1
|
Hoffmann M, Vaz T, Chhatrala S, Hennighausen L. Data-driven projections of candidate enhancer-activating SNPs in immune regulation. BMC Genomics 2025; 26:197. [PMID: 40011812 DOI: 10.1186/s12864-025-11374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Millions of single nucleotide polymorphisms (SNPs) have been identified in humans, but the functionality of almost all SNPs remains unclear. While current research focuses primarily on SNPs altering one amino acid to another one, the majority of SNPs are located in intergenic spaces. Some of these SNPs can be found in candidate cis-regulatory elements (CREs) such as promoters and enhancers, potentially destroying or creating DNA-binding motifs for transcription factors (TFs) and, hence, deregulating the expression of nearby genes. These aspects are understudied due to the sheer number of SNPs and TF binding motifs, making it challenging to identify SNPs that yield phenotypic changes or altered gene expression. RESULTS We developed a data-driven computational protocol to prioritize high-potential SNPs informed from former knowledge for experimental validation. We evaluated the protocol by investigating SNPs in CREs in the Janus kinase (JAK) - Signal Transducer and Activator of Transcription (-STAT) signaling pathway, which is activated by a plethora of cytokines and crucial in controlling immune responses and has been implicated in diseases like cancer, autoimmune disorders, and responses to viral infections. The protocol involves scanning the entire human genome (hg38) to pinpoint DNA sequences that deviate by only one nucleotide from the canonical binding sites (TTCnnnGAA) for STAT TFs. We narrowed down from an initial pool of 3,301,512 SNPs across 17,039,967 nearly complete STAT motifs and identified six potential gain-of-function SNPs in regions likely to influence regulation within the JAK-STAT pathway. This selection was guided by publicly available open chromatin and gene expression data and further refined by filtering for proximity to immune response genes and conservation between the mouse and human genomes. CONCLUSION Our findings highlight the value of combining genomic, epigenomic, and cross-species conservation data to effectively narrow down millions of SNPs to a smaller number with a high potential to induce interferon regulation of nearby genes. These SNPs can finally be reviewed manually, laying the groundwork for a more focused and efficient exploration of regulatory SNPs in an experimental setting.
Collapse
Affiliation(s)
- Markus Hoffmann
- Section of Genetics and Physiology, Digestive and Kidney Diseases, National Institute of Diabetes, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tiago Vaz
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shreeti Chhatrala
- Section of Genetics and Physiology, Digestive and Kidney Diseases, National Institute of Diabetes, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., 20007, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Digestive and Kidney Diseases, National Institute of Diabetes, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Woolley PR, Wen X, Conway OM, Ender NA, Lee JH, Paull TT. Regulation of transcription patterns, poly(ADP-ribose), and RNA-DNA hybrids by the ATM protein kinase. Cell Rep 2024; 43:113896. [PMID: 38442018 PMCID: PMC11022685 DOI: 10.1016/j.celrep.2024.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/11/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.
Collapse
Affiliation(s)
- Phillip R Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Olivia M Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicolette A Ender
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Woolley PR, Wen X, Conway OM, Ender NA, Lee JH, Paull TT. Regulation of transcription patterns, poly-ADP-ribose, and RNA-DNA hybrids by the ATM protein kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570417. [PMID: 38106035 PMCID: PMC10723464 DOI: 10.1101/2023.12.06.570417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The ATM protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in Ataxia-telangiectasia patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with expression level and GC content of transcribed genes. In human neuron-like cells in culture we map locations of poly-ADP-ribose and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of ROS in promoting these lesions. Based on these results we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.
Collapse
Affiliation(s)
- Phillip R. Woolley
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Xuemei Wen
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Olivia M. Conway
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Nicolette A. Ender
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| | - Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tanya T. Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX, 78712
| |
Collapse
|
4
|
Roy R, Kuo PL, Candia J, Sarantopoulou D, Ubaida-Mohien C, Hernandez D, Kaileh M, Arepalli S, Singh A, Bektas A, Kim J, Moore AZ, Tanaka T, McKelvey J, Zukley L, Nguyen C, Wallace T, Dunn C, Wood W, Piao Y, Coletta C, De S, Sen J, Weng NP, Sen R, Ferrucci L. Epigenetic signature of human immune aging in the GESTALT study. eLife 2023; 12:e86136. [PMID: 37589453 PMCID: PMC10506794 DOI: 10.7554/elife.86136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.
