological experiments confirmed that S100a9/S100a8 conferred a selective advantage to the leukemia-initiating cells through autocrine effects and facilitated immune evasion by recruiting and promoting immune suppressive myeloid-derived suppressor cells (MDSCs) in the microenvironment. Importantly, pharmacological inhibition of S100a9/S100a8 signaling effectively impeded leukemia development from Ptpn11 E76K/+ mutant stem cells. These findings collectively suggest that JMML tumor-initiating cells exploit evolutionarily conserved innate immune and inflammatory mechanisms to establish clonal dominance.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA; Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Peng Zhao
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Wen-Mei Yu
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Juwita Werner
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California San Francisco, San Francisco, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California San Francisco, San Francisco, USA
| | - Chris Porter
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Daniel Wechsler
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| | - Simon Mendez-Ferrer
- Department of Hematology, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cheng-Kui Qu
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Winship Cancer Institute, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
2
|
Lee S, Deng L, Wang Y, Wang K, Sartor MA, Wang XS. IndepthPathway: an integrated tool for in-depth pathway enrichment analysis based on single-cell sequencing data. Bioinformatics 2023; 39:btad325. [PMID: 37243667 PMCID: PMC10275909 DOI: 10.1093/bioinformatics/btad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023] Open
Abstract
MOTIVATION Single-cell sequencing enables exploring the pathways and processes of cells, and cell populations. However, there is a paucity of pathway enrichment methods designed to tolerate the high noise and low gene coverage of this technology. When gene expression data are noisy and signals are sparse, testing pathway enrichment based on the genes expression may not yield statistically significant results, which is particularly problematic when detecting the pathways enriched in less abundant cells that are vulnerable to disturbances. RESULTS In this project, we developed a Weighted Concept Signature Enrichment Analysis specialized for pathway enrichment analysis from single-cell transcriptomics (scRNA-seq). Weighted Concept Signature Enrichment Analysis took a broader approach for assessing the functional relations of pathway gene sets to differentially expressed genes, and leverage the cumulative signature of molecular concepts characteristic of the highly differentially expressed genes, which we termed as the universal concept signature, to tolerate the high noise and low coverage of this technology. We then incorporated Weighted Concept Signature Enrichment Analysis into an R package called "IndepthPathway" for biologists to broadly leverage this method for pathway analysis based on bulk and single-cell sequencing data. Through simulating technical variability and dropouts in gene expression characteristic of scRNA-seq as well as benchmarking on a real dataset of matched single-cell and bulk RNAseq data, we demonstrate that IndepthPathway presents outstanding stability and depth in pathway enrichment results under stochasticity of the data, thus will substantially improve the scientific rigor of the pathway analysis for single-cell sequencing data. AVAILABILITY AND IMPLEMENTATION The IndepthPathway R package is available through: https://github.com/wangxlab/IndepthPathway.
Collapse
Affiliation(s)
- Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, United States
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, United States
| | - Letian Deng
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, United States
| | - Yue Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, United States
| | - Kai Wang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Maureen A Sartor
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, United States
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, United States
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, United States
| |
Collapse
|
3
|
Eisele AS, Cosgrove J, Magniez A, Tubeuf E, Tenreira Bento S, Conrad C, Cayrac F, Tak T, Lyne AM, Urbanus J, Perié L. Erythropoietin directly remodels the clonal composition of murine hematopoietic multipotent progenitor cells. eLife 2022; 11:66922. [PMID: 35166672 PMCID: PMC8884727 DOI: 10.7554/elife.66922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The cytokine erythropoietin (EPO) is a potent inducer of erythrocyte development and one of the most prescribed biopharmaceuticals. The action of EPO on erythroid progenitor cells is well established, but its direct action on hematopoietic stem and progenitor cells (HSPCs) is still debated. Here, using cellular barcoding, we traced the differentiation of hundreds of single murine HSPCs, after ex vivo EPO-exposure and transplantation, in five different hematopoietic cell lineages, and observed the transient occurrence of high-output Myeloid-Erythroid-megaKaryocyte (MEK)-biased and Myeloid-B-cell-Dendritic cell (MBDC)-biased clones. Single-cell RNA sequencing (ScRNAseq) analysis of ex vivo EPO-exposed HSPCs revealed that EPO induced the upregulation of erythroid associated genes in a subset of HSPCs, overlapping with multipotent progenitor (MPP) 1 and MPP2. Transplantation of Barcoded EPO-exposed-MPP2 confirmed their enrichment in Myeloid-Erythroid-biased clones. Collectively, our data show that EPO does act directly on MPP independent of the niche, and modulates fate by remodeling the clonal composition of the MPP pool.
