1
|
Xu P, Xu D, Wang X, Chen Z, Dong F, Xiang J, Cheng P, Xu D, Chen Y, Lou X, Dai J, Pan Y. Associations of Serum Per- and Polyfluoroalkyl Substances with Genotoxic Biomarkers: New Insights from Cross-Sectional and In Vivo Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40279506 DOI: 10.1021/acs.est.5c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on genomic stability remain unclear. Here, a cross-sectional study was conducted to establish the associations of PFAS with genotoxic biomarkers. We recruited a cohort of 453 residents in 2021 in Zhejiang, China. Thirty PFAS in serum were quantified, alongside seven indicators of genomic stability [five rDNA copy numbers (rDNA-CN), mitochondrial DNA copy numbers (mtDNA-CN), and relative telomere length (RTL)] in whole blood. Results showed that PFUnDA, perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), 6:2 Cl-PFESA, and PFO5DoDA were positively correlated with rDNA-CN, while PFHpA, PFOA, and PFMOAA showed inverse associations. PFO4DA and PFO5DoDA were positively correlated with mtDNA-CN. PFOA, HFPO-TA, and PFMOAA were negatively associated with the RTL, while perfluorononanoic acid, PFHxS, PFOS, and 6:2 Cl-PFESA showed positive associations. Nonlinear exposure-response relationships were also observed between PFAS and genotoxic biomarkers using restricted cubic spline models. Furthermore, PFAS mixtures were positively associated with mtDNA-CN, with PFO5DoDA showing the highest contribution by the quantile-based g-computation model. In vivo studies further confirmed that PFO5DoDA increased mtDNA-CN in male mice in a dose-dependent manner. This study provides novel evidence that PFAS disrupt genomic stability, with effects varying by functional groups and fluoroalkyl(ether) chain lengths.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Dihui Xu
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Contaminants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Fengfeng Dong
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Contaminants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Jiayin Dai
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Contaminants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yitao Pan
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Contaminants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
2
|
Harrington EM, Murphy JC, Harper KL, Hayward C, Mottram TJ, Aspden JL, Whitehouse A. EMG1 methyltransferase activity affects ribosome occupancy at KSHV uORFs. Cell Rep 2025; 44:115516. [PMID: 40215162 DOI: 10.1016/j.celrep.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/22/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Viruses lack their own translational machinery and rely exclusively on the host cell for synthesis of viral proteins. Viruses have evolved diverse mechanisms to redirect the host cell translation apparatus to favor viral transcripts. A unique mechanism employed by Kaposi's sarcoma-associated herpesvirus (KSHV) involves manipulation of cellular ribosome composition, producing virus-induced specialized ribosomes. These ribosomes scan through KSHV upstream open reading frames (uORFs) in late lytic genes, allowing efficient translation of downstream main KSHV ORFs. Here, we highlight the enhanced association of the ribosomal biogenesis factor EMG1 with precursor-40S ribosome complexes during KSHV lytic replication. Depletion of EMG1 results in significantly reduced expression of viral proteins and progression through the lytic cascade, culminating in a dramatic reduction of infectious virus production. We further demonstrate that the methyltransferase activity of EMG1 is required for effective regulation of translation of KSHV uORFs in late lytic genes.
Collapse
Affiliation(s)
- Elena M Harrington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - James C Murphy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Katherine L Harper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Connor Hayward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Timothy J Mottram
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; LeedsOmics, University of Leeds, Leeds LS2 9JT, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; LeedsOmics, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
Arendrup FSW, Andersen KL, Lund AH. A tripartite cell-free translation system to study mammalian translation. Nat Protoc 2025:10.1038/s41596-025-01155-7. [PMID: 40240502 DOI: 10.1038/s41596-025-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/24/2025] [Indexed: 04/18/2025]
Abstract
Genetic manipulation of cellular systems often leads to the adaptation of gene expression programs, rendering detailed mechanistic insights challenging to isolate and elucidate. The proteome constitutes the ultimate manifestation of gene expression programs with multiple layers of regulation to ensure faithful execution. While current high-throughput techniques to investigate regulation at the level of translation, such as Ribo-Seq and nascent proteomics, can capture nuanced changes in the translational landscape, they suffer from potential confounding factors imposed by adaptation of the cellular states. Cell-free translation systems have been used to elucidate molecular mechanisms for decades, but experimental setups have rigid composition and often rely on non-human model systems and artificially designed mRNA constructs. Here we detail a tripartite cell-free translation system based on the separation of mRNAs, ribosomes and ribosome-depleted cytoplasmic lysate from human cells, allowing for flexible reconstitution of translation reactions, which can be performed in 1-4 days. In this setup, cellular parts such as the cytoplasmic lysate can be kept constant, while ribosome complexes or mRNA can be varied or subjected to treatments or vice versa. We detail how complete mRNA populations can be used as input with subsequent detection of nascent peptides using autoradiography or mass spectrometry. We utilize this protocol to resolve which aspects of the translational machinery are selectively affected by environmental and cellular stress conditions that trigger ribosome stalling and collisions, which have been unresolvable until now.
Collapse
Affiliation(s)
- Frederic S W Arendrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kasper L Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Jaiteh Z, van der Linden R, Kong-A-San J, Maas A, Philipsen S, Grosveld F, Gutiérrez L. CAPRIN2 RNA-binding protein contributes to balance erythroid production: Implications in the fine-tuning of proteostasis during erythropoiesis. Transfus Apher Sci 2025; 64:104092. [PMID: 39922087 DOI: 10.1016/j.transci.2025.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Erythropoiesis is a process that requires tight control of gene transcription, mRNA stability, and protein synthesis and degradation. These regulatory layers adapt dynamically to developmental needs and physiological stresses, ensuring precise control of erythroid production. Ribosomopathies, such as Diamond-Blackfan anemia (DBA), are characterized by defects in ribosome function. Zooming in on erythroid precursors, ribosomopathies lead to dysregulated translation of mRNAs encoding specific and essential erythropoietic genes, including master transcription factors such as GATA1. This causes defective maturation and increased apoptosis of erythroid progenitors, and consequently, anemia. Beyond ribosomal proteins, RNA-binding proteins have been put forward as an additional and targeted checkpoint regulating cellular proteostasis. CAPRIN2, which is present in neurons and erythroid cells, is one such RNA-binding protein, involved in RNA translation regulation and its levels rise during terminal erythroid differentiation. Overexpression of CAPRIN2 in Chinese hamster ovary (CHO) cells causes reduced growth, cell cycle arrest, and apoptosis. Here, we demonstrate that GATA1 potentially regulates Caprin2 transcription, and that Caprin2 loss boosts erythroid production and maturation during gestation and adulthood, a phenomenon that is enhanced in situations of stress erythropoiesis. Our results provide new insight into the role of CAPRIN2 in erythropoiesis. We hypothesize that it regulates the translation of key mRNAs during erythropoiesis. We propose that CAPRIN2 is involved in the balance of erythroid production and that its manipulation may control erythroid production, offering a potential and promising approach to manage altered erythropoiesis.
