1
|
Kienzl P, Deloria AJ, Hunjadi M, Hadolt JM, Haering MF, Bothien A, Mejri D, Korkut-Demirbaş M, Sampl S, Weber G, Pirker C, Laengle S, Braunschmid T, Dragona E, Marian B, Gagos S, Lu L, Henson JD, Lau LMS, Reddel RR, Mikulits W, Stättner S, Holzmann K. Telomere transcripts act as tumor suppressor and are associated with favorable prognosis in colorectal cancer with low proliferating cell nuclear antigen expression. Cell Oncol (Dordr) 2025; 48:239-247. [PMID: 39222177 PMCID: PMC11850466 DOI: 10.1007/s13402-024-00986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Telomeric repeat-containing RNAs (TERRA) and telomerase RNA component (TERC) regulate telomerase activity (TA) and thereby contribute to telomere homeostasis by influencing telomere length (TL) and the cell immortality hallmark of cancer cells. Additionally, the non-canonical functions of telomerase reverse transcriptase (TERT) and TERRA appear to be involved in the epithelial-mesenchymal transition (EMT), which is important for cancer progression. However, the relationship between TERRA and patient prognosis has not been fully characterized. In this small-scale study, 68 patients with colorectal cancer (CRC) were evaluated for correlations between telomere biology, proliferation, and EMT gene transcripts and disease outcome. The proliferating cell nuclear antigen (PCNA) and the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) showed a positive correlation with TERRA, while TA and TERRA exhibited an inverse correlation. Consistent with previous findings, the present study revealed higher expression levels of TERT and TERC, and increased TA and TL in CRC tumor tissue compared to adjacent non-tumor tissue. In contrast, lower expression levels of TERRA were observed in tumor tissue. Patients with high TERRA expression and low PCNA levels exhibited favorable overall survival rates compared to individuals with the inverse pattern. Furthermore, TERRA suppressed CRC tumor growth in severe combined immunodeficiency disease (SCID) mice. In conclusion, our study extends previously published research on TERRA suggesting its potential therapeutic role in telomerase-positive CRC.
Collapse
Affiliation(s)
- Philip Kienzl
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Abigail J Deloria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Monika Hunjadi
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Juliane M Hadolt
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Max-Felix Haering
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Angrit Bothien
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Doris Mejri
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Medina Korkut-Demirbaş
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Sandra Sampl
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Gerhard Weber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Christine Pirker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Severin Laengle
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Braunschmid
- Department of Surgery, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria
- Department of Surgery, Klinik Floridsdorf, Wiener Gesundheitsverbund, Vienna, Austria
| | - Eleni Dragona
- Laboratory of Genetics Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece (BRFAA), Soranou Efesiou 4, Athens, 115 27, Greece
| | - Brigitte Marian
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Sarantis Gagos
- Laboratory of Genetics Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece (BRFAA), Soranou Efesiou 4, Athens, 115 27, Greece
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale Cancer Center, Yale University, New Haven, USA
| | - Jeremy D Henson
- Prince of Wales Clinical School, University of NSW, UNSW, Sydney, 2052, Australia
| | - Loretta M S Lau
- Children's Cancer Research Unit, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, Australia
| | - Roger R Reddel
- Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, 2145, Australia
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria
| | - Stefan Stättner
- Department of Surgery, Social Medical Center South, Kaiser Franz Josef Hospital, Vienna, Austria
- Department of General, Visceral and Vascular Surgery, Salzkammergut Klinikum, OÖG, Dr. Wilhelm Bock Strasse 1, Vöcklabruck, 4840, Austria
| | - Klaus Holzmann
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna, A-1090, Austria.
| |
Collapse
|
2
|
Dos Santos GA, Viana NI, Pimenta R, de Camargo JA, Guimaraes VR, Romão P, Candido P, Dos Santos VG, Ghazarian V, Reis ST, Leite KRM, Srougi M. Upregulation of shelterin and CST genes and longer telomeres are associated with unfavorable prognostic characteristics in prostate cancer. Cancer Genet 2024; 284-285:20-29. [PMID: 38503134 DOI: 10.1016/j.cancergen.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Search for new clinical biomarkers targets in prostate cancer (PC) is urgent. Telomeres might be one of these targets. Telomeres are the extremities of linear chromosomes, essential for genome stability and control of cell divisions. Telomere homeostasis relies on the proper functioning of shelterin and CST complexes. Telomeric dysfunction and abnormal expression of its components are reported in most cancers and are associated with PC. Despite this, there are only a few studies about the expression of the main telomere complexes and their relationship with PC progression. We aimed to evaluate the role of shelterin (POT1, TRF2, TPP1, TIN2, and RAP1) and CST (CTC1, STN1, and TEN1) genes and telomere length in the progression of PC. METHODS We evaluated genetic alterations of shelterin and CST by bioinformatics in samples of localized (n = 499) and metastatic castration-resistant PC (n = 444). We also analyzed the expression of the genes using TCGA (localized PC n = 497 and control n = 152) and experimental approaches, with surgical specimens (localized PC n = 81 and BPH n = 10) and metastatic cell lines (LNCaP, DU145, PC3 and PNT2 as control) by real-time PCR. Real-time PCR also determined the telomere length in the same experimental samples. All acquired data were associated with clinical parameters. RESULTS Genetic alterations are uncommon in PC, but POT1, TIN2, and TEN1 showed significantly more amplifications in the metastatic cancer. Except for CTC1 and TEN1, which are differentially expressed in localized PC samples, we did not detect an expression pattern relative to control and cell lines. Nevertheless, except for TEN1, the upregulation of all genes is associated with a worse prognosis in localized PC. We also found that increased telomere length is associated with disease aggressiveness in localized PC. CONCLUSION The upregulation of shelterin and CST genes creates an environment that favors telomere elongation, giving selective advantages for localized PC cells to progress to more aggressive stages of the disease.
