1
|
Claus C, Grosso JB, Maraval MB, Ardusso M, Bottasso OA, Maes T, Bracke K, Brusselle G, Ibañez M, Ardusso LRF, Spinelli SV. Altered levels of angiogenin and tRNA-derived fragments associate with severe asthma. Sci Rep 2025; 15:18808. [PMID: 40442279 PMCID: PMC12122928 DOI: 10.1038/s41598-025-03314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
Recent discoveries highlight angiogenin (ANG) and 5' tRNA-derived fragments as key factors in stress response and cell survival. To explore their role in asthma pathogenesis, particularly in severe cases, we evaluated the levels of ANG and 5' tRNA halves (tRHs) derived from tRNA Glu (5'-tRH Glu: tRF-32-87R8WP9N1EWJM) and tRNA Gly (5'-tRH Gly: tRF-30-PNR8YP9LON4V), two abundant tRHs in the respiratory tract, in sputum and blood samples from asthmatic patients. We found ANG expression is significantly increased in circulating leukocytes from severe asthma patients but not in sputum infiltrates. On the contrary, tRHs levels showed significant alterations only in extracellular compartments. Both tRHs were downregulated in the plasma of asthmatic patients, while elevated 5'-tRH Gly levels were observed in severe sputum samples, indicating tissue-specific roles in disease pathology. Additionally, tRH expression in leukocytes was negatively associated with the disrupted corticosteroid response in asthmatic patients. Altered levels of ANG and 5'-tRH Glu and 5'-tRH Gly were further validated in an in vitro model of pollutant-aggravated, allergen-stimulated macrophages. In summary, our findings provide new insights into the role of ANG and tRHs in asthma pathogenesis, highlighting their potential as novel markers for asthma phenotyping.
Collapse
Affiliation(s)
- Clara Claus
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Julieta B Grosso
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - María Belen Maraval
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Matias Ardusso
- Allergy and Immunology Department, Hospital Provincial del Centenario, Rosario, Argentina
- Clinical Research Center of the Institute of Health Specialties of Rosario (CIC-IESR), Rosario, Argentina
| | - Oscar A Bottasso
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Tania Maes
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mauro Ibañez
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Ledit R F Ardusso
- Allergy and Immunology Department, Hospital Provincial del Centenario, Rosario, Argentina
- Clinical Research Center of the Institute of Health Specialties of Rosario (CIC-IESR), Rosario, Argentina
| | - Silvana V Spinelli
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina.
| |
Collapse
|
2
|
Madej M, Ngoc PCT, Muthukumar S, Konturek-Cieśla A, Tucciarone S, Germanos A, Ashworth C, Kotarsky K, Ghosh S, Fan Z, Fritz H, Pascual-Gonzalez I, Huerta A, Guzzi N, Colazzo A, Beneventi G, Lee HM, Cieśla M, Douse C, Kato H, Swaminathan V, Agace WW, Castellanos-Rubio A, Salomoni P, Bryder D, Bellodi C. PUS10-induced tRNA fragmentation impacts retrotransposon-driven inflammation. Cell Rep 2025; 44:115735. [PMID: 40402745 DOI: 10.1016/j.celrep.2025.115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/28/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025] Open
Abstract
Pseudouridine synthases (PUSs) catalyze the isomerization of uridine (U)-to-pseudouridine (Ψ) and have emerging roles in development and disease. How PUSs adapt gene expression under stress remains mostly unexplored. We identify an unconventional role for the Ψ "writer" PUS10 impacting intracellular innate immunity. Using Pus10 knockout mice, we uncover cell-intrinsic upregulation of interferon (IFN) signaling, conferring resistance to inflammation in vivo. Pus10 loss alters tRNA-derived small RNAs (tdRs) abundance, perturbing translation and endogenous retroelements expression. These alterations promote proinflammatory RNA-DNA hybrids accumulation, potentially activating cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING). Supplementation with selected tdR pools partly rescues these effects through interactions with RNA processing factors that modulate immune responses, revealing a regulatory circuit that counteracts cell-intrinsic inflammation. By extension, we define a PUS10-specific molecular fingerprint linking its dysregulation to human autoimmune disorders, including inflammatory bowel diseases. Collectively, these findings establish PUS10 as a viral mimicry modulator, with broad implications for innate immune homeostasis and autoimmunity.
Collapse
Affiliation(s)
- Magdalena Madej
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anna Konturek-Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Silvia Tucciarone
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alexandre Germanos
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Christian Ashworth
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Knut Kotarsky
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sudip Ghosh
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Zhimeng Fan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Helena Fritz
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Alain Huerta
- University of the Basque Country, UPV-EHU, Leioa, Spain; Biobizkaia Research Institute, Cruces-Barakaldo, Spain; Galdakao University Hospital, Galdakao, Spain
| | - Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anita Colazzo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Giulia Beneventi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hang-Mao Lee
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden; International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Christopher Douse
- Epigenetics and Chromatin Dynamics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Vinay Swaminathan
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - William W Agace
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ainara Castellanos-Rubio
- University of the Basque Country, UPV-EHU, Leioa, Spain; Biobizkaia Research Institute, Cruces-Barakaldo, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden; Biotech Research Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Bao P, Wang T, Liu X, Xing S, Ruan H, Ma H, Tao Y, Zhan Q, Belmonte-Reche E, Qin L, Han Z, Mao M, Li M, Lu ZJ. Peak analysis of cell-free RNA finds recurrently protected narrow regions with clinical potential. Genome Biol 2025; 26:119. [PMID: 40340952 PMCID: PMC12060323 DOI: 10.1186/s13059-025-03590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/25/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Cell-free RNAs (cfRNAs) can be detected in biofluids and have emerged as valuable disease biomarkers. Accurate identification of the fragmented cfRNA signals, especially those originating from pathological cells, is crucial for understanding their biological functions and clinical value. However, many challenges still need to be addressed for their application, including developing specific analysis methods and translating cfRNA fragments with biological support into clinical applications. RESULTS We present cfPeak, a novel method combining statistics and machine learning models to detect the fragmented cfRNA signals effectively. When test in real and artificial cfRNA sequencing (cfRNA-seq) data, cfPeak shows an improved performance compared with other applicable methods. We reveal that narrow cfRNA peaks preferentially overlap with protein binding sites, vesicle-sorting sites, structural sites, and novel small non-coding RNAs (sncRNAs). When applied in clinical cohorts, cfPeak identified cfRNA peaks in patients' plasma that enable cancer detection and are informative of cancer types and metastasis. CONCLUSIONS Our study fills the gap in the current small cfRNA-seq analysis at fragment-scale and builds a bridge to the scientific discovery in cfRNA fragmentomics. We demonstrate the significance of finding low abundant tissue-derived signals in small cfRNA and prove the feasibility for application in liquid biopsy.
Collapse
Affiliation(s)
- Pengfei Bao
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Taiwei Wang
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (Ministry of Science & Technology), MOE Key Laboratory of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
- Academy for Advanced Interdisciplinary Studies (AAIS)and, Sciences Joint Graduate Program (PTN) , Peking University, Beijing, China
| | - Xiaofan Liu
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Shaozhen Xing
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Hanjin Ruan
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Hongli Ma
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Qing Zhan
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Efres Belmonte-Reche
- Centre for Genomics and Oncological Research (GENYO), Avenida de La Ilustración 114, Granada, 18016, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Hospital Virgen de Las Nieves, Granada, Spain
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Minghui Mao
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (Ministry of Science & Technology), MOE Key Laboratory of Rheumatology and Clinical Immunology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, State Key Lab of Green Biomanufacturing, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies (AAIS)and, Sciences Joint Graduate Program (PTN) , Peking University, Beijing, China.
- The Center for Regeneration Aging and Chronic Diseases, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Monoe Y, Jingushi K, Taniguchi K, Hirosuna K, Arima J, Inomata Y, Takano Y, Hamamoto H, Komura K, Tanaka T, Hase H, Lee S, Tsujikawa K. Cancer-Specific RNA Modifications in Tumour-Derived Extracellular Vesicles Promote Tumour Growth. J Extracell Vesicles 2025; 14:e70083. [PMID: 40326665 PMCID: PMC12053886 DOI: 10.1002/jev2.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
RNA modifications are crucial in cellular processes, and their dysregulation is linked to diseases like cancer. Extracellular vesicles (EVs) contain various RNAs and might be susceptible to modifications, but detecting these modifications has been challenging due to the small amount of RNA in EVs. We successfully detected 22 RNA modifications in EVs using a proprietary ultra-HPLC MS/MS system. We identified reduced levels of N6-methyladenosine (m6A) in EVs derived from colon cancer tissues, which correlated with cancer recurrence. Increasing m6A levels via m6A demethylase Alkbh5 knockout suppressed the tumour-promoting effects of colorectal cancer EVs. Mechanistically, colorectal cancer-derived EVs increased tumour necrotic factor α and interleukin-6 secretion by macrophages via Toll-like receptor 8 in an m6A-dependent manner, promoting cancer cell proliferation. RNA-sequencing analysis showed that the levels of 5'-half-tRNA fragment (5'-half)-GlyGCC as well as those of m6A-modified 5'-half-GlyGCC were higher and lower, respectively, in colorectal cancer EVs than in normal colon tissue EVs. Cancer-derived EVs containing 5'-half-GlyGCC significantly promoted tumour growth, which was impeded by macrophage depletion. These findings provide evidence that cancer-specific RNA modifications are present in EVs, promoting tumour progression by regulating immune cells.
