1
|
Meng X, Hu G, Li X, Gao C, Song W, Wei W, Wu J, Liu L. A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts. Nat Commun 2025; 16:31. [PMID: 39747058 PMCID: PMC11695965 DOI: 10.1038/s41467-024-55502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Microbial utilization of methanol for valorization is an effective way to advance green bio-manufacturing technology. Although synthetic methylotrophs have been developed, strategies to enhance their cell growth rate and internal regulatory mechanism remain underexplored. In this study, we design a synthetic methanol assimilation (SMA) pathway containing only six enzymes linked to central carbon metabolism, which does not require energy and carbon emissions. Through rational design and laboratory evolution, E. coli harboring with the SMA pathway is converted into a synthetic methylotroph. By self-adjusting the expression of TOPAI (topoisomerase I inhibitor) to alleviate transcriptional-replication conflicts (TRCs), the doubling time of methylotrophic E. coli is reduced to 4.5 h, approaching that of natural methylotrophs. This work has the potential to overcome the growth limitation of C1-assimilating microbes and advance the development of a circular carbon economy.
Collapse
Affiliation(s)
- Xin Meng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China.
| |
Collapse
|
2
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
3
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. mBio 2024; 15:e0273723. [PMID: 38095872 PMCID: PMC10790778 DOI: 10.1128/mbio.02737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
IMPORTANCE Eukaryotic hosts have defense mechanisms that may disrupt molecular transactions along the pathogen's chromosome through excessive DNA damage. Given that DNA damage stalls RNA polymerase (RNAP) thereby increasing mutagenesis, investigating how host defense mechanisms impact the movement of the transcription machinery on the pathogen chromosome is crucial. Using a new methodology we developed, we elucidated the dynamics of RNAP movement and association with the chromosome in the pathogenic bacterium Salmonella enterica during infection. We found that dynamics of RNAP movement on the chromosome change significantly during infection genome-wide, including at regions that encode for key virulence genes. In particular, we found that there is pervasive RNAP backtracking on the bacterial chromosome during infections and that anti-backtracking factors are critical for pathogenesis. Altogether, our results suggest that, interestingly, the host environment can promote the development of antimicrobial resistance and hypervirulence as stalled RNAPs can accelerate evolution through increased mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Wollman AJM, Syeda AH, Howard JAL, Payne-Dwyer A, Leech A, Warecka D, Guy C, McGlynn P, Hawkins M, Leake MC. Tetrameric UvrD Helicase Is Located at the E. Coli Replisome due to Frequent Replication Blocks. J Mol Biol 2024; 436:168369. [PMID: 37977299 DOI: 10.1016/j.jmb.2023.168369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.
Collapse
Affiliation(s)
- Adam J M Wollman
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aisha H Syeda
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jamieson A L Howard
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andrew Leech
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dominika Warecka
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Colin Guy
- Covance Laboratories Ltd., Otley Road, Harrogate HG3 1PY, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Michelle Hawkins
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
6
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
7
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
8
|
Whinn KS, Sharma N, van Oijen AM, Ghodke H. Single-Molecule Fluorescence Imaging of DNA Replication Stalling at Sites of Nucleoprotein Complexes. Methods Mol Biol 2024; 2694:215-234. [PMID: 37824007 DOI: 10.1007/978-1-0716-3377-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
DNA replication in cells occurs on crowded and often damaged template DNA, forming potentially deleterious roadblocks to the progressing replication fork. Numerous tools have been developed to investigate the mechanisms of DNA replication and the fate of stalled replication forks. Here, we describe single-molecule fluorescence imaging methods to visualize processive DNA replication and replication fork stalling at site-specific nucleoprotein complexes. Using dCas9 as a protein barrier and rolling-circle DNA templates, we visualize effective, stable, and site-specific blocking of the Escherichia coli replisome. Additionally, we present a protocol to produce an 18-kb rolling-circle DNA template that provides increased spatial resolution in imaging the interplay between replisomes and roadblocks. These methods can be used to investigate encounters of the replisome with nucleoprotein complexes at the single-molecule level, providing important mechanistic details of replisome stalling and downstream rescue or restart pathways.
