1
|
Balasubramanian S, Roy I, Appadurai R, Srivastava A. The ribonucleoprotein hnRNPA1 mediates binding to RNA and DNA telomeric G-quadruplexes through an RGG-rich region. J Biol Chem 2025; 301:108491. [PMID: 40209951 PMCID: PMC7617716 DOI: 10.1016/j.jbc.2025.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/08/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
hnRNPA1, a protein from the heterogeneous-nuclear ribonucleoprotein family, mediates cellular processes such as RNA metabolism and DNA telomere maintenance. Besides the folded RNA recognition motifs, hnRNPA1 has a ∼135 amino-acids long low-complexity domain (LCD) consisting of an RGG-rich region and a prion-like domain (PrLD). Biochemical data suggest that the RGG-rich region modulates the recognition of G-quadruplexes (GQs) in the telomeric repeats. Here, we utilize an in-house developed replica exchange technique (REHT) to generate the heterogeneous conformational ensemble of hnRNPA1-RGG and explore its functional significance in telomere maintenance. Single chain statistics and abundance of structural motifs, as well as consistency with experimentally reported structural data suggest faithful recapitulation of local interactions. We also introduce a protocol to generate functionally significant IDP-nucleic acid complex structures that corroborate well with the experimental knowledge of their binding. We find that RGG-box preferentially binds to the grooves and loops of GQs providing specificity towards certain GQ structures with its sequence and secondary structures. Turn-like structures expose Phe and promote stacking with the G-tetrads, while Tyr and Asn residues form essential hydrogen bonds and electrostatic interactions. Several of these residues were also identified as important by the earlier reported HSQC chemical shift data. Our binding and simulation studies also reveal that a minor population of the RGG-box can perturb telomeric GQs structure, which likely expedites the unfolding activities of hnRNPA1-UP1 at the telomeric end.
Collapse
Affiliation(s)
| | - Irawati Roy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India; Department of Biology, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
2
|
Tsuruta M, Shil S, Taniguchi S, Kawauchi K, Miyoshi D. The role of cytosine methylation in regulating the topology and liquid-liquid phase separation of DNA G-quadruplexes. Chem Sci 2025:d4sc06959e. [PMID: 39935503 PMCID: PMC11808335 DOI: 10.1039/d4sc06959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Aberrant expansion of GGGGCC DNA repeats that form G-quadruplexes (G4) is the main cause of amyotrophic lateral sclerosis (ALS). Expanded GGGGCC repeats induce liquid-liquid phase separation (LLPS) through their interaction with cellular proteins. Furthermore, GGGGCC expansion induces cytosine methylation (mC). Previous studies have shown that even slight chemical modifications of RNAs and proteins can drastically affect their LLPS ability, yet the relationship between LLPS and epigenetic DNA modifications like mC remains unexplored. As a model system, we investigated the effects of mC on LLPS induced by GGGGCC repeat DNAs and show for the first time that mC suppresses LLPS by altering the topology of G4 from being parallel to antiparallel.
Collapse
Affiliation(s)
- Mitsuki Tsuruta
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Shinya Taniguchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| |
Collapse
|
3
|
Sahoo BR, Deng X, Wong EL, Clark N, Yang H, Subramanian V, Guzman BB, Harris SE, Dehury B, Miyashita E, Hoff JD, Kocaman V, Saito H, Dominguez D, Plavec J, Bardwell JCA. Visualizing liquid-liquid phase transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561572. [PMID: 39554013 PMCID: PMC11565804 DOI: 10.1101/2023.10.09.561572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Liquid-liquid phase condensation governs a wide range of protein-protein and protein-RNA interactions in vivo and drives the formation of membrane-less compartments such as the nucleolus and stress granules. We have a broad overview of the importance of multivalency and protein disorder in driving liquid-liquid phase transitions. However, the large and complex nature of key proteins and RNA components involved in forming condensates such as stress granules has inhibited a detailed understanding of how condensates form and the structural interactions that take place within them. In this work, we focused on the small human SERF2 protein. We show here that SERF2 contributes to the formation of stress granules. We also show that SERF2 specifically interacts with non-canonical tetrahelical RNA structures called G-quadruplexes, structures which have previously been linked to stress granule formation. The excellent biophysical amenability of both SERF2 and RNA G4 quadruplexes has allowed us to obtain a high-resolution visualization of the multivalent protein-RNA interactions involved in liquid-liquid phase transitions. Our visualization has enabled us to characterize the role that protein disorder plays in these transitions, identify the specific contacts involved, and describe how these interactions impact the structural dynamics of the components involved in liquid-liquid phase transitions, thus enabling a detailed understanding of the structural transitions involved in early stages of ribonucleoprotein condensate formation.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Ee Lin Wong
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nathan Clark
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Harry Yang
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | | | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal-576104, India
| | - Emi Miyashita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - J Damon Hoff
- Department of Biophysics, University of Michigan, Ann Arbor, MI-48109, USA
| | - Vojč Kocaman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
4
|
Kletzien OA, Wuttke DS, Batey RT. The RNA-binding Selectivity of the RGG/RG Motifs of hnRNP U is Abolished by Elements Within the C-terminal Intrinsically Disordered Region. J Mol Biol 2024; 436:168702. [PMID: 38996909 PMCID: PMC11441334 DOI: 10.1016/j.jmb.2024.168702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
The abundant nuclear protein hnRNP U interacts with a broad array of RNAs along with DNA and protein to regulate nuclear chromatin architecture. The RNA-binding activity is achieved via a disordered ∼100 residue C-terminal RNA-binding domain (RBD) containing two distinct RGG/RG motifs. Although the RNA-binding capabilities of RGG/RG motifs have been widely reported, less is known about hnRNP U's RNA-binding selectivity. Furthermore, while it is well established that hnRNP U binds numerous nuclear RNAs, it remains unknown whether it selectively recognizes sequence or structural motifs in target RNAs. To address this question, we performed equilibrium binding assays using fluorescence anisotropy (FA) and electrophoretic mobility shift assays (EMSAs) to quantitatively assess the ability of human hnRNP U RBD to interact with segments of cellular RNAs identified from eCLIP data. These RNAs often, but not exclusively, contain poly-uridine or 5'-AGGGAG sequence motifs. Detailed binding analysis of several target RNAs reveal that the hnRNP U RBD binds RNA in a promiscuous manner with high affinity for a broad range of structured RNAs, but with little preference for any distinct sequence motif. In contrast, the isolated RGG/RG of hnRNP U motif exhibits a strong preference for G-quadruplexes, similar to that observed for other RGG motif bearing peptides. These data reveal that the hnRNP U RBD attenuates the RNA binding selectivity of its core RGG motifs to achieve an extensive RNA interactome. We propose that a critical role of RGG/RG motifs in RNA biology is to alter binding affinity or selectivity of adjacent RNA-binding domains.
