1
|
Liu PJ, Sayeeda K, Zhuang C, Krendel M. Roles of myosin 1e and the actin cytoskeleton in kidney functions and familial kidney disease. Cytoskeleton (Hoboken) 2024; 81:737-752. [PMID: 38708443 PMCID: PMC11538376 DOI: 10.1002/cm.21861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Mammalian kidneys are responsible for removing metabolic waste and maintaining fluid and electrolyte homeostasis via selective filtration. One of the proteins closely linked to selective renal filtration is myosin 1e (Myo1e), an actin-dependent molecular motor found in the specialized kidney epithelial cells involved in the assembly and maintenance of the renal filter. Point mutations in the gene encoding Myo1e, MYO1E, have been linked to familial kidney disease, and Myo1e knockout in mice leads to the disruption of selective filtration. In this review, we discuss the role of the actin cytoskeleton in renal filtration, the known and hypothesized functions of Myo1e, and the possible explanations for the impact of MYO1E mutations on renal function.
Collapse
Affiliation(s)
- Pei-Ju Liu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kazi Sayeeda
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Cindy Zhuang
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Mira Krendel
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
Li X, Xu Y, Si JX, Gu F, Ma YY. Role of Agrin in tissue repair and regeneration: From mechanisms to therapeutic opportunities (Review). Int J Mol Med 2024; 54:98. [PMID: 39301653 PMCID: PMC11410309 DOI: 10.3892/ijmm.2024.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Tissue regeneration is a complex process that involves the recruitment of various types of cells for healing after injury; it is mediated by numerous precise interactions. However, the identification of effective targets for improving tissue regeneration remains a challenge. As an extracellular matrix protein, Agrin plays a critical role in neuromuscular junction formation. Furthermore, recent studies have revealed the role of Agrin in regulating tissue proliferation and regeneration, which contributes to the repair process of injured tissues. An in‑depth understanding of the role of Agrin will therefore be of value. Given that repair and regeneration processes occur in various parts of the human body, the present systematic review focuses on the role of Agrin in typical tissue and highlights the potential signaling pathways that are involved in Agrin‑induced repair and regeneration. This review offers important insight into novel strategies for the future clinical applications of Agrin‑based therapies, which may represent a feasible treatment option for patients who require organ replacement or repair.
Collapse
Affiliation(s)
- Xiang Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan Xu
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang 315048, P.R. China
| | - Jing-Xing Si
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Gu
- Department of Paediatrics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying-Yu Ma
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
3
|
Patel VN, Ball JR, Choi SH, Lane ED, Wang Z, Aure MH, Villapudua CU, Zheng C, Bleck C, Mohammed H, Syed Z, Liu J, Hoffman MP. Loss of 3-O-sulfotransferase enzymes, Hs3st3a1 and Hs3st3b1, reduces kidney and glomerular size and disrupts glomerular architecture. Matrix Biol 2024; 133:134-149. [PMID: 38944161 PMCID: PMC11402573 DOI: 10.1016/j.matbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Heparan sulfate (HS) is an important component of the kidney anionic filtration barrier, the glomerular basement membrane (GBM). HS chains attached to proteoglycan protein cores are modified by sulfotransferases in a highly ordered series of biosynthetic steps resulting in immense structural diversity due to negatively charged sulfate modifications. 3-O-sulfation is the least abundant modification generated by a family of seven isoforms but creates the most highly sulfated HS domains. We analyzed the kidney phenotypes in the Hs3st3a1, Hs3st3b1 and Hs3st6 -knockout (KO) mice, the isoforms enriched in kidney podocytes. Individual KO mice show no overt kidney phenotype, although Hs3st3b1 kidneys were smaller than wildtype (WT). Furthermore, Hs3st3a1-/-; Hs3st3b1-/- double knockout (DKO) kidneys were smaller but also had a reduction in glomerular size relative to wildtype (WT). Mass spectrometry analysis of kidney HS showed reduced 3-O-sulfation in Hs3st3a1-/- and Hs3st3b1-/-, but not in Hs3st6-/- kidneys. Glomerular HS showed reduced HS staining and reduced ligand-and-carbohydrate engagement (LACE) assay, a tool that detects changes in binding of growth factor receptor-ligand complexes to HS. Interestingly, DKO mice have increased levels of blood urea nitrogen, although no differences were detected in urinary levels of albumin, creatinine and nephrin. Finally, transmission electron microscopy showed irregular and thickened GBM and podocyte foot process effacement in the DKO compared to WT. Together, our data suggest that loss of 3-O-HS domains disrupts the kidney glomerular architecture without affecting the glomerular filtration barrier and overall kidney function.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| | - James R Ball