Collapse
Affiliation(s)
- Almut S Eisele
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | - Jason Cosgrove
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | | | - Emilie Tubeuf
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | | | - Cecile Conrad
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | - Fanny Cayrac
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | - Tamar Tak
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | | | - Jos Urbanus
- Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Leïla Perié
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| |
Collapse
|
4
|
Zhong C, Liu M, Pan X, Zhu H. Tumorigenicity Risk of iPSCs in vivo: Nip it in the Bud. PRECISION CLINICAL MEDICINE 2022; 5:pbac004. [PMID: 35692443 PMCID: PMC9026204 DOI: 10.1093/pcmedi/pbac004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022] Open
Abstract
In 2006, Takahashi and Yamanaka first created induced pluripotent stem cells from mouse fibroblasts via the retroviral introduction of genes encoding the transcription factors Oct3/4, Sox2, Klf44, and c-Myc. Since then, the future clinical application of somatic cell reprogramming technology has become an attractive research topic in the field of regenerative medicine. Of note, considerable interest has been placed in circumventing ethical issues linked to embryonic stem cell research. However, tumorigenicity, immunogenicity, and heterogeneity may hamper attempts to deploy this technology therapeutically. This review highlights the progress aimed at reducing induced pluripotent stem cells tumorigenicity risk and how to assess the safety of induced pluripotent stem cells cell therapy products.
Collapse
Affiliation(s)
- Chaoliang Zhong
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Miao Liu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen 518032, Guangdong, China
| | - Haiying Zhu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Lengefeld J, Cheng CW, Maretich P, Blair M, Hagen H, McReynolds MR, Sullivan E, Majors K, Roberts C, Kang JH, Steiner JD, Miettinen TP, Manalis SR, Antebi A, Morrison SJ, Lees JA, Boyer LA, Yilmaz ÖH, Amon A. Cell size is a determinant of stem cell potential during aging. SCIENCE ADVANCES 2021; 7:eabk0271. [PMID: 34767451 PMCID: PMC8589318 DOI: 10.1126/sciadv.abk0271] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 05/05/2023]
Abstract
Stem cells are remarkably small. Whether small size is important for stem cell function is unknown. We find that hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferation and was accompanied by altered metabolism. Preventing HSC enlargement or reducing large HSCs in size averts the loss of stem cell potential under conditions causing stem cell exhaustion. Last, we show that murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.
Collapse
Affiliation(s)
- Jette Lengefeld
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Chia-Wei Cheng
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pema Maretich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marguerite Blair
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Hagen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie R. McReynolds
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Emily Sullivan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyra Majors
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Roberts
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Joon Ho Kang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joachim D. Steiner
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Teemu P. Miettinen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Scott R. Manalis
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Sean J. Morrison
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline A. Lees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A. Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ömer H. Yilmaz
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Chi X, Sartor MA, Lee S, Anurag M, Patil S, Hall P, Wexler M, Wang XS. Universal concept signature analysis: genome-wide quantification of new biological and pathological functions of genes and pathways. Brief Bioinform 2021; 21:1717-1732. [PMID: 31631213 DOI: 10.1093/bib/bbz093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Identifying new gene functions and pathways underlying diseases and biological processes are major challenges in genomics research. Particularly, most methods for interpreting the pathways characteristic of an experimental gene list defined by genomic data are limited by their dependence on assessing the overlapping genes or their interactome topology, which cannot account for the variety of functional relations. This is particularly problematic for pathway discovery from single-cell genomics with low gene coverage or interpreting complex pathway changes such as during change of cell states. Here, we exploited the comprehensive sets of molecular concepts that combine ontologies, pathways, interactions and domains to help inform the functional relations. We first developed a universal concept signature (uniConSig) analysis for genome-wide quantification of new gene functions underlying biological or pathological processes based on the signature molecular concepts computed from known functional gene lists. We then further developed a novel concept signature enrichment analysis (CSEA) for deep functional assessment of the pathways enriched in an experimental gene list. This method is grounded on the framework of shared concept signatures between gene sets at multiple functional levels, thus overcoming the limitations of the current methods. Through meta-analysis of transcriptomic data sets of cancer cell line models and single hematopoietic stem cells, we demonstrate the broad applications of CSEA on pathway discovery from gene expression and single-cell transcriptomic data sets for genetic perturbations and change of cell states, which complements the current modalities. The R modules for uniConSig analysis and CSEA are available through https://github.com/wangxlab/uniConSig.