Collapse
Affiliation(s)
- Otto A Kletzien
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
5
|
Chen L, Chen G, Zhang M, Zhang X. Modeling sporadic juvenile ALS in iPSC-derived motor neurons explores the pathogenesis of FUS R503fs mutation. Front Cell Neurosci 2024; 18:1364164. [PMID: 38711616 PMCID: PMC11070534 DOI: 10.3389/fncel.2024.1364164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Fused in sarcoma (FUS) mutations represent the most common genetic etiology of juvenile amyotrophic lateral sclerosis (JALS), for which effective treatments are lacking. In a prior report, we identified a novel FUS mutation, c.1509dupA: p. R503fs (FUSR503fs), in a sporadic JALS patient. Methods The physicochemical properties and structure of FUSR503fs protein were analyzed by software: Multi-electrode array (MEA) assay, calcium activity imaging assay and transcriptome analysis were used to explore the pathophysiological mechanism of iPSC derived motor neurons. Results Structural analysis and predictions regarding physical and chemical properties of this mutation suggest that the reduction of phosphorylation and glycosylation sites, along with alterations in the amino acid sequence, may contribute to abnormal FUS accumulation within the cytoplasm and nucleus of induced pluripotent stem cell- derived motor neurons (MNs). Multi-electrode array and calcium activity imaging indicate diminished spontaneous electrical and calcium activity signals in MNs harboring the FUSR503fs mutation. Transcriptomic analysis reveals upregulation of genes associated with viral infection and downregulation of genes involved in neural function maintenance, such as the ATP6V1C2 gene. Treatment with ropinirole marginally mitigates the electrophysiological decline in FUSR503fs MNs, suggesting the utility of this cell model for mechanistic exploration and drug screening. Discussion iPSCs-derived motor neurons from JALS patients are promising tools for drug screening. The pathological changes in motor neurons of FUSR503fs may occur earlier than in other known mutation types that have been reported.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Guojie Chen
- Hunan YoBon Biotechnology Limited Company, Changsha, Hunan, China
| | - Mengting Zhang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| |
Collapse
|
6
|
Gao Z, Yuan J, He X, Wang H, Wang Y. Phase Separation Modulates the Formation and Stabilities of DNA Guanine Quadruplex. JACS AU 2023; 3:1650-1657. [PMID: 37388701 PMCID: PMC10301798 DOI: 10.1021/jacsau.3c00106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
In the presence of monovalent alkali metal ions, G-rich DNA sequences containing four runs of contiguous guanines can fold into G-quadruplex (G4) structures. Recent studies showed that these structures are located in critical regions of the human genome and assume important functions in many essential DNA metabolic processes, including replication, transcription, and repair. However, not all potential G4-forming sequences are actually folded into G4 structures in cells, where G4 structures are known to be dynamic and modulated by G4-binding proteins as well as helicases. It remains unclear whether there are other factors influencing the formation and stability of G4 structures in cells. Herein, we showed that DNA G4s can undergo phase separation in vitro. In addition, immunofluorescence microscopy and ChIP-seq experiments with the use of BG4, a G4 structure-specific antibody, revealed that disruption of phase separation could result in global destabilization of G4 structures in cells. Together, our work revealed phase separation as a new determinant in modulating the formation and stability of G4 structures in human cells.
Collapse
Affiliation(s)
- Zi Gao
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
| | - Jun Yuan
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California, 92521-0403, United States
| | - Xiaomei He
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
| | - Handing Wang
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
| | - Yinsheng Wang
- Department
of Chemistry, University of California Riverside, Riverside, California, 92521-0403, United
States
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California, 92521-0403, United States
| |
Collapse
|
7
|
Boyle EA, Her HL, Mueller JR, Naritomi JT, Nguyen GG, Yeo GW. Skipper analysis of eCLIP datasets enables sensitive detection of constrained translation factor binding sites. CELL GENOMICS 2023; 3:100317. [PMID: 37388912 PMCID: PMC10300551 DOI: 10.1016/j.xgen.2023.100317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023]
Abstract
Technology for crosslinking and immunoprecipitation (CLIP) followed by sequencing (CLIP-seq) has identified the transcriptomic targets of hundreds of RNA-binding proteins in cells. To increase the power of existing and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed reads into annotated binding sites using an improved statistical framework. Compared with existing methods, Skipper on average calls 210%-320% more transcriptomic binding sites and sometimes >1,000% more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experiments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of translation factor occupancy, including transcript region, sequence, and subcellular localization. Furthermore, we observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective constraint because of translation factor occupancy. Skipper offers fast, easy, customizable, and state-of-the-art analysis of CLIP-seq data.
Collapse
Affiliation(s)
- Evan A. Boyle
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hsuan-Lin Her
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jack T. Naritomi
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Grady G. Nguyen
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Pavlova I, Iudin M, Surdina A, Severov V, Varizhuk A. G-Quadruplexes in Nuclear Biomolecular Condensates. Genes (Basel) 2023; 14:genes14051076. [PMID: 37239436 DOI: 10.3390/genes14051076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates.
Collapse
Affiliation(s)
- Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Iudin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anastasiya Surdina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
9
|
Selig EE, Bhura R, White MR, Akula S, Hoffman RD, Tovar CN, Xu X, Booth RE, Libich DS. Biochemical and biophysical characterization of the nucleic acid binding properties of the RNA/DNA binding protein EWS. Biopolymers 2023; 114:e23536. [PMID: 36929870 PMCID: PMC10233817 DOI: 10.1002/bip.23536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
EWS is a member of the FET family of RNA/DNA binding proteins that regulate crucial phases of nucleic acid metabolism. EWS comprises an N-terminal low-complexity domain (LCD) and a C-terminal RNA-binding domain (RBD). The RBD is further divided into three RG-rich regions, which flank an RNA-recognition motif (RRM) and a zinc finger (ZnF) domain. Recently, EWS was shown to regulate R-loops in Ewing sarcoma, a pediatric bone and soft-tissue cancer in which a chromosomal translocation fuses the N-terminal LCD of EWS to the C-terminal DNA binding domain of the transcription factor FLI1. Though EWS was shown to directly bind R-loops, the binding mechanism was not elucidated. In the current study, the RBD of EWS was divided into several constructs, which were subsequently assayed for binding to various nucleic acid structures expected to form at R-loops, including RNA stem-loops, DNA G-quadruplexes, and RNA:DNA hybrids. EWS interacted with all three nucleic acid structures with varying affinities and multiple domains contributed to binding each substrate. The RRM and RG2 region appear to bind nucleic acids promiscuously while the ZnF displayed more selectivity for single-stranded structures. With these results, the structural underpinnings of EWS recognition and binding of R-loops and other nucleic acid structures is better understood.
