1
|
Dannfald A, Carpentier MC, Merret R, Favory JJ, Deragon JM. Plant response to intermittent heat stress involves modulation of mRNA translation efficiency. PLANT PHYSIOLOGY 2025; 197:kiae648. [PMID: 39688875 PMCID: PMC11979764 DOI: 10.1093/plphys/kiae648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Acquired thermotolerance (also known as priming) is the ability of cells or organisms to survive acute heat stress if preceded by a milder one. In plants, acquired thermotolerance has been studied mainly at the transcriptional level, including recent descriptions of sophisticated regulatory circuits that are essential for this learning capacity. Here, we tested the involvement of polysome-related processes [translation and cotranslational mRNA decay (CTRD)] in Arabidopsis (Arabidopsis thaliana) thermotolerance using two heat stress regimes with and without a priming event. We found that priming is essential to restore the general translational potential of plants shortly after acute heat stress. We observed that mRNAs not involved in heat stress suffered from reduced translation efficiency at high temperatures, whereas heat stress-related mRNAs were translated more efficiently under the same condition. We also showed that the induction of the unfolded protein response (UPR) pathway in acute heat stress is favored by a previous priming event and that, in the absence of priming, ER-translated mRNAs become preferential targets of CTRD. Finally, we present evidence that CTRD can specifically regulate more than a thousand genes during heat stress and should be considered as an independent gene regulatory mechanism.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Rémy Merret
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| |
Collapse
|
2
|
Wu HYL, Kaufman ID, Hsu PY. ggRibo: a ggplot-based single-gene viewer for visualizing Ribo-seq and related omics datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635743. [PMID: 39975054 PMCID: PMC11838514 DOI: 10.1101/2025.01.30.635743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Visualizing periodic Ribo-seq data within genes of interest is a powerful approach to studying mRNA translation, but its application is limited by a lack of robust tools. Here, we introduce ggRibo, a user-friendly R package for visualizing individual gene expression, integrating Ribo-seq, RNA-seq, and other genome-wide datasets with flexible scaling options. ggRibo presents the 3-nucleotide periodicity, a hallmark of translating ribosomes, within a gene-structure context, including introns and untranslated regions, enabling the study of novel ORFs, isoform translation, and mechanisms of translational regulation. ggRibo can plot multiple Ribo-seq/RNA-seq datasets from different conditions for comparison. Additionally, it supports the visualization of other omics datasets that could also be presented with single-nucleotide resolution, such as RNA degradome, transcription start sites, and translation initiation sites. Through its intuitive and flexible platform, ggRibo enables parallel comparisons of multi-omic datasets, facilitating a comprehensive understanding of gene expression regulation and promoting hypothesis generation. We demonstrate its utility with examples of upstream ORFs, downstream ORFs, isoform translation, and multi-omic comparison in humans and Arabidopsis. In summary, ggRibo is an advanced single-gene viewer that enhances the interpretation of translatome and related genome-wide datasets, offering a valuable resource for studying gene expression regulation. ggRibo is available on GitHub (https://github.com/hsinyenwu/ggRibo).