Collapse
Affiliation(s)
- Yuya Monoe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational ResearchOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Kensuke Hirosuna
- Department of Regenerative ScienceOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Jun Arima
- Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Yosuke Inomata
- Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Yoshiaki Takano
- Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Hiroki Hamamoto
- Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Kazumasa Komura
- Center for Medical Research & Development, Division of Translational ResearchOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Tomohito Tanaka
- Center for Medical Research & Development, Division of Translational ResearchOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| | - Sang‐Woong Lee
- Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
5
|
Tomita T. Non-vesicular extracellular RNA: A potential drug target to intervene cell-cell communication. Pharmacol Ther 2025; 266:108774. [PMID: 39644926 DOI: 10.1016/j.pharmthera.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The importance of non-vesicular extracellular RNA in the mammalian system is becoming increasingly apparent. Non-vesicular extracellular RNA is defined as RNA molecules not included in a lipid bilayer such as exosomes. Because non-vesicular extracellular RNA is not protected from RNases and is therefore rapidly degraded, they were not easily captured by conventional biofluid analyses. Recent publications showed that some non-vesicular extracellular RNAs are relatively stable in biofluids or tissue culture media, and they have unique biological functions. Major RNAs (rRNA, mRNA, and tRNA) and other non-cording RNAs play important roles in transcription or translation in the cell. In contrast, non-vesicular extracellular RNA has functions related to intercellular communication rather than protein synthesis. This review discusses the basics of non-vesicular extracellular RNA, including its definition, purification, receptors, and future prospects as a drug target.
Collapse
Affiliation(s)
- Takeshi Tomita
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Japan; Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
6
|
Castellano M, Calzi ML, Garcia MR, Cayota A, Tosar JP. Discrimination between vesicular and nonvesicular extracellular tRNAs and their fragments. Methods Enzymol 2025; 711:171-185. [PMID: 39952704 DOI: 10.1016/bs.mie.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The extracellular space contains RNAs both inside and outside extracellular vesicles (EVs). Among RNA types, tRNAs and tRNA-derived small RNAs (tDRs) tend to be abundant and are frequently detected when performing small RNA sequencing of extracellular samples. For several applications, including answering basic biology questions and biomarker discovery, it is important to understand which specific extracellular tRNAs and tDRs are inside EVs and which are not. We have observed that EVs contain mainly full-length tRNAs, while cells also release full-length tRNAs into nonvesicular fractions. However, these nonvesicular tRNAs are fragmented by extracellular ribonucleases into nicked tRNAs, which can dissociate into tDRs both in extracellular samples and in the laboratory. It is therefore crucial to separate EVs from other nonvesicular RNA-containing extracellular carriers to prevent cross-contamination. Otherwise, extracellular tDR profiling may mix up signals coming from structurally and functionally different carrier types. Here, we provide two protocols that achieve this by: (a) density gradient separation and, (b) the use of commercial, pre-packed size-exclusion chromatography columns. The first protocol is time-consuming but achieves high resolution, while the second protocol is faster, simpler, and recommended for routine separations. Taken together, they form a solid experimental toolkit for addressing different questions related to extracellular tRNA biology or biomarker discovery.
Collapse
Affiliation(s)
- Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay; Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la Republica, Montevideo, Uruguay
| | - Marco Li Calzi
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Maria Rosa Garcia
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la Republica, Montevideo, Uruguay.
| |
Collapse
|
7
|
Costa B, Blanco V, Cayota A, Tosar JP. Methods for purification and characterization of nicked tRNAs. Methods Enzymol 2025; 711:187-201. [PMID: 39952705 DOI: 10.1016/bs.mie.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
While tRNA-derived fragments (tDRs) play important roles in gene expression regulation, it is technically challenging to distinguish bona fide tDRs from nicked tRNAs. This is because analytical techniques used to study RNA, such as northern blot, RT-qPCR or sequencing involve the use of denaturing reagents (e.g., phenol, formamide, urea) or physical procedures (e.g., heat) that convert nicked tRNAs into tRNA halves or other tDRs. In this chapter, we describe a protocol that enables the purification of nicked tRNAs under non-denaturing conditions that preserve their 3D structure. Purified nicked tRNAs can then be either enzymatically repaired into almost full-length tRNAs, or chromatographically separated from single-stranded tDRs before detection. These protocols will allow researchers to distinguish between structurally distinct but sequence identical tDRs and nicked tRNAs, disentangling their biological functions.
Collapse
Affiliation(s)
- Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay
| | - Valentina Blanco
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
8
|
Borniego ML, Singla-Rastogi M, Baldrich P, Sampangi-Ramaiah MH, Zand Karimi H, McGregor M, Meyers BC, Innes RW. Diverse plant RNAs coat Arabidopsis leaves and are distinct from apoplastic RNAs. Proc Natl Acad Sci U S A 2025; 122:e2409090121. [PMID: 39752527 PMCID: PMC11725841 DOI: 10.1073/pnas.2409090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/15/2025] Open
Abstract
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces. To assess whether Arabidopsis plants possess a mechanism for secreting RNA onto leaf surfaces, we developed a protocol for isolating leaf surface RNA separately from intercellular (apoplastic) RNA. This protocol yielded abundant leaf surface RNA that displayed an RNA banding pattern distinct from apoplastic RNA, suggesting that it may be secreted directly onto the leaf surface rather than exuded through stomata or hydathodes. Notably, this RNA was not associated with either extracellular vesicles or protein complexes; however, RNA species longer than 100 nucleotides could be pelleted by ultracentrifugation. Furthermore, pelleting was inhibited by the divalent cation chelator EGTA, suggesting that these RNAs may form condensates on the leaf surface. These leaf surface RNAs are derived almost exclusively from Arabidopsis, but come from diverse genomic sources, including rRNA, tRNA, mRNA, intergenic RNA, microRNAs, and small interfering RNAs, with tRNAs especially enriched. We speculate that endogenous leaf surface RNA plays an important role in the assembly of distinct microbial communities on leaf surfaces.
Collapse
Affiliation(s)
| | | | - Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, MO63132
- Genome Center, University of California–Davis, Davis, CA95616
| | | | | | | | - Blake C. Meyers
- Donald Danforth Plant Science Center, St. Louis, MO63132
- Genome Center, University of California–Davis, Davis, CA95616
- Division of Plant Science and Technology, University of Missouri, Columbia, MO65211
- Department of Plant Sciences, University of California–Davis, Davis, CA95616
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, IN47405
| |
Collapse
|
9
|
Oberbauer V, Drino A, Schaefer MR. Determining small RNA-interacting proteomes using endogenously modified tRNA-derived RNAs. Methods Enzymol 2024; 711:356-380. [PMID: 39952715 DOI: 10.1016/bs.mie.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
tRNA-derived RNAs (tDRs), resulting from enzyme-mediated hydrolysis of tRNAs, have been implicated as active small RNAs in various molecular processes. While the molecular modes of action for these small RNAs remain unclear, attempts to decipher the mechanistic details of tDR functionality have mostly used synthetic tDR sequences. Since parental tRNAs are extensively post-transcriptionally modified, tDR functionality is likely affected by chemical modifications. To help approach the biological function of endogenously modified tDRs, this contribution details a protocol that allows purifying specific tDRs carrying post-transcriptional modifications from both in vivo and in vitro sources. Purified tDRs can be used for various downstream applications including differential affinity capture of tDR-binding proteins, the details of which are also described in this contribution.