Collapse
Affiliation(s)
- Gabriel Arantes Dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Nayara I Viana
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Minas Gerais State University (UEMG), Passos, Minas Gerais, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| | - Juliana Alves de Camargo
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vanessa R Guimaraes
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Poliana Romão
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Patrícia Candido
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Genuino Dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Vitória Ghazarian
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Minas Gerais State University (UEMG), Passos, Minas Gerais, Brazil
| | - Katia Ramos Moreira Leite
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| |
Collapse
|
3
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
4
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
5
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
7
|
Quttina M, Waiters KD, Khan AF, Karami S, Peidl AS, Babajide MF, Pennington J, Merchant FA, Bawa-Khalfe T. Exosc9 Initiates SUMO-Dependent lncRNA TERRA Degradation to Impact Telomeric Integrity in Endocrine Therapy Insensitive Hormone Receptor-Positive Breast Cancer. Cells 2023; 12:2495. [PMID: 37887339 PMCID: PMC10605189 DOI: 10.3390/cells12202495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Long, noncoding RNAs (lncRNAs) are indispensable for normal cell physiology and, consequently, are tightly regulated in human cells. Yet, unlike mRNA, substantially less is known about the mechanisms for lncRNA degradation. It is important to delineate the regulatory control of lncRNA degradation, particularly for lncRNA telomeric repeat-containing RNA (TERRA), as the TERRA-telomere R-loops dictate cell cycle progression and genomic stability. We now report that the exosome complex component Exosc9 degrades lncRNA TERRA in human mammary epithelial cells. Heterochromatin protein 1 alpha (HP1α) recruits Exosc9 to the telomeres; specifically, the SUMO-modified form of HP1α supports interaction with Exosc9 and, as previously reported, lncRNA TERRA. The telomeric enrichment of Exosc9 is cell cycle-dependent and consistent with the loss of telomeric TERRA in the S/G2 phase. Elevated Exosc9 is frequently observed and drives the growth of endocrine therapy-resistant (ET-R) HR+ breast cancer (BCa) cells. Specifically, the knockdown of Exosc9 inversely impacts telomeric R-loops and the integrity of the chromosome ends of ET-R cells. Consistently, Exosc9 levels dictate DNA damage and the sensitivity of ET-R BCa cells to PARP inhibitors. In this regard, Exosc9 may serve as a promising biomarker for predicting the response to PARP inhibitors as a targeted monotherapy for ET-R HR+ BCa.
Collapse
Affiliation(s)
- Maram Quttina
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
- Engineering Technology College of Technology, University of Houston at Sugarland, 13850 University Blvd, SAB1 Bldg, Rm 348, Sugarland, TX 77479, USA
| | - Kacie D. Waiters
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Ashfia Fatima Khan
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Samaneh Karami
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Anthony S. Peidl
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Mariam Funmi Babajide
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Justus Pennington
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| | - Fatima A. Merchant
- Engineering Technology College of Technology, University of Houston at Sugarland, 13850 University Blvd, SAB1 Bldg, Rm 348, Sugarland, TX 77479, USA
| | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg, Rm 3010, Houston, TX 77204-5056, USA (A.F.K.)
| |
Collapse
|
8
|
Stylianakis E, Chan JPK, Law PP, Jiang Y, Khadayate S, Karimi MM, Festenstein R, Vannier JB. Mouse HP1γ regulates TRF1 expression and telomere stability. Life Sci 2023; 331:122030. [PMID: 37598977 DOI: 10.1016/j.lfs.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
AIMS Telomeric repeat-containing RNAs are long non-coding RNAs generated from the telomeres. TERRAs are essential for the establishment of heterochromatin marks at telomeres, which serve for the binding of members of the heterochromatin protein 1 (HP1) protein family of epigenetic modifiers involved with chromatin compaction and gene silencing. While HP1γ is enriched on gene bodies of actively transcribed human and mouse genes, it is unclear if its transcriptional role is important for HP1γ function in telomere cohesion and telomere maintenance. We aimed to study the effect of mouse HP1γ on the transcription of telomere factors and molecules that can affect telomere maintenance. MAIN METHODS We investigated the telomere function of HP1γ by using HP1γ deficient mouse embryonic fibroblasts (MEFs). We used gene expression analysis of HP1γ deficient MEFs and validated the molecular and mechanistic consequences of HP1γ loss by telomere FISH, immunofluorescence, RT-qPCR and DNA-RNA immunoprecipitation (DRIP). KEY FINDINGS Loss of HP1γ in primary MEFs led to a downregulation of various telomere and telomere-accessory transcripts, including the shelterin protein TRF1. Its downregulation is associated with increased telomere replication stress and DNA damage (γH2AX), effects more profound in females. We suggest that the source for the impaired telomere maintenance is a consequence of increased telomeric DNA-RNA hybrids and TERRAs arising at and from mouse chromosomes 18 and X. SIGNIFICANCE Our results suggest an important transcriptional control by mouse HP1γ of various telomere factors including TRF1 protein and TERRAs that has profound consequences on telomere stability, with a potential sexually dimorphic nature.