Collapse
Affiliation(s)
- Kelsey S Whinn
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Nischal Sharma
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Chib S, Griffin WC, Gao J, Proffitt DR, Byrd AK, Raney KD. Pif1 Helicase Mediates Remodeling of Protein-Nucleic Acid Complexes by Promoting Dissociation of Sub1 from G-Quadruplex DNA and Cdc13 from G-Rich Single-Stranded DNA. Biochemistry 2023; 62:3360-3372. [PMID: 37948114 PMCID: PMC10841737 DOI: 10.1021/acs.biochem.3c00441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pif1 is a molecular motor enzyme that is conserved from yeast to mammals. It translocates on ssDNA with a directional bias (5' → 3') and unwinds duplexes using the energy obtained from ATP hydrolysis. Pif1 is involved in dsDNA break repair, resolution of G-quadruplex (G4) structures, negative regulation of telomeres, and Okazaki fragment maturation. An important property of this helicase is to exert force and disrupt protein-DNA complexes, which may otherwise serve as barriers to various cellular pathways. Previously, Pif1 was reported to displace streptavidin from biotinylated DNA, Rap1 from telomeric DNA, and telomerase from DNA ends. Here, we have investigated the ability of S. cerevisiae Pif1 helicase to disrupt protein barriers from G4 and telomeric sites. Yeast chromatin-associated transcription coactivator Sub1 was characterized as a G4 binding protein. We found evidence for a physical interaction between Pif1 helicase and Sub1 protein. Here, we demonstrate that Pif1 is capable of catalyzing the disruption of Sub1-bound G4 structures in an ATP-dependent manner. We also investigated Pif1-mediated removal of yeast telomere-capping protein Cdc13 from DNA ends. Cdc13 exhibits a high-affinity interaction with an 11-mer derived from the yeast telomere sequence. Our results show that Pif1 uses its translocase activity to enhance the dissociation of this telomere-specific protein from its binding site. The rate of dissociation increased with an increase in the helicase loading site length. Additionally, we examined the biochemical mechanism for Pif1-catalyzed protein displacement by mutating the sequence of the telomeric 11-mer on the 5'-end and the 3'-end. The results support a model whereby Pif1 disrupts Cdc13 from the ssDNA in steps.
Collapse
Affiliation(s)
- Shubeena Chib
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Wezley C. Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - David R. Proffitt
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
10
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
11
|
Goodall DJ, Warecka D, Hawkins M, Rudolph CJ. Interplay between chromosomal architecture and termination of DNA replication in bacteria. Front Microbiol 2023; 14:1180848. [PMID: 37434703 PMCID: PMC10331603 DOI: 10.3389/fmicb.2023.1180848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Faithful transmission of the genome from one generation to the next is key to life in all cellular organisms. In the majority of bacteria, the genome is comprised of a single circular chromosome that is normally replicated from a single origin, though additional genetic information may be encoded within much smaller extrachromosomal elements called plasmids. By contrast, the genome of a eukaryote is distributed across multiple linear chromosomes, each of which is replicated from multiple origins. The genomes of archaeal species are circular, but are predominantly replicated from multiple origins. In all three cases, replication is bidirectional and terminates when converging replication fork complexes merge and 'fuse' as replication of the chromosomal DNA is completed. While the mechanics of replication initiation are quite well understood, exactly what happens during termination is far from clear, although studies in bacterial and eukaryotic models over recent years have started to provide some insight. Bacterial models with a circular chromosome and a single bidirectional origin offer the distinct advantage that there is normally just one fusion event between two replication fork complexes as synthesis terminates. Moreover, whereas termination of replication appears to happen in many bacteria wherever forks happen to meet, termination in some bacterial species, including the well-studied bacteria Escherichia coli and Bacillus subtilis, is more restrictive and confined to a 'replication fork trap' region, making termination even more tractable. This region is defined by multiple genomic terminator (ter) sites, which, if bound by specific terminator proteins, form unidirectional fork barriers. In this review we discuss a range of experimental results highlighting how the fork fusion process can trigger significant pathologies that interfere with the successful conclusion of DNA replication, how these pathologies might be resolved in bacteria without a fork trap system and how the acquisition of a fork trap might have provided an alternative and cleaner solution, thus explaining why in bacterial species that have acquired a fork trap system, this system is remarkably well maintained. Finally, we consider how eukaryotic cells can cope with a much-increased number of termination events.