Collapse
Affiliation(s)
- Vera Oberbauer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse, Vienna, Austria
| | - Aleksej Drino
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse, Vienna, Austria
| | - Matthias R Schaefer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse, Vienna, Austria.
| |
Collapse
|
10
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102285. [PMID: 39220268 PMCID: PMC11364045 DOI: 10.1016/j.omtn.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA sequencing (RNA-seq) method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNAValCAC in plasma from COPD patients, whereas the 5'-tRNAGlyGCC half is predominant in healthy donors. Further, the 5'-tRNAValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Bhatter N, Advani VM, Takenaka Y, Lyons SM, Akiyama Y, Anderson PJ, Ivanov P. Repurposing tRNA isodecoders for non-canonical functions via tRNA cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611212. [PMID: 39282440 PMCID: PMC11398368 DOI: 10.1101/2024.09.04.611212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Transfer RNAs (tRNAs) are the key adaptor molecules aiding protein synthesis. Hundreds of tRNA genes are found in the human genome but the biological significance of this genetic excess is still enigmatic. The tRNA repertoires are variable between tissues and cells as well as during development. Such variations can only be partially explained by the correlation to the physiological needs in protein production, e.g. by changes in the expression of tRNA isoacceptor sets (tRNAs charged with the same amino acid but bearing different anticodons). However, changes in the expression levels of individual isodecoders (tRNAs with the same anticodon) are less understood. Besides canonical functions in mRNA translation, tRNAs are implicated in non-canonical functions unrelated to protein synthesis. tRNAs are rich source of small non-protein coding RNAs called tRNA-derived RNAs (tDRs), which include tRNA-derived stress-induced RNAs (tiRNAs) formed in response to stress. Here, we show that tiRNAs derived from isodecoders different in a single nucleotide can also differ in their activities. Specifically, we show that isodecoder sets for tRNA His-GTG , tRNA Gly-GCC and tRNA Cys-GCA are cleaved by ribonucleases to yield 5'-tiRNAs showing differential activity towards mRNA reporter translation. Our data propose a model where cleavage repurposes specific tRNA isodecoders for non-canonical functions. Significance Statement The human genome encodes hundreds of transfer RNA (tRNA) genes to decode 61 codons. The basis for such genetic redundancy is unclear but the increase in the number of tRNA genes goes in concert with the complexity of an organism. While changes in the expression of isoacceptor tRNA pools can reflect adaptation to demanding protein synthesis needs and/or codon usage, the variations in the expression of the individual tRNA isodecoders are documented but poorly understood. Such expression variations are hypothesized to contribute to non-canonical tRNA functions, yet physiological relevance remains ambiguous. We report here that specific tRNA isodecoders can be functionally repurposed through cleavage that produces tRNA-derived RNAs (tDRs). The repurposing employs nucleotide variations in isodecoders leading to the production of distinct sets of tDRs with variable bioactivities.
Collapse
|
12
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
13
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599707. [PMID: 38948719 PMCID: PMC11212963 DOI: 10.1101/2024.06.19.599707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA-seq method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNA ValCAC in plasma from COPD patients, whereas the 5'-tRNA GlyGCC half is predominant in healthy donors. Further, the 5'-tRNA ValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
|
14
|
Muthukumar S, Li CT, Liu RJ, Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat Rev Mol Cell Biol 2024; 25:359-378. [PMID: 38182846 DOI: 10.1038/s41580-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Guzmán-Lorite M, Rosu F, Marina ML, García MC, Gabelica V. miRNA and DNA analysis by negative ion electron transfer dissociation and infrared multiple-photon dissociation mass spectrometry. Anal Chim Acta 2024; 1299:342431. [PMID: 38499418 DOI: 10.1016/j.aca.2024.342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The use of simple and hybrid fragmentation techniques for the identification of molecules in tandem mass spectrometry provides different and complementary information on the structure of molecules. Nevertheless, these techniques have not been as widely explored for oligonucleotides as for peptides or proteins. The analysis of microRNAs (miRNAs) warrants special attention, given their regulatory role and their relationship with several diseases. The application of different fragmentation techniques will be very interesting for their identification. RESULTS Four synthetic miRNAs and a DNA sequence were fragmented in an ESI-FT-ICR mass spectrometer using both simple and hybrid fragmentation techniques: CID, nETD followed by CID, IRMPD, and, for the first time, nETD in combination with IRMPD. The main fragmentation channel was base loss. The use of nETD-IRMPD resulted in d/z, a/w, and c/y ions at higher intensities. Moreover, nETD-IRMPD provided high sequence coverage and low internal fragmentation. Native MS analysis revealed that only miR159 and the DNA sequence formed stable dimers under physiological ionic strength. The use of organic co-solvents or additives resulted in a lower sequence coverage due to lesser overall ionization efficiency. NOVELTY This work demonstrates that the combination of nETD and IRMPD for miRNA fragmentation constitutes a suitable alternative to common fragmentation methods. This strategy resulted in efficient fragmentation of [miRNA]5- using low irradiation times and fewer internal fragments while ensuring a high sequence coverage. Moreover, given that such low charge states predominate upon spraying in physiological-like conditions, native MS can be applied for obtaining structural information at the same time.
Collapse
Affiliation(s)
- Miriam Guzmán-Lorite
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Frédéric Rosu
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600, Pessac, France
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. Del Río", Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Concepción García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Universidad de Alcalá, Instituto de Investigación Química "Andrés M. Del Río", Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| | - Valérie Gabelica
- Université de Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600, Pessac, France; Université de Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600, Pessac, France
| |
Collapse
|
16
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P, Jiang K. Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett 2024; 587:216701. [PMID: 38369004 DOI: 10.1016/j.canlet.2024.216701] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Gumas J, Kawamura T, Shigematsu M, Kirino Y. Immunostimulatory short non-coding RNAs in the circulation of patients with tuberculosis infection. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102156. [PMID: 38481936 PMCID: PMC10933579 DOI: 10.1016/j.omtn.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infection is among the world's deadliest infectious diseases. Developing effective treatments and biomarkers for tuberculosis requires a deeper understanding of its pathobiology and host responses. Here, we report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma samples from Mtb-infected patients. We achieved this by pre-treating plasma RNAs with T4 polynucleotide kinase to convert all RNA ends to those compatible with sncRNA sequencing. We discovered a global and drastic upregulation of plasma sncRNAs in Mtb-infected patients, with tRNA-derived sncRNAs representing the most dramatically elevated class. Most of these tRNA-derived sncRNAs originated from a limited subset of tRNAs, specifically from three tRNA isoacceptors, and exhibited skewed patterns to 5'-derived fragments, such as 5' halves, 5' tRNA fragments (tRFs), and internal tRFs (i-tRFs) from the 5' regions. Further, Mtb-infected patients displayed markedly upregulated and distinct profiles of both rRNA- and mRNA-derived sncRNAs. Some of these sncRNAs, which are abundant and specific to Mtb-infected patients, robustly activated human macrophages via Toll-like receptor 7 and induced cytokine production. This drastic accumulation of circulating, immunostimulatory sncRNAs in the plasma of Mtb-infected patients offers insights into the sncRNA-driven aspects of host immune response against infectious diseases and suggests a pool of potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Justin Gumas
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Tosar JP, Castellano M, Costa B, Cayota A. Small RNA structural biochemistry in a post-sequencing era. Nat Protoc 2024; 19:595-602. [PMID: 38057624 DOI: 10.1038/s41596-023-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/25/2023] [Indexed: 12/08/2023]
Abstract
High-throughput sequencing has had an enormous impact on small RNA research during the past decade. However, sequencing only offers a one-dimensional view of the transcriptome and is often highly biased. Additionally, the 'sequence, map and annotate' approach, used widely in small RNA research, can lead to flawed interpretations of the data, lacking biological plausibility, due in part to database issues. Even in the absence of technical biases, the loss of three-dimensional information is a major limitation to understanding RNA stability, turnover and function. For example, noncoding RNA-derived fragments seem to exist mainly as dimers, tetramers or as nicked forms of their parental RNAs, contrary to widespread assumptions. In this perspective, we will discuss main sources of bias during small RNA-sequencing, present several useful bias-reducing strategies and provide guidance on the interpretation of small RNA-sequencing results, with emphasis on RNA fragmentomics. As sequencing offers a one-dimensional projection of a four-dimensional reality, prior structure-level knowledge is often needed to make sense of the data. Consequently, while less-biased sequencing methods are welcomed, integration of orthologous experimental techniques is also strongly recommended.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay.
| | - Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Biochemistry Department, School of Science, Universidad de la República, Montevideo, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Dunaeva M, Blom J, Thurlings R, van Weijsten M, van de Loo FAJ, Pruijn GJM. Circulating tRNA-derived fragments are decreased in patients with rheumatoid arthritis and increased in patients with psoriatic arthritis. Biomarkers 2024; 29:90-99. [PMID: 38362802 DOI: 10.1080/1354750x.2024.2319297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION tRNA-derived fragments (tRFs) play an important role in immune responses. To clarify the role of tRFs in autoimmunity we studied circulating tRF-levels in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), and in a murine model for arthritis. MATERIAL AND METHODS Circulating tRF-levels were quantified by miR-Q RT-qPCR. tRNA processing and modification enzyme expression was analysed by RT-qPCR and public transcriptomics data. RESULTS Significant reduction (up to 3-fold on average) of tRF-levels derived from tRNA-Gly-GCC,CCC, tRNA-Glu-CTC and tRNA-Val-CAC,AAC was observed in RA patients, whereas tRNA-Glu-CTC and tRNA-Val-CAC,AAC tRFs were found at significantly higher levels (up to 3-fold on average) in PsA patients, compared to healthy controls. Also in arthritic IL1Ra-KO mice reduced levels of tRNA-Glu-CTC fragments were seen. The expression of NSUN2, a methyltransferase catalysing tRNA methylation, was increased in RA-peripheral blood mononuclear cells (PBMCs) compared to PsA, but this is not consistently supported by public transcriptomics data. DISCUSSION The observed changes of specific tRF-levels may be involved in the immune responses in RA and PsA and may be applicable as new biomarkers. CONCLUSION Circulating tRF-levels are decreased in RA and increased in PsA and this may, at least in part, be mediated by methylation changes.
