1
|
Drazkowska K, Cieslicka J, Kitowicz M, Pastucha A, Markiewicz L, Szymanek W, Goryca K, Kowalczyk T, Cysewski D, Bausch AR, Sikorski PJ. Effective recognition of double-stranded RNA does not require activation of cellular inflammation. SCIENCE ADVANCES 2025; 11:eads6498. [PMID: 40203104 PMCID: PMC11980852 DOI: 10.1126/sciadv.ads6498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Excess double-stranded RNA (dsRNA) is present in the cytoplasm of human cells, usually following viral infections. Recognition of dsRNAs activates innate immune pathways, leading to cellular inflammation and inhibition of cell growth. Here, we show that an effective dsRNA response may occur without the onset of inflammation. Pro-inflammatory [RLR (retinoic acid-inducible gene I-like receptor)-dependent pathway] and cell growth inhibitory mechanisms [oligoadenylate synthetase (OAS)/ribonuclease L (RNase L)- and dsRNA-activated protein kinase (PKR)-dependent pathways] can act independently. We found that the 5' ends of dsRNA direct the onset of cellular inflammation, whereas the RNA duplex activates the OAS/RNase L and PKR pathways. Unexpectedly, three of the most common human RNA epitranscriptomic marks-i.e., N6-methyladenosine, 5-methylcytosine, and pseudouridine-had almost no influence on the immunogenicity of dsRNA; however, the presence of N6-methyladenosine inhibited the OAS/RNase L pathway. Our observations demonstrate how precisely innate immunity is fine tuned in cells to take appropriate countermeasures when a specific threat arises.
Collapse
Affiliation(s)
- Karolina Drazkowska
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Julia Cieslicka
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Michal Kitowicz
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Anna Pastucha
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | | | - Wiktoria Szymanek
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Andreas R. Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Pawel J. Sikorski
- Laboratory of Epitranscriptomics, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Yang ZF, Jiang XC, Gao JQ. Present insights into the progress in gene therapy delivery systems for central nervous system diseases. Int J Pharm 2025; 669:125069. [PMID: 39662855 DOI: 10.1016/j.ijpharm.2024.125069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Central nervous system (CNS) diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), spinal cord injury (SCI), and ischemic strokes and certain rare diseases, such as amyotrophic lateral sclerosis (ALS) and ataxia, present significant obstacles to treatment using conventional molecular pharmaceuticals. Gene therapy, with its ability to target previously "undruggable" proteins with high specificity and safety, is increasingly utilized in both preclinical and clinical research for CNS ailments. As our comprehension of the pathophysiology of these conditions deepens, gene therapy stands out as a versatile and promising strategy with the potential to both prevent and treat these diseases. Despite the remarkable progress in refining and enhancing the structural design of gene therapy agents, substantial obstacles persist in their effective and safe delivery within living systems. To surmount these obstacles, a diverse array of gene delivery systems has been devised and continuously improved. Notably, Adeno-Associated Virus (AAVs)-based viral gene vectors and lipid-based nanocarriers have each advanced the in vivo delivery of gene therapies to various extents. This review aims to concisely summarize the pathophysiological foundations of CNS diseases and to shed light on the latest advancements in gene delivery vector technologies. It discusses the primary categories of these vectors, their respective advantages and limitations, and their specialized uses in the context of gene therapy delivery.
Collapse
Affiliation(s)
- Ze-Feng Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China..
| |
Collapse
|
3
|
Amiri Zadeh Fard S, Abuei H, Behzad Behbahani A, Rafiei Dehbidi G, Zare F, Nejabat M, Safarpour A, Farhadi A. Unlocking Therapeutic Potential: Enhanced shRNA Delivery with Tat Peptide in the Human Respiratory Syncytial Virus Treatment. Adv Pharm Bull 2024; 14:696-704. [PMID: 39494251 PMCID: PMC11530872 DOI: 10.34172/apb.2024.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 11/05/2024] Open
Abstract
PURPOSE This research investigated the development of short hairpin RNA (shRNA) molecules designed to target specific regions of the human respiratory syncytial virus (HRSV) M and F genes. The study aimed to assess the therapeutic potential of these shRNAs and evaluate the effectiveness of Tat peptide-mediated delivery in enhancing their functionality. METHODS We acquired isolates from pediatric patients experiencing respiratory illness then cultured in HEp-2 cells. We constructed plasmids expressing shRNAs. Tat peptide as a facilitator for shRNA plasmid delivery was used. The cytotoxicity of ribavirin, shRNA constructs, and control agents was assessed using the MTT assay. The transfection efficiency of Tat peptide-mediated shRNA delivery with that of lipofectamine 3000TM were compared. Finally, real-time PCR was employed to quantify HRSV replication in the treated cells. RESULTS Tat peptide-mediated delivery of shRNA plasmids significantly suppressed the expression of the M and F genes of HRSV compared to lipofectamine 3000TM. This suppression was evident in both short-term experiments and scenarios involving stable shRNA expression. Furthermore, the combination of ribavirin with shRNA treatment resulted in a substantial reduction in viral load. Notably, the most pronounced antiviral effect was observed when both shRNAs were employed simultaneously. CONCLUSION Our findings suggest that Tat peptide-mediated delivery of shRNA plasmids holds significant potential for achieving stable suppression of HRSV genes. This approach warrants further investigation as a potential gene therapy strategy for HRSV. By demonstrating promising results in vitro, this study highlights the need for future in vivo studies to comprehensively evaluate the therapeutic potential of this approach in a clinical setting.
Collapse
Affiliation(s)
- Saeid Amiri Zadeh Fard
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farahnaz Zare
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nejabat
- Shiraz HIV/AIDS research center, Institute of health, Shiraz University of medical sciences, Shiraz, Iran
| | - Alireza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Wolfson DW, Kim NK, Lee KH, Beyersdorf JP, Langberg JJ, Fernandez N, Choi D, Zureick N, Kim TY, Bae S, Gu JM, Kirschman JL, Fan J, Sheng CY, Gottlieb Sen D, Mettler B, Sung JH, Yoon YS, Park SJ, Santangelo PJ, Cho HC. Transient pacing in pigs with complete heart block via myocardial injection of mRNA coding for the T-box transcription factor 18. Nat Biomed Eng 2024; 8:1124-1141. [PMID: 38698155 PMCID: PMC11410671 DOI: 10.1038/s41551-024-01211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
The adenovirus-mediated somatic transfer of the embryonic T-box transcription factor 18 (TBX18) gene can convert chamber cardiomyocytes into induced pacemaker cells. However, the translation of therapeutic TBX18-induced cardiac pacing faces safety challenges. Here we show that the myocardial expression of synthetic TBX18 mRNA in animals generates de novo pacing and limits innate and inflammatory immune responses. In rats, intramyocardially injected mRNA remained localized, whereas direct myocardial injection of an adenovirus carrying a reporter gene resulted in diffuse expression and in substantial spillover to the liver, spleen and lungs. Transient expression of TBX18 mRNA in rats led to de novo automaticity and pacemaker properties and, compared with the injection of adenovirus, to substantial reductions in the expression of inflammatory genes and in activated macrophage populations. In rodent and clinically relevant porcine models of complete heart block, intramyocardially injected TBX18 mRNA provided rate-adaptive cardiac pacing for one month that strongly correlated with the animal's sinus rhythm and physical activity. TBX18 mRNA may aid the development of biological pacemakers.
Collapse
Affiliation(s)
- David W Wolfson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nam Kyun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ki Hong Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Chonnam National University Medical School, Gwangju, South Korea
| | - Jared P Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jonathan J Langberg
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Natasha Fernandez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dahim Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nadine Zureick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tae Yun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Seongho Bae
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jin-Mo Gu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jinqi Fan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christina Y Sheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Danielle Gottlieb Sen
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bret Mettler
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jung Hoon Sung
- Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young-Sup Yoon
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sung-Jin Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Hee Cheol Cho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, The Johns Hopkins Children's Center, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA.
