1
|
Schaefer NK, Pavlovic BJ, Pollen AA. CellBouncer, A Unified Toolkit for Single-Cell Demultiplexing and Ambient RNA Analysis, Reveals Hominid Mitochondrial Incompatibilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644821. [PMID: 40166335 PMCID: PMC11957168 DOI: 10.1101/2025.03.23.644821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pooled processing, in which cells from multiple sources are cultured or captured together, is an increasingly popular strategy for droplet-based single cell sequencing studies. This design allows efficient scaling of experiments, isolation of cell-intrinsic differences, and mitigation of batch effects. We present CellBouncer, a computational toolkit for demultiplexing and analyzing single-cell sequencing data from pooled experiments. We demonstrate that CellBouncer can separate and quantify multi-species and multi-individual cell mixtures, identify unknown mitochondrial haplotypes in cells, assign treatments from lipid-conjugated barcodes or CRISPR sgRNAs, and infer pool composition, outperforming existing methods. We also introduce methods to quantify ambient RNA contamination per cell, infer individual donors' contributions to the ambient RNA pool, and determine a consensus doublet rate harmonized across data types. Applying these tools to tetraploid composite cells, we identify a competitive advantage of human over chimpanzee mitochondria across 10 cell fusion lines and provide evidence for inter-mitochondrial incompatibility and mito-nuclear incompatibility between species.
Collapse
Affiliation(s)
- Nathan K Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Cheung K, Rollins LA, Hammond JM, Barton K, Ferguson JM, Eyck HJF, Shine R, Edwards RJ. Repeat-Rich Regions Cause False-Positive Detection of NUMTs: A Case Study in Amphibians Using an Improved Cane Toad Reference Genome. Genome Biol Evol 2024; 16:evae246. [PMID: 39548850 PMCID: PMC11606642 DOI: 10.1093/gbe/evae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome. Nevertheless, false-positive detection of NUMTs is common when handling repeat-rich sequences, while fragmented genomes might result in missing true NUMTs. In this study, we investigated different NUMT detection methods and how the quality of the genome assembly affects them. We presented an improved nuclear genome assembly (aRhiMar1.3) of the invasive cane toad (Rhinella marina) with additional long-read Nanopore and 10× linked-read sequencing. The final assembly was 3.47 Gb in length with 91.3% of tetrapod universal single-copy orthologs (n = 5,310), indicating the gene-containing regions were well assembled. We used 3 complementary methods (NUMTFinder, dinumt, and PALMER) to study the NUMT landscape of the cane toad genome. All 3 methods yielded consistent results, showing very few NUMTs in the cane toad genome. Furthermore, we expanded NUMT detection analyses to other amphibians and confirmed a weak relationship between genome size and the number of NUMTs present in the nuclear genome. Amphibians are repeat-rich, and we show that the number of NUMTs found in highly repetitive genomes is prone to inflation when using homology-based detection without filters. Together, this study provides an exemplar of how to robustly identify NUMTs in complex genomes when confounding effects on mtDNA analyses are a concern.
Collapse
Affiliation(s)
- Kelton Cheung
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Kirston Barton
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - James M Ferguson
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Harrison J F Eyck
- National Collections and Marine Infrastructure, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Richard J Edwards
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Western Australia, Australia
| |
Collapse
|
3
|
Schall PZ, Meadows JRS, Ramos-Almodovar F, Kidd JM. Characterization of Nuclear Mitochondrial Insertions in Canine Genome Assemblies. Genes (Basel) 2024; 15:1318. [PMID: 39457442 PMCID: PMC11507379 DOI: 10.3390/genes15101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The presence of mitochondrial sequences in the nuclear genome (Numts) confounds analyses of mitochondrial sequence variation, and is a potential source of false positives in disease studies. To improve the analysis of mitochondrial variation in canines, we completed a systematic assessment of Numt content across genome assemblies, canine populations and the carnivore lineage. RESULTS Centering our analysis on the UU_Cfam_GSD_1.0/canFam4/Mischka assembly, a commonly used reference in dog genetic variation studies, we found a total of 321 Numts located throughout the nuclear genome and encompassing the entire sequence of the mitochondria. A comparison with 14 canine genome assemblies identified 63 Numts with presence-absence dimorphism among dogs, wolves, and a coyote. Furthermore, a subset of Numts were maintained across carnivore evolutionary time (arctic fox, polar bear, cat), with eight sequences likely more than 10 million years old, and shared with the domestic cat. On a population level, using structural variant data from the Dog10K Consortium for 1879 dogs and wolves, we identified 11 Numts that are absent in at least one sample, as well as 53 Numts that are absent from the Mischka assembly. CONCLUSIONS We highlight scenarios where the presence of Numts is a potentially confounding factor and provide an annotation of these sequences in canine genome assemblies. This resource will aid the identification and interpretation of polymorphisms in both somatic and germline mitochondrial studies in canines.