Collapse
Affiliation(s)
- Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Pei-Lun Kuo
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Julián Candia
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | | | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on AgingBethesdaUnited States
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Sampath Arepalli
- Laboratory of Neurogenetics, National Institute on AgingBethesdaUnited States
| | - Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Jaekwan Kim
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Ann Z Moore
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| | - Julia McKelvey
- Clinical Research Core, National Institute on AgingBaltimoreUnited States
| | - Linda Zukley
- Clinical Research Core, National Institute on AgingBaltimoreUnited States
| | - Cuong Nguyen
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - Tonya Wallace
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - Christopher Dunn
- Flow Cytometry Unit, National Institute on AgingBaltimoreUnited States
| | - William Wood
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Christopher Coletta
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on AgingBaltimoreUnited States
| | - Jyoti Sen
- Laboratory of Clinical Investigation, National Institute on AgingBaltimoreUnited States
| | - Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on AgingBaltimoreUnited States
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on AgingBaltimoreUnited States
| |
Collapse
|
5
|
Lax E, Do Carmo S, Enuka Y, Sapozhnikov DM, Welikovitch LA, Mahmood N, Rabbani SA, Wang L, Britt JP, Hancock WW, Yarden Y, Szyf M. Methyl-CpG binding domain 2 (Mbd2) is an epigenetic regulator of autism-risk genes and cognition. Transl Psychiatry 2023; 13:259. [PMID: 37443311 PMCID: PMC10344909 DOI: 10.1038/s41398-023-02561-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brains of Autism Spectrum Disorder (ASD) individuals. Notably, downregulated genes are significantly enriched for human ortholog ASD risk genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Hippocampal Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest that Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD individuals.
Collapse
Affiliation(s)
- Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lindsay A Welikovitch
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan P Britt
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Hoffmann M, Trummer N, Schwartz L, Jankowski J, Lee HK, Willruth LL, Lazareva O, Yuan K, Baumgarten N, Schmidt F, Baumbach J, Schulz MH, Blumenthal DB, Hennighausen L, List M. TF-Prioritizer: a Java pipeline to prioritize condition-specific transcription factors. Gigascience 2022; 12:giad026. [PMID: 37132521 PMCID: PMC10155229 DOI: 10.1093/gigascience/giad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354, Germany
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Leon Schwartz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Jakub Jankowski
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| | - Olga Lazareva
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Kevin Yuan
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Nina Baumgarten
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - Florian Schmidt
- Laboratory of Systems Biology and Data Analytics, Genome Institute of Singapore, 60 Biopolis Street, Singapore
138672, Singapore
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590 Frankfurt am Main, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Garching D-85748, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising D-85354,Germany
| |
Collapse
|
7
|
Trinh LT, Osipovich AB, Sampson L, Wong J, Wright CV, Magnuson MA. Differential regulation of alternate promoter regions in Sox17 during endodermal and vascular endothelial development. iScience 2022; 25:104905. [PMID: 36046192 PMCID: PMC9421400 DOI: 10.1016/j.isci.2022.104905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Sox17 gene expression is essential for both endothelial and endodermal cell differentiation. To better understand the genetic basis for the expression of multiple Sox17 mRNA forms, we identified and performed CRISPR/Cas9 mutagenesis of two evolutionarily conserved promoter regions (CRs). The deletion of the upstream and endothelial cell-specific CR1 caused only a modest increase in lympho-vasculogenesis likely via reduced Notch signaling downstream of SOX17. In contrast, the deletion of the downstream CR2 region, which functions in both endothelial and endodermal cells, impairs both vascular and endodermal development causing death by embryonic day 12.5. Analyses of 3D chromatin looping, transcription factor binding, histone modification, and chromatin accessibility data at the Sox17 locus and surrounding region further support differential regulation of the two promoters during the development.