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Isaiah D. Kaufman
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Polly Yingshan Hsu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
3
|
Pouclet A, Pflieger D, Merret R, Carpentier MC, Schiaffini M, Zuber H, Gagliardi D, Garcia D. Multi-transcriptomics identifies targets of the endoribonuclease DNE1 and highlights its coordination with decapping. THE PLANT CELL 2024; 36:3674-3688. [PMID: 38869231 PMCID: PMC11371186 DOI: 10.1093/plcell/koae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Decapping is a crucial step in mRNA degradation in eucaryotes and requires the formation of a holoenzyme complex between the decapping enzyme DECAPPING 2 (DCP2) and the decapping enhancer DCP1. In Arabidopsis (Arabidopsis thaliana), DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1) is a direct protein partner of DCP1. The function of both DNE1 and decapping is necessary to maintain phyllotaxis, the regularity of organ emergence in the apex. In this study, we combined in vivo mRNA editing, RNA degradome sequencing, transcriptomics, and small RNA-omics to identify targets of DNE1 and study how DNE1 and DCP2 cooperate in controlling mRNA fate. Our data reveal that DNE1 mainly contacts and cleaves mRNAs in the coding sequence and has sequence cleavage preferences. DNE1 targets are also degraded through decapping, and both RNA degradation pathways influence the production of mRNA-derived small interfering RNAs. Finally, we detected mRNA features enriched in DNE1 targets including RNA G-quadruplexes and translated upstream open reading frames. Combining these four complementary high-throughput sequencing strategies greatly expands the range of DNE1 targets and allowed us to build a conceptual framework describing the influence of DNE1 and decapping on mRNA fate. These data will be crucial to unveil the specificity of DNE1 action and understand its importance for developmental patterning.
Collapse
Affiliation(s)
- Aude Pouclet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Rémy Merret
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096, 66000 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096, 66000 Perpignan, France
| | - Marlene Schiaffini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
4
|
Carpentier MC, Receveur AE, Boubegtitene A, Cadoudal A, Bousquet-Antonelli C, Merret R. Genome-wide analysis of mRNA decay in Arabidopsis shoot and root reveals the importance of co-translational mRNA decay in the general mRNA turnover. Nucleic Acids Res 2024; 52:7910-7924. [PMID: 38721772 PMCID: PMC11260455 DOI: 10.1093/nar/gkae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 07/23/2024] Open
Abstract
Until recently, the general 5'-3' mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5' to 3' pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Anne-Elodie Receveur
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Alexandre Boubegtitene
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Adrien Cadoudal
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia-LGDP UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
5
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
6
|
Prasetyaningrum P, Litthauer S, Vegliani F, Battle MW, Wood MW, Liu X, Dickson C, Jones MA. Inhibition of RNA degradation integrates the metabolic signals induced by osmotic stress into the Arabidopsis circadian system. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5805-5819. [PMID: 37453132 PMCID: PMC10540740 DOI: 10.1093/jxb/erad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The circadian clock system acts as an endogenous timing reference that coordinates many metabolic and physiological processes in plants. Previous studies have shown that the application of osmotic stress delays circadian rhythms via 3'-phospho-adenosine 5'-phosphate (PAP), a retrograde signalling metabolite that is produced in response to redox stress within organelles. PAP accumulation leads to the inhibition of exoribonucleases (XRNs), which are responsible for RNA degradation. Interestingly, we are now able to demonstrate that post-transcriptional processing is crucial for the circadian response to osmotic stress. Our data show that osmotic stress increases the stability of specific circadian RNAs, suggesting that RNA metabolism plays a vital role in circadian clock coordination during drought. Inactivation of XRN4 is sufficient to extend circadian rhythms as part of this response, with PRR7 and LWD1 identified as transcripts that are post-transcriptionally regulated to delay circadian progression.
