1
|
Wahid HH, Anahar FN, Isahak NH, Mohd Zoharodzi J, Mohammad Khoiri SNL, Mohamad Zainal NH, Kamarudin N, Ismail H, Mustafa Mahmud MIA. Role of Platelet Activating Factor as a Mediator of Inflammatory Diseases and Preterm Delivery. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:862-878. [PMID: 38403163 DOI: 10.1016/j.ajpath.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.
Collapse
Affiliation(s)
- Hanan H Wahid
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia.
| | - Fatin N Anahar
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Isahak
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Juwairiyah Mohd Zoharodzi
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Siti N L Mohammad Khoiri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Mohamad Zainal
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Norhidayah Kamarudin
- Department of Pathology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Hamizah Ismail
- Department of Obstetrics & Gynaecology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Mohammed I A Mustafa Mahmud
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| |
Collapse
|
2
|
The role of platelet-activating factor in mesangial pathophysiology. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:888-96. [PMID: 25655028 DOI: 10.1016/j.ajpath.2014.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023]
Abstract
Platelet-activating factor (PAF) is a powerful proinflammatory mediator that displays an exceedingly diverse spectrum of biological effects. Importantly, PAF is shown to participate in a broad range of pathologic conditions. This review focuses on the role that PAF plays specifically in the pathophysiology of the kidney, the organ that is both a source and a target of PAF. Renal mesangial cells are responsible for glomerular PAF generation and, ultimately, are the victims of its excessive production. Mesangial pathology is widely acknowledged to reflect glomerular damage, which culminates in glomerulosclerosis and proteinuria. Therefore, modulation of mesangial cell responses would offer a pathophysiology-based therapeutic approach to prevent glomerular injury. However, the currently available therapeutic modalities do not allow for targeted intervention into these processes. A more profound understanding of the mechanisms that govern PAF metabolism and signaling in mesangial cells is important, because it could facilitate the quest for improved therapies for renal patients on the basis of PAF as a drug target.
Collapse
|
3
|
Gregson J, Stirnadel-Farrant HA, Doobaree IU, Koro C. Variation of lipoprotein associated phospholipase A2 across demographic characteristics and cardiovascular risk factors: a systematic review of the literature. Atherosclerosis 2012; 225:11-21. [PMID: 22784637 DOI: 10.1016/j.atherosclerosis.2012.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Lipoprotein association phospholipase A2 (Lp-PLA(2)), an enzyme which has been found in atherosclerotic plaque is currently under investigation in large Phase III clinical trials of vascular disease prevention. We assessed in a variety of different population settings variation of Lp-PLA(2) mass and activity across gender, ethnicity, diabetes, kidney disease and metabolic syndrome. We also assessed correlations with measures of circulating lipids, systemic inflammation and adiposity. METHODS Systematic review of studies measuring Lp-PLA(2) and at least one of the relevant characteristics in >50 participants. RESULTS We identified a total of 77 studies involving 102,499 participants meeting the inclusion criteria. Lp-PLA(2) mass and activity were consistently approximately 10% higher in males than females and 15% higher in Caucasians than African Americans or Hispanics. There were no clear associations of Lp-PLA(2) mass or activity with type II diabetes, markers of systemic inflammation (C-reactive protein, fibrinogen) or with body mass index. Correlations of Lp-PLA(2) mass or activity with low density lipoprotein cholesterol and apolipoprotein B were moderate and positive, whilst correlations with high density lipoprotein cholesterol were negative and moderate to weak. There was no clear differences in associations with any of the above characteristics in groups defined based upon prevalent cardiovascular disease or its risk factors. CONCLUSIONS Despite considerable variability in absolute levels of Lp-PLA(2) across studies, the variability of Lp-PLA(2) across gender, ethnicity, and levels of circulating lipids and markers of systemic inflammation are more consistent and appear not to vary importantly across categories defined by CVD or its risk factors.