Collapse
Affiliation(s)
- Emmanouil Stylianakis
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jackson Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Yi Jiang
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sanjay Khadayate
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad Mahdi Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Richard Festenstein
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
9
|
Zhang M, Hong X, Ma N, Wei Z, Ci X, Zhang S. The promoting effect and mechanism of Nrf2 on cell metastasis in cervical cancer. J Transl Med 2023; 21:433. [PMID: 37403143 DOI: 10.1186/s12967-023-04287-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) has poor prognosis and high mortality rate for its metastasis during the disease progression. Epithelial-mesenchymal transition (EMT) and anoikis are initial and pivotal steps during the metastatic process. Although higher levels of Nrf2 are associated with aggressive tumor behaviors in cervical cancer, the detailed mechanism of Nrf2 in cervical cancer metastasis, especially EMT and anoikis, remains unclear. METHODS Immunohistochemistry (IHC) was used to examine Nrf2 expression in CC. Wound healing assay and transwell analysis were used to evaluate the migration ability of CC cells. Western blot, qTR-PCR and immunofluorescent staining were used to verify the expression level of Nrf2, the EMT associated markers and anoikis associated proteins. Flow cytometry assays and cell counting were used to detect the apoptosis of cervical cancer cells. The lung and lymph node metastatic mouse model were established for studies in vivo. The interaction between Nrf2 and Snail1 was confirmed by rescue-of-function assay. RESULTS When compared with cervical cancer patients without lymph node metastasis, Nrf2 was highly expressed in patients with lymph node metastasis. And Nrf2 was proved to enhance the migration ability of HeLa and SiHa cells. In addition, Nrf2 was positively correlated with EMT processes and negatively associated with anoikis in cervical cancer. In vivo, a xenograft assay also showed that Nrf2 facilitated both pulmonary and lymphatic distant metastasis of cervical cancer. Rescue-of-function assay further revealed the mechanism that Nrf2 impacted the metastasis of CC through Snail1. CONCLUSION Our fundings established Nrf2 plays a crucial role in the metastasis of cervical cancer by enhancing EMT and resistance to anoikis by promoting the expression of Snail1, with potential value as a therapeutic candidate.
Collapse
Affiliation(s)
- Mengwen Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Hong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Ning Ma
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zhentong Wei
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Songling Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Chen Y, Zhu Z, Ma T, Zhang L, Chen J, Jiang J, Lu C, Ding Y, Guan W, Yi N, Ren H. TP53 mutation-related senescence is an indicator of hepatocellular carcinoma patient outcomes from multiomics profiles. SMART MEDICINE 2023; 2:e20230005. [PMID: 39188277 PMCID: PMC11235654 DOI: 10.1002/smmd.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 08/28/2024]
Abstract
TP53 mutation frequently occurs in hepatocellular carcinoma (HCC). Senescence also plays a vital role in the ongoing process of HCC. P53 is believed to regulate the advancement of senescence in HCC. However, the exact mechanism of TP53 mutation-related senescence remains unclear. In this study, we found the TP53 mutation was positively correlated with senescence in HCC, and the differential expressed genes were primarily located in macrophages. Our results proved that the risk score could have an independent and vital role in predicting the prognosis of HCC patients. In addition, HCC patients with a high risk score may most probably benefit from immune checkpoint block therapy. We also found the risk score is elevated in chemotherapy-treated HCC samples, with a high level of senescence-associated secretory phenotype. Finally, we validated the risk-score genes in the protein level and noticed the risk score is positively related with M2 polarization. Of note, we considered that the risk score under the TP53 mutation and senescence is a promising biomarker with the potential to aid in predicting prognosis, defining tumor environment characteristics, and assessing the benefits of immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Yu‐Yan Chen
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zheng‐Yi Zhu
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Tao Ma
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Jing Chen
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Jia‐Wei Jiang
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Cui‐Hua Lu
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Yi‐Tao Ding
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Wen‐Xian Guan
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Nan Yi
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Hao‐Zhen Ren
- Department of Hepatobiliary SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
11
|
Gao F, Wang L, Wu B, Ou Q, Tian H, Xu J, Jin C, Zhang J, Wang J, Lu L, Xu GT. Elimination of senescent cells inhibits epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp Eye Res 2022; 223:109207. [PMID: 35926646 DOI: 10.1016/j.exer.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
Abstract
Age-related macular degeneration (AMD) is one of the most common leading causes of irreversible blindness, and there is no effective treatment for it. It has been reported that aging is the greatest risk factor for AMD, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells plays an important role in the pathogenesis of AMD. To clarify the relationship between senescence and EMT in RPE cells, we used the replicative senescence model, H2O2- and/or Nutlin3a-induced senescence model, and low-density and/or TGF-β-induced EMT model to detect the expression of senescence-, RPE- and EMT-related genes, and assessed the motility of cells by using a scratch wound migration assay. The results showed that replicative senescence of RPE cells was accompanied by increased expression of EMT markers. However, senescent RPE cells themselves did not undergo EMT, as the H2O2and Nutlin3a treated cells showed no increase in EMT characteristics, including unchanged or decreased expression of EMT markers and decreased motility. Furthermore, conditioned medium (CM) from senescent cells induced EMT in presenescent RPE cells, and EMT accelerated the process of senescence. Importantly, dasatinib plus quercetin, which selectively eliminates senescent cells, inhibited low-density-induced EMT in RPE cells. These findings provide a better understanding of the interconnection between senescence and EMT in RPE cells. Removal of senescent cells by certain methods such as senolytics, might be a promising potential approach to prevent or delay the progression of RPE-EMT-related retinal diseases such as AMD.