Collapse
Affiliation(s)
| | | | - Franco Vegliani
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | - Xinmeng Liu
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cathryn Dickson
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew Alan Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
7
|
Rachowka J, Anielska-Mazur A, Bucholc M, Stephenson K, Kulik A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1135240. [PMID: 37621885 PMCID: PMC10445769 DOI: 10.3389/fpls.2023.1135240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/30/2023] [Indexed: 08/26/2023]
Abstract
In nature, all living organisms must continuously sense their surroundings and react to the occurring changes. In the cell, the information about these changes is transmitted to all cellular compartments, including the nucleus, by multiple phosphorylation cascades. Sucrose Non-Fermenting 1 Related Protein Kinases (SnRK2s) are plant-specific enzymes widely distributed across the plant kingdom and key players controlling abscisic acid (ABA)-dependent and ABA-independent signaling pathways in the plant response to osmotic stress and salinity. The main deleterious effects of salinity comprise water deficiency stress, disturbances in ion balance, and the accompanying appearance of oxidative stress. The reactive oxygen species (ROS) generated at the early stages of salt stress are involved in triggering intracellular signaling required for the fast stress response and modulation of gene expression. Here we established in Arabidopsis thaliana that salt stress or induction of ROS accumulation by treatment of plants with H2O2 or methyl viologen (MV) induces the expression of several genes encoding transcription factors (TFs) from the WRKY DNA-Binding Protein (WRKY) family. Their induction by salinity was dependent on SnRK2.10, an ABA non-activated kinase, as it was strongly reduced in snrk2.10 mutants. The effect of ROS was clearly dependent on their source. Following the H2O2 treatment, SnRK2.10 was activated in wild-type (wt) plants and the induction of the WRKY TFs expression was only moderate and was enhanced in snrk2.10 lines. In contrast, MV did not activate SnRK2.10 and the WRKY induction was very strong and was similar in wt and snrk2.10 plants. A bioinformatic analysis indicated that the WRKY33, WRKY40, WRKY46, and WRKY75 transcription factors have a similar target range comprising numerous stress-responsive protein kinases. Our results indicate that the stress-related functioning of SnRK2.10 is fine-tuned by the source and intracellular distribution of ROS and the co-occurrence of other stress factors.
Collapse
Affiliation(s)
| | | | | | | | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Xu J, Zhang W, Zhang P, Sun W, Han Y, Li L. A comprehensive analysis of copy number variations in diverse apple populations. BMC Genomics 2023; 24:256. [PMID: 37170226 PMCID: PMC10176694 DOI: 10.1186/s12864-023-09347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/16/2022] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND As an important source of genetic variation, copy number variation (CNV) can alter the dosage of DNA segments, which in turn may affect gene expression level and phenotype. However, our knowledge of CNV in apple is still limited. Here, we obtained high-confidence CNVs and investigated their functional impact based on genome resequencing data of two apple populations, cultivars and wild relatives. RESULTS In this study, we identified 914,610 CNVs comprising 14,839 CNV regions (CNVRs) from 346 apple accessions, including 289 cultivars and 57 wild relatives. CNVRs summed to 71.19 Mb, accounting for 10.03% of the apple genome. Under the low linkage disequilibrium (LD) with nearby SNPs, they could also accurately reflect the population structure of apple independent of SNPs. Furthermore, A total of 3,621 genes were covered by CNVRs and functionally involved in biological processes such as defense response, reproduction and metabolic processes. In addition, the population differentiation index ([Formula: see text]) analysis between cultivars and wild relatives revealed 127 CN-differentiated genes, which may contribute to trait differences in these two populations. CONCLUSIONS This study was based on identification of CNVs from 346 diverse apple accessions, which to our knowledge was the largest dataset for CNV analysis in apple. Our work presented the first comprehensive CNV map and provided valuable resources for understanding genomic variations in apple.
Collapse
Affiliation(s)
- Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihan Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicheng Sun
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
9
|
Boubegtitene A, Merret R. Monitoring mRNA Half-Life in Arabidopsis Using Droplet Digital PCR. PLANTS (BASEL, SWITZERLAND) 2022; 11:2616. [PMID: 36235485 PMCID: PMC9571659 DOI: 10.3390/plants11192616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
mRNA decay is an important process in post-transcriptional regulation; in addition, it plays a crucial role in plant development and response to stress. The development of new tools to quantify mRNA decay intermediates is thus important to better characterize the dynamic of mRNA decay in various conditions. Here, we applied droplet digital PCR (ddPCR), a recent and precise PCR technology, to determine mRNA half-life in Arabidopsis seedlings. We demonstrated that ddPCR can correctly assess mRNA half-life from a wide variety of transcripts in a reproducible manner. We also demonstrated that thanks to multiplexing mRNA, the half-life of multiple transcripts can be followed in the same reaction. As ddPCR allows precise quantification, we proposed that this approach is highly suitable when a low amount of RNA is available; for the detection of many targets or for the analysis of lowly expressed transcripts.