Collapse
Affiliation(s)
- Daniel J. Goodall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Christian J. Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
12
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540596. [PMID: 37215019 PMCID: PMC10197661 DOI: 10.1101/2023.05.12.540596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogenic bacteria and their eukaryotic hosts are in a constant arms race. Hosts have numerous defense mechanisms at their disposal that not only challenge the bacterial invaders, but have the potential to disrupt molecular transactions along the bacterial chromosome. However, it is unclear how the host impacts association of proteins with the bacterial chromosome at the molecular level during infection. This is partially due to the lack of a method that could detect these events in pathogens while they are within host cells. We developed and optimized a system capable of mapping and measuring levels of bacterial proteins associated with the chromosome while they are actively infecting the host (referred to as PIC-seq). Here, we focused on the dynamics of RNA polymerase (RNAP) movement and association with the chromosome in the pathogenic bacterium Salmonella enterica as a model system during infection. Using PIC-seq, we found that RNAP association patterns with the chromosome change during infection genome-wide, including at regions that encode for key virulence genes. Importantly, we found that infection of a host significantly increases RNAP backtracking on the bacterial chromosome. RNAP backtracking is the most common form of disruption to RNAP progress on the chromosome. Interestingly, we found that the resolution of backtracked RNAPs via the anti-backtracking factors GreA and GreB is critical for pathogenesis, revealing a new class of virulence genes. Altogether, our results strongly suggest that infection of a host significantly impacts transcription by disrupting RNAP movement on the chromosome within the bacterial pathogen. The increased backtracking events have important implications not only for efficient transcription, but also for mutation rates as stalled RNAPs increase the levels of mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
14
|
Goswami S, Gowrishankar J. Role for DNA double strand end-resection activity of RecBCD in control of aberrant chromosomal replication initiation in Escherichia coli. Nucleic Acids Res 2022; 50:8643-8657. [PMID: 35929028 PMCID: PMC9410895 DOI: 10.1093/nar/gkac670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Replication of the circular bacterial chromosome is initiated from a locus oriC with the aid of an essential protein DnaA. One approach to identify factors acting to prevent aberrant oriC-independent replication initiation in Escherichia coli has been that to obtain mutants which survive loss of DnaA. Here, we show that a ΔrecD mutation, associated with attenuation of RecBCD’s DNA double strand end-resection activity, provokes abnormal replication and rescues ΔdnaA lethality in two situations: (i) in absence of 5′-3′ single-strand DNA exonuclease RecJ, or (ii) when multiple two-ended DNA double strand breaks (DSBs) are generated either by I-SceI endonucleolytic cleavages or by radiomimetic agents phleomycin or bleomycin. One-ended DSBs in the ΔrecD mutant did not rescue ΔdnaA lethality. With two-ended DSBs in the ΔrecD strain, ΔdnaA viability was retained even after linearization of the chromosome. Data from genome-wide DNA copy number determinations in ΔdnaA-rescued cells lead us to propose a model that nuclease-mediated DNA resection activity of RecBCD is critical for prevention of a σ-mode of rolling-circle over-replication when convergent replication forks merge and fuse, as may be expected to occur during normal replication at the chromosomal terminus region or during repair of two-ended DSBs following ‘ends-in’ replication.