Collapse
Affiliation(s)
- Xu Chi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Maureen A Sartor
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| | - Snehal Patil
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Pelle Hall
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Matthew Wexler
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A
| | - Xiao-Song Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15232, U.S.A.,Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, 15206, U.S.A.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, U.S.A
| |
Collapse
|
7
|
Lu Y, Liu M, Yang J, Weissman SM, Pan X, Katz SG, Wang S. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov 2021; 7:47. [PMID: 34183665 PMCID: PMC8238952 DOI: 10.1038/s41421-021-00266-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche has been extensively studied in bone marrow, yet a more systematic investigation into the microenvironment regulation of hematopoiesis in fetal liver is necessary. Here we investigate the spatial organization and transcriptional profile of individual cells in both wild type (WT) and Tet2−/− fetal livers, by multiplexed error robust fluorescence in situ hybridization. We find that specific pairs of fetal liver cell types are preferentially positioned next to each other. Ligand-receptor signaling molecule pairs such as Kitl and Kit are enriched in neighboring cell types. The majority of HSCs are in direct contact with endothelial cells (ECs) in both WT and Tet2−/− fetal livers. Loss of Tet2 increases the number of HSCs, and upregulates Wnt and Notch signaling genes in the HSC niche. Two subtypes of ECs, arterial ECs and sinusoidal ECs, and other cell types contribute distinct signaling molecules to the HSC niche. Collectively, this study provides a comprehensive picture and bioinformatic foundation for HSC spatial regulation in fetal liver.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Genetics, Yale School of Medicine, New Haven, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
| | - Miao Liu
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Jennifer Yang
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | | | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China.
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, USA.
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
8
|
Abstract
Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.
Collapse
|
9
|
Zhao X, Gao S, Kajigaya S, Liu Q, Wu Z, Feng X, Zhang F, Young NS. Comprehensive analysis of single-cell RNA sequencing data from healthy human marrow hematopoietic cells. BMC Res Notes 2020; 13:514. [PMID: 33168060 PMCID: PMC7653854 DOI: 10.1186/s13104-020-05357-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Single cell methodology enables detection and quantification of transcriptional changes and unravelling dynamic aspects of the transcriptional heterogeneity not accessible using bulk sequencing approaches. We have applied single-cell RNA-sequencing (scRNA-seq) to fresh human bone marrow CD34+ cells and profiled 391 single hematopoietic stem/progenitor cells (HSPCs) from healthy donors to characterize lineage- and stage-specific transcription during hematopoiesis. Results Cells clustered into six distinct groups, which could be assigned to known HSPC subpopulations based on lineage specific genes. Reconstruction of differentiation trajectories in single cells revealed four committed lineages derived from HSCs, as well as dynamic expression changes underlying cell fate during early erythroid-megakaryocytic, lymphoid, and granulocyte-monocyte differentiation. A similar non-hierarchical pattern of hematopoiesis could be derived from analysis of published single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), consistent with a sequential relationship between chromatin dynamics and regulation of gene expression during lineage commitment (first, altered chromatin conformation, then mRNA transcription). Computationally, we have reconstructed molecular trajectories connecting HSCs directly to four hematopoietic lineages. Integration of long noncoding RNA (lncRNA) expression from the same cells demonstrated mRNA transcriptome, lncRNA, and the epigenome were highly homologous in their pattern of gene activation and suppression during hematopoietic cell differentiation.