Collapse
Affiliation(s)
- Marina Dunaeva
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jan Blom
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rogier Thurlings
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot van Weijsten
- Department of Synthetic Organic Chemistry, Radboud University, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Kuhle B, Chen Q, Schimmel P. tRNA renovatio: Rebirth through fragmentation. Mol Cell 2023; 83:3953-3971. [PMID: 37802077 PMCID: PMC10841463 DOI: 10.1016/j.molcel.2023.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
tRNA function is based on unique structures that enable mRNA decoding using anticodon trinucleotides. These structures interact with specific aminoacyl-tRNA synthetases and ribosomes using 3D shape and sequence signatures. Beyond translation, tRNAs serve as versatile signaling molecules interacting with other RNAs and proteins. Through evolutionary processes, tRNA fragmentation emerges as not merely random degradation but an act of recreation, generating specific shorter molecules called tRNA-derived small RNAs (tsRNAs). These tsRNAs exploit their linear sequences and newly arranged 3D structures for unexpected biological functions, epitomizing the tRNA "renovatio" (from Latin, meaning renewal, renovation, and rebirth). Emerging methods to uncover full tRNA/tsRNA sequences and modifications, combined with techniques to study RNA structures and to integrate AI-powered predictions, will enable comprehensive investigations of tRNA fragmentation products and new interaction potentials in relation to their biological functions. We anticipate that these directions will herald a new era for understanding biological complexity and advancing pharmaceutical engineering.
Collapse
Affiliation(s)
- Bernhard Kuhle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Anastassiadis T, Köhrer C. Ushering in the era of tRNA medicines. J Biol Chem 2023; 299:105246. [PMID: 37703991 PMCID: PMC10583094 DOI: 10.1016/j.jbc.2023.105246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Long viewed as an intermediary in protein translation, there is a growing awareness that tRNAs are capable of myriad other biological functions linked to human health and disease. These emerging roles could be tapped to leverage tRNAs as diagnostic biomarkers, therapeutic targets, or even as novel medicines. Furthermore, the growing array of tRNA-derived fragments, which modulate an increasingly broad spectrum of cellular pathways, is expanding this opportunity. Together, these molecules offer drug developers the chance to modulate the impact of mutations and to alter cell homeostasis. Moreover, because a single therapeutic tRNA can facilitate readthrough of a genetic mutation shared across multiple genes, such medicines afford the opportunity to define patient populations not based on their clinical presentation or mutated gene but rather on the mutation itself. This approach could potentially transform the treatment of patients with rare and ultrarare diseases. In this review, we explore the diverse biology of tRNA and its fragments, examining the past and present challenges to provide a comprehensive understanding of the molecules and their therapeutic potential.
Collapse
|
23
|
Chai P, Lebedenko CG, Flynn RA. RNA Crossing Membranes: Systems and Mechanisms Contextualizing Extracellular RNA and Cell Surface GlycoRNAs. Annu Rev Genomics Hum Genet 2023; 24:85-107. [PMID: 37068783 DOI: 10.1146/annurev-genom-101722-101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The subcellular localization of a biopolymer often informs its function. RNA is traditionally confined to the cytosolic and nuclear spaces, where it plays critical and conserved roles across nearly all biochemical processes. Our recent observation of cell surface glycoRNAs may further explain the extracellular role of RNA. While cellular membranes are efficient gatekeepers of charged polymers such as RNAs, a large body of research has demonstrated the accumulation of specific RNA species outside of the cell, termed extracellular RNAs (exRNAs). Across various species and forms of life, protein pores have evolved to transport RNA across membranes, thus providing a mechanistic path for exRNAs to achieve their extracellular topology. Here, we review types of exRNAs and the pores capable of RNA transport to provide a logical and testable path toward understanding the biogenesis and regulation of cell surface glycoRNAs.
Collapse
Affiliation(s)
- Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Borniego ML, Innes RW. Extracellular RNA: mechanisms of secretion and potential functions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2389-2404. [PMID: 36609873 PMCID: PMC10082932 DOI: 10.1093/jxb/erac512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 06/06/2023]
Abstract
Extracellular RNA (exRNA) has long been considered as cellular waste that plants can degrade and utilize to recycle nutrients. However, recent findings highlight the need to reconsider the biological significance of RNAs found outside of plant cells. A handful of studies suggest that the exRNA repertoire, which turns out to be an extremely heterogenous group of non-coding RNAs, comprises species as small as a dozen nucleotides to hundreds of nucleotides long. They are found mostly in free form or associated with RNA-binding proteins, while very few are found inside extracellular vesicles (EVs). Despite their low abundance, small RNAs associated with EVs have been a focus of exRNA research due to their putative role in mediating trans-kingdom RNAi. Therefore, non-vesicular exRNAs have remained completely under the radar until very recently. Here we summarize our current knowledge of the RNA species that constitute the extracellular RNAome and discuss mechanisms that could explain the diversity of exRNAs, focusing not only on the potential mechanisms involved in RNA secretion but also on post-release processing of exRNAs. We will also share our thoughts on the putative roles of vesicular and extravesicular exRNAs in plant-pathogen interactions, intercellular communication, and other physiological processes in plants.
Collapse
Affiliation(s)
- M Lucía Borniego
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
25
|
Drino A, König L, Capitanchik C, Sanadgol N, Janisiw E, Rappol T, Vilardo E, Schaefer MR. Identification of RNA helicases with unwinding activity on angiogenin-processed tRNAs. Nucleic Acids Res 2023; 51:1326-1352. [PMID: 36718960 PMCID: PMC9943664 DOI: 10.1093/nar/gkad033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Stress-induced tRNA fragmentation upon environmental insult is a conserved cellular process catalysed by endonucleolytic activities targeting mature tRNAs. The resulting tRNA-derived small RNAs (tsRNAs) have been implicated in various biological processes that impact cell-to-cell signalling, cell survival as well as gene expression regulation during embryonic development. However, how endonuclease-targeted tRNAs give rise to individual and potentially biologically active tsRNAs remains poorly understood. Here, we report on the in vivo identification of proteins associated with stress-induced tsRNAs-containing protein complexes, which, together with a 'tracer tRNA' assay, were used to uncover enzymatic activities that can bind and process specific endonuclease-targeted tRNAs in vitro. Among those, we identified conserved ATP-dependent RNA helicases which can robustly separate tRNAs with endonuclease-mediated 'nicks' in their anticodon loops. These findings shed light on the existence of cellular pathways dedicated to producing individual tsRNAs after stress-induced tRNA hydrolysis, which adds to our understanding as to how tRNA fragmentation and the resulting tsRNAs might exert physiological impact.
Collapse
Affiliation(s)
- Aleksej Drino
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Lisa König
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | | | - Nasim Sanadgol
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Eva Janisiw
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Tom Rappol
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Elisa Vilardo
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17-I, A-1090 Vienna, Austria
| |
Collapse
|
26
|
Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. Proc Natl Acad Sci U S A 2023; 120:e2216330120. [PMID: 36652478 PMCID: PMC9942843 DOI: 10.1073/pnas.2216330120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.
Collapse
|
27
|
Zhang S, Yu X, Xie Y, Ye G, Guo J. tRNA derived fragments:A novel player in gene regulation and applications in cancer. Front Oncol 2023; 13:1063930. [PMID: 36761955 PMCID: PMC9904238 DOI: 10.3389/fonc.2023.1063930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The heterogeneous species of tRNA-derived fragments (tRFs) with specific biological functions was recently identified. Distinct roles of tRFs in tumor development and viral infection, mediated through transcriptional and post-transcriptional regulation, has been demonstrated. In this review, we briefly summarize the current literatures on the classification of tRFs and the effects of tRNA modification on tRF biogenesis. Moreover, we highlight the tRF repertoire of biological roles such as gene silencing, and regulation of translation, cell apoptosis, and epigenetics. We also summarize the biological roles of various tRFs in cancer development and viral infection, their potential value as diagnostic and prognostic biomarkers for different types of cancers, and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China,*Correspondence: Junming Guo,
| |
Collapse
|
28
|
Jeandard D, Smirnova A, Fasemore AM, Coudray L, Entelis N, Förstner K, Tarassov I, Smirnov A. CoLoC-seq probes the global topology of organelle transcriptomes. Nucleic Acids Res 2022; 51:e16. [PMID: 36537202 PMCID: PMC9943681 DOI: 10.1093/nar/gkac1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species. However, they suffer from numerous false-positives since incompletely digested contaminant RNAs can still be captured and erroneously identified as resident transcripts. Here we introduce Controlled Level of Contamination coupled to deep sequencing (CoLoC-seq) as a new subcellular transcriptomics approach that efficiently bypasses this caveat. CoLoC-seq leverages classical enzymatic kinetics and tracks the depletion dynamics of transcripts in a gradient of an exogenously added RNase, with or without organellar membranes. By means of straightforward mathematical modelling, CoLoC-seq infers the localisation topology of RNAs and robustly distinguishes between genuinely resident, luminal transcripts and merely abundant surface-attached contaminants. Our generic approach performed well on human mitochondria and is in principle applicable to other membrane-bounded organelles, including plastids, compartments of the vacuolar system, extracellular vesicles, and viral particles.