Collapse
Affiliation(s)
- Emily E Selig
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
| | - Roohi Bhura
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas, 78209, USA
| | - Matthew R White
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas, 78209, USA
| | - Shivani Akula
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas, 78209, USA
| | - Renee D Hoffman
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas, 78209, USA
| | - Carmel N Tovar
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas, 78209, USA
| | - Xiaoping Xu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
| | - Rachell E Booth
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas, 78209, USA
| | - David S Libich
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
10
|
Pokorná P, Krepl M, Campagne S, Šponer J. Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:9207-9221. [PMID: 36348631 DOI: 10.1021/acs.jpcb.2c06168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 μs in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA-protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA-protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA-protein complexes.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Sébastien Campagne
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
11
|
Murakami K, Ono K. Interactions of amyloid coaggregates with biomolecules and its relevance to neurodegeneration. FASEB J 2022; 36:e22493. [PMID: 35971743 DOI: 10.1096/fj.202200235r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/16/2023]
Abstract
The aggregation of amyloidogenic proteins is a pathological hallmark of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these diseases, oligomeric intermediates or toxic aggregates of amyloids cause neuronal damage and degeneration. Despite the substantial effort made over recent decades to implement therapeutic interventions, these neurodegenerative diseases are not yet understood at the molecular level. In many cases, multiple disease-causing amyloids overlap in a sole pathological feature or a sole disease-causing amyloid represents multiple pathological features. Various amyloid pathologies can coexist in the same brain with or without clinical presentation and may even occur in individuals without disease. From sparse data, speculation has arisen regarding the coaggregation of amyloids with disparate amyloid species and other biomolecules, which are the same characteristics that make diagnostics and drug development challenging. However, advances in research related to biomolecular condensates and structural analysis have been used to overcome some of these challenges. Considering the development of these resources and techniques, herein we review the cross-seeding of amyloidosis, for example, involving the amyloids amyloid β, tau, α-synuclein, and human islet amyloid polypeptide, and their cross-inhibition by transthyretin and BRICHOS. The interplay of nucleic acid-binding proteins, such as prions, TAR DNA-binding protein 43, fused in sarcoma/translated in liposarcoma, and fragile X mental retardation polyglycine, with nucleic acids in the pathology of neurodegeneration are also described, and we thereby highlight the potential clinical applications in central nervous system therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
12
|
Abstract
The fragile X proteins (FXPs) are a family of RNA-binding proteins that regulate mRNA translation to promote proper neural development and cognition in mammals. Of particular interest to researchers is the fragile X mental retardation protein (FMRP), as its absence leads to a neurodevelopmental disorder: fragile X syndrome (FXS), the leading monogenetic cause of autism spectrum disorders. A primary focus of research has been to determine mRNA targets of the FXPs in vivo through pull-down techniques, and to validate them through in vitro binding studies; another approach has been to perform in vitro selection experiments to identify RNA sequence and structural targets. These mRNA targets can be further investigated as potential targets for FXS therapeutics. The most established RNA structural target of this family of proteins is the G-quadruplex. In this article, we report a 99 nucleotide RNA target that is bound by all three FXPs with nanomolar equilibrium constants. Furthermore, we determined that the last 102 amino acids of FMRP, which includes the RGG motif, were necessary and sufficient to bind this RNA target. To the best of our knowledge, this is one of only a few examples of non-G-quadruplex, non-homopolymer RNAs bound by the RGG motif/C-termini of FMRP.
Collapse
Affiliation(s)
- Madison Edwards
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| | - Molly Huang
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314 USA
| |
Collapse
|
13
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Ruggiero E, Frasson I, Tosoni E, Scalabrin M, Perrone R, Marušič M, Plavec J, Richter SN. Fused in Liposarcoma Protein, a New Player in the Regulation of HIV-1 Transcription, Binds to Known and Newly Identified LTR G-Quadruplexes. ACS Infect Dis 2022; 8:958-968. [PMID: 35502456 PMCID: PMC9112328 DOI: 10.1021/acsinfecdis.1c00508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/29/2022]
Abstract
HIV-1 integrated long terminal repeat (LTR) promoter activity is modulated by folding of its G-rich region into non-canonical nucleic acids structures, such as G-quadruplexes (G4s), and their interaction with cellular proteins. Here, by a combined pull-down/mass spectrometry/Western-blot approach, we identified the fused in liposarcoma (FUS) protein and found it to preferentially bind and stabilize the least stable and bulged LTR G4, especially in the cell environment. The outcome of this interaction is the down-regulation of viral transcription, as assessed in a reporter assay with LTR G4 mutants in FUS-silencing conditions. These data indicate that the complexity and dynamics of HIV-1 LTR G4s are much greater than previously envisaged. The G-rich LTR region, with its diverse G4 landscape and multiple cell protein interactions, stands out as prime sensing center for the fine regulation of viral transcription. This region thus represents a rational antiviral target for inhibiting both the actively transcribing and latent viruses.