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Sophie H Choi
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ethan D Lane
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Carlos U Villapudua
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Changyu Zheng
- Translational Research Core, Nationa Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Christopher Bleck
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Heba Mohammed
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Zulfeqhar Syed
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
4
|
Leroy C, Lang K, Spitz D, Milosavljevic J, Heinkele H, Kayser S, Helmstädter M, Walz G, Ulbrich MH, Hermle T. Linking Basement Membrane and Slit Diaphragm in Drosophila Nephrocytes. J Am Soc Nephrol 2024; 35:00001751-990000000-00329. [PMID: 38776165 PMCID: PMC11387032 DOI: 10.1681/asn.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/17/2024] [Indexed: 05/24/2024] Open
Abstract
Key Points
Drosophila nephrocytes feature a special basement membrane that may serve to model joint function of the glomerular filtration barrier.Silencing of Drosophila laminin and collagen IV genes reduced the density of slit diaphragms in nephrocytes, showing a direct effect of the matrix.Matrix receptor silencing phenocopied basement membrane disruption, indicating that the matrix guides slit diaphragm position through matrix receptors.
Background
The glomerular basement membrane and the slit diaphragm are essential parts of the filtration barrier. How these layers collaborate remains unclear. The podocyte-like nephrocytes in Drosophila harbor both a slit diaphragm and a basement membrane, serving as a model to address this critical question.
Methods
Basement membrane components and matrix receptors were silenced using RNA interference in nephrocytes. Slit diaphragms were analyzed using immunofluorescence, followed by automated quantification. Tracer endocytosis was applied for functional readouts.
Results
Immunofluorescence indicated a significant reduction in slit diaphragm density upon loss of laminin and collagen IV components. This was accompanied by reduced expression of fly nephrin and shallower membrane invaginations. Tracer studies revealed that the basement membrane defines properties of the nephrocyte filtration barrier. Acute enzymatic disruption of the basement membrane via collagenase rapidly caused slit diaphragm mislocalization and disintegration, which was independent of cell death. Loss of matrix-interacting receptors, particularly integrins mys and mew, phenocopied basement membrane disruption. Integrins and nephrin colocalized at the slit diaphragm in nephrocytes in a mutually dependent manner, interacting genetically. Human integrin α3 interacted physically with nephrin.
Conclusions
The glomerular basement membrane model in Drosophila nephrocytes reveals that matrix receptor–mediated cues ensure correct positioning of the slit diaphragm and the overall filtration barrier architecture.
Collapse
Grants
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 â€" SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/6-1 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
- HE 7456/4-1, HE 7456/7-1, and project-ID 431984000 - SFB 1453 Deutsche Forschungsgemeinschaft
Collapse
Affiliation(s)
- Claire Leroy
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Konrad Lang
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Dominik Spitz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Julian Milosavljevic
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Helena Heinkele
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Séverine Kayser
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- EMcore, Renal Division, Department of Medicine, University Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Martin Helmstädter
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- EMcore, Renal Division, Department of Medicine, University Hospital Freiburg, University Faculty of Medicine, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Gamez M, Elhegni HE, Fawaz S, Ho KH, Campbell NW, Copland DA, Onions KL, Butler MJ, Wasson EJ, Crompton M, Ramnath RD, Qiu Y, Yamaguchi Y, Arkill KP, Bates DO, Turnbull JE, Zubkova OV, Welsh GI, Atan D, Satchell SC, Foster RR. Heparanase inhibition as a systemic approach to protect the endothelial glycocalyx and prevent microvascular complications in diabetes. Cardiovasc Diabetol 2024; 23:50. [PMID: 38302978 PMCID: PMC10835837 DOI: 10.1186/s12933-024-02133-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.