Collapse
Affiliation(s)
- Peter Z. Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden;
- SciLifeLab, Uppsala University, 75132 Uppsala, Sweden
| | - Fabian Ramos-Almodovar
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; (P.Z.S.); (F.R.-A.)
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Bolner M, Bovo S, Ballan M, Schiavo G, Taurisano V, Ribani A, Bertolini F, Fontanesi L. A comprehensive atlas of nuclear sequences of mitochondrial origin (NUMT) inserted into the pig genome. Genet Sel Evol 2024; 56:64. [PMID: 39285356 PMCID: PMC11403998 DOI: 10.1186/s12711-024-00930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The integration of nuclear mitochondrial DNA (mtDNA) into the mammalian genomes is an ongoing, yet rare evolutionary process that produces nuclear sequences of mitochondrial origin (NUMT). In this study, we identified and analysed NUMT inserted into the pig (Sus scrofa) genome and in the genomes of a few other Suinae species. First, we constructed a comparative distribution map of NUMT in the Sscrofa11.1 reference genome and in 22 other assembled S. scrofa genomes (from Asian and European pig breeds and populations), as well as the assembled genomes of the Visayan warty pig (Sus cebifrons) and warthog (Phacochoerus africanus). We then analysed a total of 485 whole genome sequencing datasets, from different breeds, populations, or Sus species, to discover polymorphic NUMT (inserted/deleted in the pig genome). The insertion age was inferred based on the presence or absence of orthologous NUMT in the genomes of different species, taking into account their evolutionary divergence. Additionally, the age of the NUMT was calculated based on sequence degradation compared to the authentic mtDNA sequence. We also validated a selected set of representative NUMT via PCR amplification. RESULTS We have constructed an atlas of 418 NUMT regions, 70 of which were not present in any assembled genomes. We identified ancient NUMT regions (older than 55 million years ago, Mya) and NUMT that appeared at different time points along the Suinae evolutionary lineage. We identified very recent polymorphic NUMT (private to S. scrofa, with < 1 Mya), and more ancient polymorphic NUMT (3.5-10 Mya) present in various Sus species. These latest polymorphic NUMT regions, which segregate in European and Asian pig breeds and populations, are likely the results of interspecies admixture within the Sus genus. CONCLUSIONS This study provided a first comprehensive analysis of NUMT present in the Sus scrofa genome, comparing them to NUMT found in other species within the order Cetartiodactyla. The NUMT-based evolutionary window that we reconstructed from NUMT integration ages could be useful to better understand the micro-evolutionary events that shaped the modern pig genome and enriched the genetic diversity of this species.