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Tomecki R, Drazkowska K, Madaj R, Mamot A, Dunin-Horkawicz S, Sikorski PJ. Expanding the Available RNA Labeling Toolbox With CutA Nucleotidyltransferase for Efficient Transcript Labeling with Purine and Pyrimidine Nucleotide Analogs. Chembiochem 2024; 25:e202400202. [PMID: 38818670 DOI: 10.1002/cbic.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
RNA labeling is an invaluable tool for investigation of the function and localization of nucleic acids. Labels are commonly incorporated into 3' end of RNA and the primary enzyme used for this purpose is RNA poly(A) polymerase (PAP), which belongs to the class of terminal nucleotidyltransferases (NTases). However, PAP preferentially adds ATP analogs, thus limiting the number of available substrates. Here, we report the use of another NTase, CutA from the fungus Thielavia terrestris. Using this enzyme, we were able to incorporate into the 3' end of RNA not only purine analogs, but also pyrimidine analogs. We engaged strain-promoted azide-alkyl cycloaddition (SPAAC) to obtain fluorescently labeled or biotinylated transcripts from RNAs extended with azide analogs by CutA. Importantly, modified transcripts retained their biological properties. Furthermore, fluorescently labeled mRNAs were suitable for visualization in cultured mammalian cells. Finally, we demonstrate that either affinity studies or molecular dynamic (MD) simulations allow for rapid screening of NTase substrates, what opens up new avenues in the search for the optimal substrates for this class of enzymes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Rafal Madaj
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Adam Mamot
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Pawel J Sikorski
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
6
|
Müller JA, Schäffler N, Kellerer T, Schwake G, Ligon TS, Rädler JO. Kinetics of RNA-LNP delivery and protein expression. Eur J Pharm Biopharm 2024; 197:114222. [PMID: 38387850 DOI: 10.1016/j.ejpb.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Lipid nanoparticles (LNPs) employing ionizable lipids are the most advanced technology for delivery of RNA, most notably mRNA, to cells. LNPs represent well-defined core-shell particles with efficient nucleic acid encapsulation, low immunogenicity and enhanced efficacy. While much is known about the structure and activity of LNPs, less attention is given to the timing of LNP uptake, cytosolic transfer and protein expression. However, LNP kinetics is a key factor determining delivery efficiency. Hence quantitative insight into the multi-cascaded pathway of LNPs is of interest to elucidate the mechanism of delivery. Here, we review experiments as well as theoretical modeling of the timing of LNP uptake, mRNA-release and protein expression. We describe LNP delivery as a sequence of stochastic transfer processes and review a mathematical model of subsequent protein translation from mRNA. We compile probabilities and numbers obtained from time resolved microscopy. Specifically, live-cell imaging on single cell arrays (LISCA) allows for high-throughput acquisition of thousands of individual GFP reporter expression time courses. The traces yield the distribution of mRNA life-times, expression rates and expression onset. Correlation analysis reveals an inverse dependence of gene expression efficiency and transfection onset-times. Finally, we discuss why timing of mRNA release is critical in the context of codelivery of multiple nucleic acid species as in the case of mRNA co-expression or CRISPR/Cas gene editing.
Collapse
Affiliation(s)
- Judith A Müller
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Nathalie Schäffler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | - Thomas Kellerer
- Multiphoton Imaging Lab, Munich University of Applied Sciences, Munich, Germany
| | - Gerlinde Schwake
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany
| | | | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig Maximilians-University, Munich, Germany.
| |
Collapse
|
7
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Hassett KJ, Rajlic IL, Bahl K, White R, Cowens K, Jacquinet E, Burke KE. mRNA vaccine trafficking and resulting protein expression after intramuscular administration. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102083. [PMID: 38161733 PMCID: PMC10755037 DOI: 10.1016/j.omtn.2023.102083] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
The mRNA vaccine route from injection site to critical immunologic tissues, as well as the localization of protein antigen following intramuscular (i.m.) administration, is crucial to generating an effective immune response. Here, we quantified mRNA at the injection site, lymph nodes, and in select tissues. mRNA was primarily present 24 h after administration and then rapidly degraded from local and systemic tissues. Histological analyses of mRNA and expressed protein at the site of administration and in the lymph nodes following i.m. administration of our vaccine in rodents and nonhuman primates (NHPs) were completed, and mRNA and protein expression were detected in tissue resident and infiltrating immune cells at the injection site. In addition, high levels of protein expression were observed within subcapsular and medullary sinus macrophages in draining lymph nodes. More important, results were similar between rodents and NHPs, indicating cross-species similarities.
Collapse
Affiliation(s)
| | | | - Kapil Bahl
- Orbital Therapeutics, 21 Erie Street, Cambridge, MA 02139, USA
| | - Rebecca White
- ReNAgade Therapeutics, 640 Memorial Drive, Suite 2300, Cambridge, MA 02139, USA
| | - Kristen Cowens
- Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Eric Jacquinet
- Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | | |
Collapse
|
9
|
Liu YD, Chen HR, Zhang Y, Yan G, Yan HJ, Zhu Q, Peng LH. Progress and challenges of plant-derived nucleic acids as therapeutics in macrophage-mediated RNA therapy. Front Immunol 2023; 14:1255668. [PMID: 38155963 PMCID: PMC10753178 DOI: 10.3389/fimmu.2023.1255668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Plant-derived nucleic acids, especially small RNAs have been proved by increasing evidence in the pharmacological activities and disease treatment values in macrophage meditated anti-tumor performance, immune regulating functions and antiviral activities. But the uptake, application and delivery strategies of RNAs as biodrugs are different from the small molecules and recombinant protein drugs. This article summarizes the reported evidence for cross-kingdom regulation by plant derived functional mRNAs and miRNAs. Based on that, their involvement and potentials in macrophage-mediated anti-tumor/inflammatory therapies are mainly discussed, as well as the load prospect of plant RNAs in viruses and natural exosome vehicles, and their delivery to mammalian cells through macrophage were also summarized. This review is to provide evidence and views for the plant derived RNAs as next generation of drugs with application potential in nucleic acid-based bio-therapy.
Collapse
Affiliation(s)
- Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao-Ran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao-Jie Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
10
|
Huang Y, Zhu X, Guo X, Zhou Y, Liu D, Mao J, Xiong Y, Deng Y, Gao X. Advances in mRNA vaccines for viral diseases. J Med Virol 2023; 95:e28924. [PMID: 37417396 DOI: 10.1002/jmv.28924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Since the onset of the pandemic caused by severe acute respiratory syndrome coronavirus 2, messenger RNA (mRNA) vaccines have demonstrated outstanding performance. mRNA vaccines offer significant advantages over conventional vaccines in production speed and cost-effectiveness, making them an attractive option against other viral diseases. This article reviewed recent advances in viral mRNA vaccines and their delivery systems to provide references and guidance for developing mRNA vaccines for new viral diseases.
Collapse
Affiliation(s)
- Yukai Huang
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuerui Zhu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Guo
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Dongying Liu
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingrui Mao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Department of Pharmaceutics, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinghong Gao
- Department of Microbiology, School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
- Provincial Department of Education, Key Laboratory of Infectious Disease & Bio-Safety, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Herrera-Barrera M, Gautam M, Lokras A, Vlasova K, Foged C, Sahay G. Lipid Nanoparticle-Enabled Intracellular Delivery of Prime Editors. AAPS J 2023; 25:65. [PMID: 37380935 DOI: 10.1208/s12248-023-00833-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Prime editing is an advanced gene editing platform with potential to correct almost any disease-causing mutation. As genome editors have evolved, their size and complexity have increased, hindering delivery technologies with low-carrying capacity and endosomal escape. We formulated an array of lipid nanoparticles (LNPs) containing prime editors (PEs). We were able to encapsulate PEs in LNPs and confirmed the presence of PE mRNA and two different guide RNAs using HPLC. In addition, we developed a novel reporter cell line for rapid identification of LNPs suited for prime editing. A 54% prime editing rate was observed with enhanced LNPs (eLNPs) containing the cholesterol analog β-sitosterol at optimal ratios of RNA cargoes. eLNPs displayed a polyhedral morphology and a more fluid membrane state that led to improved endosomal escape, eventually causing onset of editing within 9 h and reaching maximum efficiency after 24 h. Hence, PEs delivered using LNPs can propel a new wave of therapies for many additional targets potentially enabling a range of new applications.