Collapse
Affiliation(s)
- Sayantan Goswami
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Jayaraman Gowrishankar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
15
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
16
|
Kapoor I, Shaw A, Naha A, Emam EAF, Varshney U. Role of the nucleotide excision repair pathway proteins (UvrB and UvrD2) in recycling UdgB, a base excision repair enzyme in Mycobacterium smegmatis. DNA Repair (Amst) 2022; 113:103316. [PMID: 35306347 DOI: 10.1016/j.dnarep.2022.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/30/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
Cross-talks between DNA repair pathways are emerging as a crucial strategy in the maintenance of the genomic integrity. A double-stranded (ds) DNA specific DNA glycosylase, UdgB is known to excise uracil, hypoxanthine and ethenocytosine. We earlier showed that Mycobacterium smegmatis (Msm) UdgB stays back on the AP-sites it generates in the DNA upon excision of the damaged bases. Here, we show that in an Msm strain deleted for a nucleotide excision repair (NER) protein, UvrB (uvrB-), UdgB expression is toxic, and its deletion from the genome (udgB-) rescues the strain from the genotoxic stress. However, UdgB bound AP-site is not a direct substrate for NER in vitro. We show that UvrD2 and UvrB, known helicases with single-stranded (ss) DNA translocase activity, facilitate recycling of UdgB from AP-DNA. Our studies reveal that the helicases play an important role in exposing the AP-sites in DNA and make them available for further repair.
Collapse
Affiliation(s)
- Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Abhirup Shaw
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Naha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Elhassan Ali Fathi Emam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
17
|
Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links. Genes (Basel) 2022; 13:genes13020166. [PMID: 35205211 PMCID: PMC8872012 DOI: 10.3390/genes13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
DNA-protein cross-links (DPCs) are extremely bulky adducts that interfere with replication. In human cells, they are processed by SPRTN, a protease activated by DNA polymerases stuck at DPCs. We have recently proposed the mechanism of the interaction of DNA polymerases with DPCs, involving a clash of protein surfaces followed by the distortion of the cross-linked protein. Here, we used a model DPC, located in the single-stranded template, the template strand of double-stranded DNA, or the displaced strand, to study the eukaryotic translesion DNA polymerases ζ (POLζ), ι (POLι) and η (POLη). POLι demonstrated poor synthesis on the DPC-containing substrates. POLζ and POLη paused at sites dictated by the footprints of the polymerase and the cross-linked protein. Beyond that, POLζ was able to elongate the primer to the cross-link site when a DPC was in the template. Surprisingly, POLη was not only able to reach the cross-link site but also incorporated 1–2 nucleotides past it, which makes POLη the most efficient DNA polymerase on DPC-containing substrates. However, a DPC in the displaced strand was an insurmountable obstacle for all polymerases, which stalled several nucleotides before the cross-link site. Overall, the behavior of translesion polymerases agrees with the model of protein clash and distortion described above.
Collapse
|
18
|
Zardoni L, Nardini E, Brambati A, Lucca C, Choudhary R, Loperfido F, Sabbioneda S, Liberi G. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Res 2021; 49:12769-12784. [PMID: 34878142 PMCID: PMC8682787 DOI: 10.1093/nar/gkab1146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Uncoordinated clashes between replication forks and transcription cause replication stress and genome instability, which are hallmarks of cancer and neurodegeneration. Here, we investigate the outcomes of head-on replication-transcription collisions, using as a model system budding yeast mutants for the helicase Sen1, the ortholog of human Senataxin. We found that RNA Polymerase II accumulates together with RNA:DNA hybrids at sites of head-on collisions. The replication fork and RNA Polymerase II are both arrested during the clash, leading to DNA damage and, in the long run, the inhibition of gene expression. The inactivation of RNA Polymerase II elongation factors, such as the HMG-like protein Spt2 and the DISF and PAF complexes, but not alterations in chromatin structure, allows replication fork progression through transcribed regions. Attenuation of RNA Polymerase II elongation rescues RNA:DNA hybrid accumulation and DNA damage sensitivity caused by the absence of Sen1, but not of RNase H proteins, suggesting that such enzymes counteract toxic RNA:DNA hybrids at different stages of the cell cycle with Sen1 mainly acting in replication. We suggest that the main obstacle to replication fork progression is the elongating RNA Polymerase II engaged in an R-loop, rather than RNA:DNA hybrids per se or hybrid-associated chromatin modifications.