Collapse
Affiliation(s)
- Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Binxin Wu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jingying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, 389 Xincun Road Shanghai, 200065, China; Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
12
|
Li W, Feng SS, Wu H, Deng J, Zhou WY, Jia MX, Shi Y, Ma L, Zeng XX, Zuberi Z, Fu D, Liu X, Chen Z. Comprehensive Analysis of CDK1-Associated ceRNA Network Revealing the Key Pathways LINC00460/LINC00525-Hsa-Mir-338-FAM111/ZWINT as Prognostic Biomarkers in Lung Adenocarcinoma Combined with Experiments. Cells 2022; 11:cells11071220. [PMID: 35406786 PMCID: PMC8997540 DOI: 10.3390/cells11071220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer deaths worldwide, and effective biomarkers are still lacking for early detection and prognosis prediction. Here, based on gene expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA), 806 long non-coding RNAs (lncRNAs), 122 microRNAs (miRNAs) and 1269 mRNAs associated with CDK1 were identified. The regulatory axis of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT was determined according to the correlation between gene expression and patient prognosis. The abnormal up-regulation of FAM111B/ZWINT in LUAD was related to hypomethylation. Furthermore, immune infiltration analysis suggested FAM111B/ZWINT could affect the development and prognosis of cancer by regulating the LUAD immune microenvironment. EMT feature analysis suggested that FAM111B/ZWINT promoted tumor spread through the EMT process. Functional analysis showed FAM111B/ZWINT was involved in cell cycle events such as DNA replication and chromosome separation. We analyzed the HERB and GSCALite databases to identify potential target medicines that may play a role in the treatment of LUAD. Finally, the expression of LINC00460/LINC00525-hsa-mir-338-FAM111B/ZWINT axis was verified in LUAD cells by RT-qPCR, and these results were consistent with bioinformatics analysis. Overall, we constructed a CDK1-related ceRNA network and revealed the LINC00460/LINC00525-hsa-mir-338-FAM111/ZWINT pathways as potential diagnostic biomarkers or therapeutic targets of LUAD.
Collapse
Affiliation(s)
- Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Shan-Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Hao Wu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Jing Deng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Wang-Yan Zhou
- Department of Medical Record, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang 421001, China;
| | - Ming-Xi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Yi Shi
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (M.-X.J.); (Y.S.)
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Xiao-Xi Zeng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam P.O. Box 2958, Tanzania;
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China;
| | - Xiang Liu
- Department of Thoracic Surgery, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| | - Zhu Chen
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (W.L.); (S.-S.F.); (J.D.); (L.M.); (X.-X.Z.)
- Correspondence: (X.L.); (Z.C.); Tel.: +86-0734-889-9990 (X.L.); +86-158-6971-6968 (Z.C.)
| |
Collapse
|
13
|
Wieczorek-Szukala K, Lewinski A. The Role of Snail-1 in Thyroid Cancer-What We Know So Far. J Clin Med 2021; 10:2324. [PMID: 34073413 PMCID: PMC8197874 DOI: 10.3390/jcm10112324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid carcinomas, despite the usually indolent behaviour and relatively good overall prognosis, show a high tendency to gain invasive phenotype and metastasise in some cases. However, due to a relatively slow progression, the exact mechanisms governing the metastatic process of thyroid carcinomas, including the epithelial-to-mesenchymal transition (EMT), are poorly described. One of the best-known regulators of cancer invasiveness is Snail-1-a zinc-finger transcription factor that plays a key role as an EMT inducer. More and more attention is being paid to the role of Snail with regard to thyroid cancer development. Apart from the obvious implications in the EMT process, Snail-1 plays an important role in the regulation of chemoresistance of the thyroid cells and cancer stem cell (CSC) formation, and it also interacts with miRNA specific to the thyroid gland. The aim of this review was to summarise the knowledge on Snail-1, especially in the context of thyroid oncogenesis.