Collapse
Affiliation(s)
- Marco Herrera-Barrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA
| | - Milan Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA
| | - Abhijeet Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Kseniia Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, 97201, USA.
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA.
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| |
Collapse
|
12
|
Hatit MZC, Dobrowolski CN, Lokugamage MP, Loughrey D, Ni H, Zurla C, Da Silva Sanchez AJ, Radmand A, Huayamares SG, Zenhausern R, Paunovska K, Peck HE, Kim J, Sato M, Feldman JI, Rivera MA, Cristian A, Kim Y, Santangelo PJ, Dahlman JE. Nanoparticle stereochemistry-dependent endocytic processing improves in vivo mRNA delivery. Nat Chem 2023; 15:508-515. [PMID: 36864143 PMCID: PMC11831600 DOI: 10.1038/s41557-023-01138-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2023] [Indexed: 03/04/2023]
Abstract
Stereochemistry can alter small-molecule pharmacokinetics, safety and efficacy. However, it is unclear whether the stereochemistry of a single compound within a multicomponent colloid such as a lipid nanoparticle (LNP) can influence its activity in vivo. Here we report that LNPs containing stereopure 20α-hydroxycholesterol (20α) delivered mRNA to liver cells up to 3-fold more potently than LNPs containing a mixture of both 20α- and 20β-hydroxycholesterols (20mix). This effect was not driven by LNP physiochemical traits. Instead, in vivo single-cell RNA sequencing and imaging revealed that 20mix LNPs were sorted into phagocytic pathways more than 20α LNPs, resulting in key differences between LNP biodistribution and subsequent LNP functional delivery. These data are consistent with the fact that nanoparticle biodistribution is necessary, but not sufficient, for mRNA delivery, and that stereochemistry-dependent interactions between LNPs and target cells can improve mRNA delivery.
Collapse
Affiliation(s)
- Marine Z C Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Curtis N Dobrowolski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Huanzhen Ni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Chiara Zurla
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Alejandro J Da Silva Sanchez
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Afsane Radmand
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jinwhan Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Manaka Sato
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob I Feldman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Michael-Alexander Rivera
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ana Cristian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - YongTae Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
von der Haar T, Mulroney TE, Hedayioglu F, Kurusamy S, Rust M, Lilley KS, Thaventhiran JE, Willis AE, Smales CM. Translation of in vitro-transcribed RNA therapeutics. Front Mol Biosci 2023; 10:1128067. [PMID: 36845540 PMCID: PMC9943971 DOI: 10.3389/fmolb.2023.1128067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
In vitro transcribed, modified messenger RNAs (IVTmRNAs) have been used to vaccinate billions of individuals against the SARS-CoV-2 virus, and are currently being developed for many additional therapeutic applications. IVTmRNAs must be translated into proteins with therapeutic activity by the same cellular machinery that also translates native endogenous transcripts. However, different genesis pathways and routes of entry into target cells as well as the presence of modified nucleotides mean that the way in which IVTmRNAs engage with the translational machinery, and the efficiency with which they are being translated, differs from native mRNAs. This review summarises our current knowledge of commonalities and differences in translation between IVTmRNAs and cellular mRNAs, which is key for the development of future design strategies that can generate IVTmRNAs with improved activity in therapeutic applications.
Collapse
Affiliation(s)
- Tobias von der Haar
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Thomas E. Mulroney
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Hedayioglu
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Sathishkumar Kurusamy
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Maria Rust
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James E. Thaventhiran
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Anne E. Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - C. Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
14
|
Yuan Y, Gao F, Chang Y, Zhao Q, He X. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res 2023; 11:6. [PMID: 36650562 PMCID: PMC9845107 DOI: 10.1186/s40364-023-00449-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
High-frequency mutations in tumor genomes could be exploited as an asset for developing tumor vaccines. In recent years, with the tremendous breakthrough in genomics, intelligence algorithm, and in-depth insight of tumor immunology, it has become possible to rapidly target genomic alterations in tumor cell and rationally select vaccine targets. Among a variety of candidate vaccine platforms, the early application of mRNA was limited by instability low efficiency and excessive immunogenicity until the successful development of mRNA vaccines against SARS-COV-2 broken of technical bottleneck in vaccine preparation, allowing tumor mRNA vaccines to be prepared rapidly in an economical way with good performance of stability and efficiency. In this review, we systematically summarized the classification and characteristics of tumor antigens, the general process and methods for screening neoantigens, the strategies of vaccine preparations and advances in clinical trials, as well as presented the main challenges in the current mRNA tumor vaccine development.
Collapse
Affiliation(s)
- Yuan Yuan
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Gao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xingxing He
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
15
|
Shen J, Chen J, Wang D, Liu Z, Han G, Liu B, Han M, Zhang R, Liu G, Zhang Z. Real-time quantification of nuclear RNA export using an intracellular relocation probe. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Athirasala A, Patel S, Menezes PP, Kim J, Tahayeri A, Sahay G, Bertassoni LE. Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102550. [PMID: 35292368 PMCID: PMC9206884 DOI: 10.1016/j.nano.2022.102550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 06/03/2023]
Abstract
mRNA therapeutics have increased in popularity, largely due to the transient and fast nature of protein expression and the low risk of off-target effects. This has increased drastically with the remarkable success of mRNA-based vaccines for COVID-19. Despite advances in lipid nanoparticle (LNP)-based delivery, the mechanisms that regulate efficient endocytic trafficking and translation of mRNA remain poorly understood. Although it is widely acknowledged that the extracellular matrix (ECM) regulates uptake and expression of exogenous nano-complexed genetic material, its specific effects on mRNA delivery and expression have not yet been examined. Here, we demonstrate a critical role for matrix stiffness in modulating both mRNA transfection and expression and uncover distinct mechano-regulatory mechanisms for endocytosis of mRNA through RhoA mediated mTOR signaling and cytoskeletal dynamics. Our findings have implications for effective delivery of therapeutic mRNA to targeted tissues that may be differentially affected by tissue and matrix stiffness.