Collapse
Affiliation(s)
- Luca Zardoni
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy.,Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Alessandra Brambati
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | | | | | - Federica Loperfido
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100 Pavia, Italy.,IFOM Foundation, 20139 Milan, Italy
| |
Collapse
|
19
|
Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proc Natl Acad Sci U S A 2021; 118:2109026118. [PMID: 34782462 DOI: 10.1073/pnas.2109026118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F-)-sensing riboswitch is a transcriptional control element essential to defend against toxic F- levels. Using this model riboswitch, we find that its ligand F- and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other's modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.
Collapse
|
20
|
Jameson KH, Rudolph CJ, Hawkins M. Termination of DNA replication at Tus-ter barriers results in under-replication of template DNA. J Biol Chem 2021; 297:101409. [PMID: 34780717 DOI: 10.1016/j.jbc.2021.101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
The complete and accurate duplication of genomic information is vital to maintain genome stability in all domains of life. In Escherichia coli, replication termination, the final stage of the duplication process, is confined to the 'replication fork trap' region by multiple unidirectional fork barriers formed by the binding of Tus protein to genomic ter sites. Termination typically occurs away from Tus-ter complexes, but they become part of the fork fusion process when a delay to one replisome allows the second replisome to travel more than halfway around the chromosome. In this instance, replisome progression is blocked at the non-permissive interface of the Tus-ter complex, termination then occurs when a converging replisome meets the permissive interface. To investigate the consequences of replication fork fusion at Tus-ter complexes, we established a plasmid-based replication system where we could mimic the termination process at Tus-ter complexes in vitro. We developed a termination mapping assay to measure leading strand replication fork progression and demonstrate that the DNA template is under-replicated by 15-24 bases when replication forks fuse at Tus-ter complexes. This gap could not be closed by the addition of lagging strand processing enzymes or by the inclusion of several helicases that promote DNA replication. Our results indicate that accurate fork fusion at Tus-ter barriers requires further enzymatic processing, highlighting large gaps that still exist in our understanding of the final stages of chromosome duplication and the evolutionary advantage of having a replication fork trap.
Collapse
Affiliation(s)
- Katie H Jameson
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
21
|
Larsen JS, Miller M, Oakley AJ, Dixon NE, Lewis PJ. Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen 2021; 10:e1251. [PMID: 34964291 PMCID: PMC8655204 DOI: 10.1002/mbo3.1251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Efficient control of transcription is essential in all organisms. In bacteria, where DNA replication and transcription occur simultaneously, the replication machinery is at risk of colliding with highly abundant transcription complexes. This can be exacerbated by the fact that transcription complexes pause frequently. When pauses are long-lasting, the stalled complexes must be removed to prevent collisions with either another transcription complex or the replication machinery. HelD is a protein that represents a new class of ATP-dependent motor proteins distantly related to helicases. It was first identified in the model Gram-positive bacterium Bacillus subtilis and is involved in removing and recycling stalled transcription complexes. To date, two classes of HelD have been identified: one in the low G+C and the other in the high G+C Gram-positive bacteria. In this work, we have undertaken the first comprehensive investigation of the phylogenetic diversity of HelD proteins. We show that genes in certain bacterial classes have been inherited by horizontal gene transfer, many organisms contain multiple expressed isoforms of HelD, some of which are associated with antibiotic resistance, and that there is a third class of HelD protein found in Gram-negative bacteria. In summary, HelD proteins represent an important new class of transcription factors associated with genome maintenance and antibiotic resistance that are conserved across the Eubacterial kingdom.