Collapse
Affiliation(s)
- Xin Zhao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Shouguo Gao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingguo Liu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fengkui Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
10
|
Vizán P, Gutiérrez A, Espejo I, García-Montolio M, Lange M, Carretero A, Lafzi A, de Andrés-Aguayo L, Blanco E, Thambyrajah R, Graf T, Heyn H, Bigas A, Di Croce L. The Polycomb-associated factor PHF19 controls hematopoietic stem cell state and differentiation. SCIENCE ADVANCES 2020; 6:eabb2745. [PMID: 32821835 PMCID: PMC7406347 DOI: 10.1126/sciadv.abb2745] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Adult hematopoietic stem cells (HSCs) are rare multipotent cells in bone marrow that are responsible for generating all blood cell types. HSCs are a heterogeneous group of cells with high plasticity, in part, conferred by epigenetic mechanisms. PHF19, a subunit of the Polycomb repressive complex 2 (PRC2), is preferentially expressed in mouse hematopoietic precursors. Here, we now show that, in stark contrast to results published for other PRC2 subunits, genetic depletion of Phf19 increases HSC identity and quiescence. While proliferation of HSCs is normally triggered by forced mobilization, defects in differentiation impede long-term correct blood production, eventually leading to aberrant hematopoiesis. At molecular level, PHF19 deletion triggers a redistribution of the histone repressive mark H3K27me3, which notably accumulates at blood lineage-specific genes. Our results provide novel insights into how epigenetic mechanisms determine HSC identity, control differentiation, and are key for proper hematopoiesis.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Arantxa Gutiérrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc García-Montolio
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Martin Lange
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ana Carretero
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Atefeh Lafzi
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Luisa de Andrés-Aguayo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Roshana Thambyrajah
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Anna Bigas
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona 08003, Spain
- CIBERONC, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08003, Spain
| |
Collapse
|
11
|
Transcriptomics in Toxicogenomics, Part I: Experimental Design, Technologies, Publicly Available Data, and Regulatory Aspects. NANOMATERIALS 2020; 10:nano10040750. [PMID: 32326418 PMCID: PMC7221878 DOI: 10.3390/nano10040750] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The starting point of successful hazard assessment is the generation of unbiased and trustworthy data. Conventional toxicity testing deals with extensive observations of phenotypic endpoints in vivo and complementing in vitro models. The increasing development of novel materials and chemical compounds dictates the need for a better understanding of the molecular changes occurring in exposed biological systems. Transcriptomics enables the exploration of organisms' responses to environmental, chemical, and physical agents by observing the molecular alterations in more detail. Toxicogenomics integrates classical toxicology with omics assays, thus allowing the characterization of the mechanism of action (MOA) of chemical compounds, novel small molecules, and engineered nanomaterials (ENMs). Lack of standardization in data generation and analysis currently hampers the full exploitation of toxicogenomics-based evidence in risk assessment. To fill this gap, TGx methods need to take into account appropriate experimental design and possible pitfalls in the transcriptomic analyses as well as data generation and sharing that adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. In this review, we summarize the recent advancements in the design and analysis of DNA microarray, RNA sequencing (RNA-Seq), and single-cell RNA-Seq (scRNA-Seq) data. We provide guidelines on exposure time, dose and complex endpoint selection, sample quality considerations and sample randomization. Furthermore, we summarize publicly available data resources and highlight applications of TGx data to understand and predict chemical toxicity potential. Additionally, we discuss the efforts to implement TGx into regulatory decision making to promote alternative methods for risk assessment and to support the 3R (reduction, refinement, and replacement) concept. This review is the first part of a three-article series on Transcriptomics in Toxicogenomics. These initial considerations on Experimental Design, Technologies, Publicly Available Data, Regulatory Aspects, are the starting point for further rigorous and reliable data preprocessing and modeling, described in the second and third part of the review series.
Collapse
|
12
|
de Kanter JK, Lijnzaad P, Candelli T, Margaritis T, Holstege FCP. CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing. Nucleic Acids Res 2019; 47:e95. [PMID: 31226206 PMCID: PMC6895264 DOI: 10.1093/nar/gkz543] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
Cell type identification is essential for single-cell RNA sequencing (scRNA-seq) studies, currently transforming the life sciences. CHETAH (CHaracterization of cEll Types Aided by Hierarchical classification) is an accurate cell type identification algorithm that is rapid and selective, including the possibility of intermediate or unassigned categories. Evidence for assignment is based on a classification tree of previously available scRNA-seq reference data and includes a confidence score based on the variance in gene expression per cell type. For cell types represented in the reference data, CHETAH’s accuracy is as good as existing methods. Its specificity is superior when cells of an unknown type are encountered, such as malignant cells in tumor samples which it pinpoints as intermediate or unassigned. Although designed for tumor samples in particular, the use of unassigned and intermediate types is also valuable in other exploratory studies. This is exemplified in pancreas datasets where CHETAH highlights cell populations not well represented in the reference dataset, including cells with profiles that lie on a continuum between that of acinar and ductal cell types. Having the possibility of unassigned and intermediate cell types is pivotal for preventing misclassification and can yield important biological information for previously unexplored tissues.