Collapse
Affiliation(s)
- Emanuela Ruggiero
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Ilaria Frasson
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Elena Tosoni
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Matteo Scalabrin
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Rosalba Perrone
- Buck
Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
| | - Maja Marušič
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Sara N. Richter
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| |
Collapse
|
15
|
Patra S, Claude JB, Naubron JV, Wenger J. Fast interaction dynamics of G-quadruplex and RGG-rich peptides unveiled in zero-mode waveguides. Nucleic Acids Res 2021; 49:12348-12357. [PMID: 34791437 PMCID: PMC8643622 DOI: 10.1093/nar/gkab1002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
G-quadruplexes (GQs), a non-canonical form of DNA, are receiving a huge interest as target sites for potential applications in antiviral and anticancer drug treatments. The biological functions of GQs can be controlled by specifically binding proteins known as GQs binding proteins. Some of the GQs binding proteins contain an arginine and glycine-rich sequence known as RGG peptide. Despite the important role of RGG, the GQs-RGG interaction remains poorly understood. By single molecule measurements, the interaction dynamics can be determined in principle. However, the RGG-GQs interaction occurs at micromolar concentrations, making conventional single-molecule experiments impossible with a diffraction-limited confocal microscope. Here, we use a 120 nm zero-mode waveguide (ZMW) nanoaperture to overcome the diffraction limit. The combination of dual-color fluorescence cross-correlation spectroscopy (FCCS) with FRET is used to unveil the interaction dynamics and measure the association and dissociation rates. Our data show that the RGG-GQs interaction is predominantly driven by electrostatics but that a specific affinity between the RGG sequence and the GQs structure is preserved. The single molecule approach at micromolar concentration is the key to improve our understanding of GQs function and develop its therapeutic applications by screening a large library of GQs-targeting peptides and proteins.
Collapse
Affiliation(s)
- Satyajit Patra
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM – Spectropole, 13013 Marseille, France
| | - Jérome Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| |
Collapse
|
16
|
Gao Z, Williams P, Li L, Wang Y. A Quantitative Proteomic Approach for the Identification of DNA Guanine Quadruplex-Binding Proteins. J Proteome Res 2021; 20:4919-4924. [PMID: 34570971 DOI: 10.1021/acs.jproteome.1c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA sequences of high guanine (G) content have the potential to form G quadruplex (G4) structures. A more complete understanding about the biological functions of G4 DNA requires the investigation about how these structures are recognized by proteins. Here, we conducted exhaustive quantitative proteomic experiments to profile the interaction proteomes of G4 structures by employing different sequences of G4 DNA derived from the human telomere and the promoters of c-MYC and c-KIT genes. Our results led to the identification of a number of candidate G4-interacting proteins, many of which were discovered here for the first time. These included three proteins that can bind to all three DNA G4 structures and 78 other proteins that can bind selectively to one or two of the three DNA G4 structure(s). We also validated that GRSF1 can bind directly and selectively toward G4 structure derived from the c-MYC promoter. Our quantitative proteomic screening also led to the identification of a number of candidate "antireader" proteins of G4 DNA. Together, we uncovered a number of cellular proteins that exhibit general and selective recognitions of G4 folding patterns, which underscore the complexity of G4 DNA in biology and the importance of understanding fully the G4-interaction proteome.
Collapse
Affiliation(s)
- Zi Gao
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Preston Williams
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
17
|
Busa VF, Favorov AV, Fertig EJ, Leung AK. Spatial correlation statistics enable transcriptome-wide characterization of RNA structure binding. CELL REPORTS METHODS 2021; 1:100088. [PMID: 35474897 PMCID: PMC9017189 DOI: 10.1016/j.crmeth.2021.100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/23/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022]
Abstract
Molecular interactions at identical transcriptomic locations or at proximal but non-overlapping sites can mediate RNA modification and regulation, necessitating tools to uncover these spatial relationships. We present nearBynding, a flexible algorithm and software pipeline that models spatial correlation between transcriptome-wide tracks from diverse data types. nearBynding can process and correlate interval as well as continuous data and incorporate experimentally derived or in silico predicted transcriptomic tracks. nearBynding offers visualization functions for its statistics to identify colocalizations and adjacent features. We demonstrate the application of nearBynding to correlate RNA-binding protein (RBP) binding preferences with other RBPs, RNA structure, or RNA modification. By cross-correlating RBP binding and RNA structure data, we demonstrate that nearBynding recapitulates known RBP binding to structural motifs and provides biological insights into RBP binding preference of G-quadruplexes. nearBynding is available as an R/Bioconductor package and can run on a personal computer, making correlation of transcriptomic features broadly accessible.
Collapse
Affiliation(s)
- Veronica F. Busa
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alexander V. Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elana J. Fertig
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21205, USA
| | - Anthony K.L. Leung
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Doron‐Mandel E, Koppel I, Abraham O, Rishal I, Smith TP, Buchanan CN, Sahoo PK, Kadlec J, Oses‐Prieto JA, Kawaguchi R, Alber S, Zahavi EE, Di Matteo P, Di Pizio A, Song D, Okladnikov N, Gordon D, Ben‐Dor S, Haffner‐Krausz R, Coppola G, Burlingame AL, Jungwirth P, Twiss JL, Fainzilber M. The glycine arginine-rich domain of the RNA-binding protein nucleolin regulates its subcellular localization. EMBO J 2021; 40:e107158. [PMID: 34515347 PMCID: PMC8521312 DOI: 10.15252/embj.2020107158] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Ella Doron‐Mandel
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Indrek Koppel
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Ofri Abraham
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Ida Rishal
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Terika P Smith
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | | | - Pabitra K Sahoo
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | - Jan Kadlec
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Juan A Oses‐Prieto
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Riki Kawaguchi
- Departments of Psychiatry and NeurologySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | - Stefanie Alber
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Eitan Erez Zahavi
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Pierluigi Di Matteo
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Agostina Di Pizio
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Didi‐Andreas Song
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Nataliya Okladnikov
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Dalia Gordon
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| | - Shifra Ben‐Dor
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | | | - Giovanni Coppola
- Departments of Psychiatry and NeurologySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCAUSA
| | - Alma L Burlingame
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCAUSA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Jeffery L Twiss
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
| | - Mike Fainzilber
- Departments of Biomolecular Sciences and Molecular NeuroscienceWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
19
|
Yan KKP, Obi I, Sabouri N. The RGG domain in the C-terminus of the DEAD box helicases Dbp2 and Ded1 is necessary for G-quadruplex destabilization. Nucleic Acids Res 2021; 49:8339-8354. [PMID: 34302476 PMCID: PMC8373067 DOI: 10.1093/nar/gkab620] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
The identification of G-quadruplex (G4) binding proteins and insights into their mechanism of action are important for understanding the regulatory functions of G4 structures. Here, we performed an unbiased affinity-purification assay coupled with mass spectrometry and identified 30 putative G4 binding proteins from the fission yeast Schizosaccharomyces pombe. Gene ontology analysis of the molecular functions enriched in this pull-down assay included mRNA binding, RNA helicase activity, and translation regulator activity. We focused this study on three of the identified proteins that possessed putative arginine-glycine-glycine (RGG) domains, namely the Stm1 homolog Oga1 and the DEAD box RNA helicases Dbp2 and Ded1. We found that Oga1, Dbp2, and Ded1 bound to both DNA and RNA G4s in vitro. Both Dbp2 and Ded1 bound to G4 structures through the RGG domain located in the C-terminal region of the helicases, and point mutations in this domain weakened the G4 binding properties of the helicases. Dbp2 and Ded1 destabilized less thermostable G4 RNA and DNA structures, and this ability was independent of ATP but dependent on the RGG domain. Our study provides the first evidence that the RGG motifs in DEAD box helicases are necessary for both G4 binding and G4 destabilization.