Collapse
Affiliation(s)
- John Gregson
- Department of Public Healthy and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom.
| | | | | | | |
Collapse
|
4
|
Ramos CDL, Fernandes KSS, Canetti C, Teixeira MM, Silva JS, Cunha FQ. Neutrophil recruitment in immunized mice depends on MIP-2 inducing the sequential release of MIP-1alpha, TNF-alpha and LTB(4). Eur J Immunol 2006; 36:2025-34. [PMID: 16856209 DOI: 10.1002/eji.200636057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neutrophils are thought to play an important role in the tissue damage observed in various autoimmune diseases. Chemokines, cytokines and leukotrienes have recognized roles in the orchestration of neutrophil migration. We have recently shown that antigen-induced neutrophil migration into the peritoneum of immunized mice is mediated by macrophage-inflammatory protein (MIP)-1alpha which interacts with CCR1 and induces the sequential release of TNF-alpha and leukotriene B(4) (LTB(4)). The present study investigates the role of MIP-2 and CXCR2 in the cascade of events leading to mediator generation and neutrophil influx. Antigen challenge of immunized mice induced the expression of CXCR2 and the production of KC and MIP-2 proteins. Antigen-induced neutrophil migration was inhibited by a CXCR2 receptor antagonist (repertaxin) or an anti-MIP-2 antibody, but not by an anti-KC antibody. Administration of MIP-2 promoted a dose-dependent neutrophil migration in naive mice which was inhibited by repertaxin, anti-TNF-alpha, anti-MIP-1alpha antibodies or by MK886 (leukotriene synthesis inhibitor). MIP-2 administration induced the release of MIP-1alpha, TNF-alpha and LTB(4), and the release of the latter two was inhibited by anti-MIP-1alpha antibody treatment. Our studies highlight the intricate balance between mediator production and action during an immune-mediated inflammatory response and suggest a mediator cascade leading to neutrophil influx following antigen challenge of immunized mice: MIP-2 --> MIP-1alpha --> TNF-alpha --> LTB(4).
Collapse
Affiliation(s)
- Cleber D L Ramos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Fragopoulou E, Iatrou C, Antonopoulou S, Ruan XZ, Fernando RL, Powis SH, Moorhead JF, Varghese Z. Platelet-activating factor (PAF) increase intracellular lipid accumulation by increasing both LDL and scavenger receptors in human mesangial cells. ACTA ACUST UNITED AC 2006; 147:281-9. [PMID: 16750665 DOI: 10.1016/j.lab.2006.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/24/2006] [Accepted: 01/25/2006] [Indexed: 11/28/2022]
Abstract
Intra- and extracellular lipid accumulation and the production of inflammatory mediators by renal and accessory cells may play an important role in the initiation and progression of these lesions. Platelet activating factor (PAF) is a biologically active phospholipid that is produced by various cells upon activation by different stimuli. It has been suggested that PAF plays a role in atherogenesis, and several studies indicated its participation in the pathogenesis of renal diseases. The aim of this study is to investigate the role of PAF on intracellular lipid accumulation and gene regulation of lipoprotein receptors in human mesangial cells (HMCs). A human mesangial cell line (HMC) was used to study the effects of PAF on foam cell formation by Oil red O staining and on the expression of LDLr, SR-AI, and PAF-R mRNA using RT-PCR. Native LDL caused foam cell formation in HMC in the presence of PAF. PAF enhanced LDLr expression and overrode LDL receptor suppression induced by a high concentration of LDL. Moreover, it enhanced SR-AI expression. PAF also caused increase in PAF-R expression. The above data suggest that PAF enhances its own receptor expression and then increases lipid accumulation by dysregulating LDL receptor regulation and inducing scavenger receptor expression in HMCs. These results suggest that PAF has a potential role in lipid mediated renal injury.
Collapse
MESH Headings
- Cell Line, Transformed
- Cholesterol, LDL/pharmacokinetics
- Foam Cells/cytology
- Foam Cells/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/physiopathology
- Humans
- Lipid Metabolism/drug effects
- Lipid Metabolism/physiology
- Mesangial Cells/cytology
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Platelet Activating Factor/metabolism
- Platelet Activating Factor/pharmacology
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- RNA, Messenger/analysis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
- Tritium
Collapse
Affiliation(s)
- Elizabeth Fragopoulou
- Faculty of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fragopoulou E, Iatrou C, Demopoulos CA. Characterization of acetyl-CoA: lyso-PAF acetyltransferase of human mesangial cells. Mediators Inflamm 2006; 2005:263-72. [PMID: 16258193 PMCID: PMC1533888 DOI: 10.1155/mi.2005.263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Platelet activating factor (PAF) is a potent inflammatory mediator
produced by various renal cells and it is implicated in renal
pathology. The aim of this study is the characterization of
remodeling lyso-PAF acetyltransferase, which is activated
under inflammatory conditions, in human mesangial cell. Total
membranes of mesangial cells were isolated and enzymatic activity
and kinetic parameters were determined by trichloroacetic
acid precipitation method. The effect of BSA, divalent cations,
EDTA, and various chemicals on the activity of lyso-PAF
acetyltransferase was also studied. Various detergents were also
tested for the solubilization of the enzyme and only glycerol did
not affect its activity. Partial purification of solubilized
enzyme preparations of human kidney tissue and mesangial cells was
performed on anion exchange column chromatography and native-PAGE
electrophoresis and two active fractions were detected.