Collapse
Affiliation(s)
- Alexandre Boubegtitene
- CNRS-LGDP UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
10
|
Hoffmann G, Mahboubi A, Bente H, Garcia D, Hanson J, Hafrén A. Arabidopsis RNA processing body components LSM1 and DCP5 aid in the evasion of translational repression during Cauliflower mosaic virus infection. THE PLANT CELL 2022; 34:3128-3147. [PMID: 35511183 PMCID: PMC9338796 DOI: 10.1093/plcell/koac132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Viral infections impose extraordinary RNA stress, triggering cellular RNA surveillance pathways such as RNA decapping, nonsense-mediated decay, and RNA silencing. Viruses need to maneuver among these pathways to establish infection and succeed in producing high amounts of viral proteins. Processing bodies (PBs) are integral to RNA triage in eukaryotic cells, with several distinct RNA quality control pathways converging for selective RNA regulation. In this study, we investigated the role of Arabidopsis thaliana PBs during Cauliflower mosaic virus (CaMV) infection. We found that several PB components are co-opted into viral factories that support virus multiplication. This pro-viral role was not associated with RNA decay pathways but instead, we established that PB components are helpers in viral RNA translation. While CaMV is normally resilient to RNA silencing, dysfunctions in PB components expose the virus to this pathway, which is similar to previous observations for transgenes. Transgenes, however, undergo RNA quality control-dependent RNA degradation and transcriptional silencing, whereas CaMV RNA remains stable but becomes translationally repressed through decreased ribosome association, revealing a unique dependence among PBs, RNA silencing, and translational repression. Together, our study shows that PB components are co-opted by the virus to maintain efficient translation, a mechanism not associated with canonical PB functions.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Heinrich Bente
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
- Linnean Center for Plant Biology, Uppsala 75007, Sweden
| | - Damien Garcia
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
11
|
Schiaffini M, Chicois C, Pouclet A, Chartier T, Ubrig E, Gobert A, Zuber H, Mutterer J, Chicher J, Kuhn L, Hammann P, Gagliardi D, Garcia D. A NYN domain protein directly interacts with DECAPPING1 and is required for phyllotactic pattern. PLANT PHYSIOLOGY 2022; 188:1174-1188. [PMID: 34791434 PMCID: PMC8825452 DOI: 10.1093/plphys/kiab529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 06/01/2023]
Abstract
In eukaryotes, general mRNA decay requires the decapping complex. The activity of this complex depends on its catalytic subunit, DECAPPING2 (DCP2), and its interaction with decapping enhancers, including its main partner DECAPPING1 (DCP1). Here, we report that in Arabidopsis thaliana, DCP1 also interacts with a NYN domain endoribonuclease, hence named DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1). Interestingly, we found DNE1 predominantly associated with DCP1, but not with DCP2, and reciprocally, suggesting the existence of two distinct protein complexes. We also showed that the catalytic residues of DNE1 are required to repress the expression of mRNAs in planta upon transient expression. The overexpression of DNE1 in transgenic lines led to growth defects and a similar gene deregulation signature than inactivation of the decapping complex. Finally, the combination of dne1 and dcp2 mutations revealed a functional redundancy between DNE1 and DCP2 in controlling phyllotactic pattern formation. Our work identifies DNE1, a hitherto unknown DCP1 protein partner highly conserved in the plant kingdom and identifies its importance for developmental robustness.