Collapse
Affiliation(s)
- Avathamsa Athirasala
- Department of Biomedical Engineering, Collaborative Life Sciences Building, Oregon Health and Science University, Portland, OR, USA
| | - Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, OR, USA
| | - Paula P Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Gaurav Sahay
- Department of Biomedical Engineering, Collaborative Life Sciences Building, Oregon Health and Science University, Portland, OR, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, OR, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E Bertassoni
- Department of Biomedical Engineering, Collaborative Life Sciences Building, Oregon Health and Science University, Portland, OR, USA; Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, Portland, OR, USA; Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
17
|
Bornewasser L, Domnick C, Kath-Schorr S. Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chem Sci 2022; 13:4753-4761. [PMID: 35655897 PMCID: PMC9067582 DOI: 10.1039/d2sc00670g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The preparation of highly modified mRNAs and visualization of their cellular distribution are challenging. We report in-cell application of in vitro transcribed mRNA containing natural base modifications and site-specifically introduced artificial nucleotides. Click chemistry on mRNA allows visualization in cells with excellent signal intensities. While non-specific introduction of reporter groups often leads to loss in mRNA functionality, we combined the benefits from site-specificity in the 3′-UTR incorporated unnatural nucleotides with the improved translation efficiency of the natural base modifications Ψ and 5mC. A series of experiments is described to observe, quantify and verify mRNA functionality. This approach represents a new way to visualize mRNA delivery into cells and monitor its spread on a cellular level and translation efficiency. We observed increased protein expression from this twofold chemically modified, artificial mRNA counterbalancing a reduced transfection rate. This synergetic effect can be exploited as a powerful tool for future research on mRNA therapeutics. Introducing unnatural base modifications site-specifically into the 3′-UTR of an mRNA bearing natural base modifications allows efficient visualization in cells by click chemistry. An enhanced protein expression in cells is observed from this twofold modified mRNA.![]()
Collapse
Affiliation(s)
- Lisa Bornewasser
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Christof Domnick
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne Greinstrasse 4 50939 Cologne Germany
| |
Collapse
|
18
|
Thekke-Veetil T, McCoppin NK, Domier LL, Hajimorad M, Lambert KN, Lim HS, Hartman GL. Transient expression of a luciferase mRNA in plant-parasitic and free-living nematodes by electroporation. Mol Biochem Parasitol 2022; 250:111489. [DOI: 10.1016/j.molbiopara.2022.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
|
19
|
Vervaeke P, Borgos SE, Sanders NN, Combes F. Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Adv Drug Deliv Rev 2022; 184:114236. [PMID: 35351470 PMCID: PMC8957368 DOI: 10.1016/j.addr.2022.114236] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022]
Abstract
The success of the messenger RNA-based COVID-19 vaccines of Moderna and Pfizer/BioNTech marks the beginning of a new chapter in modern medicine. However, the rapid rise of mRNA therapeutics has resulted in a regulatory framework that is somewhat lagging. The current guidelines either do not apply, do not mention RNA therapeutics, or do not have widely accepted definitions. This review describes the guidelines for preclinical biodistribution studies of mRNA/siRNA therapeutics and highlights the relevant differences for mRNA vaccines. We also discuss the role of in vivo RNA imaging techniques and other assays to fulfill and/or complement the regulatory requirements. Specifically, quantitative whole-body autoradiography, microautoradiography, mass spectrometry-based assays, hybridization techniques (FISH, bDNA), PCR-based methods, in vivo fluorescence imaging, and in vivo bioluminescence imaging, are discussed. We conclude that this new and rapidly evolving class of medicines demands a multi-layered approach to fully understand its biodistribution and in vivo characteristics.
Collapse
Affiliation(s)
- P Vervaeke
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | - S E Borgos
- SINTEF Industry, Dept. of Biotechnology and Nanomedicine, Research Group Mass Spectrometry, Sem Sælands v. 2A, N-7034 Trondheim, Norway
| | - N N Sanders
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium.
| | - F Combes
- SINTEF Industry, Dept. of Biotechnology and Nanomedicine, Research Group Mass Spectrometry, Sem Sælands v. 2A, N-7034 Trondheim, Norway.
| |
Collapse
|
20
|
Paramasivam P, Stöter M, Corradi E, Dalla Costa I, Höijer A, Bartesaghi S, Sabirsh A, Lindfors L, Yanez Arteta M, Nordberg P, Andersson S, Baudet ML, Bickle M, Zerial M. Quantitative intracellular retention of delivered RNAs through optimized cell fixation and immunostaining. RNA (NEW YORK, N.Y.) 2022; 28:433-446. [PMID: 34949721 PMCID: PMC8848937 DOI: 10.1261/rna.078895.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Detection of nucleic acids within subcellular compartments is key to understanding their function. Determining the intracellular distribution of nucleic acids requires quantitative retention and estimation of their association with different organelles by immunofluorescence microscopy. This is particularly important for the delivery of nucleic acid therapeutics, which depends on endocytic uptake and endosomal escape. However, the current protocols fail to preserve the majority of exogenously delivered nucleic acids in the cytoplasm. To solve this problem, by monitoring Cy5-labeled mRNA delivered to primary human adipocytes via lipid nanoparticles (LNP), we optimized cell fixation, permeabilization, and immunostaining of a number of organelle markers, achieving quantitative retention of mRNA and allowing visualization of levels that escape detection using conventional procedures. The optimized protocol proved effective on exogenously delivered siRNA, miRNA, as well as endogenous miRNA. Our protocol is compatible with RNA probes of single molecule fluorescence in situ hybridization (smFISH) and molecular beacon, thus demonstrating that it is broadly applicable to study a variety of nucleic acids in cultured cells.
Collapse
Affiliation(s)
- Prasath Paramasivam
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Eloina Corradi
- Department CIBIO, University of Trento, Trento 38123, Italy
| | | | - Andreas Höijer
- Advanced Drug Delivery, Pharmaceutical Science R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Science R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Science R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Science R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Peter Nordberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | | | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
21
|
Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022; 181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
RNA therapeutics (e.g. siRNA, oligonucleotides, mRNA, etc.) show great potential for the treatment of a myriad of diseases. However, to reach their site of action in the cytosol or nucleus of target cells, multiple intra- and extracellular barriers have to be surmounted. Several non-viral delivery systems, such as nanoparticles and conjugates, have been successfully developed to meet this requirement. Unfortunately, despite these clear advances, state-of-the-art delivery agents still suffer from relatively low intracellular delivery efficiencies. Notably, our current understanding of the intracellular delivery process is largely oversimplified. Gaining mechanistic insight into how RNA formulations are processed by cells will fuel rational design of the next generation of delivery carriers. In addition, identifying which intracellular pathways contribute to productive RNA delivery could provide opportunities to boost the delivery performance of existing nanoformulations. In this review, we discuss both established as well as emerging techniques that can be used to assess the impact of different intracellular barriers on RNA transfection performance. Next, we highlight how several modulators, including small molecules but also genetic perturbation technologies, can boost RNA delivery by intervening at differing stages of the intracellular delivery process, such as cellular uptake, intracellular trafficking, endosomal escape, autophagy and exocytosis.
Collapse
Affiliation(s)
- Thijs Van de Vyver
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
23
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Mamot A, Sikorski PJ, Siekierska A, de Witte P, Kowalska J, Jemielity J. Ethylenediamine derivatives efficiently react with oxidized RNA 3' ends providing access to mono and dually labelled RNA probes for enzymatic assays and in vivo translation. Nucleic Acids Res 2021; 50:e3. [PMID: 34591964 PMCID: PMC8755103 DOI: 10.1093/nar/gkab867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 01/01/2023] Open
Abstract
Development of RNA-based technologies relies on the ability to detect, manipulate, and modify RNA. Efficient, selective and scalable covalent modification of long RNA molecules remains a challenge. We report a chemical method for modification of RNA 3′-end based on previously unrecognized superior reactivity of N-substituted ethylenediamines in reductive amination of periodate-oxidized RNA. Using this method, we obtained fluorescently labelled or biotinylated RNAs varying in length (from 3 to 2000 nt) and carrying different 5′ ends (including m7G cap) in high yields (70–100% by HPLC). The method is scalable (up to sub-milligrams of mRNA) and combined with label-facilitated HPLC purification yields highly homogeneous products. The combination of 3′-end labelling with 5′-end labelling by strain-promoted azide-alkyne cycloaddition (SPAAC) afforded a one-pot protocol for site-specific RNA bifunctionalization, providing access to two-colour fluorescent RNA probes. These probes exhibited fluorescence resonance energy transfer (FRET), which enabled real-time monitoring of several RNA hydrolase activities (RNase A, RNase T1, RNase R, Dcp1/2, and RNase H). Dually labelled mRNAs were efficiently translated in cultured cells and in zebrafish embryos, which combined with their detectability by fluorescent methods and scalability of the synthesis, opens new avenues for the investigation of mRNA metabolism and the fate of mRNA-based therapeutics.