Collapse
Affiliation(s)
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland;
| |
Collapse
|
14
|
Imran SAM, Yazid MD, Idrus RBH, Maarof M, Nordin A, Razali RA, Lokanathan Y. Is There an Interconnection between Epithelial-Mesenchymal Transition (EMT) and Telomere Shortening in Aging? Int J Mol Sci 2021; 22:ijms22083888. [PMID: 33918710 PMCID: PMC8070110 DOI: 10.3390/ijms22083888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.
Collapse
Affiliation(s)
- Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Abid Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Correspondence: ; Tel.: +60-391457704
| |
Collapse
|
15
|
Arantes Dos Santos G, Viana NI, Pimenta R, Reis ST, Ramos Moreira Leite K, Srougi M. Hypothesis: The triad androgen receptor, zinc finger proteins and telomeres modulates the global gene expression pattern during prostate cancer progression. Med Hypotheses 2021; 150:110566. [PMID: 33799157 DOI: 10.1016/j.mehy.2021.110566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Currently, the biggest challenge for prostate cancer (PCa) is to understand the mechanism by which the disease acquires the castration-resistant phenotype and progresses to a fatal disease. PCa has a high genetic heterogeneity, and cannot be separated into well-defined molecular subtypes. Despite this, there is consensus about the role of the androgen receptor (AR) in all stages of the disease, including the transition to the castration-resistant phenotype. Since AR is a transcription factor, we investigated the possibility of PCa presenting a pattern of global gene expression during disease progression. By analyzing the TCGA and CCLE datasets, we were able to find a pattern of waves of genes being expressed during each stage of disease progression. This phenomenon suggests the existence of a mechanism that globally regulates gene expression, being AR, telomeres, and zinc finger proteins (ZNF), three important players. The AR modulates the telomere biology, and its transcription is regulated by ZNF. Recently, a study suggested that the telomere length might influence the expression of ZNF. Thus, we hypothesized that changes in the triad AR, telomeres, and ZNF control gene expression during the progression of PCa.
Collapse
Affiliation(s)
- Gabriel Arantes Dos Santos
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, SP, Brazil.
| | - Nayara Izabel Viana
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ruan Pimenta
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, SP, Brazil
| | - Sabrina T Reis
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Athens University Center (UniAtenas), Passos, MG, Brazil; Minas Gerais State University (UEMG), Passos, MG, Brazil
| | - Katia Ramos Moreira Leite
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Miguel Srougi
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; D'Or Institute for Research and Education (IDOR), Sao Paulo, SP, Brazil
| |
Collapse
|
16
|
Farzanehpour M, Faghihloo E, Salimi V, Jalilvand S, Akhavan S, Muhammadnejad A, Emami Razavi AN, Kakavandi E, Mokhtari Azad T. Comparison of Snail1, ZEB1, E-Cadherin Expression Levels in HPV-Induced Cervical Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 49:2179-2188. [PMID: 33708739 PMCID: PMC7917501 DOI: 10.18502/ijph.v49i11.4736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Molecular profiling techniques are the rapid detection of biomarkers in the human papillomavirus (HPV) infected cells. We aimed to measure the expression level of three cell factors including Snail1, ZEB-1, and E-cadherin in cervical cancer (CC), precancerous and healthy samples, simultaneously, to find potential biomarkers. Methods: The expression level of the mentioned cell factors were investigated in 72 CC patients, precancerous patients, and healthy controls by using Real-Time PCR. Results: The results demonstrated a significant reduction in the expression level of E-cadherin in cancer and precancerous cases than that in healthy cases; whereas the expression level of ZEB-1 and Snail1 were upregulated in cancer and precancerous samples. The receiver operating characteristic (ROC) analyses shows the highest AUC value emerged for Snail1: 1(95% CI: 1-1) in comparing CC and healthy groups with a sensitivity of 100.0 % and specificity of 100.0%. Conclusion: The molecular biomarker Snail1 may be helpful to early diagnosis and prognosis of CC in the HPV-infected human populations. Considering the increased expression level of Snail1 in cancer and precancerous tissue compared to healthy tissue as well as the area under the ROC curve, Snail1 can be used for early detection of CC.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Akhavan
- Department of Gynecology Oncology, Imam Khomeini Hospital Complex, Valiasr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nader Emami Razavi
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Kakavandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Vinchure OS, Whittemore K, Kushwah D, Blasco MA, Kulshreshtha R. miR-490 suppresses telomere maintenance program and associated hallmarks in glioblastoma. Cell Mol Life Sci 2021; 78:2299-2314. [PMID: 32970185 PMCID: PMC11073096 DOI: 10.1007/s00018-020-03644-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive cancer of central nervous system with worst patient outcome. Telomere maintenance is a crucial mechanism governing GBM initiation and progression making it an attractive target. microRNAs (miRNAs) have shown therapeutic potential in GBM. Earlier, we showed miR-490 is downregulated in GBM patients and plays a tumor suppressive role. Here, we show that miR-490 regulates telomere maintenance program in GBM by directly targeting Telomeric Repeat-binding Factor 2 (TERF2) of the shelterin complex, Tankyrase 2 (TNKS2) and Serine/Threonine-protein kinase, SMG1. Overexpression of miR-490 resulted in effects characteristic to hampered telomere maintenance via TERF2 inhibition. These include induction of telomere dysfunction-induced foci and global DNA damage (53BP1 foci), along with an increase in p-γH2AX levels. Further, it led to inhibition of telomere maintenance hallmarks via reduced stemness (SOX2 and SOX4 downregulation) and induction of senescence (H3K9me3 marks gain and SIRT1 downregulation). It also initiated downstream DNA damage response (DDR) leading to p53 pathway activation. Moreover, microarray data analysis highlighted an overlap between miR-490 expression and REST-inhibition responses in GBM. Thus, miR-490-mediated targeting of telomere maintenance could be therapeutically important in GBM.