Collapse
Affiliation(s)
- Zacaria Jaiteh
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - John Kong-A-San
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Alex Maas
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Sjaak Philipsen
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Frank Grosveld
- Former Department of Cell Biology, ErasmusMC, Rotterdam, the Netherlands
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Department of Medicine, University of Oviedo, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| |
Collapse
|
5
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
6
|
Beavan AJS, Thuburn V, Fatkhullin B, Cunningham J, Hopes TS, Dimascio E, Chan T, Zhao N, Norris K, Chau C, Vasconcelos EJR, Wood A, Whitehouse A, Actis P, Davies B, Fontana J, O'Connell MJ, Thomson E, Aspden JL. Specialized ribosomes: integrating new insights and current challenges. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230377. [PMID: 40045788 PMCID: PMC11883436 DOI: 10.1098/rstb.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025] Open
Abstract
Variation in the composition of different ribosomes, termed ribosome heterogeneity, is a now well established phenomenon. However, the functional implications of this heterogeneity on the regulation of protein synthesis are only now beginning to be revealed. While there are numerous examples of heterogeneous ribosomes, there are comparatively few bona fide specialized ribosomes described. Specialization requires that compositionally distinct ribosomes, through their subtly altered structure, have a functional consequence to the translational output. Even for those examples of ribosome specialization that have been characterized, the precise mechanistic details of how changes in protein and rRNA composition enable the ribosome to regulate translation are still missing. Here, we suggest looking at the evolution of specialization across the tree of life may help reveal central principles of translation regulation. We consider functional and structural studies that have provided insight into the potential mechanisms through which ribosome heterogeneity could affect translation, including through mRNA and open reading frame selectivity, elongation dynamics and post-translational folding. Further, we highlight some of the challenges that must be addressed to show specialization and review the contribution of various models. Several studies are discussed, including recent studies that show how structural insight is starting to shed light on the molecular details of specialization. Finally, we discuss the future of ribosome specialization studies, where advances in technology will likely enable the next wave of research questions. Recent work has helped provide a more comprehensive understanding of how ribosome heterogeneity affects translational control.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Alan J. S. Beavan
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Veronica Thuburn
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Bulat Fatkhullin
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Joanne Cunningham
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Tayah S. Hopes
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Ella Dimascio
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Tessa Chan
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Nan Zhao
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Karl Norris
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Chalmers Chau
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | | | - Alison Wood
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Adrian Whitehouse
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Paolo Actis
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | - Brendan Davies
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Juan Fontana
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Mary J. O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Emma Thomson
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Julie L. Aspden
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
7
|
Rivalta A, Hiregange DG, Bose T, Rajan KS, Yonath A, Zimmerman E, Waghalter M, Fridkin G, Martinez-Roman I, Rosenfield L, Fedorenko A, Bashan A, Yonath H. Ribosomes: from conserved origin to functional/medical mobility and heterogeneity. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230393. [PMID: 40045780 PMCID: PMC11883434 DOI: 10.1098/rstb.2023.0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Ribosomes, the molecular machines that translate the genetic code from mRNA into proteins in all living cells, are highly structurally conserved across all domains of life and hence are believed to have evolved from a structurally unified pocket. Initially perceived as uniform cellular factories for protein synthesis, currently, ribosomes have emerged as more complex entities. Structural, medical and biochemical studies, including ours, have revealed significant variability in their compositions across tissues, species, functions and developmental stages, highlighting their multifunctional potential. Moreover, the diversity of ribosomes, their components and their associated biological factors challenge the traditional perception of uniform interactions under various conditions, including stress, and expose their mobility and heterogeneity. Evidence for their functional diversity can be seen even in modifications of ribosomal genes, where minor changes may play critical roles under stress or may lead to diseases called ribosomopathies, including Diamond-Blackfan anaemia, some types of cancer and Alzheimer's disease. Thus, through in-depth structural explorations, we improve the understanding of the mechanisms regulating protein biosynthesis in response to various environmental stressors. These findings should potentially reshape the perceptions of the various ribosomal roles.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - K. Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Waghalter
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Fridkin
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Irene Martinez-Roman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Rosenfield
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagith Yonath
- Human Genetics Institute and Internal Medicine A, Sheba Medical Center, Ramat-Gan and Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
9
|
Caruso M, De Keersmaecker K. Ribosome specialization by cancer-associated ribosomal protein mutations: progress made and open questions. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230380. [PMID: 40045783 PMCID: PMC11883432 DOI: 10.1098/rstb.2023.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 03/09/2025] Open
Abstract
Congenital mutations in ribosomal proteins (RPs) cause Diamond-Blackfan anaemia (DBA) syndrome. Whereas DBA patients suffer from anaemia and disease symptoms owing to a lack of cell proliferation (hypo-proliferation) early in life, they have a significantly elevated risk of developing cancer (a disease of hyper-proliferation) at a later age. The association between ribosome defects and cancer is further underscored by animal models in which heterozygous RP loss promotes tumourigenesis, as well as by a variety of somatic RP mutations that have been described in haematological and solid malignancies. As discussed in this article, we have gained deeper insight into molecular mechanisms by which RP mutations can be associated with hypo- followed by hyper-proliferation phenotypes. Factors such as oxidative stress and DNA damage, onco-ribosome specialization with hyper-translation of oncogenes and altered extra-ribosomal functions seem essential. However, many questions still remain and more research is needed to explore to what extent different cancer-associated RP mutations can structurally and functionally specialize ribosomes into onco-ribosomes, and what opportunities this can provide to develop innovative cancer therapies.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Marino Caruso
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Leuven3000, Belgium
- Laboratory for Disease Mechanisms in Cancer, Leuven Cancer Institute (LKI), Leuven3000, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven, Leuven3000, Belgium
- Laboratory for Disease Mechanisms in Cancer, Leuven Cancer Institute (LKI), Leuven3000, Belgium
| |
Collapse
|
10
|
Hamar R, Varga M. The zebrafish ( Danio rerio) snoRNAome. NAR Genom Bioinform 2025; 7:lqaf013. [PMID: 40046902 PMCID: PMC11880993 DOI: 10.1093/nargab/lqaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most abundant and evolutionary ancient group of functional non-coding RNAs. They were originally described as guides of post-transcriptional rRNA modifications, but emerging evidence suggests that snoRNAs fulfil an impressive variety of cellular functions. To reveal the true complexity of snoRNA-dependent functions, we need to catalogue first the complete repertoire of snoRNAs in a given cellular context. While the systematic mapping and characterization of "snoRNAomes" for some species have been described recently, this has not been done hitherto for the zebrafish (Danio rerio). Using size-fractionated RNA sequencing data from adult zebrafish tissues, we created an interactive "snoRNAome" database for this species. Our custom-designed analysis pipeline allowed us to identify with high-confidence 67 previously unannotated snoRNAs in the zebrafish genome, resulting in the most complete set of snoRNAs to date in this species. Reanalyzing multiple previously published datasets, we also provide evidence for the dynamic expression of some snoRNAs during the early stages of zebrafish development and tissue-specific expression patterns for others in adults. To facilitate further investigations into the functions of snoRNAs in zebrafish, we created a novel interactive database, snoDanio, which can be used to explore small RNA expression from transcriptomic data.
Collapse
Affiliation(s)
- Renáta Hamar
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| |
Collapse
|
11
|
brown TJ, Pichurin J, Parrado CR, Kabeche L, Baserga SJ. A role for the kinetochore protein, NUF2, in ribosome biogenesis. Mol Biol Cell 2025; 36:ar16. [PMID: 39705402 PMCID: PMC11809303 DOI: 10.1091/mbc.e24-08-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024] Open
Abstract
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells. After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB. siRNA depletion of other components of the NUF2 kinetochore sub-complex, NDC80, SPC24, and SPC25, also reduce pre-rRNA transcription. Interestingly, essential protein components for pre-rRNA transcription, including the largest subunit of RNA polymerase I, POLR1A, are reduced upon siRNA depletion of NUF2 and its protein partners. Their reduced levels are a likely mechanism for the decrease in pre-rRNA transcription. siRNA depletion of NUF2 and NDC80 also cause increased TP53 and CDKN1A (p21) mRNA levels, which can be restored by codepletion of RPL5, indicating activation of the nucleolar stress pathway (NSP). These results reveal a new connection between proteins with a known role in mitosis to the function of the nucleolus in RB during interphase.
Collapse
Affiliation(s)
- ty j. brown
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Carlos Ramirez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Yale Cancer Biology Institute, Yale University and the Yale School of Medicine, West Haven, 06516 CT
| | - Susan J. Baserga
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Therapeutic Radiology, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| |
Collapse
|
12
|
Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M, Laboret B, Chen S, Jian R, Jiang L, Snyder M, Chen CH, Shen Y, Liu Q, Liu B, Wu Z. The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots. Nat Commun 2025; 16:1021. [PMID: 39863576 PMCID: PMC11762756 DOI: 10.1038/s41467-025-56346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Rushi Tang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Zhang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Will Bonderer
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Maisa de Oliveira
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
13
|
Kosaka Y, Miyawaki Y, Mori M, Aburaya S, Nishizawa C, Chujo T, Niwa T, Miyazaki T, Sugita T, Fukuyama M, Taguchi H, Tomizawa K, Sugase K, Ueda M, Aoki W. Autonomous ribosome biogenesis in vitro. Nat Commun 2025; 16:514. [PMID: 39779722 PMCID: PMC11711502 DOI: 10.1038/s41467-025-55853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Ribosome biogenesis is pivotal in the self-replication of life. In Escherichia coli, three ribosomal RNAs and 54 ribosomal proteins are synthesized and subjected to cooperative hierarchical assembly facilitated by numerous accessory factors. Realizing ribosome biogenesis in vitro is a critical milestone for understanding the self-replication of life and creating artificial cells. Despite its importance, this goal has not yet been achieved owing to its complexity. In this study, we report the successful realization of ribosome biogenesis in vitro. Specifically, we developed a highly specific and sensitive reporter assay for the detection of nascent ribosomes. The reporter assay allowed for combinatorial and iterative exploration of reaction conditions for ribosome biogenesis, leading to the simultaneous, autonomous synthesis of both small and large subunits of ribosomes in vitro through transcription, translation, processing, and assembly in a single reaction space. Our achievement represents a crucial advancement toward revealing the fundamental principles underlying the self-replication of life and creating artificial cells.