Collapse
Affiliation(s)
- Adam Mamot
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Depaix A, Mlynarska-Cieslak A, Warminski M, Sikorski PJ, Jemielity J, Kowalska J. RNA Ligation for Mono and Dually Labeled RNAs. Chemistry 2021; 27:12190-12197. [PMID: 34114681 DOI: 10.1002/chem.202101909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/27/2022]
Abstract
Labeled RNAs are invaluable probes for investigation of RNA function and localization. However, mRNA labeling remains challenging. Here, we developed an improved method for 3'-end labeling of in vitro transcribed RNAs. We synthesized novel adenosine 3',5'-bisphosphate analogues modified at the N6 or C2 position of adenosine with an azide-containing linker, fluorescent label, or biotin and assessed these constructs as substrates for RNA labeling directly by T4 ligase or via postenzymatic strain-promoted alkyne-azide cycloaddition (SPAAC). All analogues were substrates for T4 RNA ligase. Analogues containing bulky fluorescent labels or biotin showed better overall labeling yields than postenzymatic SPAAC. We successfully labeled uncapped RNAs, NAD-capped RNAs, and 5'-fluorescently labeled m7 Gp3 Am -capped mRNAs. The obtained highly homogenous dually labeled mRNA was translationally active and enabled fluorescence-based monitoring of decapping. This method will facilitate the use of various functionalized mRNA-based probes.
Collapse
Affiliation(s)
- Anaïs Depaix
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Agnieszka Mlynarska-Cieslak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
26
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13070945. [PMID: 34202584 PMCID: PMC8308975 DOI: 10.3390/pharmaceutics13070945] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Messenger RNA (mRNA) is being extensively used in gene therapy and vaccination due to its safety over DNA, in the following ways: its lack of integration risk, cytoplasmic expression, and transient expression compatible with fine regulations. However, clinical applications of mRNA are limited by its fast degradation by nucleases, and the activation of detrimental immune responses. Advances in mRNA applications, with the recent approval of COVID-19 vaccines, were fueled by optimization of the mRNA sequence and the development of mRNA delivery systems. Although delivery systems and mRNA sequence optimization have been abundantly reviewed, understanding of the intracellular processing of mRNA is mandatory to improve its applications. We will focus on lipid nanoparticles (LNPs) as they are the most advanced nanocarriers for the delivery of mRNA. Here, we will review how mRNA therapeutic potency can be affected by its interactions with cellular proteins and intracellular distribution.
Collapse
Affiliation(s)
- Christophe Delehedde
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Patrick Midoux
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
| | - Chantal Pichon
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| | - Federico Perche
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| |
Collapse
|
28
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
29
|
Anderson DJ, Politch JA, Cone RA, Zeitlin L, Lai SK, Santangelo PJ, Moench TR, Whaley KJ. Engineering monoclonal antibody-based contraception and multipurpose prevention technologies†. Biol Reprod 2020; 103:275-285. [PMID: 32607584 PMCID: PMC7401387 DOI: 10.1093/biolre/ioaa096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Sexually transmitted infections are highly prevalent, and over 40% of pregnancies are unplanned. We are producing new antibody-based multipurpose prevention technology products to address these problems and fill an unmet need in female reproductive health. We used a Nicotiana platform to manufacture monoclonal antibodies against two prevalent sexually transmitted pathogens, HIV-1 and HSV-2, and incorporated them into a vaginal film (MB66) for preclinical and Phase 1 clinical testing. These tests are now complete and indicate that MB66 is effective and safe in women. We are now developing an antisperm monoclonal antibody to add contraceptive efficacy to this product. The antisperm antibody, H6-3C4, originally isolated by Shinzo Isojima from the blood of an infertile woman, recognizes a carbohydrate epitope on CD52g, a glycosylphosphatidylinositol-anchored glycoprotein found in abundance on the surface of human sperm. We engineered the antibody for production in Nicotiana; the new antibody which we call "human contraception antibody," effectively agglutinates sperm at concentrations >10 μg/ml and maintains activity under a variety of physiological conditions. We are currently seeking regulatory approval for a Phase 1 clinical trial, which will include safety and "proof of principle" efficacy endpoints. Concurrently, we are working with new antibody production platforms to bring the costs down, innovative antibody designs that may produce more effective second-generation antibodies, and delivery systems to provide extended protection.
Collapse
Affiliation(s)
- Deborah J Anderson
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A Politch
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Richard A Cone
- Biophysics Department, Johns Hopkins University, Baltimore, MD, USA
- Mucommune, LLC, Durham, NC, USA
| | | | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Department of Microbiomology & Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Thomas R Moench
- Mucommune, LLC, Durham, NC, USA
- ZabBio, Inc., San Diego, CA, USA
| | | |
Collapse
|
30
|
Khalil AS, Yu X, Umhoefer JM, Chamberlain CS, Wildenauer LA, Diarra GM, Hacker TA, Murphy WL. Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. SCIENCE ADVANCES 2020; 6:eaba2422. [PMID: 32937431 PMCID: PMC7458450 DOI: 10.1126/sciadv.aba2422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Nonviral mRNA delivery is an attractive therapeutic gene delivery strategy, as it achieves efficient protein overexpression in vivo and has a desirable safety profile. However, mRNA's short cytoplasmic half-life limits its utility to therapeutic applications amenable to repeated dosing or short-term overexpression. Here, we describe a biomaterial that enables a durable in vivo response to a single mRNA dose via an "overexpress and sequester" mechanism, whereby mRNA-transfected cells locally overexpress a growth factor that is then sequestered within the biomaterial to sustain the biologic response over time. In a murine diabetic wound model, this strategy demonstrated improved wound healing compared to delivery of a single mRNA dose alone or recombinant protein. In addition, codelivery of anti-inflammatory proteins using this biomaterial eliminated the need for mRNA chemical modification for in vivo therapeutic efficacy. The results support an approach that may be broadly applicable for single-dose delivery of mRNA without chemical modification.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xiaohua Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, PR China
| | - Jennifer M Umhoefer
- Department of Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Linzie A Wildenauer
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Gaoussou M Diarra
- Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Forward BIO Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
31
|
Paunovska K, Da Silva Sanchez A, Foster MT, Loughrey D, Blanchard EL, Islam FZ, Gan Z, Mantalaris A, Santangelo PJ, Dahlman JE. Increased PIP3 activity blocks nanoparticle mRNA delivery. SCIENCE ADVANCES 2020; 6:eaba5672. [PMID: 32743074 PMCID: PMC7375820 DOI: 10.1126/sciadv.aba5672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/05/2020] [Indexed: 05/06/2023]
Abstract
The biological pathways that affect drug delivery in vivo remain poorly understood. We hypothesized that altering cell metabolism with phosphatidylinositol (3,4,5)-triphosphate (PIP3), a bioactive lipid upstream of the metabolic pathway PI3K (phosphatidylinositol 3-kinase)/AKT/ mTOR (mammalian target of rapamycin) would transiently increase protein translated by nanoparticle-delivered messenger RNA (mRNA) since these pathways increase growth and proliferation. Instead, we found that PIP3 blocked delivery of clinically-relevant lipid nanoparticles (LNPs) across multiple cell types in vitro and in vivo. PIP3-driven reductions in LNP delivery were not caused by toxicity, cell uptake, or endosomal escape. Interestingly, RNA sequencing and metabolomics analyses suggested an increase in basal metabolic rate. Higher transcriptional activity and mitochondrial expansion led us to formulate two competing hypotheses that explain the reductions in LNP-mediated mRNA delivery. First, PIP3 induced consumption of limited cellular resources, "drowning out" exogenously-delivered mRNA. Second, PIP3 triggers a catabolic response that leads to protein degradation and decreased translation.