Collapse
Affiliation(s)
- Jurrian K de Kanter
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Tito Candelli
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
13
|
Chen L, Zheng S. BCseq: accurate single cell RNA-seq quantification with bias correction. Nucleic Acids Res 2019; 46:e82. [PMID: 29718338 PMCID: PMC6101504 DOI: 10.1093/nar/gky308] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 11/25/2022] Open
Abstract
With rapid technical advances, single cell RNA-seq (scRNA-seq) has been used to detect cell subtypes exhibiting distinct gene expression profiles and to trace cell transitions in development and disease. However, the potential of scRNA-seq for new discoveries is constrained by the robustness of subsequent data analysis. Here we propose a robust model, BCseq (bias-corrected sequencing analysis), to accurately quantify gene expression from scRNA-seq. BCseq corrects inherent bias of scRNA-seq in a data-adaptive manner and effectively removes technical noise. BCseq rescues dropouts through weighted consideration of similar cells. Cells with higher sequencing depths contribute more to the quantification nonlinearly. Furthermore, BCseq assigns a quality score for the expression of each gene in each cell, providing users an objective measure to select genes for downstream analysis. In comparison to existing scRNA-seq methods, BCseq demonstrates increased robustness in detection of differentially expressed (DE) genes and cell subtype classification.
Collapse
Affiliation(s)
- Liang Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
14
|
Abstract
Hematopoiesis is the process by which mature blood and immune cells are produced from hematopoietic stem and progenitor cells (HSCs and HSPCs). The last several decades of research have shed light on the origin of HSCs, as well as the heterogeneous pools of fetal progenitors that contribute to lifelong hematopoiesis. The overarching concept that hematopoiesis occurs in dynamic, overlapping waves throughout development, with each wave contributing to both continuous and developmentally limited cell types, has been solidified over the years. However, recent advances in our ability to track the production of hematopoietic cells in vivo have challenged several long-held dogmas on the origin and persistence of distinct hematopoietic cell types. In this review, we highlight emerging concepts in hematopoietic development and identify unanswered questions.
Collapse
Affiliation(s)
- Taylor Cool
- Institute for the Biology of Stem Cells, Program in Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
15
|
Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci 2019; 132:132/1/jcs213025. [DOI: 10.1242/jcs.213025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Most cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| |
Collapse
|
16
|
Huang XT, Li X, Qin PZ, Zhu Y, Xu SN, Chen JP. Technical Advances in Single-Cell RNA Sequencing and Applications in Normal and Malignant Hematopoiesis. Front Oncol 2018; 8:582. [PMID: 30581771 PMCID: PMC6292934 DOI: 10.3389/fonc.2018.00582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has been tremendously developed in the past decade owing to overcoming challenges associated with isolation of massive quantities of single cells. Previously, cell heterogeneity and low quantities of available biological material posed significant difficulties to scRNA-seq. Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of normal and malignant hematopoietic cells; this heterogeneity has often been ignored in omics studies. The application of scRNA-seq has profoundly changed our comprehension of many biological phenomena, including organ development and carcinogenesis. Hematopoiesis, is actually a maturation process for more than ten distinct blood and immune cells, and is thought to be critically involved in hematological homeostasis and in sustaining the physiological functions. However, aberrant hematopoiesis directly leads to hematological malignancy, and a deeper understanding of malignant hematopoiesis will provide deeper insights into diagnosis and prognosis for patients with hematological malignancies. Here, we aim to review the recent technical progress and future prospects for scRNA-seq, as applied in physiological and malignant hematopoiesis, in efforts to further understand the hematopoietic hierarchy and to illuminate personalized therapy and precision medicine approaches used in the clinical treatment of hematological malignancies.
Collapse
Affiliation(s)
- Xiang-Tao Huang
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Li
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei-Zhong Qin
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yao Zhu
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuang-Nian Xu
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie-Ping Chen
- Center of Haematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
17
|
In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Sci Rep 2018; 8:12060. [PMID: 30104715 PMCID: PMC6089936 DOI: 10.1038/s41598-018-30551-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
Regenerative therapeutic approaches for myocardial diseases often involve delivery of stem cells expanded ex vivo. Prior studies indicate that cell culture conditions affect functional and phenotypic characteristics, but relationship(s) of cultured cells derived from freshly isolated populations and the heterogeneity of the cultured population remain poorly defined. Functional and phenotypic characteristics of ex vivo expanded cells will determine outcomes of interventional treatment for disease, necessitating characterization of the impact that ex vivo expansion has upon isolated stem cell populations. Single-cell RNA-Seq profiling (scRNA-Seq) was performed to determine consequences of culture expansion upon adult cardiac progenitor cells (CPCs) as well as relationships with other cell populations. Bioinformatic analyses demonstrate that identity marker genes expressed in freshly isolated cells become undetectable in cultured CPCs while low level expression emerges for thousands of other genes. Transcriptional profile of CPCs exhibited greater degree of similarity throughout the cultured population relative to freshly isolated cells. Findings were validated by comparative analyses using scRNA-Seq datasets of various cell types generated by multiple scRNA-Seq technology. Increased transcriptome diversity and decreased population heterogeneity in the cultured cell population may help account for reported outcomes associated with experimental and clinical use of CPCs for treatment of myocardial injury.