Collapse
Affiliation(s)
- Kevin Kok-Phen Yan
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
20
|
Dettori LG, Torrejon D, Chakraborty A, Dutta A, Mohamed M, Papp C, Kuznetsov VA, Sung P, Feng W, Bah A. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation. Front Mol Biosci 2021; 8:691694. [PMID: 34179096 PMCID: PMC8222781 DOI: 10.3389/fmolb.2021.691694] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
R-loops are non-canonical, three-stranded nucleic acid structures composed of a DNA:RNA hybrid, a displaced single-stranded (ss)DNA, and a trailing ssRNA overhang. R-loops perform critical biological functions under both normal and disease conditions. To elucidate their cellular functions, we need to understand the mechanisms underlying R-loop formation, recognition, signaling, and resolution. Previous high-throughput screens identified multiple proteins that bind R-loops, with many of these proteins containing folded nucleic acid processing and binding domains that prevent (e.g., topoisomerases), resolve (e.g., helicases, nucleases), or recognize (e.g., KH, RRMs) R-loops. However, a significant number of these R-loop interacting Enzyme and Reader proteins also contain long stretches of intrinsically disordered regions (IDRs). The precise molecular and structural mechanisms by which the folded domains and IDRs synergize to recognize and process R-loops or modulate R-loop-mediated signaling have not been fully explored. While studying one such modular R-loop Reader, the Fragile X Protein (FMRP), we unexpectedly discovered that the C-terminal IDR (C-IDR) of FMRP is the predominant R-loop binding site, with the three N-terminal KH domains recognizing the trailing ssRNA overhang. Interestingly, the C-IDR of FMRP has recently been shown to undergo spontaneous Liquid-Liquid Phase Separation (LLPS) assembly by itself or in complex with another non-canonical nucleic acid structure, RNA G-quadruplex. Furthermore, we have recently shown that FMRP can suppress persistent R-loops that form during transcription, a process that is also enhanced by LLPS via the assembly of membraneless transcription factories. These exciting findings prompted us to explore the role of IDRs in R-loop processing and signaling proteins through a comprehensive bioinformatics and computational biology study. Here, we evaluated IDR prevalence, sequence composition and LLPS propensity for the known R-loop interactome. We observed that, like FMRP, the majority of the R-loop interactome, especially Readers, contains long IDRs that are highly enriched in low complexity sequences with biased amino acid composition, suggesting that these IDRs could directly interact with R-loops, rather than being “mere flexible linkers” connecting the “functional folded enzyme or binding domains”. Furthermore, our analysis shows that several proteins in the R-loop interactome are either predicted to or have been experimentally demonstrated to undergo LLPS or are known to be associated with phase separated membraneless organelles. Thus, our overall results present a thought-provoking hypothesis that IDRs in the R-loop interactome can provide a functional link between R-loop recognition via direct binding and downstream signaling through the assembly of LLPS-mediated membrane-less R-loop foci. The absence or dysregulation of the function of IDR-enriched R-loop interactors can potentially lead to severe genomic defects, such as the widespread R-loop-mediated DNA double strand breaks that we recently observed in Fragile X patient-derived cells.
Collapse
Affiliation(s)
- Leonardo G Dettori
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Diego Torrejon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mohamed Mohamed
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Csaba Papp
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Vladimir A Kuznetsov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States.,Bioinformatics Institute, ASTAR Biomedical Institutes, Singapore, Singapore
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
21
|
Yan S, Zhao D, Wang C, Wang H, Guan X, Gao Y, Zhang X, Zhang N, Chen R. Characterization of RNA-binding proteins in the cell nucleus and cytoplasm. Anal Chim Acta 2021; 1168:338609. [PMID: 34051998 DOI: 10.1016/j.aca.2021.338609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
As critical players in the regulation of gene expression, RNA-binding proteins (RBPs) play fundamental roles in cellular functions and diseases. In this study, we established an analytical strategy to characterize RBPs from different subcellular regions by combining subcellular fractionation, acidic guanidinium-thiocyanate-phenol-chloroform biphasic extraction, and quantitative mass spectrometry. Using this method, we identified 1775 and 2245 RBPs from the cell nucleus and cytoplasm. The data confirmed a large spectrum of known RBPs, revealed 614 novel ones that have never been reported before, and cataloged their subcellular localizations. Intriguingly, 200 metabolic enzymes from diverse metabolic pathways were observed as RBPs, some of which were further validated through western blotting following UV-mediated crosslinking and biphasic extraction. Furthermore, we characterized 2157 RNA-binding interfaces, providing structural information regarding the complex nature of RNA-protein interactions. Taken together, our data greatly expand the current reservoir of known RBPs and highlight the potential role of RNA-binding in the regulation of cellular metabolism.
Collapse
Affiliation(s)
- Shuai Yan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Peking University First Hospital, Peking University Health Science Center, Beijing, 100034, China
| | - Dongqing Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Chunqing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Hao Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyu Guan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ning Zhang
- Peking University First Hospital, Peking University Health Science Center, Beijing, 100034, China; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300070, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
22
|
Spiegel J, Cuesta SM, Adhikari S, Hänsel-Hertsch R, Tannahill D, Balasubramanian S. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol 2021; 22:117. [PMID: 33892767 PMCID: PMC8063395 DOI: 10.1186/s13059-021-02324-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The binding of transcription factors (TF) to genomic targets is critical in the regulation of gene expression. Short, double-stranded DNA sequence motifs are routinely implicated in TF recruitment, but many questions remain on how binding site specificity is governed. RESULTS Herein, we reveal a previously unappreciated role for DNA secondary structures as key features for TF recruitment. In a systematic, genome-wide study, we discover that endogenous G-quadruplex secondary structures (G4s) are prevalent TF binding sites in human chromatin. Certain TFs bind G4s with affinities comparable to double-stranded DNA targets. We demonstrate that, in a chromatin context, this binding interaction is competed out with a small molecule. Notably, endogenous G4s are prominent binding sites for a large number of TFs, particularly at promoters of highly expressed genes. CONCLUSIONS Our results reveal a novel non-canonical mechanism for TF binding whereby G4s operate as common binding hubs for many different TFs to promote increased transcription.