Collapse
Affiliation(s)
- Joachim S Larsen
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Aaron J Oakley
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Nicholas E Dixon
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
22
|
Wiedermannová J, Krásný L. β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck. Nucleic Acids Res 2021; 49:10221-10234. [PMID: 34551438 PMCID: PMC8501993 DOI: 10.1093/nar/gkab803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle (‘sitting duck’) to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5′–3′ RNA exonuclease (torpedo) latches itself onto the 5′ end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5′–3′ exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5′–3′ exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Correspondence may also be addressed to Jana Wiedermannová. Tel: +44 191 208 3226; Fax: +44 191 208 3205;
| | - Libor Krásný
- To whom correspondence should be addressed. Tel: +420 241063208;
| |
Collapse
|
23
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
24
|
Brüning JG, Marians KJ. Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Res 2021; 49:9870-9885. [PMID: 34469567 PMCID: PMC8464059 DOI: 10.1093/nar/gkab760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Collisions between the replisome and RNA polymerases [RNAP(s)] are the main obstacle to DNA replication. These collisions can occur either head-on or co-directionally with respect to the direction of translocation of both complexes. Whereas head-on collisions require additional factors to be resolved, co-directional collisions are thought to be overcome by the replisome itself using the mRNA transcript as a primer. We show that mRNA takeover is utilized primarily after collisions with single RNAP complexes with short transcripts. Bypass of more complex transcription complexes requires the synthesis of a new primer downstream of the RNAP for the replisome to resume leading-strand synthesis. In both cases, bypass proceeds with displacement of the RNAP. Rep, Mfd, UvrD and RNase H can process the RNAP block and facilitate replisome bypass by promoting the formation of continuous leading strands. Bypass of co-directional RNAP(s) and/or R-loops is determined largely by the length of the obstacle that the replisome needs to traverse: R-loops are about equally as potent obstacles as RNAP arrays if they occupy the same length of the DNA template.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
25
|
Urrutia-Irazabal I, Ault JR, Sobott F, Savery NJ, Dillingham MS. Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. eLife 2021; 10:68829. [PMID: 34279225 PMCID: PMC8318588 DOI: 10.7554/elife.68829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the β subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.
Collapse
Affiliation(s)
- Inigo Urrutia-Irazabal
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nigel J Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
26
|
Lalonde M, Trauner M, Werner M, Hamperl S. Consequences and Resolution of Transcription-Replication Conflicts. Life (Basel) 2021; 11:life11070637. [PMID: 34209204 PMCID: PMC8303131 DOI: 10.3390/life11070637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription–replication conflicts occur when the two critical cellular machineries responsible for gene expression and genome duplication collide with each other on the same genomic location. Although both prokaryotic and eukaryotic cells have evolved multiple mechanisms to coordinate these processes on individual chromosomes, it is now clear that conflicts can arise due to aberrant transcription regulation and premature proliferation, leading to DNA replication stress and genomic instability. As both are considered hallmarks of aging and human diseases such as cancer, understanding the cellular consequences of conflicts is of paramount importance. In this article, we summarize our current knowledge on where and when collisions occur and how these encounters affect the genome and chromatin landscape of cells. Finally, we conclude with the different cellular pathways and multiple mechanisms that cells have put in place at conflict sites to ensure the resolution of conflicts and accurate genome duplication.
Collapse
|
27
|
Dienerowitz M, Howard JAL, Quinn SD, Dienerowitz F, Leake MC. Single-molecule FRET dynamics of molecular motors in an ABEL trap. Methods 2021; 193:96-106. [PMID: 33571667 DOI: 10.1016/j.ymeth.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) of molecular motors provides transformative insights into their dynamics and conformational changes both at high temporal and spatial resolution simultaneously. However, a key challenge of such FRET investigations is to observe a molecule in action for long enough without restricting its natural function. The Anti-Brownian ELectrokinetic Trap (ABEL trap) sets out to combine smFRET with molecular confinement to enable observation times of up to several seconds while removing any requirement of tethered surface attachment of the molecule in question. In addition, the ABEL trap's inherent ability to selectively capture FRET active molecules accelerates the data acquisition process. In this work we exemplify the capabilities of the ABEL trap in performing extended timescale smFRET measurements on the molecular motor Rep, which is crucial for removing protein blocks ahead of the advancing DNA replication machinery and for restarting stalled DNA replication. We are able to monitor single Rep molecules up to 6 seconds with sub-millisecond time resolution capturing multiple conformational switching events during the observation time. Here we provide a step-by-step guide for the rational design, construction and implementation of the ABEL trap for smFRET detection of Rep in vitro. We include details of how to model the electric potential at the trap site and use Hidden Markov analysis of the smFRET trajectories.