Collapse
Affiliation(s)
| | | | - Matthew T. Foster
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Fatima Z. Islam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zubao Gan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
32
|
Zhang H, Rombouts K, Raes L, Xiong R, De Smedt SC, Braeckmans K, Remaut K. Fluorescence-Based Quantification of Messenger RNA and Plasmid DNA Decay Kinetics in Extracellular Biological Fluids and Cell Extracts. ACTA ACUST UNITED AC 2020; 4:e2000057. [PMID: 32402121 DOI: 10.1002/adbi.202000057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Extracellular and intracellular degradation of nucleic acids remains an issue in non-viral gene therapy. Understanding biodegradation is critical for the rational design of gene therapeutics in order to maintain stability and functionality at the target site. However, there are only limited methods available that allow determining the stability of genetic materials in biological environments. In this context, the decay kinetics of fluorescently labeled plasmid DNA (pDNA) and messenger RNA (mRNA) in undiluted biological samples (i.e., human serum, human ascites, bovine vitreous) and cell extracts is studied using fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT). It is demonstrated that FCS is suitable to follow mRNA degradation, while SPT is better suited to investigate pDNA integrity. The half-life of mRNA and pDNA is ≈1-2 min and 1-4 h in biological samples, respectively. The resistance against biodegradation drastically improves by complexation with lipid-based carriers. Taken together, FCS and SPT are able to quantify the integrity of mRNA and pDNA, respectively, as a function of time, both in the extracellular biological fluids and cell extracts. This in turn allows to focus on the important but less understood issue of nucleic acids degradation in more detail and to rationally optimize gene delivery system as therapeutics.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Koen Rombouts
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Laurens Raes
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
33
|
Lindsay KE, Vanover D, Thoresen M, King H, Xiao P, Badial P, Araínga M, Park SB, Tiwari PM, Peck HE, Blanchard EL, Feugang JM, Olivier AK, Zurla C, Villinger F, Woolums AR, Santangelo PJ. Aerosol Delivery of Synthetic mRNA to Vaginal Mucosa Leads to Durable Expression of Broadly Neutralizing Antibodies against HIV. Mol Ther 2020; 28:805-819. [PMID: 31995741 PMCID: PMC7054722 DOI: 10.1016/j.ymthe.2020.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
There is a clear need for low-cost, self-applied, long-lasting approaches to prevent human immunodeficiency virus (HIV) infection in both men and women, even with the advent of pre-exposure prophylaxis (PrEP). Broadly neutralizing antibodies represent an option to improve HIV prophylaxis, but intravenous delivery, cold-chain stability requirements, low cervicovaginal concentrations, and cost may preclude their use. Here, we present an approach to express the anti-GP120 broadly neutralizing antibody PGT121 in the primary site of inoculation, the female reproductive tract, using synthetic mRNA. Expression is achieved through aerosol delivery of unformulated mRNA in water. We demonstrated high levels of antibody expression for over 28 days with a single mRNA administration in the reproductive tract of sheep. In rhesus macaques, neutralizing antibody titers in secretions developed within 4 h and simian-HIV (SHIV) infection of ex vivo explants was prevented. Persistence of PGT121 in vaginal secretions and epithelium was achieved through the incorporation of a glycosylphosphatidylinositol (GPI) anchor into the heavy chain of the antibody. Overall, we present a new paradigm to deliver neutralizing antibodies to the female reproductive tract for the prevention of HIV infections.
Collapse
Affiliation(s)
- Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Heath King
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Peres Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Seong Bin Park
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Pooja M Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
34
|
Lokugamage MP, Gan Z, Zurla C, Levin J, Islam FZ, Kalathoor S, Sato M, Sago CD, Santangelo PJ, Dahlman JE. Mild Innate Immune Activation Overrides Efficient Nanoparticle-Mediated RNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904905. [PMID: 31743531 PMCID: PMC7029413 DOI: 10.1002/adma.201904905] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Indexed: 04/14/2023]
Abstract
Clinical mRNA delivery remains challenging, in large part because how physiology alters delivery in vivo remains underexplored. For example, mRNA delivered by lipid nanoparticles (LNPs) is being considered to treat inflammation, but whether inflammation itself changes delivery remains understudied. Relationships between immunity, endocytosis, and mRNA translation lead to hypothesize that toll-like receptor 4 (TLR4) activation reduced LNP-mediated mRNA delivery. Therefore, LNP uptake, endosomal escape, and mRNA translation with and without TLR4 activation are quantified. In vivo DNA barcoding is used to discover a novel LNP that delivers mRNA to Kupffer cells at clinical doses; unlike most LNPs, this LNP does not preferentially target hepatocytes. TLR4 activation blocks mRNA translation in all tested cell types, without reducing LNP uptake; inhibiting TLR4 or its downstream effector protein kinase R improved delivery. The discrepant effects of TLR4 on i) LNP uptake and ii) translation suggests TLR4 activation can "override" LNP targeting, even after mRNA is delivered into target cells. Given near-future clinical trials using mRNA to modulate inflammation, this highlights the need to understand inflammatory signaling in on- and off-target cells. More generally, this suggests an LNP which delivers mRNA to one inflammatory disease may not deliver mRNA to another.
Collapse
Affiliation(s)
- Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Zubao Gan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Joel Levin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Fatima Z Islam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Sujay Kalathoor
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Manaka Sato
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
35
|
Reiser A, Woschée D, Mehrotra N, Krzysztoń R, Strey HH, Rädler JO. Correlation of mRNA delivery timing and protein expression in lipid-based transfection. Integr Biol (Camb) 2019; 11:362-371. [DOI: 10.1093/intbio/zyz030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Non-viral gene delivery is constrained by the dwell time that most synthetic nucleic acid nanocarriers spend inside endosomal compartments. In order to overcome this endosomal-release bottleneck, methods are required that measure nanocarrier uptake kinetics and transfection efficiency simultaneously. Here, we employ live-cell imaging on single-cell arrays (LISCA) to study the delivery-time distribution of lipid-based mRNA complexes under varied serum conditions. By fitting a translation-maturation model to hundreds of individual eGFP reporter fluorescence time courses, the protein expression onset times and the expression rates after transfection are determined. Using this approach, we find that delivery timing and protein expression rates are not intrinsically correlated at the single-cell level, even though population-averaged values of both parameters conjointly change as a function of increasing external serum protein fraction. Lipofectamine-mediated delivery showed decreased transfection efficiency and longer delivery times with increasing serum protein concentration. This is in contrast to ionizable lipid nanoparticle (i-LNP)-mediated transfer, which showed increased efficiency and faster uptake in the presence of serum. In conclusion, the interdependences of single-cell expression rates and onset timing provide additional clues on uptake and release mechanisms, which are useful for improving nucleic acid delivery.
Collapse
Affiliation(s)
- A Reiser
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-University, Fedor-Lynen-Straße 25, 81377 Munich, Germany
| | - D Woschée
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - N Mehrotra
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - R Krzysztoń
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-University, Fedor-Lynen-Straße 25, 81377 Munich, Germany
- Department of Biomedical Engineering and Laufer Center for Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - H H Strey
- Department of Biomedical Engineering and Laufer Center for Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - J O Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-University, Fedor-Lynen-Straße 25, 81377 Munich, Germany
| |
Collapse
|
36
|
Anhäuser L, Hüwel S, Zobel T, Rentmeister A. Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res 2019; 47:e42. [PMID: 30726958 PMCID: PMC6468298 DOI: 10.1093/nar/gkz084] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Post-transcriptional regulation of gene expression occurs by multiple mechanisms, including subcellular localization of mRNA and alteration of the poly(A) tail length. These mechanisms play crucial roles in the dynamics of cell polarization and embryonic development. Furthermore, mRNAs are emerging therapeutics and chemical alterations to increase their translational efficiency are highly sought after. We show that yeast poly(A) polymerase can be used to install multiple azido-modified adenosine nucleotides to luciferase and eGFP-mRNAs. These mRNAs can be efficiently reacted in a bioorthogonal click reaction with fluorescent reporters without degradation and without sequence alterations in their coding or untranslated regions. Importantly, the modifications in the poly(A) tail impact positively on the translational efficiency of reporter-mRNAs in vitro and in cells. Therefore, covalent fluorescent labeling at the poly(A) tail presents a new way to increase the amount of reporter protein from exogenous mRNA and to label genetically unaltered and translationally active mRNAs.
Collapse
Affiliation(s)
- Lea Anhäuser
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany
| | - Thomas Zobel
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
37
|
Arake de Tacca LM, Pulos-Holmes MC, Floor SN, Cate JHD. PTBP1 mRNA isoforms and regulation of their translation. RNA (NEW YORK, N.Y.) 2019; 25:1324-1336. [PMID: 31263002 PMCID: PMC6800477 DOI: 10.1261/rna.070193.118] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of posttranscriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remains incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells and identified alternative 5' and 3' untranslated regions (5'-UTRs, 3'-UTRs), as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.