Collapse
Affiliation(s)
- Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Sergio Martínez Cuesta
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Present Address: Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Santosh Adhikari
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Robert Hänsel-Hertsch
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Present Address: Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - David Tannahill
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK.
| |
Collapse
|
23
|
Bartas M, Červeň J, Guziurová S, Slychko K, Pečinka P. Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins. Int J Mol Sci 2021; 22:ijms22020922. [PMID: 33477647 PMCID: PMC7831508 DOI: 10.3390/ijms22020922] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
Collapse
|
24
|
A combined NMR and EPR investigation on the effect of the disordered RGG regions in the structure and the activity of the RRM domain of FUS. Sci Rep 2020; 10:20956. [PMID: 33262375 PMCID: PMC7708983 DOI: 10.1038/s41598-020-77899-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Structural disorder represents a key feature in the mechanism of action of RNA-binding proteins (RBPs). Recent insights revealed that intrinsically disordered regions (IDRs) linking globular domains modulate their capability to interact with various sequences of RNA, but also regulate aggregation processes, stress-granules formation, and binding to other proteins. The FET protein family, which includes FUS (Fused in Sarcoma), EWG (Ewing Sarcoma) and TAF15 (TATA binding association factor 15) proteins, is a group of RBPs containing three different long IDRs characterized by the presence of RGG motifs. In this study, we present the characterization of a fragment of FUS comprising two RGG regions flanking the RNA Recognition Motif (RRM) alone and in the presence of a stem-loop RNA. From a combination of EPR and NMR spectroscopies, we established that the two RGG regions transiently interact with the RRM itself. These interactions may play a role in the recognition of stem-loop RNA, without a disorder-to-order transition but retaining high dynamics.
Collapse
|
25
|
Zheng KW, Zhang JY, He YD, Gong JY, Wen CJ, Chen JN, Hao YH, Zhao Y, Tan Z. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res 2020; 48:11706-11720. [PMID: 33045726 PMCID: PMC7672459 DOI: 10.1093/nar/gkaa841] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
G-quadruplex (G4) structures formed by guanine-rich nucleic acids are implicated in essential physiological and pathological processes and serve as important drug targets. The genome-wide detection of G4s in living cells is important for exploring the functional role of G4s but has not yet been achieved due to the lack of a suitable G4 probe. Here we report an artificial 6.7 kDa G4 probe (G4P) protein that binds G4s with high affinity and specificity. We used it to capture G4s in living human, mouse, and chicken cells with the ChIP-Seq technique, yielding genome-wide landscape as well as details on the positions, frequencies, and sequence identities of G4 formation in these cells. Our results indicate that transcription is accompanied by a robust formation of G4s in genes. In human cells, we detected up to >123 000 G4P peaks, of which >1/3 had a fold increase of ≥5 and were present in >60% promoters and ∼70% genes. Being much smaller than a scFv antibody (27 kDa) or even a nanobody (12-15 kDa), we expect that the G4P may find diverse applications in biology, medicine, and molecular devices as a G4 affinity agent.
Collapse
Affiliation(s)
- Ke-wei Zheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Jia-yu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multidisciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yi-de He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Jia-yuan Gong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Cui-jiao Wen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Juan-nan Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Yu-hua Hao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yong Zhao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Zheng Tan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, Shanxi, P.R. China
| |
Collapse
|
26
|
Oyoshi T, Masuzawa T. Modulation of histone modifications and G-quadruplex structures by G-quadruplex-binding proteins. Biochem Biophys Res Commun 2020; 531:39-44. [PMID: 32178871 DOI: 10.1016/j.bbrc.2020.02.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
The functions of local conformations of non-B form DNA and RNA, such as the G-quadruplex, are thought to be regulated by their specific binding proteins. They regulate the formation of G-quadruplexes in cells and affect the biological functions of G-quadruplexes. Recent studies reported that G-quadruplexes regulate epigenetics through these G-quadruplex binding proteins. We discuss regulation of histone modifications through G-quadruplex RNA and its binding proteins which modulate the G-quadruplex conformations. G-quadruplex RNA is involved in telomere maintenance and transcription via histone modification. Furthermore, G-quadruplex binding proteins regulate formation and biological functions of G-quadruplexes through regulating their folding or unfolding. In this review, we will focus on the G-quadruplex binding proteins containing RRM and RGG domains.
Collapse
Affiliation(s)
- Takanori Oyoshi
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya Suruga, Shizuoka, 422-8529, Japan.
| | - Tatsuki Masuzawa
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya Suruga, Shizuoka, 422-8529, Japan
| |
Collapse
|
27
|
Imperatore JA, McAninch DS, Valdez-Sinon AN, Bassell GJ, Mihailescu MR. FUS Recognizes G Quadruplex Structures Within Neuronal mRNAs. Front Mol Biosci 2020; 7:6. [PMID: 32118033 PMCID: PMC7018707 DOI: 10.3389/fmolb.2020.00006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Fused in sarcoma (FUS), identified as the heterogeneous nuclear ribonuclear protein P2, is expressed in neuronal and non-neuronal tissue, and among other functions, has been implicated in messenger RNA (mRNA) transport and possibly local translation regulation. Although FUS is mainly localized to the nucleus, in the neurons FUS has also been shown to localize to the post-synaptic density, as well as to the pre-synapse. Additionally, the FUS deletion in cultured hippocampal cells results in abnormal spine and dendrite morphology. Thus, FUS may play a role in synaptic function regulation, mRNA localization, and local translation. Many dendritic mRNAs have been shown to form G quadruplex structures in their 3'-untranslated region (3'-UTR). Since FUS contains three arginine-glycine-glycine (RGG) boxes, an RNA binding domain shown to bind with high affinity and specificity to RNA G quadruplex structures, in this study we hypothesized that FUS recognizes these structural elements in its neuronal mRNA targets. Two neuronal mRNAs found in the pre- and post-synapse are the post-synaptic density protein 95 (PSD-95) and Shank1 mRNAs, which encode for proteins involved in synaptic plasticity, maintenance, and function. These mRNAs have been shown to form 3'-UTR G quadruplex structures and were also enriched in FUS hydrogels. In this study, we used native gel electrophoresis and steady-state fluorescence spectroscopy to demonstrate specific nanomolar binding of the FUS C-terminal RGG box and of full-length FUS to the RNA G quadruplex structures formed in the 3'-UTR of PSD-95 and Shank1a mRNAs. These results point toward a novel mechanism by which FUS targets neuronal mRNA and given that these PSD-95 and Shank1 3'-UTR G quadruplex structures are also targeted by the fragile X mental retardation protein (FMRP), they raise the possibility that FUS and FMRP might work together to regulate the translation of these neuronal mRNA targets.