Collapse
Affiliation(s)
| | | | | | - Léna Coudray
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Nina Entelis
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Konrad U Förstner
- ZB MED – Information Centre for Life Sciences, Cologne, D-50931, Germany,TH Köln – University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne, D-50678, Germany
| | - Ivan Tarassov
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | | |
Collapse
|
29
|
Sanadgol N, König L, Drino A, Jovic M, Schaefer M. Experimental paradigms revisited: oxidative stress-induced tRNA fragmentation does not correlate with stress granule formation but is associated with delayed cell death. Nucleic Acids Res 2022; 50:6919-6937. [PMID: 35699207 PMCID: PMC9262602 DOI: 10.1093/nar/gkac495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
tRNA fragmentation is an evolutionarily conserved molecular phenomenon. tRNA-derived small RNAs (tsRNAs) have been associated with many cellular processes, including improved survival during stress conditions. Here, we have revisited accepted experimental paradigms for modeling oxidative stress resulting in tRNA fragmentation. Various cell culture models were exposed to oxidative stressors followed by determining cell viability, the production of specific tsRNAs and stress granule formation. These experiments revealed that exposure to stress parameters commonly used to induce tRNA fragmentation negatively affected cell viability after stress removal. Quantification of specific tsRNA species in cells responding to experimental stress and in cells that were transfected with synthetic tsRNAs indicated that neither physiological nor non-physiological copy numbers of tsRNAs induced the formation of stress granules. Furthermore, the increased presence of tsRNA species in culture medium collected from stressed cells indicated that cells suffering from experimental stress exposure gave rise to stable extracellular tsRNAs. These findings suggest a need to modify current experimental stress paradigms in order to allow separating the function of tRNA fragmentation during the acute stress response from tRNA fragmentation as a consequence of ongoing cell death, which will have major implications for the current perception of the biological function of stress-induced tsRNAs.
Collapse
Affiliation(s)
- Nasim Sanadgol
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Lisa König
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Aleksej Drino
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Michaela Jovic
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Matthias R Schaefer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
30
|
Li G, Manning AC, Bagi A, Yang X, Gokulnath P, Spanos M, Howard J, Chan PP, Sweeney T, Kitchen R, Li H, Laurent BD, Aranki SF, Kontaridis MI, Laurent LC, Van Keuren‐Jensen K, Muehlschlegel J, Lowe TM, Das S. Distinct Stress-Dependent Signatures of Cellular and Extracellular tRNA-Derived Small RNAs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200829. [PMID: 35373532 PMCID: PMC9189662 DOI: 10.1002/advs.202200829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 05/11/2023]
Abstract
The cellular response to stress is an important determinant of disease pathogenesis. Uncovering the molecular fingerprints of distinct stress responses may identify novel biomarkers and key signaling pathways for different diseases. Emerging evidence shows that transfer RNA-derived small RNAs (tDRs) play pivotal roles in stress responses. However, RNA modifications present on tDRs are barriers to accurately quantifying tDRs using traditional small RNA sequencing. Here, AlkB-facilitated methylation sequencing is used to generate a comprehensive landscape of cellular and extracellular tDR abundances in various cell types during different stress responses. Extracellular tDRs are found to have distinct fragmentation signatures from intracellular tDRs and these tDR signatures are better indicators of different stress responses than miRNAs. These distinct extracellular tDR fragmentation patterns and signatures are also observed in plasma from patients on cardiopulmonary bypass. It is additionally demonstrated that angiogenin and RNASE1 are themselves regulated by stressors and contribute to the stress-modulated abundance of sub-populations of cellular and extracellular tDRs. Finally, a sub-population of extracellular tDRs is identified for which AGO2 appears to be required for their expression. Together, these findings provide a detailed profile of stress-responsive tDRs and provide insight about tDR biogenesis and stability in response to cellular stressors.
Collapse
Affiliation(s)
- Guoping Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Aidan C. Manning
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Alex Bagi
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Xinyu Yang
- Fangshan Hospital of BeijingUniversity of Traditional Chinese MedicineBeijing102499China
| | - Priyanka Gokulnath
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Michail Spanos
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jonathan Howard
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Patricia P. Chan
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Thadryan Sweeney
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Robert Kitchen
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haobo Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Brice D. Laurent
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sary F. Aranki
- Division of Cardiac SurgeryDepartment of SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research InstituteUticaNY13501USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
- Department of MedicineDivision of CardiologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | | | - Jochen Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Todd M. Lowe
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Saumya Das
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
31
|
tiRNAs: Insights into Their Biogenesis, Functions, and Future Applications in Livestock Research. Noncoding RNA 2022; 8:ncrna8030037. [PMID: 35736634 PMCID: PMC9231384 DOI: 10.3390/ncrna8030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) belong to a group of transfer ribonucleic acid (tRNA)-derived fragments that have recently gained interest as molecules with specific biological functions. Their involvement in the regulation of physiological processes and pathological phenotypes suggests molecular roles similar to those of miRNAs. tsRNA biogenesis under specific physiological conditions will offer new perspectives in understanding diseases, and may provide new sources for biological marker design to determine and monitor the health status of farm animals. In this review, we focus on the latest discoveries about tsRNAs and give special attention to molecules initially thought to be mainly associated with tRNA-derived stress-induced RNAs (tiRNAs). We present an outline of their biological functions, offer a collection of useful databases, and discuss future research perspectives and applications in livestock basic and applied research.
Collapse
|
32
|
Zhang M, Hwang IT, Li K, Bai J, Chen JF, Weissman T, Zou JY, Lu Z. Classification and clustering of RNA crosslink-ligation data reveal complex structures and homodimers. Genome Res 2022; 32:968-985. [PMID: 35332099 PMCID: PMC9104705 DOI: 10.1101/gr.275979.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022]
Abstract
The recent development and application of methods based on the general principle of "crosslinking and proximity ligation" (crosslink-ligation) are revolutionizing RNA structure studies in living cells. However, extracting structure information from such data presents unique challenges. Here, we introduce a set of computational tools for the systematic analysis of data from a wide variety of crosslink-ligation methods, specifically focusing on read mapping, alignment classification, and clustering. We design a new strategy to map short reads with irregular gaps at high sensitivity and specificity. Analysis of previously published data reveals distinct properties and bias caused by the crosslinking reactions. We perform rigorous and exhaustive classification of alignments and discover eight types of arrangements that provide distinct information on RNA structures and interactions. To deconvolve the dense and intertwined gapped alignments, we develop a network/graph-based tool Crosslinked RNA Secondary Structure Analysis using Network Techniques (CRSSANT), which enables clustering of gapped alignments and discovery of new alternative and dynamic conformations. We discover that multiple crosslinking and ligation events can occur on the same RNA, generating multisegment alignments to report complex high-level RNA structures and multi-RNA interactions. We find that alignments with overlapped segments are produced from potential homodimers and develop a new method for their de novo identification. Analysis of overlapping alignments revealed potential new homodimers in cellular noncoding RNAs and RNA virus genomes in the Picornaviridae family. Together, this suite of computational tools enables rapid and efficient analysis of RNA structure and interaction data in living cells.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Irena T Hwang
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Kongpan Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jianhui Bai
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, California 90033, USA
| | - Tsachy Weissman
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - James Y Zou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Data Science and Chan-Zuckerberg Biohub, Stanford University, Palo Alto, California 94305, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
33
|
Gabryelska MM, Badrock AP, Lau JY, O'Keefe RT, Crow YJ, Kudla G. Global mapping of RNA homodimers in living cells. Genome Res 2022; 32:956-967. [PMID: 35332098 PMCID: PMC9104694 DOI: 10.1101/gr.275900.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
RNA homodimerization is important for various physiological processes, including the assembly of membraneless organelles, RNA subcellular localization, and packaging of viral genomes. However, understanding RNA dimerization has been hampered by the lack of systematic in vivo detection methods. Here, we show that CLASH, PARIS, and other RNA proximity ligation methods detect RNA homodimers transcriptome-wide as "overlapping" chimeric reads that contain more than one copy of the same sequence. Analyzing published proximity ligation data sets, we show that RNA:RNA homodimers mediated by direct base-pairing are rare across the human transcriptome, but highly enriched in specific transcripts, including U8 snoRNA, U2 snRNA, and a subset of tRNAs. Mutations in the homodimerization domain of U8 snoRNA impede dimerization in vitro and disrupt zebrafish development in vivo, suggesting an evolutionarily conserved role of this domain. Analysis of virus-infected cells reveals homodimerization of SARS-CoV-2 and Zika genomes, mediated by specific palindromic sequences located within protein-coding regions of N gene in SARS-CoV-2 and NS2A gene in Zika. We speculate that regions of viral genomes involved in homodimerization may constitute effective targets for antiviral therapies.