Collapse
Affiliation(s)
- Marlene Schiaffini
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Clara Chicois
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aude Pouclet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Tiphaine Chartier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
You L, Lin J, Xu H, Chen C, Chen J, Zhang J, Zhang J, Li Y, Ye C, Zhang H, Jiang J, Zhu J, Li QQ, Duan C. Intragenic heterochromatin-mediated alternative polyadenylation modulates miRNA and pollen development in rice. THE NEW PHYTOLOGIST 2021; 232:835-852. [PMID: 34289124 PMCID: PMC9292364 DOI: 10.1111/nph.17635] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/25/2021] [Indexed: 05/02/2023]
Abstract
Despite a much higher proportion of intragenic heterochromatin-containing genes in crop genomes, the importance of intragenic heterochromatin in crop development remains unclear. Intragenic heterochromatin can be recognised by a protein complex, ASI1-AIPP1-EDM2 (AAE) complex, to regulate alternative polyadenylation. Here, we investigated the impact of rice ASI1 on global poly(A) site usage through poly(A) sequencing and ASI1-dependent regulation on rice development. We found that OsASI1 is essential for rice pollen development and flowering. OsASI1 dysfunction has an important impact on global poly(A) site usage, which is closely related to heterochromatin marks. Intriguingly, OsASI1 interacts with the intronic heterochromatin of OsXRNL, a nuclear XRN family exonuclease gene involved in the processing of an miRNA precursor, to promote the processing of full-length OsXRNL and regulate miRNA abundance. We found that OsASI1-mediated regulation of pollen development partially depends on OsXRNL. Finally, we characterised the rice AAE complex and its involvement in alternative polyadenylation and pollen development. Our findings help to elucidate an epigenetic mechanism governing miRNA abundance and rice development, and provide a valuable resource for studying the epigenetic mechanisms of many important processes in crops.
Collapse
Affiliation(s)
- Li‐Yuan You
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
| | - Hua‐Wei Xu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- College of AgricultureHenan University of Science and TechnologyLuoyang471023China
| | - Chun‐Xiang Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jun‐Yu Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinshan Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
| | - Jian Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying‐Xin Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
| | - Hui Zhang
- College of Life ScienceShanghai Normal UniversityShanghai200234China
| | - Jing Jiang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifeng475004China
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamenFujian361102China
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCA91766USA
| | - Cheng‐Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant SciencesChinese Academy of ScienceShanghai201602China
- University of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifeng475004China
| |
Collapse
|
13
|
Pashler AL, Towler BP, Jones CI, Haime HJ, Burgess T, Newbury SF. Genome-wide analyses of XRN1-sensitive targets in osteosarcoma cells identify disease-relevant transcripts containing G-rich motifs. RNA (NEW YORK, N.Y.) 2021; 27:1265-1280. [PMID: 34266995 PMCID: PMC8457002 DOI: 10.1261/rna.078872.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
XRN1 is a highly conserved exoribonuclease which degrades uncapped RNAs in a 5'-3' direction. Degradation of RNAs by XRN1 is important in many cellular and developmental processes and is relevant to human disease. Studies in D. melanogaster demonstrate that XRN1 can target specific RNAs, which have important consequences for developmental pathways. Osteosarcoma is a malignancy of the bone and accounts for 2% of all pediatric cancers worldwide. Five-year survival of patients has remained static since the 1970s and therefore furthering our molecular understanding of this disease is crucial. Previous work has shown a down-regulation of XRN1 in osteosarcoma cells; however, the transcripts regulated by XRN1 which might promote osteosarcoma remain elusive. Here, we confirm reduced levels of XRN1 in osteosarcoma cell lines and patient samples and identify XRN1-sensitive transcripts in human osteosarcoma cells. Using RNA-seq in XRN1-knockdown SAOS-2 cells, we show that 1178 genes are differentially regulated. Using a novel bioinformatic approach, we demonstrate that 134 transcripts show characteristics of direct post-transcriptional regulation by XRN1. Long noncoding RNAs (lncRNAs) are enriched in this group, suggesting that XRN1 normally plays an important role in controlling lncRNA expression in these cells. Among potential lncRNAs targeted by XRN1 is HOTAIR, which is known to be up-regulated in osteosarcoma and contributes to disease progression. We have also identified G-rich and GU motifs in post-transcriptionally regulated transcripts which appear to sensitize them to XRN1 degradation. Our results therefore provide significant insights into the specificity of XRN1 in human cells which are relevant to disease.