Collapse
Affiliation(s)
- Joshua A. Imperatore
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| | - Damian S. McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| | | | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mihaela Rita Mihailescu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Okita H, Kato Y, Masuzawa T, Arai K, Takeo S, Sato K, Mase N, Oyoshi T, Narumi T. Stereoselective synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres and their application to 14-mer RGG peptidomimetics. RSC Adv 2020; 10:29373-29377. [PMID: 35521116 PMCID: PMC9055925 DOI: 10.1039/d0ra06554d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of Gly-Gly-type (E)-methylalkene and (Z)-chloroalkene dipeptide isosteres is realized by organocuprate-mediated single electron transfer reduction.
Collapse
Affiliation(s)
- Hikari Okita
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Yuna Kato
- Department of Engineering
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Tatsuki Masuzawa
- Department of Chemistry
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Kosuke Arai
- Department of Engineering
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Sayuri Takeo
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Kohei Sato
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Nobuyuki Mase
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| | - Takanori Oyoshi
- Department of Chemistry
- Graduate School of Integrated Science and Technology
- Shizuoka University
- Shizuoka
- Japan
| | - Tetsuo Narumi
- Department of Applied Chemistry and Biochemical Engineering
- Faculty of Engineering
- Shizuoka University
- Shizuoka
- Japan
| |
Collapse
|
29
|
Varizhuk A, Isaakova E, Pozmogova G. DNA G-Quadruplexes (G4s) Modulate Epigenetic (Re)Programming and Chromatin Remodeling: Transient Genomic G4s Assist in the Establishment and Maintenance of Epigenetic Marks, While Persistent G4s May Erase Epigenetic Marks. Bioessays 2019; 41:e1900091. [PMID: 31379012 DOI: 10.1002/bies.201900091] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Indexed: 01/07/2023]
Abstract
Here, the emerging data on DNA G-quadruplexes (G4s) as epigenetic modulators are reviewed and integrated. This concept has appeared and evolved substantially in recent years. First, persistent G4s (e.g., those stabilized by exogenous ligands) were linked to the loss of the histone code. More recently, transient G4s (i.e., those formed upon replication or transcription and unfolded rapidly by helicases) were implicated in CpG island methylation maintenance and de novo CpG methylation control. The most recent data indicate that there are direct interactions between G4s and chromatin remodeling factors. Finally, multiple findings support the indirect participation of G4s in chromatin reshaping via interactions with remodeling-related transcription factors (TFs) or damage responders. Here, the links between the above processes are analyzed; also, how further elucidation of these processes may stimulate the progress of epigenetic therapy is discussed, and the remaining open questions are highlighted.
Collapse
Affiliation(s)
- Anna Varizhuk
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Ekaterina Isaakova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Galina Pozmogova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| |
Collapse
|
30
|
Ghosh M, Singh M. RGG-box in hnRNPA1 specifically recognizes the telomere G-quadruplex DNA and enhances the G-quadruplex unfolding ability of UP1 domain. Nucleic Acids Res 2019; 46:10246-10261. [PMID: 30247678 PMCID: PMC6212785 DOI: 10.1093/nar/gky854] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
hnRNPA1 is a member of heteronuclear ribonucleoproteins that has been shown to promote telomere elongation apart from its roles in RNA transport and alternative splicing. It is a modular protein with an N-terminal domain called UP1 that consists of two RNA Recognition Motifs (RRM1 and RRM2 domains) and a C-terminal region that harbors functional motifs such as RGG-box, a prion-like domain, and a nuclear shuttling sequence. UP1 has been reported to bind and destabilize telomeric DNA G-quadruplexes and thereby participate in DNA telomere remodeling. An RGG-box motif that consists of four RGG repeats (containing arginine and glycine residues) is located C-terminal to the UP1 domain and constitutes an additional nucleic acid and protein-binding domain. However, the precise role of the RGG-box of hnRNPA1 in telomere DNA recognition and G-quadruplex DNA unfolding remains unexplored. Here, we show that the isolated RGG-box interacts specifically with the structured telomere G-quadruplex DNA but not with the single-stranded DNA. Further the interaction of the RGG-box with the G-quadruplex DNA is dependent on the loop nucleotides of the G-quadruplex. Finally, we show that the RGG-box enhances the G-quadruplex unfolding activity of the adjacent UP1 domain. We propose that UP1 and RGG-box act synergistically to achieve complete telomere G-quadruplex DNA unfolding.
Collapse
Affiliation(s)
- Meenakshi Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India.,NMR Research Centre, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
31
|
Kim SSY, Sze L, Liu C, Lam KP. The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response. J Biol Chem 2019; 294:6430-6438. [PMID: 30804210 PMCID: PMC6484135 DOI: 10.1074/jbc.ra118.005868] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/07/2019] [Indexed: 12/24/2022] Open
Abstract
RIG-I senses viral RNA in the cytosol and initiates host innate immune response by triggering the production of type 1 interferon. A recent RNAi knockdown screen yielded close to hundred host genes whose products affected viral RNA-induced IFN-β production and highlighted the complexity of the antiviral response. The stress granule protein G3BP1, known to arrest mRNA translation, was identified as a regulator of RIG-I-induced IFN-β production. How G3BP1 functions in RIG-I signaling is not known, however. Here, we overexpress G3BP1 with RIG-I in HEK293T cells and found that G3BP1 significantly enhances RIG-I-induced ifn-b mRNA synthesis. More importantly, we demonstrate that G3BP1 binds RIG-I and that this interaction involves the C-terminal RGG domain of G3BP1. Confocal microscopy studies also show G3BP1 co-localization with RIG-I and with infecting vesicular stomatitis virus in Cos-7 cells. Interestingly, immunoprecipitation studies using biotin-labeled viral dsRNA or poly(I·C) and cell lysate-derived or in vitro translated G3BP1 indicated that G3BP1 could directly bind these substrates and again via its RGG domain. Computational modeling further revealed a juxtaposed interaction between G3BP1 RGG and RIG-I RNA-binding domains. Together, our data reveal G3BP1 as a critical component of RIG-I signaling and possibly acting as a co-sensor to promote RIG-I recognition of pathogenic RNA.