Collapse
Affiliation(s)
- Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Kyoto, Japan
| | - Yumi Miyawaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Megumi Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shunsuke Aburaya
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chisato Nishizawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- JST FOREST, Tokyo, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Takumi Miyazaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Mao Fukuyama
- JST FOREST, Tokyo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugase
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Kyoto Integrated Science & Technology Bio-Analysis Center, Kyoto, Japan
| | - Wataru Aoki
- JST FOREST, Tokyo, Japan.
- Kyoto Integrated Science & Technology Bio-Analysis Center, Kyoto, Japan.
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
14
|
Wiechert F, Unbehaun A, Sprink T, Seibel H, Bürger J, Loerke J, Mielke T, Diebolder C, Schacherl M, Spahn CT. Visualizing the modification landscape of the human 60S ribosomal subunit at close to atomic resolution. Nucleic Acids Res 2025; 53:gkae1191. [PMID: 39658079 PMCID: PMC11724314 DOI: 10.1093/nar/gkae1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical modifications of ribosomal RNAs (rRNAs) and proteins expand their topological repertoire, and together with the plethora of bound ligands, fine-tune ribosomal function. Detailed knowledge of this natural composition provides important insights into ribosome genesis and function and clarifies some aspects of ribosomopathies. The discovery of new structural properties and functional aspects of ribosomes has gone hand in hand with cryo-electron microscopy (cryo-EM) and its technological development. In line with the ability to visualize atomic details - a prerequisite for identifying chemical modifications and ligands in cryo-EM maps - in this work we present the structure of the 60S ribosomal subunit from HeLa cells at the very high global resolution of 1.78 Å. We identified 113 rRNA modifications and four protein modifications including uL2-Hisβ-ox216, which stabilizes the local structure near the peptidyl transferase centre via an extended hydrogen-bonding network. We can differentiate metal ions Mg2+ and K+, polyamines spermine, spermidine and putrescine and identify thousands of water molecules binding to the 60S subunit. Approaching atomic resolution cryo-EM has become a powerful tool to examine fine details of macromolecular structures that will expand our knowledge about translation and other biological processes in the future and assess the variability of the chemical space due to differences between species/tissues or varying physicochemical environment.
Collapse
MESH Headings
- Humans
- Cryoelectron Microscopy
- HeLa Cells
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Models, Molecular
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
Collapse
Affiliation(s)
- Franziska Wiechert
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Helena Seibel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Christoph A Diebolder
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Magdalena Schacherl
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
15
|
Nelson JO, Slicko A, Raz AA, Yamashita YM. Insulin signaling regulates R2 retrotransposon expression to orchestrate transgenerational rDNA copy number maintenance. Nat Commun 2025; 16:399. [PMID: 39755735 DOI: 10.1038/s41467-024-55725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Preserving a large number of essential yet highly unstable ribosomal DNA (rDNA) repeats is critical for the germline to perpetuate the genome through generations. Spontaneous rDNA loss must be countered by rDNA copy number (CN) expansion. Germline rDNA CN expansion is best understood in Drosophila melanogaster, which relies on unequal sister chromatid exchange (USCE) initiated by DNA breaks at rDNA. The rDNA-specific retrotransposon R2 responsible for USCE-inducing DNA breaks is typically expressed only when rDNA CN is low to minimize the danger of DNA breaks; however, the underlying mechanism of R2 regulation remains unclear. Here we identify the insulin receptor (InR) as a major repressor of R2 expression, limiting unnecessary R2 activity. Through single-cell RNA sequencing, we find that male germline stem cells (GSCs), the major cell type that undergoes rDNA CN expansion, have reduced InR expression when rDNA CN is low. Reduced InR activity in turn leads to R2 expression and CN expansion. We further find that dietary manipulation alters R2 expression and rDNA CN expansion activity. This work reveals that the insulin pathway integrates rDNA CN surveying with environmental sensing, revealing a potential mechanism by which diet exerts heritable changes to genomic content.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Alyssa Slicko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Department of Biology, MIT, Cambridge, MA, USA.
| |
Collapse
|
16
|
Hong Y, Lin Q, Zhang Y, Liu J, Zheng Z. Research Progress of Ribosomal Proteins in Reproductive Development. Int J Mol Sci 2024; 25:13151. [PMID: 39684863 DOI: 10.3390/ijms252313151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ribosomal proteins constitute the principal components of ribosomes, and their functions span a wide spectrum. Recent investigations have unveiled their involvement in oocyte and embryo development, playing a pivotal role in reproductive development. Numerous pieces of evidence indicate that ribosomal proteins participate in the regulation of various cellular activities, including nucleolar stress, oxidative stress, cell proliferation and autophagy. Despite these findings, the precise mechanisms through which ribosomal proteins influence reproductive development via these cellular activities remain elusive. Therefore, elucidating the mechanisms of action is essential for a comprehensive understanding of the role and function of ribosomal proteins in reproductive development. This paper systematically reviews the progress in research on nucleolar stress, oxidative stress, cell proliferation and autophagy concerning ribosomal proteins during reproductive development. Furthermore, we explore the potential of ribosomal proteins as diagnostic markers for various diseases. Additionally, we propose the development of drugs and therapies targeting ribosomal proteins, underscoring the potential for novel medical interventions in the context of reproductive health.
Collapse
Affiliation(s)
- Yuqi Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhanhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Guerrieri AN, Hattinger CM, Marchesini F, Melloni M, Serra M, Ibrahim T, Penzo M. The Interplay Between the MYC Oncogene and Ribosomal Proteins in Osteosarcoma Onset and Progression: Potential Mechanisms and Indication of Candidate Therapeutic Targets. Int J Mol Sci 2024; 25:12031. [PMID: 39596100 PMCID: PMC11593864 DOI: 10.3390/ijms252212031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis. Therefore, curing OS is a clinical challenge, particularly for patients that do not respond to standard treatments. MYC has frequently been reported to be involved in the pathogenesis of OS and its high expression may be associated with drug resistance and patients' worse prognosis. Moreover, MYC is a master regulator of ribosomal proteins (RPs) synthesis and ribosome biogenesis (RiBi), which is often up-regulated in human tumors. In recent years, RPs have been recognized not only for their traditional role in ribosome assembly but also for their extra-ribosomal functions, many of which are linked to the onset and progression of cancer. In this review we focus on the role and possible interplay of MYC and RPs expression in association with drug resistance and worse prognosis in OS and discuss therapeutic options that target de-regulated MYC, RiBi, or RPs, which are already clinically available or under evaluation in clinical trials.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Federica Marchesini
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Martina Melloni
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Marianna Penzo
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
18
|
Wu Z, Xie L, Yuan P, Chu Y, Peng H. WDR68 stimulates cellular proliferation via activating ribosome biogenesis in 293T cells. Neoplasia 2024; 56:101033. [PMID: 39067242 PMCID: PMC11372390 DOI: 10.1016/j.neo.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
WDR68, a conserved WD40 repeat-containing protein, interacts with E1A and is involved in the E1A-induced cell proliferation and oncogenic transformation, but the intrinsic molecular mechanisms of this process remain to be elucidated. Here, we demonstrate that WDR68 promotes the proliferation of 293T cells by interacting with a series of ribosome biogenesis-regulating proteins. Gene Set Enrichment Analysis (GSEA) of RNA-seq data also revealed that the ribosome biogenesis-associated gene signatures could be the most significantly enriched in the WDR68 expression groups. In accordance, 293T cells are more sensitive to the ribosome biogenesis inhibitors than 293 cells. Taken together, our results indicated that WDR68 could promote cell proliferation through the activation of ribosome biogenesis in the 293T cell context. This provides new insights into the understanding of the function of WDR68 and the molecular characterisation of 293T tool cells.
Collapse
Affiliation(s)
- Zhaoxia Wu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Lanfeng Xie
- Department of Infectious Disease, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ping Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Haixia Peng
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
19
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
20
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
21
|
D’Andrea G, Deroma G, Miluzio A, Biffo S. The Paradox of Ribosomal Insufficiency Coupled with Increased Cancer: Shifting the Perspective from the Cancer Cell to the Microenvironment. Cancers (Basel) 2024; 16:2392. [PMID: 39001453 PMCID: PMC11240629 DOI: 10.3390/cancers16132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.