Collapse
Affiliation(s)
- Linh T. Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Wong
- College of Arts and Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Chris V.E. Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A. Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Neiro J, Sridhar D, Dattani A, Aboobaker A. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells. eLife 2022; 11:79675. [PMID: 35997250 PMCID: PMC9522251 DOI: 10.7554/elife.79675] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Planarians have become an established model system to study regeneration and stem cells, but the regulatory elements in the genome remain almost entirely undescribed. Here, by integrating epigenetic and expression data we use multiple sources of evidence to predict enhancer elements active in the adult stem cell populations that drive regeneration. We have used ChIP-seq data to identify genomic regions with histone modifications consistent with enhancer activity, and ATAC-seq data to identify accessible chromatin. Overlapping these signals allowed for the identification of a set of high-confidence candidate enhancers predicted to be active in planarian adult stem cells. These enhancers are enriched for predicted transcription factor (TF) binding sites for TFs and TF families expressed in planarian adult stem cells. Footprinting analyses provided further evidence that these potential TF binding sites are likely to be occupied in adult stem cells. We integrated these analyses to build testable hypotheses for the regulatory function of TFs in stem cells, both with respect to how pluripotency might be regulated, and to how lineage differentiation programs are controlled. We found that our predicted GRNs were independently supported by existing TF RNAi/RNA-seq datasets, providing further evidence that our work predicts active enhancers that regulate adult stem cells and regenerative mechanisms.
Collapse
Affiliation(s)
- Jakke Neiro
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Divya Sridhar
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Rovito D, Rerra AI, Ueberschlag-Pitiot V, Joshi S, Karasu N, Dacleu-Siewe V, Rayana KB, Ghaibour K, Parisotto M, Ferry A, Jelinsky SA, Laverny G, Klaholz BP, Sexton T, Billas IML, Duteil D, Metzger D. Myod1 and GR coordinate myofiber-specific transcriptional enhancers. Nucleic Acids Res 2021; 49:4472-4492. [PMID: 33836079 PMCID: PMC8096230 DOI: 10.1093/nar/gkab226] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a dynamic tissue the size of which can be remodeled through the concerted actions of various cues. Here, we investigated the skeletal muscle transcriptional program and identified key tissue-specific regulatory genetic elements. Our results show that Myod1 is bound to numerous skeletal muscle enhancers in collaboration with the glucocorticoid receptor (GR) to control gene expression. Remarkably, transcriptional activation controlled by these factors occurs through direct contacts with the promoter region of target genes, via the CpG-bound transcription factor Nrf1, and the formation of Ctcf-anchored chromatin loops, in a myofiber-specific manner. Moreover, we demonstrate that GR negatively controls muscle mass and strength in mice by down-regulating anabolic pathways. Taken together, our data establish Myod1, GR and Nrf1 as key players of muscle-specific enhancer-promoter communication that orchestrate myofiber size regulation.