Collapse
Affiliation(s)
- Susana Soo-Yeon Kim
- From the Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology & Research (A*STAR), Singapore,
| | - Lynette Sze
- From the Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology & Research (A*STAR), Singapore
| | - ChengCheng Liu
- From the Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology & Research (A*STAR), Singapore,
| | - Kong-Peng Lam
- From the Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology & Research (A*STAR), Singapore,
- the Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, and
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
32
|
Shishkin SS, Kovalev LI, Pashintseva NV, Kovaleva MA, Lisitskaya K. Heterogeneous Nuclear Ribonucleoproteins Involved in the Functioning of Telomeres in Malignant Cells. Int J Mol Sci 2019; 20:E745. [PMID: 30744200 PMCID: PMC6387250 DOI: 10.3390/ijms20030745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are structurally and functionally distinct proteins containing specific domains and motifs that enable the proteins to bind certain nucleotide sequences, particularly those found in human telomeres. In human malignant cells (HMCs), hnRNP-A1-the most studied hnRNP-is an abundant multifunctional protein that interacts with telomeric DNA and affects telomerase function. In addition, it is believed that other hnRNPs in HMCs may also be involved in the maintenance of telomere length. Accordingly, these proteins are considered possible participants in the processes associated with HMC immortalization. In our review, we discuss the results of studies on different hnRNPs that may be crucial to solving molecular oncological problems and relevant to further investigations of these proteins in HMCs.
Collapse
Affiliation(s)
- Sergey S Shishkin
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Leonid I Kovalev
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Natalya V Pashintseva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Marina A Kovaleva
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| | - Ksenia Lisitskaya
- Laboratory of Biomedical Research, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt, 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
33
|
Huang ZL, Dai J, Luo WH, Wang XG, Tan JH, Chen SB, Huang ZS. Identification of G-Quadruplex-Binding Protein from the Exploration of RGG Motif/G-Quadruplex Interactions. J Am Chem Soc 2018; 140:17945-17955. [PMID: 30517002 DOI: 10.1021/jacs.8b09329] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The arginine/glycine-rich region termed the RGG domain is usually found in G-quadruplex (G4)-binding proteins and is important in G4-protein interactions. Studies on the binding mechanism of RGG domains found that small segments (RGG motif) inside the domain contribute greatly to the G4 binding affinity. However, unlike the entire RGG domains that have been broadly explored, the role of the RGG motif remains obscure, with very limited study. Herein, to clarify the role of the RGG motif in G4-protein interactions, we systematically investigated the binding affinity and mode between RGG-motif peptides and G4s. The internal arrangement of RGG repeats and gap amino acids played a more crucial role in the G4-binding mechanism than a critical number of RGG repeats. Arginines and phenylalanines at the exact position of the RGG motif might enable additional hydrogen bonding and π-stacking interaction with nucleobases and strengthen the binding of G4. Impressively, proceeding from a G4-binding RGG peptide, 12, discovered above, we identified the cold-inducible RNA-binding protein (CIRBP) as a new G4 DNA-binding protein both in vitro and in cells. In addition, we found that the key amino acids for G4 binding in peptide 12 and CIRBP were highly similar, and peptide 12 clearly played a key role in the G4 binding of CIRBP. This report is the first in which a G4-binding protein was identified from exploration of the G4-binding RGG motif. Our findings suggest a novel strategy for discovering new G4-binding proteins by exploring key peptide segments.
Collapse
Affiliation(s)
- Zhou-Li Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Jing Dai
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Wen-Hua Luo
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Xiang-Gui Wang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| |
Collapse
|
34
|
Reineke LC, Neilson JR. Differences between acute and chronic stress granules, and how these differences may impact function in human disease. Biochem Pharmacol 2018; 162:123-131. [PMID: 30326201 PMCID: PMC6421087 DOI: 10.1016/j.bcp.2018.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Stress granules are macromolecular aggregates of mRNA and proteins assembling in response to stresses that promote the repression of protein synthesis. Most of the work characterizing stress granules has been done under acute stress conditions or during viral infection. Comparatively less work has been done to understand stress granule assembly during chronic stress, specifically regarding the composition and function of stress granules in this alternative context. Here, we describe key aspects of stress granule biology under acute stress, and how these stress granule hallmarks differ in the context of chronic stress conditions. We will provide perspective for future work aimed at further uncovering the form and function of both acute and chronic stress granules and discuss aspects of stress granule biology that have the potential to be exploited in human disease.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Brázda V, Červeň J, Bartas M, Mikysková N, Coufal J, Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules 2018; 23:E2341. [PMID: 30216987 PMCID: PMC6225207 DOI: 10.3390/molecules23092341] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/27/2022] Open
Abstract
The importance of local DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, G-quadruplexes are perhaps the most well-characterized to date, and their presence has been demonstrated in many genomes, including that of humans. G-quadruplexes are selectively bound by many regulatory proteins. In this paper, we have analyzed the amino acid composition of all seventy-seven described G-quadruplex binding proteins of Homo sapiens. Our comparison with amino acid frequencies in all human proteins and specific protein subsets (e.g., all nucleic acid binding) revealed unique features of quadruplex binding proteins, with prominent enrichment for glycine (G) and arginine (R). Cluster analysis with bootstrap resampling shows similarities and differences in amino acid composition of particular quadruplex binding proteins. Interestingly, we found that all characterized G-quadruplex binding proteins share a 20 amino acid long motif/domain (RGRGR GRGGG SGGSG GRGRG) which is similar to the previously described RG-rich domain (RRGDG RRRGG GGRGQ GGRGR GGGFKG) of the FRM1 G-quadruplex binding protein. Based on this protein fingerprint, we have predicted a new set of potential G-quadruplex binding proteins sharing this interesting domain rich in glycine and arginine residues.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Jiří Červeň
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Martin Bartas
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Nikol Mikysková
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Jan Coufal
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | - Petr Pečinka
- Department of Biology and Ecology/Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| |
Collapse
|