Collapse
Affiliation(s)
- Monica Gamez
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| | - Hesham E Elhegni
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Sarah Fawaz
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Kwan Ho Ho
- Department of Computer Science, Merchant Venturers Building, University of Bristol, Woodland Road, Bristol, BS8 1UB, United Kingdom
| | - Neill W Campbell
- Department of Computer Science, Merchant Venturers Building, University of Bristol, Woodland Road, Bristol, BS8 1UB, United Kingdom
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Karen L Onions
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Elizabeth J Wasson
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Michael Crompton
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Raina D Ramnath
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kenton P Arkill
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - David O Bates
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Jeremy E Turnbull
- Centre for Glycoscience, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Olga V Zubkova
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt, 5046, New Zealand
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Denize Atan
- Academic Unit of Ophthalmology, Translational Health Sciences, Bristol Medical School, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, BS1 2LX, United Kingdom
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| |
Collapse
|
6
|
De Souza Cordeiro LM, Atkinson KC, Aivazian A, Joyce PF, Jia F, Mascioni A. Electrostatic properties of human germlines and biodistribution of small biologics. MAbs 2024; 16:2311991. [PMID: 38334129 PMCID: PMC10860348 DOI: 10.1080/19420862.2024.2311991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Off-target biodistribution of biologics bears important toxicological consequences. Antibody fragments intended for use as vectors of cytotoxic payloads (e.g. antibody-drug conjugates, radiotherapy) can accumulate at clearance organs like kidneys and liver, where they can cause dose-limiting toxicities. Renal and hepatic uptakes are known to be affected by protein electrostatics, which promote protein internalization through pinocytosis. Using minibodies as a model of an antibody fragment lacking FcRn recycling, we compared the biodistributions of leads with different degrees of accumulation at the kidney and liver. We identified a positive electrostatic patch highly conserved in a germline family very commonly used in the humanization of approved biologics. Neutralization of this patch led to a drastic reduction in the kidney uptake, leading to a biodistribution more favorable to the delivery of highly cytotoxic payloads. Next, we conducted a high throughput study of the electrostatic properties for all combinations of VH and VL germlines. This analysis shows how different VH/VL combinations exhibit varying tendencies to create electrostatic patches, resulting in Fv variants with different isoelectric points. Our work emphasizes the importance of carefully selecting germlines for humanization with optimal electrostatic properties in order to control the unspecific tissue uptake of low molecular weight biologics.
Collapse
Affiliation(s)
| | | | - Argin Aivazian
- Preclinical discovery, ImaginAb, Inc, Inglewood, CA, USA
| | | | - Fang Jia
- Preclinical discovery, ImaginAb, Inc, Inglewood, CA, USA
| | | |
Collapse
|
7
|
Sabiu G, Kasinath V, Jung S, Li X, Tsokos GC, Abdi R. Targeted nanotherapy for kidney diseases: a comprehensive review. Nephrol Dial Transplant 2023; 38:1385-1396. [PMID: 35945647 PMCID: PMC10229287 DOI: 10.1093/ndt/gfac233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney diseases represent a major public health problem, affecting millions of people worldwide. Moreover, the treatment of kidney diseases is burdened by the problematic effects of conventional drug delivery, such as systemic drug toxicity, rapid drug clearance, and the absence of precise targeting of the kidney. Although the use of nanotechnology in medicine is in its early stage and lacks robust translational studies, nanomedicines have already shown great promise as novel drug-delivery systems for the treatment of kidney disease. On the basis of our current knowledge of renal anatomy and physiology, pathophysiology of kidney diseases, and physicochemical characteristics of nanoparticles, an expansive repertoire and wide use of nanomedicines could be developed for kidney diseases in the near future. Some limitations have slowed the transition of these agents from preclinical studies to clinical trials, however. In this review, we summarize the current knowledge on renal drug-delivery systems and recent advances in renal cell targeting; we also demonstrate their important potential as future paradigm-shifting therapies for kidney diseases.
Collapse
Affiliation(s)
- Gianmarco Sabiu
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Nephrology, University of Milan, Milan, Italy
| | - Vivek Kasinath
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofei Li
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 14:460-480. [PMID: 37273258 PMCID: PMC10236994 DOI: 10.4239/wjd.v14.i5.460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. Microalbuminuria is the primary clinical marker used to identify DKD, and its initiating step in diabetes is glomerular endothelial cell dysfunction, particularly glycocalyx impairment. The glycocalyx found on the surface of glomerular endothelial cells, is a dynamic hydrated layer structure composed of pro-teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces the negative charge barrier, transduces the shear stress, and mediates the interaction of blood corpuscles and podocytes with endothelial cells. In the high-glucose environment of diabetes, excessive reactive oxygen species and proinflammatory cytokines can damage the endothelial glycocalyx (EG) both directly and indirectly, which induces the production of microalbuminuria. Further research is required to elucidate the role of the podocyte glycocalyx, which may, together with endothelial cells, form a line of defense against albumin filtration. Interestingly, recent research has confirmed that the negative charge barrier function of the glycocalyx found in the glomerular basement membrane and its repulsion effect on albumin is limited. Therefore, to improve the early diagnosis and treatment of DKD, the potential mechanisms of EG degradation must be analyzed and more responsive and controllable targets must be explored. The content of this review will provide insights for future research.