Collapse
Affiliation(s)
- Matteo Bolner
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Samuele Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Mohamad Ballan
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Valeria Taurisano
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Francesca Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
5
|
Zhou W, Karan KR, Gu W, Klein HU, Sturm G, De Jager PL, Bennett DA, Hirano M, Picard M, Mills RE. Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. PLoS Biol 2024; 22:e3002723. [PMID: 39172952 PMCID: PMC11340991 DOI: 10.1371/journal.pbio.3002723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024] Open
Abstract
The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in nonhuman species and recently demonstrated to occur in rare instances from one human generation to the next. Here, we investigated numtogenesis dynamics in humans in 2 ways. First, we quantified Numts in 1,187 postmortem brain and blood samples from different individuals. Compared to circulating immune cells (n = 389), postmitotic brain tissue (n = 798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples, we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex (DLPFC) compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, an increase in the number of brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment (NCI) who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures whole-genome sequencing design in a human fibroblast model that recapitulates several molecular hallmarks of aging. These longitudinal experiments revealed a gradual accumulation of 1 Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven by cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human postmitotic tissues produces functionally relevant human Numts over timescales shorter than previously assumed.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kalpita R. Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Michio Hirano
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, New York, New York, United States of America
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Cheung K, Amos TG, Shine R, DeVore JL, Ducatez S, Edwards RJ, Rollins LA. Whole-mitogenome analysis unveils previously undescribed genetic diversity in cane toads across their invasion trajectory. Ecol Evol 2024; 14:e11115. [PMID: 38435005 PMCID: PMC10909579 DOI: 10.1002/ece3.11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Invasive species offer insights into rapid adaptation to novel environments. The iconic cane toad (Rhinella marina) is an excellent model for studying rapid adaptation during invasion. Previous research using the mitochondrial NADH dehydrogenase 3 (ND3) gene in Hawai'ian and Australian invasive populations found a single haplotype, indicating an extreme genetic bottleneck following introduction. Nuclear genetic diversity also exhibited reductions across the genome in these two populations. Here, we investigated the mitochondrial genomics of cane toads across this invasion trajectory. We created the first reference mitochondrial genome for this species using long-read sequence data. We combined whole-genome resequencing data of 15 toads with published transcriptomic data of 125 individuals to construct nearly complete mitochondrial genomes from the native (French Guiana) and introduced (Hawai'i and Australia) ranges for population genomic analyses. In agreement with previous investigations of these populations, we identified genetic bottlenecks in both Hawai'ian and Australian introduced populations, alongside evidence of population expansion in the invasive ranges. Although mitochondrial genetic diversity in introduced populations was reduced, our results revealed that it had been underestimated: we identified 45 mitochondrial haplotypes in Hawai'ian and Australian samples, none of which were found in the native range. Additionally, we identified two distinct groups of haplotypes from the native range, separated by a minimum of 110 base pairs (0.6%). These findings enhance our understanding of how invasion has shaped the genetic landscape of this species.
Collapse
Affiliation(s)
- Kelton Cheung
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Timothy G. Amos
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Rick Shine
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Jayna L. DeVore
- Univ. Polynésie FrancaiseUMR 241 EIO (UPF, IRD, IFREMER, ILM) BP 6570 Faa'aTahitiFrench Polynesia
| | - Simon Ducatez
- Institut de Recherche pour le Développement (IRD)UMR 241 EIO (UPF, IRD, IFREMER, ILM) BP 6570 Faa'aTahitiFrench Polynesia
| | - Richard J. Edwards
- School of Biotechnology & Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
7
|
Harutyunyan T. The known unknowns of mitochondrial carcinogenesis: de novo NUMTs and intercellular mitochondrial transfer. Mutagenesis 2024; 39:1-12. [PMID: 37804235 DOI: 10.1093/mutage/gead031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023] Open
Abstract
The translocation of mitochondrial DNA (mtDNA) sequences into the nuclear genome, resulted in the occurrence of nuclear sequences of mitochondrial origin (NUMTs) which can be detected in nearly all sequenced eukaryotes. However, de novo mtDNA insertions can contribute to the development of pathological conditions including cancer. Recent data indicate that de novo mtDNA translocation into chromosomes can occur due to genotoxic influence of DNA double-strand break-inducing environmental mutagens. This confirms the hypothesis of the involvement of genome instability in the occurrence of mtDNA fragments in chromosomes. Mounting evidence indicates that mitochondria can be transferred from normal cells to cancer cells and recover cellular respiration. These exchanged mitochondria can facilitate cancer progression and metastasis. This review article provides a comprehensive overview of the potential carcinogenicity of mtDNA insertions, and the relevance of mtDNA escape in cancer progression, metastasis, and treatment resistance in humans. Potential molecular targets involved in mtDNA escape and exchange of mitochondria that can be of possible clinical benefits are presented and discussed. Understanding these processes could lead to improved diagnostic approaches, novel therapeutic strategies, and a deeper understanding of the intricate relationship between mitochondria, nuclear DNA, and cancer biology.