Collapse
Affiliation(s)
- Marta M. Gabryelska
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom;,Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew P. Badrock
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jian You Lau
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Raymond T. O'Keefe
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Yanick J. Crow
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
34
|
Elucidation of physico-chemical principles of high-density lipoprotein-small RNA binding interactions. J Biol Chem 2022; 298:101952. [PMID: 35447119 PMCID: PMC9133651 DOI: 10.1016/j.jbc.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022] Open
Abstract
Extracellular small RNAs (sRNAs) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDLs) in mice were enriched with multiple classes of sRNAs derived from the endogenous transcriptome, but also from exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and nonhost species, the profiles of which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and that these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL binds to tDRs and other single-stranded sRNAs with strong affinity but did not bind to double-stranded RNA or DNA. Furthermore, we show that natural and synthetic RNA modifications influenced tDR binding to HDL. We demonstrate that reconstituted HDL bound to tDRs only in the presence of apoA-I, and purified apoA-I alone were able to bind sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, we conclude that HDL binds to single-stranded sRNAs likely through nonionic interactions with apoA-I. These results highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA interactions for therapeutic approaches to prevent or treat disease.
Collapse
|
35
|
Westhof E, Thornlow B, Chan PP, Lowe TM. Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Nucleic Acids Res 2022; 50:4100-4112. [PMID: 35380696 PMCID: PMC9023262 DOI: 10.1093/nar/gkac222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.
Collapse
Affiliation(s)
- Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Bryan Thornlow
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
36
|
Fontenla S, Langleib M, de la Torre-Escudero E, Domínguez MF, Robinson MW, Tort J. Role of Fasciola hepatica Small RNAs in the Interaction With the Mammalian Host. Front Cell Infect Microbiol 2022; 11:812141. [PMID: 35155272 PMCID: PMC8824774 DOI: 10.3389/fcimb.2021.812141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression being involved in many different biological processes and play a key role in developmental timing. Additionally, recent studies have shown that miRNAs released from parasites are capable of regulating the expression of host genes. In the present work, we studied the expression patterns of ncRNAs of various intra-mammalian life-cycle stages of the liver fluke, Fasciola hepatica, as well as those packaged into extracellular vesicles and shed by the adult fluke. The miRNA expression profile of the intra-mammalian stages shows important variations, despite a set of predominant miRNAs that are highly expressed across all stages. No substantial variations in miRNA expression between dormant and activated metacercariae were detected, suggesting that they might not be central players in regulating fluke gene expression during this crucial step in the invasion of the definitive host. We generated a curated pipeline for the prediction of putative target genes that reports only sites conserved between three different prediction approaches. This pipeline was tested against an iso-seq curated database of the 3’ UTR regions of F. hepatica genes to detect miRNA regulation networks within liver fluke. Several functions related to the host immune response or modulation were enriched among the targets of the most highly expressed parasite miRNAs, stressing that they might be key players during the establishment and maintenance of infection. Additionally, we detected fragments derived from the processing of tRNAs, in all developmental stages analyzed, and documented the presence of novel long tRNA fragments enriched in vesicles. We confirmed the presence of at least 5 putative vault RNAs (vtRNAs), that are expressed across different stages and enriched in vesicles. The presence of tRNA fragments and vtRNAs in vesicles raise the possibility that they could be involved in the host-parasite interaction.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| | - Mauricio Langleib
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | | | - Maria Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - José Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
- *Correspondence: Santiago Fontenla, ; José Tort,
| |
Collapse
|
37
|
Alexander RP, Kitchen RR, Tosar JP, Roth M, Mestdagh P, Max KEA, Rozowsky J, Kaczor-Urbanowicz KE, Chang J, Balaj L, Losic B, Van Nostrand EL, LaPlante E, Mateescu B, White BS, Yu R, Milosavljevic A, Stolovitzky G, Spengler RM. Open Problems in Extracellular RNA Data Analysis: Insights From an ERCC Online Workshop. Front Genet 2022; 12:778416. [PMID: 35047007 PMCID: PMC8762274 DOI: 10.3389/fgene.2021.778416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
We now know RNA can survive the harsh environment of biofluids when encapsulated in vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form the basis of new strategies for disease treatment. The Extracellular RNA Communication Consortium (ERCC) hosted a two-day online workshop (April 19-20, 2021) on the unique challenges of exRNA data analysis. The goal was to foster an open dialog about best practices and discuss open problems in the field, focusing initially on small exRNA sequencing data. Video recordings of workshop presentations and discussions are available (https://exRNA.org/exRNAdata2021-videos/). There were three target audiences: experimentalists who generate exRNA sequencing data, computational and data scientists who work with those groups to analyze their data, and experimental and data scientists new to the field. Here we summarize issues explored during the workshop, including progress on an effort to develop an exRNA data analysis challenge to engage the community in solving some of these open problems.
Collapse
Affiliation(s)
| | - Robert R Kitchen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Juan Pablo Tosar
- Pasteur Institute of Montevideo and University of the Republic of Uruguay, Montevideo, Uruguay
| | - Matthew Roth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Pieter Mestdagh
- Center for Medical Genetics, Department of Biomolecular Medicine, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Klaas E. A. Max
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY, United States
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | | | - Justin Chang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bojan Losic
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric L. Van Nostrand
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Emily LaPlante
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Bogdan Mateescu
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | | | - Rongshan Yu
- Department of Computer Science, Xiamen University, Aginome Scientific, Ltd., Xiamen, China
| | - Aleksander Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | - Ryan M. Spengler
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
38
|
Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, Bhattacharyya S, Verma B. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:161-173. [PMID: 34513302 PMCID: PMC8413677 DOI: 10.1016/j.omtn.2021.06.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hundreds of tRNA genes and pseudogenes are encoded by the human genome. tRNAs are the second most abundant type of RNA in the cell. Advancement in deep-sequencing technologies have revealed the presence of abundant expression of functional tRNA-derived RNA fragments (tRFs). They are either generated from precursor (pre-)tRNA or mature tRNA. They have been found to play crucial regulatory roles during different pathological conditions. Herein, we briefly summarize the discovery and recent advances in deciphering the regulatory role played by tRFs in the pathophysiology of different human diseases.
Collapse
Affiliation(s)
- Kush Kumar Pandey
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M.S. Ramaiah, Institute of Technology, MSR Nagar, Bengaluru, India
| | - Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
39
|
Akiyama Y, Tomioka Y, Abe T, Anderson P, Ivanov P. In lysate RNA digestion provides insights into the angiogenin's specificity towards transfer RNAs. RNA Biol 2021; 18:2546-2555. [PMID: 34085908 PMCID: PMC8632075 DOI: 10.1080/15476286.2021.1930758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Under adverse conditions, tRNAs are processed into fragments called tRNA-derived stress-induced RNAs (tiRNAs) by stress-responsive ribonucleases (RNases) such as angiogenin (ANG). Recent studies have reported several biological functions of synthetic tiRNAs lacking post-transcriptional modifications found on endogenous tiRNAs. Here we describe a simple and reproducible method to efficiently isolate ANG-cleaved tiRNAs from endogenous tRNAs. Using this in vitro method, more than 50% of mature tRNAs are cleaved into tiRNAs which can be enriched using complementary oligonucleotides. Using this method, the yield of isolated endogenous 5'-tiRNAGly-GCC was increased about fivefold compared to when tiRNAs were obtained by cellular treatment of ANG. Although the non-specific ribonuclease activity of ANG is much lower than that of RNase A, we show that ANG cleaves physiologically folded tRNAs as efficiently as bovine RNase A. These results suggest that ANG is highly specialized to cleave physiologically folded tRNAs. Our method will greatly facilitate the analysis of endogenous tiRNAs to elucidate the physiological functions of ANG.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takaaki Abe
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA,CONTACT Pavel Ivanov Brigham and Women’s Hospital, Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, 75 Francis Street, Boston, MA 02115
| |
Collapse
|
40
|
Yang WQ, Xiong QP, Ge JY, Li H, Zhu WY, Nie Y, Lin X, Lv D, Li J, Lin H, Liu RJ. THUMPD3-TRMT112 is a m2G methyltransferase working on a broad range of tRNA substrates. Nucleic Acids Res 2021; 49:11900-11919. [PMID: 34669960 PMCID: PMC8599901 DOI: 10.1093/nar/gkab927] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional modifications affect tRNA biology and are closely associated with human diseases. However, progress on the functional analysis of tRNA modifications in metazoans has been slow because of the difficulty in identifying modifying enzymes. For example, the biogenesis and function of the prevalent N2-methylguanosine (m2G) at the sixth position of tRNAs in eukaryotes has long remained enigmatic. Herein, using a reverse genetics approach coupled with RNA-mass spectrometry, we identified that THUMP domain-containing protein 3 (THUMPD3) is responsible for tRNA: m2G6 formation in human cells. However, THUMPD3 alone could not modify tRNAs. Instead, multifunctional methyltransferase subunit TRM112-like protein (TRMT112) interacts with THUMPD3 to activate its methyltransferase activity. In the in vitro enzymatic assay system, THUMPD3-TRMT112 could methylate all the 26 tested G6-containing human cytoplasmic tRNAs by recognizing the characteristic 3'-CCA of mature tRNAs. We also showed that m2G7 of tRNATrp was introduced by THUMPD3-TRMT112. Furthermore, THUMPD3 is widely expressed in mouse tissues, with an extremely high level in the testis. THUMPD3-knockout cells exhibited impaired global protein synthesis and reduced growth. Our data highlight the significance of the tRNA: m2G6/7 modification and pave a way for further studies of the role of m2G in sperm tRNA derived fragments.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing-Ping Xiong
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Yang Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiuying Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Daizhu Lv
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
41
|
Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci 2021; 46:790-804. [PMID: 34053843 PMCID: PMC8448906 DOI: 10.1016/j.tibs.2021.05.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are among the most ancient small RNAs in all domains of life and are generated by the cleavage of tRNAs. Emerging studies have begun to reveal the versatile roles of tsRNAs in fundamental biological processes, including gene silencing, ribosome biogenesis, retrotransposition, and epigenetic inheritance, which are rooted in tsRNA sequence conservation, RNA modifications, and protein-binding abilities. We summarize the mechanisms of tsRNA biogenesis and the impact of RNA modifications, and propose how thinking of tsRNA functionality from an evolutionary perspective urges the expansion of tsRNA research into a wider spectrum, including cross-tissue/cross-species regulation and harnessing of the 'tsRNA code' for precision medicine.