Collapse
Affiliation(s)
- Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Deependra Kushwah
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Maria A Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
18
|
Toubiana S, Larom G, Smoom R, Duszynski RJ, Godley LA, Francastel C, Velasco G, Selig S. Regulation of telomeric function by DNA methylation differs between humans and mice. Hum Mol Genet 2020; 29:3197-3210. [PMID: 32916696 DOI: 10.1093/hmg/ddaa206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.
Collapse
Affiliation(s)
- Shir Toubiana
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Gal Larom
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Robert J Duszynski
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Lucy A Godley
- Department of Medicine, Section of Hematology Oncology, The University of Chicago, Chicago 60637, USA
| | - Claire Francastel
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Guillaume Velasco
- Université de Paris, Epigénétique et Destin Cellulaire, CNRS, Paris 75013, France
| | - Sara Selig
- Department of Genetics, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| |
Collapse
|
19
|
Yang T, Chen WC, Shi PC, Liu MR, Jiang T, Song H, Wang JQ, Fan RZ, Pei DS, Song J. Long noncoding RNA MAPKAPK5-AS1 promotes colorectal cancer progression by cis-regulating the nearby gene MK5 and acting as a let-7f-1-3p sponge. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:139. [PMID: 32690100 PMCID: PMC7370515 DOI: 10.1186/s13046-020-01633-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are considered critical regulators in cancers; however, the clinical significance and mechanisms of MAPKAPK5-AS1 (hereinafter referred to as MK5-AS1) in colorectal cancer (CRC) remain mostly unknown. METHODS In this study, quantitative real-time PCR (qPCR) and western blotting were utilized to detect the levels of MK5-AS1, let-7f-1-3p and MK5 (MAPK activated protein kinase 5) in CRC tissues and cell lines. The biological functions of MK5-AS1, let-7f-1-3p and MK5 in CRC cells were explored using Cell Counting Kit-8 (CCK8), colony formation and transwell assays. The potential mechanisms of MK5-AS1 were evaluated by RNA pull-down, RNA immunoprecipitation (RIP), dual luciferase reporter assay, chromatin immunoprecipitation (ChIP) and bioinformatics analysis. The effects of MK5-AS1 and MK5 on CRC were investigated by a xenotransplantation model. RESULTS We confirmed that MK5-AS1 was significantly increased in CRC tissues. Knockdown of MK5-AS1 suppressed cell migration and invasion in vitro and inhibited lung metastasis in mice. Mechanistically, MK5-AS1 regulated SNAI1 expression by sponging let-7f-1-3p and cis-regulated the adjacent gene MK5. Moreover, MK5-AS1 recruited RBM4 and eIF4A1 to promote the translation of MK5. Our study verified that MK5 promoted the phosphorylation of c-Jun, which activated the transcription of SNAI1 by directly binding to its promoter. CONCLUSIONS MK5-AS1 cis-regulated the nearby gene MK5 and acted as a let-7f-1-3p sponge, playing a vital role in CRC tumorigenesis. This study could provide novel insights into molecular therapeutic targets of CRC.
Collapse
Affiliation(s)
- Ting Yang
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China ,grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Wei-Cong Chen
- grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Pei-Cong Shi
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Man-Ru Liu
- grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Tao Jiang
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Hu Song
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Jia-Qi Wang
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Rui-Zhi Fan
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Dong-Sheng Pei
- grid.417303.20000 0000 9927 0537Department of Pathology, Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| | - Jun Song
- grid.413389.4Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China ,grid.417303.20000 0000 9927 0537Institute of Digestive Diseases of Xuzhou Medical University, Xuzhou, 221002 Jiangsu Province China
| |
Collapse
|
20
|
Stern JL, Hibshman G, Hu K, Ferrara SE, Costello JC, Kim W, Tamayo P, Cech TR, Huang FW. Mesenchymal and MAPK Expression Signatures Associate with Telomerase Promoter Mutations in Multiple Cancers. Mol Cancer Res 2020; 18:1050-1062. [PMID: 32276990 PMCID: PMC8020009 DOI: 10.1158/1541-7786.mcr-19-1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
In a substantial fraction of cancers TERT promoter (TERTp) mutations drive expression of the catalytic subunit of telomerase, contributing to their proliferative immortality. We conducted a pan-cancer analysis of cell lines and find a TERTp mutation expression signature dominated by epithelial-to-mesenchymal transition and MAPK signaling. These data indicate that TERTp mutants are likely to generate distinctive tumor microenvironments and intercellular interactions. Analysis of high-throughput screening tests of 546 small molecules on cell line growth indicated that TERTp mutants displayed heightened sensitivity to specific drugs, including RAS pathway inhibitors, and we found that inhibition of MEK1 and 2, key RAS/MAPK pathway effectors, inhibited TERT mRNA expression. Consistent with an enrichment of mesenchymal states in TERTp mutants, cell lines and some patient tumors displayed low expression of the central adherens junction protein E-cadherin, and we provide evidence that its expression in these cells is regulated by MEK1/2. Several mesenchymal transcription factors displayed elevated expression in TERTp mutants including ZEB1 and 2, TWIST1 and 2, and SNAI1. Of note, the developmental transcription factor SNAI2/SLUG was conspicuously elevated in a significant majority of TERTp-mutant cell lines, and knock-down experiments suggest that it promotes TERT expression. IMPLICATIONS: Cancers harboring TERT promoter mutations are often more lethal, but the basis for this higher mortality remains unknown. Our study identifies that TERTp mutants, as a class, associate with a distinct gene and protein expression signature likely to impact their biological and clinical behavior and provide new directions for investigating treatment approaches for these cancers.