Collapse
Affiliation(s)
- Giacomo D’Andrea
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Deroma
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Annarita Miluzio
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
22
|
Rodriguez-Algarra F, Evans DM, Rakyan VK. Ribosomal DNA copy number variation associates with hematological profiles and renal function in the UK Biobank. CELL GENOMICS 2024; 4:100562. [PMID: 38749448 PMCID: PMC11228893 DOI: 10.1016/j.xgen.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 04/21/2024] [Indexed: 06/15/2024]
Abstract
The phenotypic impact of genetic variation of repetitive features in the human genome is currently understudied. One such feature is the multi-copy 47S ribosomal DNA (rDNA) that codes for rRNA components of the ribosome. Here, we present an analysis of rDNA copy number (CN) variation in the UK Biobank (UKB). From the first release of UKB whole-genome sequencing (WGS) data, a discovery analysis in White British individuals reveals that rDNA CN associates with altered counts of specific blood cell subtypes, such as neutrophils, and with the estimated glomerular filtration rate, a marker of kidney function. Similar trends are observed in other ancestries. A range of analyses argue against reverse causality or common confounder effects, and all core results replicate in the second UKB WGS release. Our work demonstrates that rDNA CN is a genetic influence on trait variance in humans.
Collapse
Affiliation(s)
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
23
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
24
|
Salehinia N, Mohammad Al-Mosawi AK, Al-Moussawi DK, Sadeghi ES, Zamani A, Mahdevar M. Identification of genes related to ribosomal proteins in colorectal cancer: exploring their potential as biomarkers, prognostic indicators, and therapeutic targets. Mol Biol Rep 2024; 51:576. [PMID: 38664314 DOI: 10.1007/s11033-024-09522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer in both females and males, underscoring the need for the identification of effective biomarkers. METHODS AND RESULTS We assessed the expression levels of ribosomal proteins (RPs) at both mRNA and protein levels. Subsequently, leveraging the STRING database, we constructed a protein-protein interaction network and identified hub genes. The co-expression network of differentially expressed genes associated with CRC and their target hub RPs was constructed using the weighted gene co-expression network analysis algorithm. Gene ontology and molecular signatures database were conducted to gain insights into the biological roles of genes associated with the identified module. To confirm the results, the expression level of the candidate genes in the CRC samples compared to the adjacent healthy was evaluated by the RT-qPCR method. Our findings indicated that the genes related to RPs were predominantly enriched in biological processes associated with Myc Targets, Oxidative Phosphorylation, and cell proliferation. Also, results demonstrated that elevated levels of GRWD1, MCM5, IMP4, and RABEPK that related to RPs were associated with poor prognostic outcomes for CRC patients. Notably, IMP4 and RABEPK exhibited higher diagnostic value. Moreover, the expression of IMP4 and RABEPK showed a significant association with drug resistance using cancer cell line encyclopedia and genomics of drug sensitivity in cancer databases. Also, the results showed that the expression level of IMP4 and RABEPK in cancerous samples was significantly higher compared to the adjacent healthy ones. CONCLUSION The general results of this study have shown that many genes related to RPs are increased in cancer and could be associated with the death rate of patients. We also highlighted the therapeutic and prognostic potentials of RPs genes in CRC.
Collapse
Affiliation(s)
- Negin Salehinia
- Department of Biology, Islamic Azad University, Qaemshahr, Iran
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Aseel Kamil Mohammad Al-Mosawi
- Department of biology, College of Sciences, University of Thi Qar, Nasiriyah, Iraq
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | - Duaa Kamel Al-Moussawi
- General Directorate of Education in Thi-Qar, Ministry of Education, Al-Nasiriya City, Iraq
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran
| | | | - Atefeh Zamani
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Mahdevar
- Genius Gene, Genetics and Biotechnology Company, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
25
|
Inada T, Beckmann R. Mechanisms of Translation-coupled Quality Control. J Mol Biol 2024; 436:168496. [PMID: 38365086 DOI: 10.1016/j.jmb.2024.168496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Stalling of ribosomes engaged in protein synthesis can lead to significant defects in the function of newly synthesized proteins and thereby impair protein homeostasis. Consequently, partially synthesized polypeptides resulting from translation stalling are recognized and eliminated by several quality control mechanisms. First, if translation elongation reactions are halted prematurely, a quality control mechanism called ribosome-associated quality control (RQC) initiates the ubiquitination of the nascent polypeptide chain and subsequent proteasomal degradation. Additionally, when ribosomes with defective codon recognition or peptide-bond formation stall during translation, a quality control mechanism known as non-functional ribosomal RNA decay (NRD) leads to the degradation of malfunctioning ribosomes. In both of these quality control mechanisms, E3 ubiquitin ligases selectively recognize ribosomes in distinct translation-stalling states and ubiquitinate specific ribosomal proteins. Significant efforts have been devoted to characterize E3 ubiquitin ligase sensing of ribosome 'collision' or 'stalling' and subsequent ribosome is rescued. This article provides an overview of our current understanding of the molecular mechanisms and physiological functions of ribosome dynamics control and quality control of abnormal translation.
Collapse
Affiliation(s)
- Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
26
|
Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs. Int J Mol Sci 2024; 25:2923. [PMID: 38474168 PMCID: PMC10932220 DOI: 10.3390/ijms25052923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.
Collapse
Affiliation(s)
- Matthew Huo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Sudhir Kumar Rai
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Ken Nakatsu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| |
Collapse
|
27
|
Varineau JE, Calo E. A common cellular response to broad splicing perturbations is characterized by metabolic transcript downregulation driven by the Mdm2-p53 axis. Dis Model Mech 2024; 17:dmm050356. [PMID: 38426258 PMCID: PMC10924232 DOI: 10.1242/dmm.050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Disruptions in core cellular processes elicit stress responses that drive cell-state changes leading to organismal phenotypes. Perturbations in the splicing machinery cause widespread mis-splicing, resulting in p53-dependent cell-state changes that give rise to cell-type-specific phenotypes and disease. However, a unified framework for how cells respond to splicing perturbations, and how this response manifests itself in nuanced disease phenotypes, has yet to be established. Here, we show that a p53-stabilizing Mdm2 alternative splicing event and the resulting widespread downregulation of metabolic transcripts are common events that arise in response to various splicing perturbations in both cellular and organismal models. Together, our results classify a common cellular response to splicing perturbations, put forth a new mechanism behind the cell-type-specific phenotypes that arise when splicing is broadly disrupted, and lend insight into the pleiotropic nature of the effects of p53 stabilization in disease.
Collapse
Affiliation(s)
- Jade E. Varineau
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Hsu CH, Liu CY, Lo KY. Mutations of ribosomal protein genes induce overexpression of catalase in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foae005. [PMID: 38271612 PMCID: PMC10855018 DOI: 10.1093/femsyr/foae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024] Open
Abstract
Ribosome assembly defects result in ribosomopathies, primarily caused by inadequate protein synthesis and induced oxidative stress. This study aimed to investigate the link between deleting one ribosomal protein gene (RPG) paralog and oxidative stress response. Our results indicated that RPG mutants exhibited higher oxidant sensitivity than the wild type (WT). The concentrations of H2O2 were increased in the RPG mutants. Catalase and superoxide dismutase (SOD) activities were generally higher at the stationary phase, with catalase showing particularly elevated activity in the RPG mutants. While both catalase genes, CTT1 and CTA1, consistently exhibited higher transcription in RPG mutants, Ctt1 primarily contributed to the increased catalase activity. Stress-response transcription factors Msn2, Msn4, and Hog1 played a role in regulating these processes. Previous studies have demonstrated that H2O2 can cleave 25S rRNA via the Fenton reaction, enhancing ribosomes' ability to translate mRNAs associated with oxidative stress-related genes. The cleavage of 25S rRNA was consistently more pronounced, and the translation efficiency of CTT1 and CTA1 mRNAs was altered in RPG mutants. Our results provide evidence that the mutations in RPGs increase H2O2 levels in vivo and elevate catalase expression through both transcriptional and translational controls.