Collapse
Affiliation(s)
- Amy L Pashler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Christopher I Jones
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Hope J Haime
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Tom Burgess
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, United Kingdom
| |
Collapse
|
14
|
Comparative parallel analysis of RNA ends identifies mRNA substrates of a tRNA splicing endonuclease-initiated mRNA decay pathway. Proc Natl Acad Sci U S A 2021; 118:2020429118. [PMID: 33649230 DOI: 10.1073/pnas.2020429118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotes share a conserved messenger RNA (mRNA) decay pathway in which bulk mRNA is degraded by exoribonucleases. In addition, it has become clear that more specialized mRNA decay pathways are initiated by endonucleolytic cleavage at particular sites. The transfer RNA (tRNA) splicing endonuclease (TSEN) has been studied for its ability to remove introns from pre-tRNAs. More recently it has been shown that single amino acid mutations in TSEN cause pontocerebellar hypoplasia. Other recent studies indicate that TSEN has other functions, but the nature of these functions has remained obscure. Here we show that yeast TSEN cleaves a specific subset of mRNAs that encode mitochondrial proteins, and that the cleavage sites are in part determined by their sequence. This provides an explanation for the counterintuitive mitochondrial localization of yeast TSEN. To identify these mRNA target sites, we developed a "comPARE" (comparative parallel analysis of RNA ends) bioinformatic approach that should be easily implemented and widely applicable to the study of endoribonucleases. The similarity of tRNA endonuclease-initiated decay to regulated IRE1-dependent decay of mRNA suggests that mRNA specificity by colocalization may be an important determinant for the degradation of localized mRNAs in a variety of eukaryotic cells.
Collapse
|
15
|
Carpentier MC, Bousquet-Antonelli C, Merret R. Fast and Efficient 5'P Degradome Library Preparation for Analysis of Co-Translational Decay in Arabidopsis. PLANTS 2021; 10:plants10030466. [PMID: 33804539 PMCID: PMC7998949 DOI: 10.3390/plants10030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5′monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5′P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5′P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France; (M.-C.C.); (C.B.-A.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France; (M.-C.C.); (C.B.-A.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 avenue Paul Alduy, 66860 Perpignan, France; (M.-C.C.); (C.B.-A.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 58 avenue Paul Alduy, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
16
|
Yang X, You C, Wang X, Gao L, Mo B, Liu L, Chen X. Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Genome Biol 2021; 22:15. [PMID: 33402203 PMCID: PMC7784310 DOI: 10.1186/s13059-020-02242-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Small RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) serve as core players in gene silencing at transcriptional and post-transcriptional levels in plants, but their subcellular localization has not yet been well studied, thus limiting our mechanistic understanding of sRNA action. Results We investigate the cytoplasmic partitioning of sRNAs and their targets globally in maize (Zea mays, inbred line “B73”) and rice (Oryza sativa, cv. “Nipponbare”) by high-throughput sequencing of polysome-associated sRNAs and 3′ cleavage fragments, and find that both miRNAs and a subset of 21-nucleotide (nt)/22-nt siRNAs are enriched on membrane-bound polysomes (MBPs) relative to total polysomes (TPs) across different tissues. Most of the siRNAs are generated from transposable elements (TEs), and retrotransposons positively contributed to MBP overaccumulation of 22-nt TE-derived siRNAs (TE-siRNAs) as opposed to DNA transposons. Widespread occurrence of miRNA-mediated target cleavage is observed on MBPs, and a large proportion of these cleavage events are MBP-unique. Reproductive 21PHAS (21-nt phasiRNA-generating) and 24PHAS (24-nt phasiRNA-generating) precursors, which were commonly considered as noncoding RNAs, are bound by polysomes, and high-frequency cleavage of 21PHAS precursors by miR2118 and 24PHAS precursors by miR2275 is further detected on MBPs. Reproductive 21-nt phasiRNAs are enriched on MBPs as opposed to TPs, whereas 24-nt phasiRNAs are nearly completely devoid of polysome occupancy. Conclusions MBP overaccumulation is a conserved pattern for cytoplasmic partitioning of sRNAs, and endoplasmic reticulum (ER)-bound ribosomes function as an independent regulatory layer for miRNA-induced gene silencing and reproductive phasiRNA biosynthesis in maize and rice.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chenjiang You