Collapse
Affiliation(s)
- Josh Lewis Stern
- BioFrontiers Institute and the Department of Biochemistry, Howard Hughes Medical Institute, University of
- Biochemistry and Molecular Genetics, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Grace Hibshman
- BioFrontiers Institute and the Department of Biochemistry, Howard Hughes Medical Institute, University of
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Cancer Center; Bakar Computational Health Sciences Institute, Institute of Human Genetics, University of California San Francisco, San Francisco, California
| | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| | - James C Costello
- University of Colorado, Anschutz Medical Campus, Department of Pharmacology, University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| | - William Kim
- Division of Medical Genetics and Center for Cancer Target Discovery and Development (CTD), Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Pablo Tamayo
- Division of Medical Genetics and Center for Cancer Target Discovery and Development (CTD), Moores Cancer Center, University of California San Diego, La Jolla, California.
| | - Thomas R Cech
- BioFrontiers Institute and the Department of Biochemistry, Howard Hughes Medical Institute, University of
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Cancer Center; Bakar Computational Health Sciences Institute, Institute of Human Genetics, University of California San Francisco, San Francisco, California.
| |
Collapse
|
21
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
22
|
Skrzypek K, Majka M. Interplay among SNAIL Transcription Factor, MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor Growth and Metastasis. Cancers (Basel) 2020; 12:E209. [PMID: 31947678 PMCID: PMC7017348 DOI: 10.3390/cancers12010209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
SNAIL (SNAI1) is a zinc finger transcription factor that binds to E-box sequences and regulates the expression of genes. It usually acts as a gene repressor, but it may also activate the expression of genes. SNAIL plays a key role in the regulation of epithelial to mesenchymal transition, which is the main mechanism responsible for the progression and metastasis of epithelial tumors. Nevertheless, it also regulates different processes that are responsible for tumor growth, such as the activity of cancer stem cells, the control of cell metabolism, and the regulation of differentiation. Different proteins and microRNAs may regulate the SNAIL level, and SNAIL may be an important regulator of microRNA expression as well. The interplay among SNAIL, microRNAs, long non-coding RNAs, and circular RNAs is a key event in the regulation of tumor growth and metastasis. This review for the first time discusses different types of regulation between SNAIL and non-coding RNAs with a focus on feedback loops and the role of competitive RNA. Understanding these mechanisms may help develop novel therapeutic strategies against cancer based on microRNAs.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| |
Collapse
|
23
|
Feretzaki M, Renck Nunes P, Lingner J. Expression and differential regulation of human TERRA at several chromosome ends. RNA (NEW YORK, N.Y.) 2019; 25:1470-1480. [PMID: 31350341 PMCID: PMC6795134 DOI: 10.1261/rna.072322.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 05/07/2023]
Abstract
The telomeric long noncoding RNA TERRA has been implicated in regulating telomere maintenance by telomerase and homologous recombination, and in influencing telomeric protein composition during the cell cycle and the telomeric DNA damage response. TERRA transcription starts at subtelomeric regions resembling the CpG islands of eukaryotic genes extending toward chromosome ends. TERRA contains chromosome-specific subtelomeric sequences at its 5' end and long tracts of UUAGGG-repeats toward the 3' end. Conflicting studies have been published as to whether TERRA is expressed from one or several chromosome ends. Here, we quantify TERRA species by RT-qPCR in normal and several cancerous human cell lines. By using chromosome-specific subtelomeric DNA primers, we demonstrate that TERRA is expressed from a large number of telomeres. Deficiency in DNA methyltransferases leads to TERRA up-regulation only at the subset of chromosome ends that contain CpG-island sequences, revealing differential regulation of TERRA promoters by DNA methylation. However, independently of the differences in TERRA expression, short telomeres were uniformly present in a DNA methyltransferase deficient cell line, indicating that telomere length was not dictated by TERRA expression in cis Bioinformatic analyses indicated the presence of a large number of putative transcription factors binding sites at TERRA promoters, and we identified a subset of them that repress TERRA expression. Altogether, our study confirms that TERRA corresponds to a large gene family transcribed from multiple chromosome ends where we identified two types of TERRA promoters, only one of which is regulated by DNA methylation.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patricia Renck Nunes