Collapse
Affiliation(s)
- Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, 1 Alex Manoogian, 0025 Yerevan, Armenia
| |
Collapse
|
8
|
Uvizl M, Puechmaille SJ, Power S, Pippel M, Carthy S, Haerty W, Myers EW, Teeling EC, Huang Z. Comparative Genome Microsynteny Illuminates the Fast Evolution of Nuclear Mitochondrial Segments (NUMTs) in Mammals. Mol Biol Evol 2024; 41:msad278. [PMID: 38124445 PMCID: PMC10764098 DOI: 10.1093/molbev/msad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.
Collapse
Affiliation(s)
- Marek Uvizl
- Department of Zoology, National Museum, 19300 Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Sebastien J Puechmaille
- Institut des Sciences de l’Evolution de Montpellier (ISEM), University of Montpellier, 34095 Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Samuel Carthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Ln, NR4 7UZ Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
9
|
Tao Y, He C, Lin D, Gu Z, Pu W. Comprehensive Identification of Mitochondrial Pseudogenes (NUMTs) in the Human Telomere-to-Telomere Reference Genome. Genes (Basel) 2023; 14:2092. [PMID: 38003036 PMCID: PMC10671835 DOI: 10.3390/genes14112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Practices related to mitochondrial research have long been hindered by the presence of mitochondrial pseudogenes within the nuclear genome (NUMTs). Even though partially assembled human reference genomes like hg38 have included NUMTs compilation, the exhaustive NUMTs within the only complete reference genome (T2T-CHR13) remain unknown. Here, we comprehensively identified the fixed NUMTs within the reference genome using human pan-mitogenome (HPMT) from GeneBank. The inclusion of HPMT serves the purpose of establishing an authentic mitochondrial DNA (mtDNA) mutational spectrum for the identification of NUMTs, distinguishing it from the polymorphic variations found in NUMTs. Using HPMT, we identified approximately 10% of additional NUMTs in three human reference genomes under stricter thresholds. And we also observed an approximate 6% increase in NUMTs in T2T-CHR13 compared to hg38, including NUMTs on the short arms of chromosomes 13, 14, and 15 that were not assembled previously. Furthermore, alignments based on 20-mer from mtDNA suggested the presence of more mtDNA-like short segments within the nuclear genome, which should be avoided for short amplicon or cell free mtDNA detection. Finally, through the assay of transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) on cell lines before and after mtDNA elimination, we concluded that NUMTs have a minimal impact on bulk ATAC-seq, even though 16% of sequencing data originated from mtDNA.
Collapse
Affiliation(s)
- Yichen Tao
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Chengpeng He
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Deng Lin
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
| | - Zhenglong Gu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China; (Y.T.); (D.L.)
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511458, China;
| |
Collapse
|
10
|
Namasivayam S, Sun C, Bah AB, Oberstaller J, Pierre-Louis E, Etheridge RD, Feschotte C, Pritham EJ, Kissinger JC. Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma. Proc Natl Acad Sci U S A 2023; 120:e2308569120. [PMID: 37917792 PMCID: PMC10636329 DOI: 10.1073/pnas.2308569120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Toxoplasma gondii is a zoonotic protist pathogen that infects up to one third of the human population. This apicomplexan parasite contains three genome sequences: nuclear (65 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear integrants of mitochondrial DNA) and NUPTs (nuclear integrants of plastid DNA) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome-the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 mya, revealed that the movement and fixation of five NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb), and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together, these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.