Collapse
|
18
|
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018; 46:W537-W544. [PMID: 29790989 PMCID: PMC6030816 DOI: 10.1093/nar/gky379] [Citation(s) in RCA: 2400] [Impact Index Per Article: 342.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Galaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging. Started in 2005, Galaxy continues to focus on three key challenges of data-driven biomedical science: making analyses accessible to all researchers, ensuring analyses are completely reproducible, and making it simple to communicate analyses so that they can be reused and extended. During the last two years, the Galaxy team and the open-source community around Galaxy have made substantial improvements to Galaxy's core framework, user interface, tools, and training materials. Framework and user interface improvements now enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed. The Galaxy community has led an effort to create numerous high-quality tutorials focused on common types of genomic analyses. The Galaxy developer and user communities continue to grow and be integral to Galaxy's development. The number of Galaxy public servers, developers contributing to the Galaxy framework and its tools, and users of the main Galaxy server have all increased substantially.
Collapse
Affiliation(s)
- Enis Afgan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Dannon Baker
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Bérénice Batut
- Department of Computer Science, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | | | - Dave Bouvier
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Martin Čech
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - John Chilton
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Dave Clements
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Nate Coraor
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Björn A Grüning
- Department of Computer Science, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| | - Aysam Guerler
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Hillman-Jackson
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Saskia Hiltemann
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vahid Jalili
- Department of Biomedical Engineering, Oregon Health and Science University, OR, USA
| | - Helena Rasche
- Department of Computer Science, Albert-Ludwigs-University, Freiburg, Freiburg, Germany
| | | | - Jeremy Goecks
- Department of Biomedical Engineering, Oregon Health and Science University, OR, USA
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
19
|
Mitroulis I, Kalafati L, Hajishengallis G, Chavakis T. Myelopoiesis in the Context of Innate Immunity. J Innate Immun 2018; 10:365-372. [PMID: 29874678 DOI: 10.1159/000489406] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
An intact and fully functional innate immune system is critical in the defense against pathogens. Indeed, during systemic infection, the ability of the organism to cope with the increased demand for phagocytes depends heavily on sufficient replenishment of mature myeloid cells. This process, designated emergency or demand-adapted myelopoiesis, requires the activation of hematopoietic progenitors in the bone marrow (BM), resulting in their proliferation and differentiation toward the myeloid lineage. Failure of BM progenitors to adapt to the enhanced need for mature cells in the periphery can be life-threatening, as indicated by the detrimental effect of chemotherapy-induced myelosuppression on the outcome of systemic infection. Recent advances demonstrate an important role of not only committed myeloid progenitors but also of hematopoietic stem cells (HSCs) in emergency myelopoiesis. In this regard, pathogen-derived products (e.g., Toll-like receptor ligands) activate HSC differentiation towards the myeloid lineage, either directly or indirectly, by inducing the production of inflammatory mediators (e.g., cytokines and growth factors) by hematopoietic and nonhematopoietic cell populations. The inflammatory mediators driving demand-adapted myelopoiesis target not only HSCs but also HSC-supportive cell populations, collectively known as the HSC niche, the microenvironment where HSCs reside. In this review, we discuss recent findings that have further elucidated the mechanisms that drive emergency myelopoiesis, focusing on the interactions of HSCs with their BM microenvironment.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, .,National Center for Tumor Diseases, Dresden,
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Microbiology, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Grinenko T, Eugster A, Thielecke L, Ramasz B, Krüger A, Dietz S, Glauche I, Gerbaulet A, von Bonin M, Basak O, Clevers H, Chavakis T, Wielockx B. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat Commun 2018; 9:1898. [PMID: 29765026 PMCID: PMC5954009 DOI: 10.1038/s41467-018-04188-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells. Dependence of hematopoietic stem cell (HSC) fate on the phase of the cell cycle has not been demonstrated in vivo. Here, the authors find that HSCs can differentiate into a downstream progenitor without physical division, even before progressing into the S phase of the cell cycle.