Collapse
Affiliation(s)
- Daniela Rovito
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Anna-Isavella Rerra
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | | | - Shilpy Joshi
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Nezih Karasu
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Vanessa Dacleu-Siewe
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Khalil Ben Rayana
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Kamar Ghaibour
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Maxime Parisotto
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Arnaud Ferry
- Centre de Recherche en Myologie, UMRS974-Sorbonne Université-INSERM U974-Association Institut de Myologie, France
| | - Scott A Jelinsky
- Department of Inflammation and Immunology, Pfizer Research, Cambridge, MA, USA
| | - Gilles Laverny
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Bruno P Klaholz
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Tom Sexton
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Isabelle M L Billas
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| | - Daniel Metzger
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, IGBMC, F-67400 Illkirch, France
| |
Collapse
|
10
|
Subkhankulova T, Naumenko F, Tolmachov OE, Orlov YL. Novel ChIP-seq simulating program with superior versatility: isChIP. Brief Bioinform 2020; 22:6035271. [PMID: 33320934 DOI: 10.1093/bib/bbaa352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/18/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is recognized as an extremely powerful tool to study the interaction of numerous transcription factors and other chromatin-associated proteins with DNA. The core problem in the optimization of ChIP-seq protocol and the following computational data analysis is that a 'true' pattern of binding events for a given protein factor is unknown. Computer simulation of the ChIP-seq process based on 'a-priory known binding template' can contribute to a drastically reduce the number of wet lab experiments and finally help achieve radical optimization of the entire processing pipeline. We present a newly developed ChIP-sequencing simulation algorithm implemented in the novel software, in silico ChIP-seq (isChIP). We demonstrate that isChIP closely approximates real ChIP-seq protocols and is able to model data similar to those obtained from experimental sequencing. We validated isChIP using publicly available datasets generated for well-characterized transcription factors Oct4 and Sox2. Although the novel software is compatible with the Illumina protocols by default, it can also successfully perform simulations with a number of alternative sequencing platforms such as Roche454, Ion Torrent and SOLiD as well as model ChIP -Exo. The versatility of isChIP was demonstrated through modelling a wide range of binding events, including those of transcription factors and chromatin modifiers. We also performed a comparative analysis against a few existing ChIP-seq simulators and showed the fundamental superiority of our model. Due to its ability to utilize known binding templates, isChIP can potentially be employed to help investigators choose the most appropriate analytical software through benchmarking of available ChIP-seq programs and optimize the experimental parameters of ChIP-seq protocol. isChIP software is freely available at https://github.com/fnaumenko/isChIP.
Collapse
Affiliation(s)
| | | | | | - Yuriy L Orlov
- Digital Health Institute, I.M. Sechenov First Moscow State Medical University (Sechenov University), and Senior Scientist at Agrarian and Technological Institute, Peoples' Friendship University of Russia (RUDN University), Russia
| |
Collapse
|
11
|
Kim M, Lin S. Characterization of histone modification patterns and prediction of novel promoters using functional principal component analysis. PLoS One 2020; 15:e0233630. [PMID: 32459819 PMCID: PMC7252632 DOI: 10.1371/journal.pone.0233630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/08/2020] [Indexed: 12/04/2022] Open
Abstract
Characterization of distinct histone methylation and acetylation binding patterns in promoters and prediction of novel regulatory regions remains an important area of genomic research, as it is hypothesized that distinct chromatin signatures may specify unique genomic functions. However, methods that have been proposed in the literature are either descriptive in nature or are fully parametric and hence more restrictive in pattern discovery. In this article, we propose a two-step non-parametric statistical inference procedure to characterize unique histone modification patterns and apply it to analyzing the binding patterns of four histone marks, H3K4me2, H3K4me3, H3K9ac, and H4K20me1, in human B-lymphoblastoid cells. In the first step, we used a functional principal component analysis method to represent the concatenated binding patterns of these four histone marks around the transcription start sites as smooth curves. In the second step, we clustered these curves to reveal several unique classes of binding patterns. These uncovered patterns were used in turn to scan the whole-genome to predict novel and alternative promoters. Our analyses show that there are three distinct promoter binding patterns of active genes. Further, 19654 regions not within known gene promoters were found to overlap with human ESTs, CpG islands, or common SNPs, indicative of their potential role in gene regulation, including being potential novel promoter regions.
Collapse
Affiliation(s)
- Mijeong Kim
- Department of Statistics, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| | - Shili Lin
- Department of Statistics, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Ancestrally Duplicated Conserved Noncoding Element Suggests Dual Regulatory Roles of HOTAIR in cis and trans. iScience 2020; 23:101008. [PMID: 32268280 PMCID: PMC7139118 DOI: 10.1016/j.isci.2020.101008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
HOTAIR was proposed to regulate either HoxD cluster genes in trans or HoxC cluster genes in cis, a mechanism that remains unclear. We have identified a 32-nucleotide conserved noncoding element (CNE) as HOTAIR ancient sequence that likely originated at the root of vertebrate. The second round of whole-genome duplication resulted in one copy of the CNE within HOTAIR and another copy embedded in noncoding transcript of HOXD11. Paralogous CNEs underwent compensatory mutations, exhibit sequence complementarity with respect to transcripts directionality, and have high affinity in vitro. The HOTAIR CNE resembled a poised enhancer in stem cells and an active enhancer in HOTAIR-expressing cells. HOTAIR expression is positively correlated with HOXC11 in cis and negatively correlated with HOXD11 in trans. We propose a dual modality of HOTAIR regulation where transcription of HOTAIR and its embedded enhancer regulates HOXC11 in cis and sequence complementarity between paralogous CNEs suggests HOXD11 regulation in trans.