Collapse
Affiliation(s)
- Ching-Hsiang Hsu
- Department of Agricultural Chemistry National Taiwan University Agricultural Chemistry Building No. 2, Rm. 233 No. 1, Sec. 4, Roosevelt Rd. Taipei 10617, Taiwan
| | - Ching-Yu Liu
- Department of Agricultural Chemistry National Taiwan University Agricultural Chemistry Building No. 2, Rm. 233 No. 1, Sec. 4, Roosevelt Rd. Taipei 10617, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry National Taiwan University Agricultural Chemistry Building No. 2, Rm. 233 No. 1, Sec. 4, Roosevelt Rd. Taipei 10617, Taiwan
| |
Collapse
|
29
|
Jiang C, Sun L, Wen S, Tian Y, Xu C, Xu Q, Xue H. BRIX1 promotes ribosome synthesis and enhances glycolysis by selected translation of GLUT1 in colorectal cancer. J Gene Med 2024; 26:e3632. [PMID: 38282151 DOI: 10.1002/jgm.3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Ribosome biogenesis protein BRX1 homolog (BRIX1) is critically required for the synthesis of the 60S ribosome subunit. However, the role and mechanism of BRIX1 in colorectal cancer (CRC) remain unclear. METHODS Kyoto Encyclopedia of Gene and Genome pathway and Gene Ontology analyses were used for bioinformatics analysis. The rRNA levels were detected in CRC tissues and cells. Nascent RNA synthesis was detected via cellular immunofluorescence. The correlation was analyzed between patient Positron Emission Tomography-Computed Tomography (PET-CT) values and their BRIX1 expression. The extracellular acidification rate (ECAR) and oxygen consumption rate were determined via live metabolic analyses. Polysome fractions were collected for BRIX1 mRNA used in translation. The orthotopic model and Cell Counting Kit-8 (CCK8) assay were used to assess BRIX1 function in CRC. RESULTS BRIX1 is a core protein involved in ribosome-related pathway changes in CRC. Gene Ontology analysis showed that BRIX1 was primarily enriched in ribosome assembly and ribosome biogenesis pathways. In fresh CRC tissue, rRNA levels (5S, 5.8S, 18S and 28S) were higher in the BRIX1 high-expression group than in the BRIX1 low-expression group. Similarly, BRIX1 knockdown significantly decreased rRNA levels for 5S, 5.8S, 18S and 28S in CRC cells, whereas overexpression of BRIX1 significantly increased these levels. In addition, BRIX1 knockdown inhibited nascent RNA synthesis in CRC cells. In clinical data analysis, BRIX1 expression was related to the glucose uptake in PET-CT. BRIX1 knockdown significantly decreased the ECAR value, glucose uptake and lactic acid production in CRC cells, whereas BRIX1 overexpression significantly increased these. Furthermore, BRIX1 knockdown significantly decreased the protein expression of GLUT1, whereas BRIX1 overexpression significantly increased this; however, expression of BRIX1 mRNA was unaffected in either case. Blocking glycolysis by si-GLUT1 or galactose reversed BRIX1 promotion of glycolysis and cell proliferation in CRC cells.
Collapse
Affiliation(s)
- Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Longci Sun
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyuan Wen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Manara V, Radoani M, Belli R, Peroni D, Destefanis F, Angheben L, Tome G, Tebaldi T, Bellosta P. NOC1 is a direct MYC target, and its protein interactome dissects its activity in controlling nucleolar function. Front Cell Dev Biol 2023; 11:1293420. [PMID: 38213308 PMCID: PMC10782387 DOI: 10.3389/fcell.2023.1293420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The nucleolus is a subnuclear compartment critical in ribosome biogenesis and cellular stress responses. These mechanisms are governed by a complex interplay of proteins, including NOC1, a member of the NOC family of nucleolar proteins responsible for controlling rRNA processing and ribosomal maturation. This study reveals a novel relationship between NOC1 and MYC transcription factor, known for its crucial role in controlling ribosomal biogenesis, cell growth, and proliferation. Here, we demonstrate that NOC1 functions as a direct target of MYC, as it is transcriptionally induced through a functional MYC-binding E-box sequence in the NOC1 promoter region. Furthermore, protein interactome analysis reveals that NOC1-complex includes the nucleolar proteins NOC2 and NOC3 and other nucleolar components such as Nucleostemin1 Ns1 transporters of ribosomal subunits and components involved in rRNA processing and maturation. In response to MYC, NOC1 expression and localization within the nucleolus significantly increase, suggesting a direct functional link between MYC activity and NOC1 function. Notably, NOC1 over-expression leads to the formation of large nuclear granules and enlarged nucleoli, which co-localize with nucleolar fibrillarin and Ns1. Additionally, we demonstrate that NOC1 expression is necessary for Ns1 nucleolar localization, suggesting a role for NOC1 in maintaining nucleolar structure. Finally, the co-expression of NOC1 and MYC enhances nucleolus size and maintains their co-localization, outlining another aspect of the cooperation between NOC1 and MYC in nucleolar dynamics. This study also reveals an enrichment with NOC1 with few proteins involved in RNA processing, modification, and splicing. Moreover, proteins such as Ythdc1, Flacc, and splenito are known to mediate N6-methyladenosine (m6A) methylation of mRNAs in nuclear export, revealing NOC1's potential involvement in coordinating RNA splicing and nuclear mRNA export. In summary, we uncovered novel roles for NOC1 in nucleolar homeostasis and established its direct connection with MYC in the network governing nucleolar structure and function. These findings also highlight NOC1's interaction with proteins relevant to specific RNA functions, suggesting a broader role in addition to its control of nucleolar homeostasis and providing new insight that can be further investigated.
Collapse
Affiliation(s)
- Valeria Manara
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Marco Radoani
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Romina Belli
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Daniele Peroni
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Francesca Destefanis
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
- Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra, Barcelona, Spain
| | - Luca Angheben
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Gabriele Tome
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
| | - Toma Tebaldi
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Paola Bellosta
- Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
31
|
Priyadarshini N, Venkatarama Puppala N, Jayaprakash JP, Khandelia P, Sharma V, Mohannath G. Downregulation of ribosomal RNA (rRNA) genes in human head and neck squamous cell carcinoma (HNSCC) cells correlates with rDNA promoter hypermethylation. Gene 2023; 888:147793. [PMID: 37696422 DOI: 10.1016/j.gene.2023.147793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Eukaryotes carry hundreds of ribosomal RNA (rRNA) genes as tandem arrays, which generate rRNA for protein synthesis. Humans carry ∼ 400 rRNA gene copies and their expression is epigenetically regulated. Dysregulation of rRNA synthesis and ribosome biogenesis are characteristic features of cancers. Targeting aberrant rRNA expression for cancer therapy is being explored. Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancers globally. Using quantitative PCR and bisulfite sequencing, we show that rRNA genes are downregulated and their promoters are hypermethylated in HNSCC cell lines. These findings may have relevance for prognosis and diagnosis of HNSCC.
Collapse
Affiliation(s)
- Neha Priyadarshini
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Navinchandra Venkatarama Puppala
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| |
Collapse
|
32
|
Kitamura K, Hoshino T, Okabe A, Fukuyo M, Rahmutulla B, Tanaka N, Kobayashi S, Tanaka T, Shida T, Ueda M, Minamoto T, Matsubara H, Kaneda A, Ishii H, Matsushita K. The Link of mRNA and rRNA Transcription by PUF60/FIR through TFIIH/P62 as a Novel Therapeutic Target for Cancer. Int J Mol Sci 2023; 24:17341. [PMID: 38139171 PMCID: PMC10743661 DOI: 10.3390/ijms242417341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tyuji Hoshino
- Department of Molecular Design, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan;
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Nobuko Tanaka
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| | - Sohei Kobayashi
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
- Department of Medical Technology and Sciences, Health and Sciences, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Takashi Shida
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan;
| | - Mashiro Ueda
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (A.O.); (M.F.); (B.R.); (A.K.)
| | - Hideshi Ishii
- Medical Data Science, Center of Medical Innovation and Translational Research (CoMIT), Osaka University, Osaka 565-0871, Japan;
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine, Chiba University Hospital, Chiba 260-8677, Japan; (K.K.); (N.T.); (S.K.)