Collapse
Affiliation(s)
- Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| | - Xudong Zhang
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Menghong Yan
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
42
|
Cucher MA, Ancarola ME, Kamenetzky L. The challenging world of extracellular RNAs of helminth parasites. Mol Immunol 2021; 134:150-160. [PMID: 33773158 DOI: 10.1016/j.molimm.2021.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
In the last years, cell free or extracellular RNAs (ex-RNAs) have emerged as novel intercellular messengers between animal cells, including pathogens. In infectious diseases, ex-RNAs represent novel players in the host-pathogen and pathogen-pathogen interplays and have been described in parasitic helminths from the three major taxonomic groups: nematodes, trematodes and cestodes. Altogether, it is estimated that approximately 30 percent of the world's population is infected with helminths, which cause debilitating diseases and syndromes. Ex-RNAs are protected from degradation by encapsulation in extracellular vesicles (EV), or association to proteins or lipoproteins, and have been detected in the excretion/secretion products of helminth parasites, with EV as the preferred extracellular compartment under study. EV is the generic term used to describe a heterogenous group of subcellular membrane-bound particles, with varying sizes, biogenesis, density and composition. However, recent data suggests that this is not the only means used by helminth parasites to secrete RNAs since ex-RNAs can also be found in EV-depleted samples. Furthermore, the use of pathogen ex-RNAs as biomarkers promise the advent of new diagnostic tools though this field is still in early stages of exploration. In this review, we summarize current knowledge of vesicular and non-vesicular ex-RNAs secretion in helminth parasites, their potential as biomarkers and the evidence of their role in parasite and host reciprocal communication, together with unanswered questions in the field.
Collapse
Affiliation(s)
- Marcela A Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| | - María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Laura Kamenetzky
- Laboratorio de Genómica y Bioinformática de Patógenos, iB3
- Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Katsaraki K, Adamopoulos PG, Papageorgiou SG, Pappa V, Scorilas A, Kontos CK. A 3' tRNA-derived fragment produced by tRNA LeuAAG and tRNA LeuTAG is associated with poor prognosis in B-cell chronic lymphocytic leukemia, independently of classical prognostic factors. Eur J Haematol 2021; 106:821-830. [PMID: 33660275 DOI: 10.1111/ejh.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE 3' tRNA-derived fragments (3' tRFs) are important epigenetic regulators in normal and pathological conditions. In this study, we aimed to explore the potential value of a 3' tRF as a prognostic and/or screening biomarker for B-cell chronic lymphocytic leukemia (B-CLL). METHODS Publicly available next-generation sequencing data from 20 B-CLL cases were analyzed, followed by prediction of targets of the most abundantly and ubiquitously expressed 3' tRFs, leading to selection of tRF-LeuAAG/TAG . PBMCs were isolated from blood samples of 91 B-CLL patients and 43 non-leukemic donors, followed by total RNA extraction, in-vitro polyadenylation, and first-strand cDNA synthesis. Next, a real-time quantitative PCR (qPCR) assay was developed for the accurate quantification of tRF-LeuAAG/TAG and applied in all samples, prior to biostatistical analysis. RESULTS High tRF-LeuAAG/TAG levels are associated with inferior overall survival (OS) of B-CLL patients. The unfavorable significance of tRF-LeuAAG/TAG was independent of established prognostic factors in B-CLL. Stratified Kaplan-Meier OS analysis uncovered the unfavorable prognostic role of high tRF-LeuAAG/TAG levels for patients in Binet A or Rai I stage, negative CD38 expression, mutated, or unmutated IGHV genomic locus. CONCLUSION Our approach revealed the independent prognostic value of a particular 3' tRF, derived from tRNALeuAAG and tRNALeuTAG (tRF-LeuAAG/TAG ) in B-CLL.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital Attikon, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital Attikon, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens Panepistimiopolis, Athens, Greece
| |
Collapse
|
44
|
Grosso JB, Zoff L, Calvo KL, Maraval MB, Perez M, Carbonaro M, Brignardello C, Morente C, Spinelli SV. Levels of seminal tRNA-derived fragments from normozoospermic men correlate with the success rate of ART. Mol Hum Reprod 2021; 27:6162173. [PMID: 33693947 DOI: 10.1093/molehr/gaab017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/12/2021] [Indexed: 12/23/2022] Open
Abstract
Decreased fertility is becoming an important social and medical problem and the male factor is involved in at least half of infertility cases. Since conventional semen analysis provides limited prediction of male fertility; in this work, we evaluated the potential use of seminal small RNAs (sRNA) as markers of semen quality in ART. Our bioinformatic analyses of available sRNA-seq databases showed that the most abundant sRNA species in seminal plasma of normozoospermic men are tRNA-derived fragments (tRFs), a novel class of regulatory sRNAs. These molecules not only exert their function within cells but also are released into the extracellular environment where they could carry out signaling functions. To evaluate whether the assessment of seminal tRFs in normozoospermic men has a predictive value for the clinical outcome in ART, we performed a prospective study with couples who underwent ICSI cycles with donated oocytes. The results obtained demonstrated that levels of 5'tRF-Glu-CTC, 5'tRF-Lys-CTT, and 5'tRF-Gly-GCC are significantly elevated in seminal samples from cases with repeated failed ICSI cycles, suggesting a potential association between increased seminal tRFs and unexplained male infertility. Interestingly, these tRFs showed a negative association with seminal testosterone, highlighting their involvement in male endocrinology. Our findings also suggest that tRFs could play a role in modulating male reproductive function in response to physiological stress since they showed significant associations with the levels of sperm DNA fragmentation in couples that achieved pregnancy but not in cases with failed ICSI cycles where seminal cortisol levels correlate with sperm quality.
Collapse
Affiliation(s)
- Julieta B Grosso
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | - Luciana Zoff
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | | | - María Belén Maraval
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| | | | | | | | | | - Silvana V Spinelli
- Institute of Clinical and Experimental Immunology of Rosario (IDICER CONICET-UNR), Rosario, Argentina
| |
Collapse
|
45
|
Krishna S, Raghavan S, DasGupta R, Palakodeti D. tRNA-derived fragments (tRFs): establishing their turf in post-transcriptional gene regulation. Cell Mol Life Sci 2021; 78:2607-2619. [PMID: 33388834 PMCID: PMC11073306 DOI: 10.1007/s00018-020-03720-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Transfer RNA (tRNA)-derived fragments (tRFs) are an emerging class of conserved small non-coding RNAs that play important roles in post-transcriptional gene regulation. High-throughput sequencing of multiple biological samples have identified heterogeneous species of tRFs with distinct functionalities. These small RNAs have garnered a lot of scientific attention due to their ubiquitous expression and versatility in regulating various biological processes. In this review, we highlight our current understanding of tRF biogenesis and their regulatory functions. We summarize the diverse modes of biogenesis through which tRFs are generated and discuss the mechanism through which different tRF species regulate gene expression and the biological implications. Finally, we conceptualize research areas that require focus to strengthen our understanding of the biogenesis and function of tRFs.
Collapse
Affiliation(s)
- Srikar Krishna
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Srikala Raghavan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.
| | - Ramanuj DasGupta
- Precision Oncology, Genome Institute of Singapore, Singapore City, Singapore.
| | | |
Collapse
|
46
|
Tosar JP, Gámbaro F, Castellano M, Cayota A. RI-SEC-seq: Comprehensive Profiling of Nonvesicular Extracellular RNAs with Different Stabilities. Bio Protoc 2021; 11:e3918. [PMID: 33732805 DOI: 10.21769/bioprotoc.3918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes and other extracellular vesicles (EVs) are considered the main vehicles transporting RNAs in extracellular samples, including human bodily fluids. However, a major proportion of extracellular RNAs (exRNAs) do not copurify with EVs and remain in ultracentrifugation supernatants of cell-conditioned medium or blood serum. We have observed that nonvesicular exRNA profiles are highly biased toward those RNAs with intrinsic resistance to extracellular ribonucleases. These highly resistant exRNAs are interesting from a biomarker point of view, but are not representative of the actual bulk of RNAs released to the extracellular space. In order to understand exRNA dynamics and capture both stable and unstable RNAs, we developed a method based on size-exclusion chromatography (SEC) fractionation of RNase inhibitor (RI)-treated cell-conditioned medium (RI-SEC-seq). This method has allowed us to identify and study extracellular ribosomes and tRNAs, and offers a dynamical view of the extracellular RNAome which can impact biomarker discovery in the near future. Graphical abstract: Overview of the RI-SEC-seq protocol: sequencing of size-exclusion chromatography fractions from nonvesicular extracellular samples treated or not with RNase inhibitors (+/- RI).