Collapse
Affiliation(s)
- Luisa M Arake de Tacca
- Graduate Study in Comparative Biochemistry, University of California, Berkeley, California 94720, USA
| | - Mia C Pulos-Holmes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Jamie H D Cate
- Graduate Study in Comparative Biochemistry, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- California Institute for Quantitative Biosciences 3 (QB3), University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
38
|
Poveda C, Biter AB, Bottazzi ME, Strych U. Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. Vaccines (Basel) 2019; 7:vaccines7040131. [PMID: 31569760 PMCID: PMC6963847 DOI: 10.3390/vaccines7040131] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
The preferred product characteristics (for chemistry, control, and manufacture), in addition to safety and efficacy, are quintessential requirements for any successful therapeutic. Messenger RNA vaccines constitute a relatively new alternative to traditional vaccine development platforms, and thus there is less clarity regarding the criteria needed to ensure regulatory compliance and acceptance. Generally, to identify the ideal product characteristics, a series of assays needs to be developed, qualified and ultimately validated to determine the integrity, purity, stability, and reproducibility of a vaccine target. Here, using the available literature, we provide a summary of the array of biophysical and biochemical assays currently used in the field to characterize mRNA vaccine antigen candidates. Moreover, we review various in vitro functional cell-based assays that have been employed to facilitate the early assessment of the biological activity of these molecules, including the predictive immune response triggered in the host cell. Messenger RNA vaccines can be produced rapidly and at large scale, and thus will particularly benefit from well-defined and well-characterized assays ultimately to be used for in-process, release and stability-indications, which will allow equally rapid screening of immunogenicity, efficacy, and safety without the need to conduct often lengthy and costly in vivo experiments.
Collapse
Affiliation(s)
- Cristina Poveda
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| | - Amadeo B Biter
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
- Department of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76798, USA.
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113 Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines (Basel) 2019; 7:E122. [PMID: 31547081 PMCID: PMC6963228 DOI: 10.3390/vaccines7040122] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022] Open
Abstract
Despite medical progress, more than a billion people still suffer daily from parasitic infections. Vaccination is recognized as one of the most sustainable options to control parasitic diseases. However, the development of protective and therapeutic vaccines against tropical parasites has proven to be exceptionally challenging for both scientific and economic reasons. For certain parasitic diseases, traditional vaccine platforms are not well-suited, due to the complexity of the parasite life cycles and the parasite's ability to evade the human immune system. An effective anti-parasite vaccine platform needs to have the ability to develop and test novel candidate antigens fast and at high-throughput; it further needs to allow for multivalent combinations and must evoke a strong and well-defined immune response. Anti-parasitic vaccines need to be safe and economically attractive, especially in the world's low- and middle-income countries. This review evaluates the potential of in vitro transcribed mRNA vaccines as a new class of preventive and therapeutic vaccine technologies for parasitic infections.
Collapse
Affiliation(s)
- Leroy Versteeg
- Departments of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
- Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands.
| | - Mashal M Almutairi
- Prince Naif Health Research Center, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Vaccines and Biologics Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA.
- Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA.
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| | - Jeroen Pollet
- Departments of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Blanchard EL, Argyropoulou D, Zurla C, Bhosle SM, Vanover D, Santangelo PJ. Quantification and Localization of Protein-RNA Interactions in Patient-Derived Archival Tumor Tissue. Cancer Res 2019; 79:5418-5431. [PMID: 31481502 DOI: 10.1158/0008-5472.can-19-1094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022]
Abstract
Abnormal post-transcriptional regulation induced by alterations of mRNA-protein interactions is critical during tumorigenesis and cancer progression and is a hallmark of cancer cells. A more thorough understanding is needed to develop treatments and foresee outcomes. Cellular and mouse tumor models are insufficient for vigorous investigation as they lack consistency and translatability to humans. Moreover, to date, studies in human tumor tissue are predominately limited to expression analysis of proteins and mRNA, which do not necessarily provide information about the frequency of mRNA-protein interactions. Here, we demonstrate novel optimization of a method that is based on FISH and proximity ligation techniques to quantify mRNA interactions with RNA-binding proteins relevant for tumorigenesis and cancer progression in archival patient-derived tumor tissue. This method was validated for multiple mRNA-protein pairs in several cellular models and in multiple types of archival human tumor samples. Furthermore, this approach allowed high-throughput analysis of mRNA-protein interactions across a wide range of tumor types and stages through tumor microarrays. This method is quantitative, specific, and sensitive for detecting interactions and their localization at both the individual cell and whole-tissue scales with single interaction sensitivity. This work presents an important tool in investigating post-transcriptional regulation in cancer on a high-throughput scale, with great potential for translatability into any applications where mRNA-protein interactions are of interest. SIGNIFICANCE: This work presents an approach to sensitively, specifically, and quantitatively detect and localize native mRNA and protein interactions for analysis of abnormal post-transcriptional regulation in patient-derived archival tumor samples.
Collapse
Affiliation(s)
- Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Danae Argyropoulou
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
41
|
Pulos-Holmes MC, Srole DN, Juarez MG, Lee ASY, McSwiggen DT, Ingolia NT, Cate JH. Repression of ferritin light chain translation by human eIF3. eLife 2019; 8:48193. [PMID: 31414986 PMCID: PMC6721798 DOI: 10.7554/elife.48193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/14/2019] [Indexed: 11/13/2022] Open
Abstract
A central problem in human biology remains the discovery of causal molecular links between mutations identified in genome-wide association studies (GWAS) and their corresponding disease traits. This challenge is magnified for variants residing in non-coding regions of the genome. Single-nucleotide polymorphisms (SNPs) in the 5ʹ untranslated region (5ʹ-UTR) of the ferritin light chain (FTL) gene that cause hyperferritinemia are reported to disrupt translation repression by altering iron regulatory protein (IRP) interactions with the FTL mRNA 5ʹ-UTR. Here, we show that human eukaryotic translation initiation factor 3 (eIF3) acts as a distinct repressor of FTL mRNA translation, and eIF3-mediated FTL repression is disrupted by a subset of SNPs in FTL that cause hyperferritinemia. These results identify a direct role for eIF3-mediated translational control in a specific human disease.
Collapse
Affiliation(s)
- Mia C Pulos-Holmes
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Daniel N Srole
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Maria G Juarez
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Amy S-Y Lee
- Biology Department, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| | - David T McSwiggen
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicholas T Ingolia
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Jamie H Cate
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
42
|
Perche F, Clemençon R, Schulze K, Ebensen T, Guzmán CA, Pichon C. Neutral Lipopolyplexes for In Vivo Delivery of Conventional and Replicative RNA Vaccine. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:767-775. [PMID: 31446119 PMCID: PMC6716064 DOI: 10.1016/j.omtn.2019.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acid vaccination relies on injecting DNA or RNA coding antigen(s) to induce a protective immune response. RNA vaccination is being increasingly used in preclinical and clinical studies. However, few delivery systems have been reported for in vivo delivery of RNA of different sizes. Using a tripartite formulation with RNA, cationic polymer, and anionic liposomes, we were able to encapsulate RNA into neutral lipopolyplexes (LPPs). LPPs were stable in vitro and successfully delivered conventional RNA and replicative RNA to dendritic cells in cellulo. Their injection led to reporter gene expression in mice. Finally, administration of LPP-Replicon RNA (RepRNA) led to an adaptive immune response against the antigen coded by the RepRNA. Accordingly, LPPs may represent a universal formulation for RNA delivery.