Collapse
Affiliation(s)
| | - Cheng Sun
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Assiatu B. Bah
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | | | - Edwin Pierre-Louis
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
| | - Cedric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Ellen J. Pritham
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Jessica C. Kissinger
- Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA30602
| |
Collapse
|
11
|
Namasivayam S, Sun C, Bah AB, Oberstaller J, Pierre-Louis E, Etheridge RD, Feschotte C, Pritham EJ, Kissinger JC. Massive invasion of organellar DNA drives nuclear genome evolution in Toxoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.539837. [PMID: 37293002 PMCID: PMC10245829 DOI: 10.1101/2023.05.22.539837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Toxoplasma gondii is a zoonotic protist pathogen that infects up to 1/3 of the human population. This apicomplexan parasite contains three genome sequences: nuclear (63 Mb); plastid organellar, ptDNA (35 kb); and mitochondrial organellar, mtDNA (5.9 kb of non-repetitive sequence). We find that the nuclear genome contains a significant amount of NUMTs (nuclear DNA of mitochondrial origin) and NUPTs (nuclear DNA of plastid origin) that are continuously acquired and represent a significant source of intraspecific genetic variation. NUOT (nuclear DNA of organellar origin) accretion has generated 1.6% of the extant T. gondii ME49 nuclear genome; the highest fraction ever reported in any organism. NUOTs are primarily found in organisms that retain the non-homologous end-joining repair pathway. Significant movement of organellar DNA was experimentally captured via amplicon sequencing of a CRISPR-induced double-strand break in non-homologous end-joining repair competent, but not ku80 mutant, Toxoplasma parasites. Comparisons with Neospora caninum, a species that diverged from Toxoplasma ~28 MY ago, revealed that the movement and fixation of 5 NUMTs predates the split of the two genera. This unexpected level of NUMT conservation suggests evolutionary constraint for cellular function. Most NUMT insertions reside within (60%) or nearby genes (23% within 1.5 kb) and reporter assays indicate that some NUMTs have the ability to function as cis-regulatory elements modulating gene expression. Together these findings portray a role for organellar sequence insertion in dynamically shaping the genomic architecture and likely contributing to adaptation and phenotypic changes in this important human pathogen.
Collapse
Affiliation(s)
- Sivaranjani Namasivayam
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Present address: Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD 20892, USA
| | - Cheng Sun
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA; Present address: College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Assiatu B Bah
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| | - Jenna Oberstaller
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Present address: Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | - Edwin Pierre-Louis
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Cedric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Ellen J. Pritham
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019
| | - Jessica C. Kissinger
- Department of Genetics, Institute of Bioinformatics, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Zhou W, Karan KR, Gu W, Klein HU, Sturm G, De Jager PL, Bennett DA, Hirano M, Picard M, Mills RE. Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527065. [PMID: 36778249 PMCID: PMC9915708 DOI: 10.1101/2023.02.03.527065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species 1-3 and recently demonstrated to occur in rare instances from one human generation to the next 4. Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals. Compared to circulating immune cells (n=389), post-mitotic brain tissue (n=798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, more brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures WGS design in a human fibroblast model that recapitulates several molecular hallmarks of aging 5. These longitudinal experiments revealed a gradual accumulation of one Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human post-mitotic tissues produce functionally-relevant human Numts over timescales shorter than previously assumed.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kalpita R. Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Michio Hirano
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Triant DA, Pearson WR. Comparison of detection methods and genome quality when quantifying nuclear mitochondrial insertions in vertebrate genomes. Front Genet 2022; 13:984513. [PMID: 36482890 PMCID: PMC9723244 DOI: 10.3389/fgene.2022.984513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/03/2022] [Indexed: 01/27/2024] Open
Abstract
The integration of mitochondrial genome fragments into the nuclear genome is well documented, and the transfer of these mitochondrial nuclear pseudogenes (numts) is thought to be an ongoing evolutionary process. With the increasing number of eukaryotic genomes available, genome-wide distributions of numts are often surveyed. However, inconsistencies in genome quality can reduce the accuracy of numt estimates, and methods used for identification can be complicated by the diverse sizes and ages of numts. Numts have been previously characterized in rodent genomes and it was postulated that they might be more prevalent in a group of voles with rapidly evolving karyotypes. Here, we examine 37 rodent genomes, and an additional 26 vertebrate genomes, while also considering numt detection methods. We identify numts using DNA:DNA and protein:translated-DNA similarity searches and compare numt distributions among rodent and vertebrate taxa to assess whether some groups are more susceptible to transfer. A combination of protein sequence comparisons (protein:translated-DNA) and BLASTN genomic DNA searches detect 50% more numts than genomic DNA:DNA searches alone. In addition, higher-quality RefSeq genomes produce lower estimates of numts than GenBank genomes, suggesting that lower quality genome assemblies can overestimate numts abundance. Phylogenetic analysis shows that mitochondrial transfers are not associated with karyotypic diversity among rodents. Surprisingly, we did not find a strong correlation between numt counts and genome size. Estimates using DNA: DNA analyses can underestimate the amount of mitochondrial DNA that is transferred to the nucleus.