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Bichemistry Unit, Nuclear Research Center, School of Science, Universidad de la República, Uruguay.,Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Fabiana Gámbaro
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Mauricio Castellano
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay.,Biochemistry Department, School of Science, Universidad de la República, Uruguay
| | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay.,University Hospital, Universidad de la República, Uruguay
| |
Collapse
|
47
|
Tosar JP, Witwer K, Cayota A. Revisiting Extracellular RNA Release, Processing, and Function. Trends Biochem Sci 2021; 46:438-445. [PMID: 33413996 DOI: 10.1016/j.tibs.2020.12.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
It is assumed that RNAs enriched in extracellular samples were selected for release by their parental cells. However, recent descriptions of extracellular RNA (exRNA) biogenesis and their differential stabilities question this assumption, as they could produce identical outcomes. Here, we share our opinion about the importance of considering both selective and nonselective mechanisms for RNA release into the extracellular environment. In doing so, we provide new perspectives on RNA-mediated intercellular communication, including an analogy to communication through social media. We also argue that technical limitations have restricted the study of some of the most abundant exRNAs, both inside and outside extracellular vesicles (EVs). These RNAs may be better positioned to induce a response in recipient cells compared with low abundance miRNAs.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry Unit, Nuclear Research Center, School of Science, Universidad de la República, Montevideo, Uruguay; Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay; Department of Medicine, University Hospital, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
48
|
Lehrich BM, Liang Y, Fiandaca MS. Foetal bovine serum influence on in vitro extracellular vesicle analyses. J Extracell Vesicles 2021; 10:e12061. [PMID: 33532042 PMCID: PMC7830136 DOI: 10.1002/jev2.12061] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Brandon M. Lehrich
- Medical Scientist Training ProgramUniversity of Pittsburgh School of Medicine and Carnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Yaxuan Liang
- Center for Biological Science and Technology, Advanced Institute of Natural SciencesBeijing Normal University at ZhuhaiZhuhaiChina
| | | |
Collapse
|
49
|
Tosar JP, Segovia M, Castellano M, Gámbaro F, Akiyama Y, Fagúndez P, Olivera Á, Costa B, Possi T, Hill M, Ivanov P, Cayota A. Fragmentation of extracellular ribosomes and tRNAs shapes the extracellular RNAome. Nucleic Acids Res 2020; 48:12874-12888. [PMID: 32785615 PMCID: PMC7736827 DOI: 10.1093/nar/gkaa674] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
A major proportion of extracellular RNAs (exRNAs) do not copurify with extracellular vesicles (EVs) and remain in ultracentrifugation supernatants of cell-conditioned medium or mammalian blood serum. However, little is known about exRNAs beyond EVs. We have previously shown that the composition of the nonvesicular exRNA fraction is highly biased toward specific tRNA-derived fragments capable of forming RNase-protecting dimers. To solve the problem of stability in exRNA analysis, we developed a method based on sequencing the size exclusion chromatography (SEC) fractions of nonvesicular extracellular samples treated with RNase inhibitors (RI). This method revealed dramatic compositional changes in exRNA population when enzymatic RNA degradation was inhibited. We demonstrated the presence of ribosomes and full-length tRNAs in cell-conditioned medium of a variety of mammalian cell lines. Their fragmentation generates some small RNAs that are highly resistant to degradation. The extracellular biogenesis of some of the most abundant exRNAs demonstrates that extracellular abundance is not a reliable input to estimate RNA secretion rates. Finally, we showed that chromatographic fractions containing extracellular ribosomes are probably not silent from an immunological perspective and could possibly be decoded as damage-associated molecular patterns.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mercedes Segovia
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Uruguay. Immunobiology Department, Faculty of Medicine, Universidad de la República, Uruguay
| | - Mauricio Castellano
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Fabiana Gámbaro
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
- Molecular Virology Laboratory, Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
| | - Yasutoshi Akiyama
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pablo Fagúndez
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Álvaro Olivera
- Centro Universitario Regional Este, Universidad de la República, Uruguay
| | - Bruno Costa
- Analytical Biochemistry Unit. Nuclear Research Center. Faculty of Science. Universidad de la República, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Tania Possi
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
| | - Marcelo Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, Uruguay. Immunobiology Department, Faculty of Medicine, Universidad de la República, Uruguay
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and M.I.T., Cambridge, MA, USA
| | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo, Uruguay
- Department of Medicine, University Hospital, Universidad de la República, Uruguay
| |
Collapse
|
50
|
Ancarola ME, Lichtenstein G, Herbig J, Holroyd N, Mariconti M, Brunetti E, Berriman M, Albrecht K, Marcilla A, Rosenzvit MC, Kamenetzky L, Brehm K, Cucher M. Extracellular non-coding RNA signatures of the metacestode stage of Echinococcus multilocularis. PLoS Negl Trop Dis 2020; 14:e0008890. [PMID: 33253209 PMCID: PMC7728270 DOI: 10.1371/journal.pntd.0008890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/10/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular RNAs (ex-RNAs) are secreted by cells through different means that may involve association with proteins, lipoproteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent new and exciting communication intermediaries with promising potential as novel biomarkers. In the last years, it was shown that helminth parasites secrete ex-RNAs, however, most work mainly focused on RNA secretion mediated by EV. Ex-RNA study is of special interest in those helminth infections that still lack biomarkers for early and/or follow-up diagnosis, such as echinococcosis, a neglected zoonotic disease caused by cestodes of the genus Echinococcus. In this work, we have characterised the ex-RNA profile secreted by in vitro grown metacestodes of Echinococcus multilocularis, the casuative agent of alveolar echinococcosis. We have used high throughput RNA-sequencing together with RT-qPCR to characterise the ex-RNA profile secreted towards the extra- and intra-parasite milieus in EV-enriched and EV-depleted fractions. We show that a polarized secretion of small RNAs takes place, with microRNAs mainly secreted to the extra-parasite milieu and rRNA- and tRNA-derived sequences mostly secreted to the intra-parasite milieu. In addition, we show by nanoparticle tracking analyses that viable metacestodes secrete EV mainly into the metacestode inner vesicular fluid (MVF); however, the number of nanoparticles in culture medium and MVF increases > 10-fold when metacestodes show signs of tegument impairment. Interestingly, we confirm the presence of host miRNAs in the intra-parasite milieu, implying their internalization and transport through the tegument towards the MVF. Finally, our assessment of the detection of Echinococcus miRNAs in patient samples by RT-qPCR yielded negative results suggesting the tested miRNAs may not be good biomarkers for this disease. A comprehensive study of the secretion mechanisms throughout the life cycle of these parasites will help to understand parasite interaction with the host and also, improve current diagnostic tools. Extracellular RNAs (ex-RNAs) are secreted by cells through association with proteins or extracellular vesicles (EV). In the context of parasitism, ex-RNAs represent novel communication intermediaries with promising potential as biomarkers. In order to better understand the role ex-RNAs may play in the context of the zoonotic disease echinococcosis, we have characterised the RNA profile secreted by the larval stage (metacestode) of Echinococcus multilocularis. By analysing the products secreted towards the extra- and intra-parasite milieus, we demonstrate that the metacestode displays a polarized secretion of different classes of small non-coding RNAs (sRNAs). In addition, we show that EV secretion occurs mainly towards the inner fluid of the metacestodes. Interestingly, we confirm the presence of host sRNAs in the intra-parasite milieu, implying their internalization and transport through the tegument. Finally, the detection of Echinococcus miRNAs in patient samples yielded negative results suggesting the tested miRNAs may not be good biomarkers for this disease. In summary, our results provide a detailed description of the ex-RNA landscape of the E. multilocularis metacestode together with information on the distribution of the detected RNA classes in different extracellular compartments. This information is of importance to better understand host-parasite interaction and also, to improve current diagnostic tools.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Gabriel Lichtenstein
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Johannes Herbig
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Mara Mariconti
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, Pavia, Italy
| | - Enrico Brunetti
- Unit of Infectious and Tropical Diseases, San Matteo Hospital Foundation, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Krystyna Albrecht
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Würzburg, Germany
| | - Antonio Marcilla
- Departament de Farmàcia i Tecnologia Farmacéutica i Parasitologia, Universitat de València, València, Spain.,Joint Unit on Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe Valencia, València, Spain
| | - Mara Cecilia Rosenzvit
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Laura Kamenetzky
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Klaus Brehm
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Marcela Cucher
- Departament of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|