| |
Collapse
|
33
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. RNA (NEW YORK, N.Y.) 2023; 29:1960-1972. [PMID: 37793791 PMCID: PMC10653386 DOI: 10.1261/rna.079825.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells before cell lysate preparation significantly simplifies lysate preparation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
34
|
Razzaq A, Bejaoui Y, Alam T, Saad M, El Hajj N. Ribosomal DNA Copy Number Variation is Coupled with DNA Methylation Changes at the 45S rDNA Locus. Epigenetics 2023; 18:2229203. [PMID: 37368968 DOI: 10.1080/15592294.2023.2229203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
The human ribosomal DNA (rDNA) copy number (CN) has been challenging to analyse, and its sequence has been excluded from reference genomes due to its highly repetitive nature. The 45S rDNA locus encodes essential components of the cell, nevertheless rDNA displays high inter-individual CN variation that could influence human health and disease. CN alterations in rDNA have been hypothesized as a possible factor in autism spectrum disorders (ASD) and were shown to be altered in Schizophrenia patients. We tested whether whole-genome bisulphite sequencing can be used to simultaneously quantify rDNA CN and measure DNA methylation at the 45S rDNA locus. Using this approach, we observed high inter-individual variation in rDNA CN, and limited intra-individual copy differences in several post-mortem tissues. Furthermore, we did not observe any significant alterations in rDNA CN or DNA methylation in Autism Spectrum Disorder (ASD) brains in 16 ASD vs 11 control samples. Similarly, no difference was detected when comparing neurons form 28 Schizophrenia (Scz) patients vs 25 controls or oligodendrocytes from 22 Scz samples vs 20 controls. However, our analysis revealed a strong positive correlation between CN and DNA methylation at the 45S rDNA locus in multiple tissues. This was observed in brain and confirmed in small intestine, adipose tissue, and gastric tissue. This should shed light on a possible dosage compensation mechanism that silences additional rDNA copies to ensure homoeostatic regulation of ribosome biogenesis.
Collapse
Affiliation(s)
- Aleem Razzaq
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Nady El Hajj
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
35
|
Jacob P, Lindelöf H, Rustad CF, Sutton VR, Moosa S, Udupa P, Hammarsjö A, Bhavani GS, Batkovskyte D, Tveten K, Dalal A, Horemuzova E, Nordgren A, Tham E, Shah H, Merckoll E, Orellana L, Nishimura G, Girisha KM, Grigelioniene G. Clinical, genetic and structural delineation of RPL13-related spondyloepimetaphyseal dysplasia suggest extra-ribosomal functions of eL13. NPJ Genom Med 2023; 8:39. [PMID: 37993442 PMCID: PMC10665555 DOI: 10.1038/s41525-023-00380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/10/2023] [Indexed: 11/24/2023] Open
Abstract
Spondyloepimetaphyseal dysplasia with severe short stature, RPL13-related (SEMD-RPL13), MIM#618728), is a rare autosomal dominant disorder characterized by short stature and skeletal changes such as mild spondylar and epimetaphyseal dysplasia affecting primarily the lower limbs. The genetic cause was first reported in 2019 by Le Caignec et al., and six disease-causing variants in the gene coding for a ribosomal protein, RPL13 (NM_000977.3) have been identified to date. This study presents clinical and radiographic data from 12 affected individuals aged 2-64 years from seven unrelated families, showing highly variable manifestations. The affected individuals showed a range from mild to severe short stature, retaining the same radiographic pattern of spondylar- and epi-metaphyseal dysplasia, but with varying severity of the hip and knee deformities. Two new missense variants, c.548 G>A, p.(Arg183His) and c.569 G>T, p.(Arg190Leu), and a previously known splice variant c.477+1G>A were identified, confirming mutational clustering in a highly specific RNA binding motif. Structural analysis and interpretation of the variants' impact on the protein suggests that disruption of extra-ribosomal functions of the protein through binding of mRNA may play a role in the skeletal phenotype of SEMD-RPL13. In addition, we present gonadal and somatic mosaicism for the condition.
Collapse
Affiliation(s)
- Prince Jacob
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Hillevi Lindelöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilie F Rustad
- Department of Medial Genetics, Oslo University Hospital, Oslo, Norway
| | - Vernon Reid Sutton
- Department of Molecular & Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Shahida Moosa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University and Medical Genetics, Tygerberg Hospital, Cape Town, South Africa
| | - Prajna Udupa
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Eva Horemuzova
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Hitesh Shah
- Department of Pediatric Orthopedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Laura Orellana
- Protein Dynamics and Mutation lab, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Gen Nishimura
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
36
|
Rajan KS, Madmoni H, Bashan A, Taoka M, Aryal S, Nobe Y, Doniger T, Galili Kostin B, Blumberg A, Cohen-Chalamish S, Schwartz S, Rivalta A, Zimmerman E, Unger R, Isobe T, Yonath A, Michaeli S. A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei. Nat Commun 2023; 14:7462. [PMID: 37985661 PMCID: PMC10662448 DOI: 10.1038/s41467-023-43263-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Trypanosomes are protozoan parasites that cycle between insect and mammalian hosts and are the causative agent of sleeping sickness. Here, we describe the changes of pseudouridine (Ψ) modification on rRNA in the two life stages of the parasite using four different genome-wide approaches. CRISPR-Cas9 knock-outs of all four snoRNAs guiding Ψ on helix 69 (H69) of the large rRNA subunit were lethal. A single knock-out of a snoRNA guiding Ψ530 on H69 altered the composition of the 80S monosome. These changes specifically affected the translation of only a subset of proteins. This study correlates a single site Ψ modification with changes in ribosomal protein stoichiometry, supported by a high-resolution cryo-EM structure. We propose that alteration in rRNA modifications could generate ribosomes preferentially translating state-beneficial proteins.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Beathrice Galili Kostin
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Amit Blumberg
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
37
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
38
|
Clark IC, Fontanez KM, Meltzer RH, Xue Y, Hayford C, May-Zhang A, D'Amato C, Osman A, Zhang JQ, Hettige P, Ishibashi JSA, Delley CL, Weisgerber DW, Replogle JM, Jost M, Phong KT, Kennedy VE, Peretz CAC, Kim EA, Song S, Karlon W, Weissman JS, Smith CC, Gartner ZJ, Abate AR. Microfluidics-free single-cell genomics with templated emulsification. Nat Biotechnol 2023; 41:1557-1566. [PMID: 36879006 PMCID: PMC10635830 DOI: 10.1038/s41587-023-01685-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/20/2023] [Indexed: 03/08/2023]
Abstract
Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Bioengineering, University of California, Berkeley, California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences, Watertown, MA, USA
| | | | | | | | | | | | | | | | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel W Weisgerber
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Jost
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kiet T Phong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa E Kennedy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cheryl A C Peretz
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Esther A Kim
- Division of Plastic and Reconstructive Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Siyou Song
- Division of Plastic and Reconstructive Surgery, University of California San Francisco, San Francisco, CA, USA
| | - William Karlon
- Departments of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine C Smith
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Li B, Li J, Li B, Ouchi T, Li L, Li Y, Zhao Z. A single-cell transcriptomic atlas characterizes age-related changes of murine cranial stem cell niches. Aging Cell 2023; 22:e13980. [PMID: 37681346 PMCID: PMC10652347 DOI: 10.1111/acel.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
The craniofacial bones provide structural support for the skull and accommodate the vulnerable brain tissue with a protective cavity. The bone tissue undergoes constant turnover, which relies on skeletal stem cells (SSCs) and/or mesenchymal stem cells (MSCs) and their niches. SSCs/MSCs and their perivascular niche within the bone marrow are well characterized in long bones. As for cranial bones, besides bone marrow, the suture mesenchyme has been identified as a unique niche for SSCs/MSCs of craniofacial bones. However, a comprehensive study of the two different cranial stem cell niches at single-cell resolution is still lacking. In addition, during the progression of aging, age-associated changes in cranial stem cell niches and resident cells remain uncovered. In this study, we investigated age-related changes in cranial stem cell niches via single-cell RNA sequencing (scRNA-seq). The transcriptomic profiles and cellular compositions have been delineated, indicating alterations of the cranial bone marrow microenvironment influenced by inflammaging. Moreover, we identified a senescent mesenchymal cell subcluster and several age-related immune cell subclusters by reclustering and pseudotime trajectory analysis, which might be closely linked to inflammaging. Finally, differentially expressed genes (DEGs) and cell-cell communications were analyzed during aging, revealing potential regulatory factors. Overall, this work highlights the age-related changes in cranial stem cell niches, which deepens the current understanding of cranial bone and suture biology and may provide therapeutic targets for antiaging and regenerative medicine.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | | | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of StomatologySichuan UniversitySichuanChengduChina
| |
Collapse
|
40
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
41
|
Valeeva LR, Abdulkina LR, Agabekian IA, Shakirov EV. Telomere biology and ribosome biogenesis: structural and functional interconnections. Biochem Cell Biol 2023; 101:394-409. [PMID: 36989538 DOI: 10.1139/bcb-2022-0383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Telomeres are nucleoprotein structures that play a pivotal role in the protection and maintenance of eukaryotic chromosomes. Telomeres and the enzyme telomerase, which replenishes telomeric DNA lost during replication, are important factors necessary to ensure continued cell proliferation. Cell proliferation is also dependent on proper and efficient protein synthesis, which is carried out by ribosomes. Mutations in genes involved in either ribosome biogenesis or telomere biology result in cellular abnormalities and can cause human genetic diseases, defined as ribosomopathies and telomeropathies, respectively. Interestingly, recent discoveries indicate that many of the ribosome assembly and rRNA maturation factors have additional noncanonical functions in telomere biology. Similarly, several key proteins and enzymes involved in telomere biology, including telomerase, have unexpected roles in rRNA transcription and maturation. These observations point to an intriguing cross-talk mechanism potentially explaining the multiple pleiotropic symptoms of mutations in many causal genes identified in various telomeropathy and ribosomopathy diseases. In this review, we provide a brief summary of eukaryotic telomere and rDNA loci structures, highlight several universal features of rRNA and telomerase biogenesis, evaluate intriguing interconnections between telomere biology and ribosome assembly, and conclude with an assessment of overlapping features of human diseases of telomeropathies and ribosomopathies.