Collapse
|
13
|
Specific subfamilies of transposable elements contribute to different domains of T lymphocyte enhancers. Proc Natl Acad Sci U S A 2020; 117:7905-7916. [PMID: 32193341 PMCID: PMC7148579 DOI: 10.1073/pnas.1912008117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) compose nearly half of mammalian genomes and provide building blocks for cis-regulatory elements. Using high-throughput sequencing, we show that 84 TE subfamilies are overrepresented, and distributed in a lineage-specific fashion in core and boundary domains of CD8+ T cell enhancers. Endogenous retroviruses are most significantly enriched in core domains with accessible chromatin, and bear recognition motifs for immune-related transcription factors. In contrast, short interspersed elements (SINEs) are preferentially overrepresented in nucleosome-containing boundaries. A substantial proportion of these SINEs harbor a high density of the enhancer-specific histone mark H3K4me1 and carry sequences that match enhancer boundary nucleotide composition. Motifs with regulatory features are better preserved within enhancer-enriched TE copies compared to their subfamily equivalents located in gene deserts. TE-rich and TE-poor enhancers associate with both shared and unique gene groups and are enriched in overlapping functions related to lymphocyte and leukocyte biology. The majority of T cell enhancers are shared with other immune lineages and are accessible in common hematopoietic progenitors. A higher proportion of immune tissue-specific enhancers are TE-rich compared to enhancers specific to other tissues, correlating with higher TE occurrence in immune gene-associated genomic regions. Our results suggest that during evolution, TEs abundant in these regions and carrying motifs potentially beneficial for enhancer architecture and immune functions were particularly frequently incorporated by evolving enhancers. Their putative selection and regulatory cooption may have accelerated the evolution of immune regulatory networks.
Collapse
|
14
|
Pundhir S, Bratt Lauridsen FK, Schuster MB, Jakobsen JS, Ge Y, Schoof EM, Rapin N, Waage J, Hasemann MS, Porse BT. Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors. Cell Rep 2019; 23:2744-2757. [PMID: 29847803 DOI: 10.1016/j.celrep.2018.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation.
Collapse
Affiliation(s)
- Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felicia Kathrine Bratt Lauridsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Marten Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Waage
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Harmanci A, Harmanci AS, Swaminathan J, Gopalakrishnan V. EpiSAFARI: sensitive detection of valleys in epigenetic signals for enhancing annotations of functional elements. Bioinformatics 2019; 36:1014-1021. [PMID: 31501853 PMCID: PMC7703766 DOI: 10.1093/bioinformatics/btz702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Functional genomics experiments generate genomewide signal profiles that are dense information sources for annotating the regulatory elements. These profiles measure epigenetic activity at the nucleotide resolution and they exhibit distinctive patterns as they fluctuate along the genome. Most notable of these patterns are the valley patterns that are prevalently observed in assays such as ChIP Sequencing and bisulfite sequencing. The genomic positions of valleys pinpoint locations of cis-regulatory elements such as enhancers and insulators. Systematic identification of the valleys provides novel information for delineating the annotation of regulatory elements. Nevertheless, the valleys are not reported by majority of the analysis pipelines. RESULTS We describe EpiSAFARI, a computational method for sensitive detection of valleys from diverse types of epigenetic profiles. EpiSAFARI employs a novel smoothing method for decreasing noise in signal profiles and accounts for technical factors such as sparse signals, mappability and nucleotide content. In performance comparisons, EpiSAFARI performs favorably in terms of accuracy. The histone modification valleys detected by EpiSAFARI exhibit high conservation, transcription factor binding and they are enriched in nascent transcription. In addition, the large clusters of histone valleys are found to be enriched at the promoters of the developmentally associated genes. Differential histone valleys exhibit concordance with differential DNase signal at cell line specific valleys. DNA methylation valleys exhibit elevated conservation and high transcription factor binding. Specifically, we observed enriched binding of transcription factors associated with chromatin structure around methyl-valleys. AVAILABILITY AND IMPLEMENTATION EpiSAFARI is publicly available at https://github.com/harmancilab/EpiSAFARI. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Akdes Serin Harmanci