Collapse
Affiliation(s)
- Elizabeth Fragopoulou
- Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Athens, Greece
| | - Christos Iatrou
- Centre for Nephrology, G. Papadakis General Hospital of Nikea-Pireaus, 18454 Athens, Greece
| | - Constantinos Alexandros Demopoulos
- Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Athens, Greece
- * Constantinos Alexandros Demopoulos;
| |
Collapse
|
7
|
Denizot Y, Liozon E, Guglielmi L, Ly K, Soria P, Loustaud V, Vidal E, Jauberteau MO. No evidence for a putative involvement of platelet-activating factor in systemic lupus erythematosus without active nephritis. Mediators Inflamm 2003; 12:101-105. [PMID: 12775360 PMCID: PMC1781601 DOI: 10.1080/0962935031000097718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Platelet-activating factor (PAF) seems to be implicated in systemic lupus erythematosus (SLE) patients with associated renal diseases. AIMS In this study, we ensured the role of PAF in SLE patients without renal complications. METHODS Blood PAF and acetylhydrolase activity, plasma soluble phospholipase A(2), and the presence of antibodies against PAF were investigated in 17 SLE patients without active nephritis and in 17 healthy controls. RESULTS Blood PAF levels were not different (p=0.45) between SLE patients (6.7+/-2.8 pg/ml) and healthy subjects (9.6+/-3.1 pg/ml). Plasma acetylhydrolase activity (the PAF-degrading enzyme) was significantly (p=0.03) elevated in SLE patients (57.8+/-6.4 nmol/min/ml) as compared with controls (37.9+/-2.6 nmol/min/ml). Plasma soluble phospholipase A(2) (the key enzyme for PAF formation) was not different (p=0.6) between SLE patients (59.1+/-5.1 U/ml) and controls (54.7+/-2.4 U/ml). Antibodies against PAF were detected only in 3/17 SLE patients. Flow cytometry analysis did not highlight PAF receptors on circulating leukocytes of SLE patients. CONCLUSION This clinical study highlights no evidence for a putative important role of PAF in SLE patients without active nephritis.
Collapse
Affiliation(s)
- Yves Denizot
- UMR CNRS 6101, Laboratoire d'Immunologie, Faculté de Médecine, 2 rue Dr Marcland, 87025 Limoges, France.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yoon HJ, Kim H, Kim HL, Lee SG, Zheng SH, Shin JH, Lim CS, Kim S, Lee JS, Lee DS, Kim YS. Interdependent effect of angiotensin-converting enzyme and platelet-activating factor acetylhydrolase gene polymorphisms on the progression of immunoglobulin A nephropathy. Clin Genet 2002; 62:128-34. [PMID: 12220450 DOI: 10.1034/j.1399-0004.2002.620205.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to investigate the interdependent action of the insertion/deletion polymorphism of the angiotensin-converting enzyme (ACE) gene and polymorphism in exon 11 (C1136-->T; Ala379Val) of the platelet-activating factor acetylhydrolase (PAF-AH) gene, which encodes a functional antagonist of PAF, on the progression of immunoglobulin A (IgA) nephropathy, we analysed both polymorphisms in patients with primary IgA nephropathy, who were followed-up for longer than 3 years. During the follow-up (87.3 +/- 50.0 months), the disease progressed in 38 of the 191 patients (19.9%). The D allele of the ACE gene in the absence of the T allele of the PAF-AH gene did not affect the prognosis [odds ratio (OR), 3.6; 95% confidence interval (CI), 0.8-16.4] and neither did the T allele in the absence of the D allele (OR, 3.0; 95% CI, 0.4-24.2). However, the presence of both was a significant prognostic factor (OR, 6.6; 95% CI, 1.4-31.3). After adjusting for other risk factors, the presence of both proved to be an independent risk factor (OR, 4.5; 95% CI, 1.6-12.7). These results suggest that the interdependent effects of ACE and PAF-AH polymorphisms on the progression of IgA nephropathy might be more important than the effect of the individual polymorphisms.
Collapse
Affiliation(s)
- H-J Yoon
- Seoul Clinical Genomics Inc, Seoul, Korea, School of Public Health, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|