Collapse
Affiliation(s)
- Liia R Valeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Republic of Tatarstan, Russia
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, WV 25701, USA
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
42
|
Helfrich KK, Saini N, Kwan STC, Rivera OC, Mooney SM, Smith SM. Fetal anemia and elevated hepcidin in a mouse model of fetal alcohol spectrum disorder. Pediatr Res 2023; 94:503-511. [PMID: 36702950 PMCID: PMC11878275 DOI: 10.1038/s41390-023-02469-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Prenatal alcohol exposure (PAE) impairs offspring growth and cognition, and this is worsened by concurrent iron deficiency. Alcohol disrupts fetal iron metabolism and produces functional iron deficiency, even when maternal iron status is adequate. We used a mouse model of moderate PAE to investigate the mechanisms underlying this dysregulated iron status. METHODS C57BL/6J female mice received 3 g/kg alcohol daily from embryonic day (E) 8.5-17.5 and were assessed at E17.5. RESULTS Alcohol reduced fetal hemoglobin, hematocrit, and red blood cell counts, despite elevated erythropoietin production. Alcohol suppressed maternal hepcidin expression and the upstream iron-sensing BMP/SMAD pathway, consistent with its effects in the nonpregnant state. In contrast, alcohol elevated fetal hepcidin, although this was not accompanied by an upregulation of the BMP/SMAD or proinflammatory IL-6/STAT3 pathways. Fetal expression of hepatic genes contributing to hemoglobin synthesis and iron metabolism were unaffected by alcohol, whereas those affecting ribosome biogenesis were suppressed, suggesting a novel candidate effector for this fetal anemia. CONCLUSION These data confirm and extend prior observations that PAE disrupts maternal and fetal iron metabolism and impairs the fetus's ability to regulate iron status. We propose this dysregulation increases gestational iron needs and represents a conserved response to PAE. IMPACT Prenatal alcohol exposure causes a functional iron deficiency in a model that also impairs cognition in later life. Prenatal alcohol exposure causes fetal anemia. This fetal anemia is accompanied by elevated hepcidin and erythropoietin. Findings are consistent with prior observations that prenatal alcohol exposure increases maternal-fetal iron requirements during pregnancy.
Collapse
Affiliation(s)
- Kaylee K Helfrich
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Nipun Saini
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Sze Ting Cecilia Kwan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Olivia C Rivera
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Sandra M Mooney
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Susan M Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA.
| |
Collapse
|
43
|
Vanden Broeck A, Klinge S. Principles of human pre-60 S biogenesis. Science 2023; 381:eadh3892. [PMID: 37410842 DOI: 10.1126/science.adh3892] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/20/2023] [Indexed: 07/08/2023]
Abstract
During the early stages of human large ribosomal subunit (60S) biogenesis, an ensemble of assembly factors establishes and fine-tunes the essential RNA functional centers of pre-60S particles by an unknown mechanism. Here, we report a series of cryo-electron microscopy structures of human nucleolar and nuclear pre-60S assembly intermediates at resolutions of 2.5 to 3.2 angstroms. These structures show how protein interaction hubs tether assembly factor complexes to nucleolar particles and how guanosine triphosphatases and adenosine triphosphatase couple irreversible nucleotide hydrolysis steps to the installation of functional centers. Nuclear stages highlight how a conserved RNA-processing complex, the rixosome, couples large-scale RNA conformational changes with pre-ribosomal RNA processing by the RNA degradation machinery. Our ensemble of human pre-60S particles provides a rich foundation with which to elucidate the molecular principles of ribosome formation.
Collapse
Affiliation(s)
- Arnaud Vanden Broeck
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
44
|
Largeot A, Klapp V, Viry E, Gonder S, Fernandez Botana I, Blomme A, Benzarti M, Pierson S, Duculty C, Marttila P, Wierz M, Gargiulo E, Pagano G, An N, El Hachem N, Perez Hernandez D, Chakraborty S, Ysebaert L, François JH, Cortez Clemente S, Berchem G, Efremov DG, Dittmar G, Szpakowska M, Chevigné A, Nazarov PV, Helleday T, Close P, Meiser J, Stamatopoulos B, Désaubry L, Paggetti J, Moussay E. Inhibition of MYC translation through targeting of the newly identified PHB-eIF4F complex as a therapeutic strategy in CLL. Blood 2023; 141:3166-3183. [PMID: 37084385 PMCID: PMC10646824 DOI: 10.1182/blood.2022017839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/08/2023] [Accepted: 03/05/2023] [Indexed: 04/23/2023] Open
Abstract
Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.
Collapse
MESH Headings
- Humans
- Mice
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Eukaryotic Initiation Factor-4F/genetics
- Prohibitins
- Genes, myc
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Anne Largeot
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Vanessa Klapp
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Susanne Gonder
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Iria Fernandez Botana
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Cancer Metabolism Group, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sandrine Pierson
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Chloé Duculty
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Petra Marttila
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Marina Wierz
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ernesto Gargiulo
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Giulia Pagano
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ning An
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Najla El Hachem
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
| | - Daniel Perez Hernandez
- Department of Infection and Immunity, Proteomics of Cellular Signaling, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Supriya Chakraborty
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Loïc Ysebaert
- Haematology Department, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Jean-Hugues François
- Laboratoire d’hématologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Susan Cortez Clemente
- Département d’hémato-oncologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Guy Berchem
- Département d’hémato-oncologie, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
- Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Dimitar G. Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gunnar Dittmar
- Department of Infection and Immunity, Proteomics of Cellular Signaling, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Department of Cancer Research, Multiomics Data Science, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Thomas Helleday
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
- Department of Oncology and Metabolism, Weston Park Cancer Centre, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liège, Liège, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Johannes Meiser
- Department of Cancer Research, Cancer Metabolism Group, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, ULB-Research Cancer Center, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurent Désaubry
- Regenerative Nanomedicine Laboratory (UMR1260), Faculty of Medicine, Fédération de Médecine Translationnelle de Strasbourg, INSERM-University of Strasbourg, Strasbourg, France
| | - Jérôme Paggetti
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Etienne Moussay
- Department of Cancer Research, Tumor Stroma Interactions, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
45
|
Zhu H, Chen J, Liu K, Gao L, Wu H, Ma L, Zhou J, Liu Z, Han JDJ. Human PBMC scRNA-seq-based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity. SCIENCE ADVANCES 2023; 9:eabq7599. [PMID: 37379396 DOI: 10.1126/sciadv.abq7599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Quantifying aging rate is important for evaluating age-associated decline and mortality. A blood single-cell RNA sequencing dataset for seven supercentenarians (SCs) was recently generated. Here, we generate a reference 28-sample aging cohort to compute a single-cell level aging clock and to determine the biological age of SCs. Our clock model placed the SCs at a blood biological age to between 80.43 and 102.67 years. Compared to the model-expected aging trajectory, SCs display increased naive CD8+ T cells, decreased cytotoxic CD8+ T cells, memory CD4+ T cells, and megakaryocytes. As the most prominent molecular hallmarks at the single-cell level, SCs contain more cells and cell types with high ribosome level, which is associated with and, according to Bayesian network inference, contributes to a low inflammation state and slow aging of SCs. Inhibiting ribosomal activity or translation in monocytes validates such translation against inflammation balance revealed by our single-cell aging clock.