Collapse
Affiliation(s)
- Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2 - 4, 07743 Jena, Germany.
| | - Jamieson A L Howard
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Steven D Quinn
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Mark C Leake
- Department of Physics, University of York, Heslington, York YO10 5DD, UK; Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
28
|
Newing TP, Oakley AJ, Miller M, Dawson CJ, Brown SHJ, Bouwer JC, Tolun G, Lewis PJ. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat Commun 2020; 11:6420. [PMID: 33339820 PMCID: PMC7749167 DOI: 10.1038/s41467-020-20157-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In bacteria, transcription complexes stalled on DNA represent a major source of roadblocks for the DNA replication machinery that must be removed in order to prevent damaging collisions. Gram-positive bacteria contain a transcription factor HelD that is able to remove and recycle stalled complexes, but it was not known how it performed this function. Here, using single particle cryo-electron microscopy, we have determined the structures of Bacillus subtilis RNA polymerase (RNAP) elongation and HelD complexes, enabling analysis of the conformational changes that occur in RNAP driven by HelD interaction. HelD has a 2-armed structure which penetrates deep into the primary and secondary channels of RNA polymerase. One arm removes nucleic acids from the active site, and the other induces a large conformational change in the primary channel leading to removal and recycling of the stalled polymerase, representing a novel mechanism for recycling transcription complexes in bacteria.
Collapse
Affiliation(s)
- Timothy P Newing
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simon H J Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Gökhan Tolun
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
29
|
WDR82/PNUTS-PP1 Prevents Transcription-Replication Conflicts by Promoting RNA Polymerase II Degradation on Chromatin. Cell Rep 2020; 33:108469. [PMID: 33264625 DOI: 10.1016/j.celrep.2020.108469] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/05/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU uptake, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.
Collapse
|
30
|
Brüning JG, Marians KJ. Replisome bypass of transcription complexes and R-loops. Nucleic Acids Res 2020; 48:10353-10367. [PMID: 32926139 PMCID: PMC7544221 DOI: 10.1093/nar/gkaa741] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
The vast majority of the genome is transcribed by RNA polymerases. G+C-rich regions of the chromosomes and negative superhelicity can promote the invasion of the DNA by RNA to form R-loops, which have been shown to block DNA replication and promote genome instability. However, it is unclear whether the R-loops themselves are sufficient to cause this instability or if additional factors are required. We have investigated replisome collisions with transcription complexes and R-loops using a reconstituted bacterial DNA replication system. RNA polymerase transcription complexes co-directionally oriented with the replication fork were transient blockages, whereas those oriented head-on were severe, stable blockages. On the other hand, replisomes easily bypassed R-loops on either template strand. Replication encounters with R-loops on the leading-strand template (co-directional) resulted in gaps in the nascent leading strand, whereas lagging-strand template R-loops (head-on) had little impact on replication fork progression. We conclude that whereas R-loops alone can act as transient replication blocks, most genome-destabilizing replication fork stalling likely occurs because of proteins bound to the R-loops.