Collapse
Affiliation(s)
- Deborah A. Triant
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
14
|
Dong R, Cameron D, Bedo J, Papenfuss AT. svaRetro and svaNUMT: modular packages for annotating retrotransposed transcripts and nuclear integration of mitochondrial DNA in genome sequencing data. GIGABYTE 2022; 2022:gigabyte70. [PMID: 36824522 PMCID: PMC9694029 DOI: 10.46471/gigabyte.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
Abstract
Nuclear integration of mitochondrial genomes and retrocopied transcript insertion are biologically important but often-overlooked aspects of structural variant (SV) annotation. While tools for their detection exist, these typically rely on reanalysis of primary data using specialised detectors rather than leveraging calls from general purpose structural variant callers. Such reanalysis potentially leads to additional computational expense and does not take advantage of advances in general purpose structural variant calling. Here, we present svaRetro and svaNUMT; R packages that provide functions for annotating novel genomic events, such as nonreference retrocopied transcripts and nuclear integration of mitochondrial DNA. The packages were developed to work within the Bioconductor framework. We evaluate the performance of these packages to detect events using simulations and public benchmarking datasets, and annotate processed transcripts in a public structural variant database. svaRetro and svaNUMT provide modular, SV-caller agnostic tools for downstream annotation of structural variant calls.
Collapse
Affiliation(s)
- Ruining Dong
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, VIC 3010, Australia
| | - Daniel Cameron
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, VIC 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Justin Bedo
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- School of Computing and Information Systems, University of Melbourne, VIC 3010, Australia
| | - Anthony T. Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, VIC 3010, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
15
|
Hazkani-Covo E. A Burst of Numt Insertion in the Dasyuridae Family During Marsupial Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nuclear pseudogenes of mitochondrial origin (numts) are common in all eukaryotes. Our previous scan of numts in sequenced nuclear genomes suggested that the highest numt content currently known in animals is that in the gray short-tailed opossum. The present work sought to determine numt content in marsupials and to compare it to those in placental and monothematic mammals as well as in non-mammalian vertebrates. To achieve this, 70 vertebrate species with available nuclear and mitochondrial genomes were scanned for numt content. An extreme numt content was found in the Dasyuridae, with 3,450 in Sarcophilus harrisii (1,955 kb) and 2,813 in Antechinus flavipes (847 kb). The evolutionarily closest species analyzed, the extinct Thylacinus cynocephalus belonging to the Thylacindae family, had only 435 numts (238 kb). These two Dasyuridae genomes featured the highest numt content identified in animals to date. A phylogenetic analysis of numts longer than 300 bp, using a Diprotodonita mitochondrial tree, indicated a burst of numt insertion that began before the divergence of the Dasyurini and Phascogalini, reaching a peak in the early evolution of the two tribes. No comparable increase was found in the early divergent species T. cynocephalus. Divergence of the Dasyuridae tribes has been previously dated to shortly after the Miocene climate transition, characterized by a rapid temperature decline. Interestingly, deviation from optimal growth temperature is one of the environmental factors reported to increase numt insertions in a laboratory setting.
Collapse
|