Collapse
Affiliation(s)
- Tatyana Grinenko
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Anne Eugster
- DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Beáta Ramasz
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anja Krüger
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Sevina Dietz
- DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.,Princess Máxima Centre, Lundlaan 6, 3584, EA Utrecht, Netherlands
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany. .,DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
21
|
Single-Cell Sequencing in Normal and Malignant Hematopoiesis. Hemasphere 2018; 2:e34. [PMID: 31723762 PMCID: PMC6745901 DOI: 10.1097/hs9.0000000000000034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
Hematopoiesis is one of the best studied adult stem-cell systems, with a differentiation hierarchy progressing from immature hematopoietic stem cells to over 10 distinct mature cell types. Recent technological breakthroughs now make it possible to define transcriptional profiles in thousands of individual cells. Facilitated by the wealth of prior data on cell purification and analysis strategies, hematopoiesis has been one of the earliest experimental systems to which many of these new single-cell sequencing technologies have been applied. In this review, the authors focus on recent studies, which have shed light on heterogeneity within individual populations as well as the relationships between populations, and also attempt to characterize the differences between normal and disease/perturbed states.
Collapse
|
22
|
Mitroulis I, Ruppova K, Wang B, Chen LS, Grzybek M, Grinenko T, Eugster A, Troullinaki M, Palladini A, Kourtzelis I, Chatzigeorgiou A, Schlitzer A, Beyer M, Joosten LAB, Isermann B, Lesche M, Petzold A, Simons K, Henry I, Dahl A, Schultze JL, Wielockx B, Zamboni N, Mirtschink P, Coskun Ü, Hajishengallis G, Netea MG, Chavakis T. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 2018; 172:147-161.e12. [PMID: 29328910 PMCID: PMC5766828 DOI: 10.1016/j.cell.2017.11.034] [Citation(s) in RCA: 722] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/19/2017] [Accepted: 11/16/2017] [Indexed: 01/23/2023]
Abstract
Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of β-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1β and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Klara Ruppova
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Baomei Wang
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Lan-Sun Chen
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michal Grzybek
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Tatyana Grinenko
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Eugster
- DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Maria Troullinaki
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alessandra Palladini
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ioannis Kourtzelis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Schlitzer
- Myeloid Cell Biology, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Marc Beyer
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, Bonn, Germany; Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University, Magdeburg, Germany
| | - Mathias Lesche
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Lipotype GmbH, Dresden, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, Bonn, Germany; PRECISE - Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Mihai G Netea
- Department of Genomics and Immunoregulation, Life and Medical Science Institute, University of Bonn, Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
23
|
Ortega MA, Poirion O, Zhu X, Huang S, Wolfgruber TK, Sebra R, Garmire LX. Using single-cell multiple omics approaches to resolve tumor heterogeneity. Clin Transl Med 2017; 6:46. [PMID: 29285690 PMCID: PMC5746494 DOI: 10.1186/s40169-017-0177-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly clear that both normal and cancer tissues are composed of heterogeneous populations. Genetic variation can be attributed to the downstream effects of inherited mutations, environmental factors, or inaccurately resolved errors in transcription and replication. When lesions occur in regions that confer a proliferative advantage, it can support clonal expansion, subclonal variation, and neoplastic progression. In this manner, the complex heterogeneous microenvironment of a tumour promotes the likelihood of angiogenesis and metastasis. Recent advances in next-generation sequencing and computational biology have utilized single-cell applications to build deep profiles of individual cells that are otherwise masked in bulk profiling. In addition, the development of new techniques for combining single-cell multi-omic strategies is providing a more precise understanding of factors contributing to cellular identity, function, and growth. Continuing advancements in single-cell technology and computational deconvolution of data will be critical for reconstructing patient specific intra-tumour features and developing more personalized cancer treatments.