Collapse
Affiliation(s)
- Hongming Zhu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jiawei Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, P.R. China
| | - Kangping Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, P.R. China
| | - Lei Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, P.R. China
| | - Haiyan Wu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Liangliang Ma
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, P.R. China
| |
Collapse
|
46
|
Peng XP, Zhao X. The multi-functional Smc5/6 complex in genome protection and disease. Nat Struct Mol Biol 2023; 30:724-734. [PMID: 37336994 PMCID: PMC10372777 DOI: 10.1038/s41594-023-01015-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are ubiquitous genome regulators with a wide range of functions. Among the three types of SMC complexes in eukaryotes, cohesin and condensin fold the genome into different domains and structures, while Smc5/6 plays direct roles in promoting chromosomal replication and repair and in restraining pathogenic viral extra-chromosomal DNA. The importance of Smc5/6 for growth, genotoxin resistance and host defense across species is highlighted by its involvement in disease prevention in plants and animals. Accelerated progress in recent years, including structural and single-molecule studies, has begun to provide greater insights into the mechanisms underlying Smc5/6 functions. Here we integrate a broad range of recent studies on Smc5/6 to identify emerging features of this unique SMC complex and to explain its diverse cellular functions and roles in disease pathogenesis. We also highlight many key areas requiring further investigation for achieving coherent views of Smc5/6-driven mechanisms.
Collapse
Affiliation(s)
- Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Cancer Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
47
|
ter Bekke RMA, de Schouwer K, Conti S, Claes GRF, Vanoevelen J, Gommers S, Helderman-van den Enden ATJM, Brunner-LaRocca HP. Juvenile-onset multifocal atrial arrhythmias, atrial standstill and compound heterozygosity of genetic variants in TAF1A: sentinel event for evolving dilated cardiomyopathy-a case report. Eur Heart J Case Rep 2023; 7:ytad255. [PMID: 37501913 PMCID: PMC10371049 DOI: 10.1093/ehjcr/ytad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/20/2023] [Accepted: 05/19/2023] [Indexed: 07/29/2023]
Abstract
Background Juvenile onset of extensive atrial electromechanical failure, including atrial standstill, is a rare disease entity that may precede ventricular cardiomyopathy. Genetic variants associated with early-onset atrioventricular (AV) cardiomyopathy are increasingly recognized. Case summary A 16-year-old patient presented with atrial brady- and tachyarrhythmias and concomitant impaired atrial electromechanical function (atrial standstill). The atrial phenotype preceded the development of a predominantly right-sided AV dilated cardiomyopathy with pronounced myocardial fibrosis. A His-bundle pacemaker was installed for high-degree AV conduction block and sinus arrest. Using familial-based whole-exome sequencing, a missense mutation and a copy number variant deletion (compound heterozygosity) of the TAF1A gene (involved in ribosomal RNA synthesis) were identified. Discussion Juvenile onset of severe atrial electromechanical failure with atrial arrhythmias should prompt deep pheno- and genotyping and calls for vigilance for downstream cardiomyopathic deterioration.
Collapse
Affiliation(s)
| | - Koen de Schouwer
- Department of Cardiology, Cardiovascular Center Onze-Lieve-Vrouwziekenhuis Hospital, Aalst, Belgium
| | - Sergio Conti
- Department of Cardiac Electrophysiology, ARNAS Civico Hospital, Palermo, Italy
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jo Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Suzanne Gommers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | |
Collapse
|
48
|
Aleksashin NA, Chang STL, Cate JHD. A highly efficient human cell-free translation system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527910. [PMID: 36798401 PMCID: PMC9934684 DOI: 10.1101/2023.02.09.527910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Cell-free protein synthesis (CFPS) systems enable easy in vitro expression of proteins with many scientific, industrial, and therapeutic applications. Here we present an optimized, highly efficient human cell-free translation system that bypasses many limitations of currently used in vitro systems. This CFPS system is based on extracts from human HEK293T cells engineered to endogenously express GADD34 and K3L proteins, which suppress phosphorylation of translation initiation factor eIF2α. Overexpression of GADD34 and K3L proteins in human cells significantly simplifies cell lysate preparation. The new CFPS system improves the translation of 5' cap-dependent mRNAs as well as those that use internal ribosome entry site (IRES) mediated translation initiation. We find that expression of the GADD34 and K3L accessory proteins before cell lysis maintains low levels of phosphorylation of eIF2α in the extracts. During in vitro translation reactions, eIF2α phosphorylation increases moderately in a GCN2-dependent fashion that can be inhibited by GCN2 kinase inhibitors. We also find evidence for activation of regulatory pathways related to eukaryotic elongation factor 2 (eEF2) phosphorylation and ribosome quality control in the extracts. This new CFPS system should be useful for exploring human translation mechanisms in more physiological conditions outside the cell.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Stacey Tsai-Lan Chang
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
49
|
Ford BL, Wei T, Liu H, Scull CE, Najmi SM, Pitts S, Fan W, Schneider DA, Laiho M. Expression of RNA polymerase I catalytic core is influenced by RPA12. PLoS One 2023; 18:e0285660. [PMID: 37167337 PMCID: PMC10174586 DOI: 10.1371/journal.pone.0285660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
RNA Polymerase I (Pol I) has recently been recognized as a cancer therapeutic target. The activity of this enzyme is essential for ribosome biogenesis and is universally activated in cancers. The enzymatic activity of this multi-subunit complex resides in its catalytic core composed of RPA194, RPA135, and RPA12, a subunit with functions in RNA cleavage, transcription initiation and elongation. Here we explore whether RPA12 influences the regulation of RPA194 in human cancer cells. We use a specific small-molecule Pol I inhibitor BMH-21 that inhibits transcription initiation, elongation and ultimately activates the degradation of Pol I catalytic subunit RPA194. We show that silencing RPA12 causes alterations in the expression and localization of Pol I subunits RPA194 and RPA135. Furthermore, we find that despite these alterations not only does the Pol I core complex between RPA194 and RPA135 remain intact upon RPA12 knockdown, but the transcription of Pol I and its engagement with chromatin remain unaffected. The BMH-21-mediated degradation of RPA194 was independent of RPA12 suggesting that RPA12 affects the basal expression, but not the drug-inducible turnover of RPA194. These studies add to knowledge defining regulatory factors for the expression of this Pol I catalytic subunit.
Collapse
Affiliation(s)
- Brittany L. Ford
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ting Wei
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Catherine E. Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Saman M. Najmi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stephanie Pitts
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Wenjun Fan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Marikki Laiho
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
50
|
Wang Y, Meng T, Zhang L, Lin Y, Wu N, Yuan H, He Z, Niu Y, Dai Y, Zhao X, Duan H. Inhalable mixture of polycyclic aromatic hydrocarbons and metals, DNA oxidative stress and nasal ribosomal DNA copy number amplification: Direct and indirect effect analyses among population. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131538. [PMID: 37156045 DOI: 10.1016/j.jhazmat.2023.131538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The ribosomal DNA (rDNA) plays a crucial role in maintaining genome stability. So far, alterations of rDNA from airborne pollutants exposure remain unclear. Nasal epithelial cells are the earliest respiratory barrier, which has an accessible surrogate for evaluating respiratory impairment. We developed a mixture-centered biomarkers study integrated epidemiological and biological evidence among 768 subjects, a mixture of polycyclic aromatic hydrocarbons (PAHs) and metals. We identified the mixed exposure of PAHs and metals by environmental and biological monitoring, selected urinary 8-hydroxy-2'-deoxyguanosine as DNA oxidative stress marker, and measured their rDNA copy number (rDNA CN) in nasal epithelial cells. We performed linear regression, adaptive elastic net regression, BKMR, and mediation analyses to assess the direct and indirect effects. We found a 10% elevation in urinary 1-hydroxypyrene was correlated with a separate 0.31% and 0.82% amplification of nasal 5S and 45S rDNA CN, respectively (all P < 0.05). A 10% increment of urine nickel was associated with a separate 0.37% and 1.18% elevation of nasal 5S and 45S rDNA CN, respectively (all P < 0.05). BKMR results also confirmed our findings of PAHs and nickel. Our findings suggested that DNA oxidative stress might trigger rDNA instability induced by inhaled PAHs and metals.
Collapse
Affiliation(s)
- Yanhua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi, China
| | - Liya Zhang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Lin
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Disease Control and Prevention of Chaoyang District of Beijing, Beijing, China
| | - Nan Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; China National Center for Food Safety Risk Assessment, Beijing, China
| | - Huige Yuan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhizhou He
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xing Zhao
- West China school of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|