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Telomerase and Telomeres Biology in Thyroid Cancer. Int J Mol Sci 2019; 20:ijms20122887. [PMID: 31200515 PMCID: PMC6627113 DOI: 10.3390/ijms20122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere and telomerase regulation contributes to the onset and evolution of several tumors, including highly aggressive thyroid cancers (TCs). TCs are the most common endocrine malignancies and are generally characterized by a high rate of curability. However, a small but significant percentage develops distant metastasis or progresses into undifferentiated forms associated with bad prognosis and for which poor therapeutic options are available. Mutations in telomerase reverse transcriptase (TERT) promoter are among the most credited prognostic marker of aggressiveness in TCs. Indeed, their frequency progressively increases passing from indolent lesions to aggressive and anaplastic forms. TERT promoter mutations create binding sites for transcription factors, increasing TERT expression and telomerase activity. Furthermore, aggressiveness of TCs is associated with TERT locus amplification. These data encourage investigating telomerase regulating pathways as relevant drivers of TC development and progression to foster the identification of new therapeutics targets. Here, we summarize the current knowledge about telomere regulation and TCs, exploring both canonical and less conventional pathways. We discuss the possible role of telomere homeostasis in mediating response to cancer therapies and the possibility of using epigenetic drugs to re-evaluate the use of telomerase inhibitors. Combined treatments could be of support to currently used therapies still presenting weaknesses.
Collapse
|
25
|
The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability. Cells 2019; 8:cells8030246. [PMID: 30875900 PMCID: PMC6468625 DOI: 10.3390/cells8030246] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The finding that transcription occurs at chromosome ends has opened new fields of study on the roles of telomeric transcripts in chromosome end maintenance and genome stability. Indeed, the ends of chromosomes are required to be protected from activation of DNA damage response and DNA repair pathways. Chromosome end protection is achieved by the activity of specific proteins that associate with chromosome ends, forming telomeres. Telomeres need to be constantly maintained as they are in a heterochromatic state and fold into specific structures (T-loops), which may hamper DNA replication. In addition, in the absence of maintenance mechanisms, chromosome ends shorten at every cell division due to limitations in the DNA replication machinery, which is unable to fully replicate the extremities of chromosomes. Altered telomere structure or critically short chromosome ends generate dysfunctional telomeres, ultimately leading to replicative senescence or chromosome instability. Telomere biology is thus implicated in multiple human diseases, including cancer. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for “TElomeric Repeat-containing RNA,” actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the molecular details of TERRA activities remain to be elucidated. In this review, we discuss recent findings on the emerging roles of TERRA in telomere maintenance and genome stability and their implications in human diseases.
Collapse
|
26
|
Avogaro L, Querido E, Dalachi M, Jantsch MF, Chartrand P, Cusanelli E. Live-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cells. RNA Biol 2018; 15:787-796. [PMID: 29658398 PMCID: PMC6152429 DOI: 10.1080/15476286.2018.1456300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes, protecting them from degradation and erroneous recombination events which may lead to genome instability. Telomeres are transcribed giving rise to telomeric repeat-containing RNAs, called TERRA. The TERRA long noncoding RNAs have been proposed to play important roles in telomere biology, including heterochromatin formation and telomere length homeostasis. While TERRA RNAs are predominantly nuclear and localize at telomeres, little is known about the dynamics and function of TERRA molecules expressed from individual telomeres. Herein, we developed an assay to image endogenous TERRA molecules expressed from a single telomere in living human cancer cells. We show that single-telomere TERRA can be detected as TERRA RNA single particles which freely diffuse within the nucleus. Furthermore, TERRA molecules aggregate forming TERRA clusters. Three-dimensional size distribution and single particle tracking analyses revealed distinct sizes and dynamics for TERRA RNA single particles and clusters. Simultaneous time lapse confocal imaging of TERRA particles and telomeres showed that TERRA clusters transiently co-localize with telomeres. Finally, we used chemically modified antisense oligonucleotides to deplete TERRA molecules expressed from a single telomere. Single-telomere TERRA depletion resulted in increased DNA damage at telomeres and elsewhere in the genome. These results suggest that single-telomere TERRA transcripts participate in the maintenance of genomic integrity in human cancer cells.
Collapse
Affiliation(s)
- Laura Avogaro
- a Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| | - Emmanuelle Querido
- b Department of Biochemistry and Molecular Medicine , Université de Montréal , QC , Canada
| | - Myriam Dalachi
- b Department of Biochemistry and Molecular Medicine , Université de Montréal , QC , Canada
| | - Michael F Jantsch
- c Centre of Anatomy and Cell Biology, Medical University of Vienna , Vienna , Austria
| | - Pascal Chartrand
- b Department of Biochemistry and Molecular Medicine , Université de Montréal , QC , Canada
| | - Emilio Cusanelli
- a Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| |
Collapse
|