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
17
|
Carpentier MC, Deragon JM, Jean V, Be SHV, Bousquet-Antonelli C, Merret R. Monitoring of XRN4 Targets Reveals the Importance of Cotranslational Decay during Arabidopsis Development. PLANT PHYSIOLOGY 2020; 184:1251-1262. [PMID: 32913043 PMCID: PMC7608176 DOI: 10.1104/pp.20.00942] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/02/2020] [Indexed: 05/31/2023]
Abstract
RNA turnover is a general process that maintains appropriate mRNA abundance at the posttranscriptional level. Although long thought to be antagonistic to translation, discovery of the 5' to 3' cotranslational mRNA decay pathway demonstrated that both processes are intertwined. Cotranslational mRNA decay globally shapes the transcriptome in different organisms and in response to stress; however, the dynamics of this process during plant development is poorly understood. In this study, we used a multiomics approach to reveal the global landscape of cotranslational mRNA decay during Arabidopsis (Arabidopsis thaliana) seedling development. We demonstrated that cotranslational mRNA decay is regulated by developmental cues. Using the EXORIBONUCLEASE4 (XRN4) loss-of-function mutant, we showed that XRN4 poly(A+) mRNA targets are largely subject to cotranslational decay during plant development. As cotranslational mRNA decay is interconnected with translation, we also assessed its role in translation efficiency. We discovered that clusters of transcripts were specifically subjected to cotranslational decay in a developmental-dependent manner to modulate their translation efficiency. Our approach allowed the determination of a cotranslational decay efficiency that could be an alternative to other methods to assess transcript translation efficiency. Thus, our results demonstrate the prevalence of cotranslational mRNA decay in plant development and its role in translational control.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Jean-Marc Deragon
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Institut Universitaire de France, 75231 Paris cedex 05, France
| | - Viviane Jean
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Seng Hour Vichet Be
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Cécile Bousquet-Antonelli
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Rémy Merret
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| |
Collapse
|
18
|
Raxwal VK, Simpson CG, Gloggnitzer J, Entinze JC, Guo W, Zhang R, Brown JWS, Riha K. Nonsense-Mediated RNA Decay Factor UPF1 Is Critical for Posttranscriptional and Translational Gene Regulation in Arabidopsis. THE PLANT CELL 2020; 32:2725-2741. [PMID: 32665305 PMCID: PMC7474300 DOI: 10.1105/tpc.20.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/23/2020] [Accepted: 07/08/2020] [Indexed: 05/19/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is an RNA control mechanism that has also been implicated in the broader regulation of gene expression. Nevertheless, a role for NMD in genome regulation has not yet been fully assessed, partially because NMD inactivation is lethal in many organisms. Here, we performed an in-depth comparative analysis of Arabidopsis (Arabidopsis thaliana) mutants lacking the NMD-related proteins UPF3, UPF1, and SMG7. We found different impacts of these proteins on NMD and the Arabidopsis transcriptome, with UPF1 having the biggest effect. Transcriptome assembly in UPF1-null plants revealed genome-wide changes in alternative splicing, suggesting that UPF1 functions in splicing. The inactivation of UPF1 led to translational repression, as manifested by a global shift in mRNAs from polysomes to monosomes and the downregulation of genes involved in translation and ribosome biogenesis. Despite these global changes, NMD targets and mRNAs expressed at low levels with short half-lives were enriched in the polysomes of upf1 mutants, indicating that UPF1/NMD suppresses the translation of aberrant RNAs. Particularly striking was an increase in the translation of TIR domain-containing, nucleotide binding, leucine-rich repeat (TNL) immune receptors. The regulation of TNLs via UPF1/NMD-mediated mRNA stability and translational derepression offers a dynamic mechanism for the rapid activation of TNLs in response to pathogen attack.