Collapse
Affiliation(s)
- Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| | - Rudy Clemençon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| |
Collapse
|
43
|
Lindsay KE, Bhosle SM, Zurla C, Beyersdorf J, Rogers KA, Vanover D, Xiao P, Araínga M, Shirreff LM, Pitard B, Baumhof P, Villinger F, Santangelo PJ. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat Biomed Eng 2019; 3:371-380. [DOI: 10.1038/s41551-019-0378-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
|
44
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
45
|
Blanchard EL, Loomis KH, Bhosle SM, Vanover D, Baumhof P, Pitard B, Zurla C, Santangelo PJ. Proximity Ligation Assays for In Situ Detection of Innate Immune Activation: Focus on In Vitro-Transcribed mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:52-66. [PMID: 30579042 PMCID: PMC6304375 DOI: 10.1016/j.omtn.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023]
Abstract
The characterization of innate immune activation is crucial for vaccine and therapeutic development, including RNA-based vaccines, a promising approach. Current measurement methods quantify type I interferon and inflammatory cytokine production, but they do not allow for the isolation of individual pathways, do not provide kinetic activation or spatial information within tissues, and cannot be translated into clinical studies. Here we demonstrated the use of proximity ligation assays (PLAs) to detect pattern recognition receptor (PRR) activation in cells and in tissue samples. First, we validated PLA's sensitivity and specificity using well-characterized soluble agonists. Next, we characterized PRR activation from in vitro-transcribed (IVT) mRNAs, as well as the effect of sequence and base modifications in vitro. Finally, we established the measurement of PRR activation in tissue sections via PLA upon IVT mRNA intramuscular (i.m.) injection in mice. Overall, our results indicate that PLA is a valuable, versatile, and sensitive tool to monitor PRR activation for vaccine, adjuvant, and therapeutic screening.
Collapse
Affiliation(s)
- Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | | | - Bruno Pitard
- In-Cell-Art, 21 rue de la Noue Bras de Fer, 44200 Nantes, France
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA.
| |
Collapse
|
46
|
Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, Storm PB, Pardi N, Weissman D, Waanders AJ, Grupp SA, Karikó K, Resnick AC, Barrett DM. Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Hum Gene Ther 2019; 30:168-178. [PMID: 30024272 PMCID: PMC6383579 DOI: 10.1089/hum.2018.145] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
T cells made with messenger RNA (mRNA) encoding chimeric antigen receptor (CAR) offer a safe alternative to those transduced with viral CARs by mitigating the side effects of constitutively active T cells. Previous studies have shown that mRNA CAR T cells are transiently effective but lack persistence and potency across tumor types. It was hypothesized that the efficacy of mRNA CARs could be improved by utilizing recent advancements in RNA technology, such as incorporating a modified nucleoside, 1-methylpseudouridine, into the mRNA and applying a novel purification method using RNase III to eliminate dsRNA contaminants. T cells electroporated with nucleoside-modified and purified mRNA encoding CD19 CAR showed an initial twofold increase in CAR surface expression, as well as a twofold improvement in cytotoxic killing of leukemia cells that persisted up to 5 days. T cells generated with nucleoside-modified and purified CAR mRNA also showed reduced expression of checkpoint regulators and a differential pattern of genetic activation compared to those made with conventional mRNA. In vivo studies using a leukemia mouse model revealed that the most robust 100-fold suppression of leukemic burden was achieved using T cells electroporated with purified mRNAs, regardless of their nucleoside modification. The results provide a novel approach to generate mRNA for clinical trials, and poise mRNA CAR T cells for increased efficacy during testing as new CAR targets emerge.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Cell Line, Tumor
- Electroporation
- Humans
- Leukemia/genetics
- Leukemia/immunology
- Leukemia/pathology
- Leukemia/therapy
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/isolation & purification
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jessica B. Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Namrata Choudhari
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jessica Perazzelli
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julie Storm
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ted J. Hofmann
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Payal Jain
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phillip B. Storm
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania
| | - Norbert Pardi
- Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela J. Waanders
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stephan A. Grupp
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Adam C. Resnick
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data-Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David M. Barrett
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Xu Y, Huang L, Kirschman JL, Vanover DA, Tiwari PM, Santangelo PJ, Shen X, Russell DG. Exploitation of Synthetic mRNA To Drive Immune Effector Cell Recruitment and Functional Reprogramming In Vivo. THE JOURNAL OF IMMUNOLOGY 2018; 202:608-617. [PMID: 30541883 DOI: 10.4049/jimmunol.1800924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
Therapeutic strategies based on in vitro-transcribed mRNA (IVT) are attractive because they avoid the permanent signature of genomic integration that is associated with DNA-based therapy and result in the transient production of proteins of interest. To date, IVT has mainly been used in vaccination protocols to generate immune responses to foreign Ags. In this "proof-of-principle" study, we explore a strategy of combinatorial IVT to recruit and reprogram immune effector cells to acquire divergent biological functions in mice in vivo. First, we demonstrate that synthetic mRNA encoding CCL3 is able to recruit murine monocytes in a nonprogrammed state, exhibiting neither bactericidal nor tissue-repairing properties. However, upon addition of either Ifn-γ mRNA or Il-4 mRNA, we successfully polarized these cells to adopt either M1 or M2 macrophage activation phenotypes. This cellular reprogramming was demonstrated through increased expression of known surface markers and through the differential modulation of NADPH oxidase activity, or the superoxide burst. Our study demonstrates how IVT strategies can be combined to recruit and reprogram immune effector cells that have the capacity to fulfill complex biological tasks in vivo.
Collapse
Affiliation(s)
- Yitian Xu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.,Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Lu Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Pooja M Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Xiling Shen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.,School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853; and.,Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - David G Russell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
48
|
Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat Commun 2018; 9:3999. [PMID: 30275522 PMCID: PMC6167369 DOI: 10.1038/s41467-018-06508-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
The lung is a critical prophylaxis target for clinically important infectious agents, including human respiratory syncytial virus (RSV) and influenza. Here, we develop a modular, synthetic mRNA-based approach to express neutralizing antibodies directly in the lung via aerosol, to prevent RSV infections. First, we express palivizumab, which reduces RSV F copies by 90.8%. Second, we express engineered, membrane-anchored palivizumab, which prevents detectable infection in transfected cells, reducing in vitro titer and in vivo RSV F copies by 99.7% and 89.6%, respectively. Finally, we express an anchored or secreted high-affinity, anti-RSV F, camelid antibody (RSV aVHH and sVHH). We demonstrate that RSV aVHH, but not RSV sVHH, significantly inhibits RSV 7 days post transfection, and we show that RSV aVHH is present in the lung for at least 28 days. Overall, our data suggests that expressing membrane-anchored broadly neutralizing antibodies in the lungs could potentially be a promising pulmonary prophylaxis approach. Engineered neutralizing antibodies are potential therapeutics for numerous viruses, such as respiratory syncytial virus (RSV). Here, the authors develop an mRNA-based approach to express membrane-anchored neutralizing antibodies in the lung and demonstrate that it inhibits RSV infections in mice.
Collapse
|
49
|
Liu A, Islam M, Stone N, Varadarajan V, Jeong J, Bowie S, Qiu P, Waller EK, Alexeev A, Sulchek T. Microfluidic generation of transient cell volume exchange for convectively driven intracellular delivery of large macromolecules. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:703-712. [PMID: 30288138 PMCID: PMC6166476 DOI: 10.1016/j.mattod.2018.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Efficient intracellular delivery of target macromolecules remains a major obstacle in cell engineering and other biomedical applications. We discovered a unique cell biophysical phenomenon of transient cell volume exchange by using microfluidics to rapidly and repeatedly compress cells. This behavior consists of brief, mechanically induced cell volume loss followed by rapid volume recovery. We harness this behavior for high-throughput, convective intracellular delivery of large polysaccharides (2000 kDa), particles (100 nm), and plasmids while maintaining high cell viability. Successful proof of concept experiments in transfection and intracellular labeling demonstrated potential to overcome the most prohibitive challenges in intracellular delivery for cell engineering.
Collapse
Affiliation(s)
- Anna Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Muhymin Islam
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nicholas Stone
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vikram Varadarajan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jenny Jeong
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sam Bowie
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexander Alexeev
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
50
|
Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV, Santangelo PJ. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjug Chem 2018; 29:3072-3083. [PMID: 30067354 DOI: 10.1021/acs.bioconjchem.8b00443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|