Collapse
Affiliation(s)
- Michael A. Ortega
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Olivier Poirion
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Xun Zhu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
- Department of Molecular Biosciences and Bioengineering, Honolulu, HI USA
| | - Sijia Huang
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
- Department of Molecular Biosciences and Bioengineering, Honolulu, HI USA
| | - Thomas K. Wolfgruber
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
| | - Robert Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Lana X. Garmire
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI USA
- Department of Molecular Biosciences and Bioengineering, Honolulu, HI USA
| |
Collapse
|
24
|
Ruden DM, Gurdziel K, Aschner M. Frontiers in Toxicogenomics in the Twenty-First Century-the Grand Challenge: To Understand How the Genome and Epigenome Interact with the Toxic Environment at the Single-Cell, Whole-Organism, and Multi-Generational Level. Front Genet 2017; 8:173. [PMID: 29170679 PMCID: PMC5684185 DOI: 10.3389/fgene.2017.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Douglas M. Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- C. S. Mott Center for Human Health and Development, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
25
|
Mitroulis I, Chen LS, Singh RP, Kourtzelis I, Economopoulou M, Kajikawa T, Troullinaki M, Ziogas A, Ruppova K, Hosur K, Maekawa T, Wang B, Subramanian P, Tonn T, Verginis P, von Bonin M, Wobus M, Bornhäuser M, Grinenko T, Di Scala M, Hidalgo A, Wielockx B, Hajishengallis G, Chavakis T. Secreted protein Del-1 regulates myelopoiesis in the hematopoietic stem cell niche. J Clin Invest 2017; 127:3624-3639. [PMID: 28846069 DOI: 10.1172/jci92571] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSCs) remain mostly quiescent under steady-state conditions but switch to a proliferative state following hematopoietic stress, e.g., bone marrow (BM) injury, transplantation, or systemic infection and inflammation. The homeostatic balance between quiescence, self-renewal, and differentiation of HSCs is strongly dependent on their interactions with cells that constitute a specialized microanatomical environment in the BM known as the HSC niche. Here, we identified the secreted extracellular matrix protein Del-1 as a component and regulator of the HSC niche. Specifically, we found that Del-1 was expressed by several cellular components of the HSC niche, including arteriolar endothelial cells, CXCL12-abundant reticular (CAR) cells, and cells of the osteoblastic lineage. Del-1 promoted critical functions of the HSC niche, as it regulated long-term HSC (LT-HSC) proliferation and differentiation toward the myeloid lineage. Del-1 deficiency in mice resulted in reduced LT-HSC proliferation and infringed preferentially upon myelopoiesis under both steady-state and stressful conditions, such as hematopoietic cell transplantation and G-CSF- or inflammation-induced stress myelopoiesis. Del-1-induced HSC proliferation and myeloid lineage commitment were mediated by β3 integrin on hematopoietic progenitors. This hitherto unknown Del-1 function in the HSC niche represents a juxtacrine homeostatic adaptation of the hematopoietic system in stress myelopoiesis.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Lan-Sun Chen
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Rashim Pal Singh
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Matina Economopoulou
- Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tetsuhiro Kajikawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Troullinaki
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Athanasios Ziogas
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Klara Ruppova
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Kavita Hosur
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomoki Maekawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Baomei Wang
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pallavi Subramanian
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Torsten Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Panayotis Verginis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Malte von Bonin
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manja Wobus
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Tatyana Grinenko
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and
| | - Marianna Di Scala
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Andres Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and.,Center for Regenerative Therapies Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, and.,Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
26
|
Shen Y, Nar R, Fan AX, Aryan M, Hossain MA, Gurumurthy A, Wassel PC, Tang M, Lu J, Strouboulis J, Bungert J. Functional interrelationship between TFII-I and E2F transcription factors at specific cell cycle gene loci. J Cell Biochem 2017; 119:712-722. [PMID: 28657656 DOI: 10.1002/jcb.26235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Abstract
Transcription factor TFII-I is a multifunctional protein implicated in the regulation of cell cycle and stress-response genes. Previous studies have shown that a subset of TFII-I associated genomic sites contained DNA-binding motifs for E2F family transcription factors. We analyzed the co-association of TFII-I and E2Fs in more detail using bioinformatics, chromatin immunoprecipitation, and co-immunoprecipitation experiments. The data show that TFII-I interacts with E2F transcription factors. Furthermore, TFII-I, E2F4, and E2F6 interact with DNA-regulatory elements of several genes implicated in the regulation of the cell cycle, including DNMT1, HDAC1, CDKN1C, and CDC27. Inhibition of TFII-I expression led to a decrease in gene expression and in the association of E2F4 and E2F6 with these gene loci in human erythroleukemia K562 cells. Finally, TFII-I deficiency reduced the proliferation of K562 cells and increased the sensitivity toward doxorubicin toxicity. The results uncover novel interactions between TFII-I and E2Fs and suggest that TFII-I mediates E2F function at specific cell cycle genes.
Collapse
Affiliation(s)
- Yong Shen
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Rukiye Nar
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Alex X Fan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mahmoud Aryan
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Mir A Hossain
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Aishwarya Gurumurthy
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Paul C Wassel
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Ming Tang
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| | - John Strouboulis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, Center for Epigenetics, Genetics Institute, Health Cancer Center, Powell-Gene Therapy Center, University of Florida, Gainesville, Florida
| |
Collapse
|