- School of Biomedical Informatics, Center for Systems Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | - Vidya Gopalakrishnan
- Department of Pediatrics, USA,Department of Molecular and Cellular Oncology, USA,Brain Tumor Center, USA,Center for Cancer Epigenetics, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA,M.D. Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
16
|
Cremer M, Cremer T. Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes Chromosomes Cancer 2019; 58:427-436. [DOI: 10.1002/gcc.22714] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marion Cremer
- Biocenter, Department Biology II; Ludwig Maximilians-Universität (LMU Munich); Munich Germany
| | - Thomas Cremer
- Biocenter, Department Biology II; Ludwig Maximilians-Universität (LMU Munich); Munich Germany
| |
Collapse
|
17
|
Boureau L, Constantinof A, Moisiadis VG, Matthews SG, Szyf M. The DNA methylation landscape of enhancers in the guinea pig hippocampus. Epigenomics 2018; 10:349-365. [PMID: 29616589 DOI: 10.2217/epi-2017-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To determine the state of methylation of DNA molecules in the guinea pig hippocampus that are associated with either poised or active enhancers. METHODS We used sequential chromatin immunoprecipitation-bisulfite-sequencing with an antibody to H3K4me1 to map the state of methylation of DNA that is found within enhancers. Actively transcribing transcription start sites were mapped by chromatin immunoprecipitation-sequencing with an antibody to RNApolII-PS5. Total DNA methylation was mapped using reduced representation bisulfite sequencing. RESULTS DNA that overlaps with H3K4me1 binding regions in the genome is heavily methylated. However, DNA molecules that are found in H3K4me1 chromatin are hypomethylated, while DNA found in enhancers that are associated with active transcription is further demethylated. Differential methylation in enhancers is spotted in single CGs, bimodal and corresponds to transcription factor binding sites. CONCLUSION Our study delineates the DNA methylation status of H3K4 me1-bound regions in the hippocampus in active and inactive genes.
Collapse
Affiliation(s)
- Lisa Boureau
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Andrea Constantinof
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vasilis G Moisiadis
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Obstetrics & Gynecology, University of Toronto, Toronto, Ontario M5G 1E2, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
18
|
Ryynänen J, Kriebitzsch C, Meyer MB, Janssens I, Pike JW, Verlinden L, Verstuyf A. Class 3 semaphorins are transcriptionally regulated by 1,25(OH) 2D 3 in osteoblasts. J Steroid Biochem Mol Biol 2017; 173:185-193. [PMID: 28189595 PMCID: PMC9055571 DOI: 10.1016/j.jsbmb.2017.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 01/02/2023]
Abstract
The vitamin D endocrine system is essential for calcium metabolism and skeletal integrity. 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] regulates bone mineral homeostasis and acts directly on osteoblasts. In the present study we characterized the transcriptional regulation of the class 3 semaphorin (Sema3) gene family by 1,25(OH)2D3 in osteoblastic cells. Class 3 semaphorins are secreted proteins that regulate cell growth, morphology and migration, and were recently shown to be involved in bone homeostasis. In ST2, MC3T3-E1 and primary calvarial osteoblast cell cultures we found that all members of the Sema3 gene family were expressed, and that Sema3e and Sema3f were the most strongly induced 1,25(OH)2D3 target genes among the studied cell types. In addition, transcription of Sema3b and Sema3c was upregulated, whereas Sema3d and Sema3g was downregulated by 1,25(OH)2D3 in different osteoblastic cells. Chromatin immunoprecipitation analysis linked to DNA sequencing (ChIP-seq analysis) revealed the presence of the vitamin D receptor at multiple genomic loci in the proximity of Sema3 genes, demonstrating that the genes are primary 1,25(OH)2D3 targets. Furthermore, we showed that recombinant SEMA3E and SEMA3F protein were able to inhibit osteoblast proliferation. However, recombinant SEMA3s did not affect ST2 cell migration. The expression of class 3 semaphorins in osteoblasts together with their regulation by 1,25(OH)2D3 suggests that these genes, involved in the regulation of bone homeostasis, are additional mediators for 1,25(OH)2D3 signaling in osteoblasts.