Collapse
Affiliation(s)
- Hui Yu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Yun Song
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xian-Hua Li
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
9
|
Monti E, Sarto F, Sartori R, Zanchettin G, Löfler S, Kern H, Narici MV, Zampieri S. C-terminal agrin fragment as a biomarker of muscle wasting and weakness: a narrative review. J Cachexia Sarcopenia Muscle 2023; 14:730-744. [PMID: 36772862 PMCID: PMC10067498 DOI: 10.1002/jcsm.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and ImmunologyStanford School of MedicineStanfordCAUSA
| | - Fabio Sarto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Roberta Sartori
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Gianpietro Zanchettin
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
| | - Marco Vincenzo Narici
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| | - Sandra Zampieri
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Surgery, Oncology, and GastroenterologyUniversity of PadovaPadovaItaly
- Ludwig Boltzmann Institute for Rehabilitation ResearchWienAustria
- Centre of Active AgeingSankt PoeltenAustria
- CIR‐MYO Myology CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
10
|
Naylor RW, Lemarie E, Jackson-Crawford A, Davenport JB, Mironov A, Lowe M, Lennon R. A novel nanoluciferase transgenic reporter measures proteinuria in zebrafish. Kidney Int 2022; 102:815-827. [PMID: 35716957 DOI: 10.1101/2021.07.19.452884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 05/28/2023]
Abstract
The zebrafish is an important animal system for modeling human diseases. This includes kidney dysfunction as the embryonic kidney (pronephros) shares considerable molecular and morphological homology with the human nephron. A key clinical indicator of kidney disease is proteinuria, but a high-throughput readout of proteinuria in the zebrafish is currently lacking. To remedy this, we used the Tol2 transposon system to generate a transgenic zebrafish line that uses the fabp10a liver-specific promoter to over-express a nanoluciferase molecule fused with the D3 domain of Receptor-Associated Protein (a type of molecular chaperone) which we term NL-D3. Using a luminometer, we quantified proteinuria in NL-D3 zebrafish larvae by measuring the intensity of luminescence in the embryo medium. In the healthy state, NL-D3 is not excreted, but when embryos were treated with chemicals that affected either proximal tubular reabsorption (cisplatin, gentamicin) or glomerular filtration (angiotensin II, Hanks Balanced Salt Solution, Bovine Serum Albumin), NL-D3 is detected in fish medium. Similarly, depletion of several gene products associated with kidney disease (nphs1, nphs2, lrp2a, ocrl, col4a3, and col4a4) also induced NL-D3 proteinuria. Treating col4a4 depleted zebrafish larvae (a model of Alport syndrome) with captopril reduced proteinuria in this system. Thus, our findings validate the use of the NL-D3 transgenic zebrafish as a robust and quantifiable proteinuria reporter. Hence, given the feasibility of high-throughput assays in zebrafish, this novel reporter will permit screening for drugs that ameliorate proteinuria, thereby prioritizing candidates for further translational studies.