Collapse
Affiliation(s)
- Vivek K Raxwal
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | | | - Juan Carlos Entinze
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - John W S Brown
- Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, United Kingdom
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
19
|
Lee WC, Hou BH, Hou CY, Tsao SM, Kao P, Chen HM. Widespread Exon Junction Complex Footprints in the RNA Degradome Mark mRNA Degradation before Steady State Translation. THE PLANT CELL 2020; 32:904-922. [PMID: 31988264 PMCID: PMC7145476 DOI: 10.1105/tpc.19.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 05/13/2023]
Abstract
Exon junction complexes (EJCs) are deposited on mRNAs during splicing and displaced by ribosomes during the pioneer round of translation. Nonsense-mediated mRNA decay (NMD) degrades EJC-bound mRNA, but the lack of suitable methodology has prevented the identification of other degradation pathways. Here, we show that the RNA degradomes of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), worm (Caenorhabditis elegans), and human (Homo sapiens) cells exhibit an enrichment of 5' monophosphate (5'P) ends of degradation intermediates that map to the canonical EJC region. Inhibition of 5' to 3' exoribonuclease activity and overexpression of an EJC disassembly factor in Arabidopsis reduced the accumulation of these 5'P ends, supporting the notion that they are in vivo EJC footprints. Hundreds of Arabidopsis NMD targets possess evident EJC footprints, validating their degradation during the pioneer round of translation. In addition to premature termination codons, plant microRNAs can also direct the degradation of EJC-bound mRNAs. However, the production of EJC footprints from NMD but not microRNA targets requires the NMD factor SUPPRESSOR WITH MORPHOLOGICAL EFFECT ON GENITALIA PROTEIN7. Together, our results demonstrating in vivo EJC footprinting in Arabidopsis unravel the composition of the RNA degradome and provide a new avenue for studying NMD and other mechanisms targeting EJC-bound mRNAs for degradation before steady state translation.
Collapse
Affiliation(s)
- Wen-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Yu Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Ming Tsao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ping Kao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
20
|
Wang M, Zang L, Jiao F, Perez-Garcia MD, Ogé L, Hamama L, Le Gourrierec J, Sakr S, Chen J. Sugar Signaling and Post-transcriptional Regulation in Plants: An Overlooked or an Emerging Topic? FRONTIERS IN PLANT SCIENCE 2020; 11:578096. [PMID: 33224165 PMCID: PMC7674178 DOI: 10.3389/fpls.2020.578096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/02/2020] [Indexed: 05/21/2023]
Abstract
Plants are autotrophic organisms that self-produce sugars through photosynthesis. These sugars serve as an energy source, carbon skeletons, and signaling entities throughout plants' life. Post-transcriptional regulation of gene expression plays an important role in various sugar-related processes. In cells, it is regulated by many factors, such as RNA-binding proteins (RBPs), microRNAs, the spliceosome, etc. To date, most of the investigations into sugar-related gene expression have been focused on the transcriptional level in plants, while only a few studies have been conducted on post-transcriptional mechanisms. The present review provides an overview of the relationships between sugar and post-transcriptional regulation in plants. It addresses the relationships between sugar signaling and RBPs, microRNAs, and mRNA stability. These new items insights will help to reach a comprehensive understanding of the diversity of sugar signaling regulatory networks, and open onto new investigations into the relevance of these regulations for plant growth and development.
Collapse
Affiliation(s)
- Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Lili Zang
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Laurent Ogé
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - José Le Gourrierec
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
| | - Soulaiman Sakr
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, Beaucouzé, France
- Soulaiman Sakr,
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jingtang Chen,
| |
Collapse
|