Collapse
Affiliation(s)
- Jussi Ryynänen
- Clinical and Experimental Endocrinology, KULeuven, Herestraat 49, Bus 902, 3000 Leuven, Belgium.
| | - Carsten Kriebitzsch
- Clinical and Experimental Endocrinology, KULeuven, Herestraat 49, Bus 902, 3000 Leuven, Belgium.
| | - Mark B Meyer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Iris Janssens
- Clinical and Experimental Endocrinology, KULeuven, Herestraat 49, Bus 902, 3000 Leuven, Belgium.
| | - J Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, KULeuven, Herestraat 49, Bus 902, 3000 Leuven, Belgium.
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, KULeuven, Herestraat 49, Bus 902, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Guzman C, D'Orso I. CIPHER: a flexible and extensive workflow platform for integrative next-generation sequencing data analysis and genomic regulatory element prediction. BMC Bioinformatics 2017; 18:363. [PMID: 28789639 PMCID: PMC5549294 DOI: 10.1186/s12859-017-1770-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) approaches are commonly used to identify key regulatory networks that drive transcriptional programs. Although these technologies are frequently used in biological studies, NGS data analysis remains a challenging, time-consuming, and often irreproducible process. Therefore, there is a need for a comprehensive and flexible workflow platform that can accelerate data processing and analysis so more time can be spent on functional studies. RESULTS We have developed an integrative, stand-alone workflow platform, named CIPHER, for the systematic analysis of several commonly used NGS datasets including ChIP-seq, RNA-seq, MNase-seq, DNase-seq, GRO-seq, and ATAC-seq data. CIPHER implements various open source software packages, in-house scripts, and Docker containers to analyze and process single-ended and pair-ended datasets. CIPHER's pipelines conduct extensive quality and contamination control checks, as well as comprehensive downstream analysis. A typical CIPHER workflow includes: (1) raw sequence evaluation, (2) read trimming and adapter removal, (3) read mapping and quality filtering, (4) visualization track generation, and (5) extensive quality control assessment. Furthermore, CIPHER conducts downstream analysis such as: narrow and broad peak calling, peak annotation, and motif identification for ChIP-seq, differential gene expression analysis for RNA-seq, nucleosome positioning for MNase-seq, DNase hypersensitive site mapping, site annotation and motif identification for DNase-seq, analysis of nascent transcription from Global-Run On (GRO-seq) data, and characterization of chromatin accessibility from ATAC-seq datasets. In addition, CIPHER contains an "analysis" mode that completes complex bioinformatics tasks such as enhancer discovery and provides functions to integrate various datasets together. CONCLUSIONS Using public and simulated data, we demonstrate that CIPHER is an efficient and comprehensive workflow platform that can analyze several NGS datasets commonly used in genome biology studies. Additionally, CIPHER's integrative "analysis" mode allows researchers to elicit important biological information from the combined dataset analysis.
Collapse
Affiliation(s)
- Carlos Guzman
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Present address: Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
20
|
Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics Chromatin 2017; 10:39. [PMID: 28784182 PMCID: PMC5547466 DOI: 10.1186/s13072-017-0146-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. RESULTS Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). CONCLUSIONS Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.
Collapse
|