Collapse
Affiliation(s)
- Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
31
|
Wolak C, Ma HJ, Soubry N, Sandler SJ, Reyes-Lamothe R, Keck JL. Interaction with single-stranded DNA-binding protein localizes ribonuclease HI to DNA replication forks and facilitates R-loop removal. Mol Microbiol 2020; 114:495-509. [PMID: 32426857 PMCID: PMC7934204 DOI: 10.1111/mmi.14529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
Abstract
DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R-loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R-loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R-loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction between Escherichia coli RNase HI and the single-stranded DNA-binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation of rnhA to encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media-dependent slow-growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R-loop accumulation enhance or suppress, respectively, the growth phenotype of rnhAK60E rep::kan strains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R-loops that block DNA replication.
Collapse
Affiliation(s)
- Christine Wolak
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Hui Jun Ma
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Steven J. Sandler
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rodrigo Reyes-Lamothe
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - James L. Keck
- Department of Biomolecular Chemistry, 420 Henry Mall, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
32
|
Ardern Z, Neuhaus K, Scherer S. Are Antisense Proteins in Prokaryotes Functional? Front Mol Biosci 2020; 7:187. [PMID: 32923454 PMCID: PMC7457138 DOI: 10.3389/fmolb.2020.00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Many prokaryotic RNAs are transcribed from loci outside of annotated protein coding genes. Across bacterial species hundreds of short open reading frames antisense to annotated genes show evidence of both transcription and translation, for instance in ribosome profiling data. Determining the functional fraction of these protein products awaits further research, including insights from studies of molecular interactions and detailed evolutionary analysis. There are multiple lines of evidence, however, that many of these newly discovered proteins are of use to the organism. Condition-specific phenotypes have been characterized for a few. These proteins should be added to genome annotations, and the methods for predicting them standardized. Evolutionary analysis of these typically young sequences also may provide important insights into gene evolution. This research should be prioritized for its exciting potential to uncover large numbers of novel proteins with extremely diverse potential practical uses, including applications in synthetic biology and responding to pathogens.
Collapse
Affiliation(s)
- Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
33
|
Syeda AH, Dimude JU, Skovgaard O, Rudolph CJ. Too Much of a Good Thing: How Ectopic DNA Replication Affects Bacterial Replication Dynamics. Front Microbiol 2020; 11:534. [PMID: 32351461 PMCID: PMC7174701 DOI: 10.3389/fmicb.2020.00534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Each cell division requires the complete and accurate duplication of the entire genome. In bacteria, the duplication process of the often-circular chromosomes is initiated at a single origin per chromosome, resulting in two replication forks that traverse the chromosome in opposite directions. DNA synthesis is completed once the two forks fuse in a region diametrically opposite the origin. In some bacteria, such as Escherichia coli, the region where forks fuse forms a specialized termination area. Polar replication fork pause sites flanking this area can pause the progression of replication forks, thereby allowing forks to enter but not to leave. Transcription of all required genes has to take place simultaneously with genome duplication. As both of these genome trafficking processes share the same template, conflicts are unavoidable. In this review, we focus on recent attempts to add additional origins into various ectopic chromosomal locations of the E. coli chromosome. As ectopic origins disturb the native replichore arrangements, the problems resulting from such perturbations can give important insights into how genome trafficking processes are coordinated and the problems that arise if this coordination is disturbed. The data from these studies highlight that head-on replication–transcription conflicts are indeed highly problematic and multiple repair pathways are required to restart replication forks arrested at obstacles. In addition, the existing data also demonstrate that the replication fork trap in E. coli imposes significant constraints to genome duplication if ectopic origins are active. We describe the current models of how replication fork fusion events can cause serious problems for genome duplication, as well as models of how such problems might be alleviated both by a number of repair pathways as well as the replication fork trap system. Considering the problems associated both with head-on replication-transcription conflicts as well as head-on replication fork fusion events might provide clues of how these genome trafficking issues have contributed to shape the distinct architecture of bacterial chromosomes.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, York, United Kingdom
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
34
|
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000-2012. [PMID: 31879772 PMCID: PMC7038947 DOI: 10.1093/nar/gkz1197] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Lennart Randau
- Philipps-Universität Marburg, Faculty of Biology, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| |
Collapse
|