Collapse
Affiliation(s)
- Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emmanuel Lemarie
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | - J Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Aleksandr Mironov
- EM Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
11
|
Khalil R, Boels MGS, van den Berg BM, Bruijn JA, Rabelink TJ, Hogendoorn PCW, Baelde HJ. Mutations in the heparan sulfate backbone elongating enzymes EXT1 and EXT2 have no major effect on endothelial glycocalyx and the glomerular filtration barrier. Mol Genet Genomics 2022; 297:397-405. [PMID: 35103870 PMCID: PMC8960589 DOI: 10.1007/s00438-022-01854-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Abstract
In this study, the effect of heterozygous germline mutations in the heparan sulfate (HS) glycosaminoglycan chain co-polymerases EXT1 and EXT2 on glomerular barrier function and the endothelial glycocalyx in humans is investigated. Heparan sulfate (HS) glycosaminoglycans are deemed essential to the glomerular filtration barrier, including the glomerular endothelial glycocalyx. Animal studies have shown that loss of HS results in a thinner glycocalyx. Also, decreased glomerular HS expression is observed in various proteinuric renal diseases in humans. A case report of a patient with an EXT1 mutation indicated that this could result in a specific renal phenotype. This patient suffered from multiple osteochondromas, an autosomal dominant disease caused by mono-allelic germline mutations in the EXT1 or EXT2 gene. These studies imply that HS is indeed essential to the glomerular filtration barrier. However, loss of HS did not lead to proteinuria in various animal models. We demonstrate that multiple osteochondroma patients do not have more microalbuminuria or altered glycocalyx properties compared to age-matched controls (n = 19). A search for all Dutch patients registered with both osteochondroma and kidney biopsy (n = 39) showed that an EXT1 or EXT2 mutation does not necessarily lead to specific glomerular morphological phenotypic changes. In conclusion, this study shows that a heterozygous mutation in the HS backbone elongating enzymes EXT1 and EXT2 in humans does not result in (micro)albuminuria, a specific renal phenotype or changes to the endothelial glycocalyx, adding to the growing knowledge on the role of EXT1 and EXT2 genes in pathophysiology.
Collapse
Affiliation(s)
- Ramzi Khalil
- Department of Pathology, Leiden University Medical Center, L1Q, Room P0-107, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Margien G S Boels
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M van den Berg
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan A Bruijn
- Department of Pathology, Leiden University Medical Center, L1Q, Room P0-107, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Ton J Rabelink
- The Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, L1Q, Room P0-107, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, L1Q, Room P0-107, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
12
|
Neill T, Iozzo RV. The Role of Decorin Proteoglycan in Mitophagy. Cancers (Basel) 2022; 14:804. [PMID: 35159071 PMCID: PMC8834502 DOI: 10.3390/cancers14030804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Jandl K, Mutgan AC, Eller K, Schaefer L, Kwapiszewska G. The basement membrane in the cross-roads between the lung and kidney. Matrix Biol 2021; 105:31-52. [PMID: 34839001 DOI: 10.1016/j.matbio.2021.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria; Institute for Lung Health (ILH), Giessen, Germany..
| |
Collapse
|
15
|
Iriyama S, Nishikawa S, Hosoi J, Amano S. Basement Membrane Helps Maintain Epidermal Hyaluronan Content. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1010-1019. [PMID: 33753027 DOI: 10.1016/j.ajpath.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/29/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix of most mammalian tissues, including the epidermis. It is synthesized in epidermis, and mainly metabolized after transfer to the liver via lymphatic vessels in the dermis following its passage through the basement membrane (BM) at the dermal-epidermal junction. The aim of the present study was to investigate the influence of BM integrity on the level of HA in the epidermis. Epidermal HA content was decreased in sun-exposed skin of older subjects, whose BM structure was impaired, compared with sun-exposed young skin and sun-protected skin, in which BM integrity was well maintained. In an organotypic culture model of sun-exposed facial skin, epidermal HA was increased in the presence of inhibitors of BM-degrading matrix metalloproteinases and heparanase. In a skin equivalent model treated with these inhibitors, HA content was increased in the epidermis, but decreased in conditioned medium. These findings suggest that the BM at the dermal-epidermal junction plays an important role in maintaining epidermal HA levels.
Collapse
|
16
|
Kikkawa Y, Hashimoto T, Takizawa K, Urae S, Masuda H, Matsunuma M, Yamada Y, Hamada K, Nomizu M, Liapis H, Hisano M, Akioka Y, Miura K, Hattori M, Miner JH, Harita Y. Laminin β2 variants associated with isolated nephropathy that impact matrix regulation. JCI Insight 2021; 6:145908. [PMID: 33749661 PMCID: PMC8026196 DOI: 10.1172/jci.insight.145908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in LAMB2, encoding laminin β2, cause Pierson syndrome and occasionally milder nephropathy without extrarenal abnormalities. The most deleterious missense mutations that have been identified affect primarily the N-terminus of laminin β2. On the other hand, those associated with isolated nephropathy are distributed across the entire molecule, and variants in the β2 LEa-LF-LEb domains are exclusively found in cases with isolated nephropathy. Here we report the clinical features of mild isolated nephropathy associated with 3 LAMB2 variants in the LEa-LF-LEb domains (p.R469Q, p.G699R, and p.R1078C) and their biochemical characterization. Although Pierson syndrome missense mutations often inhibit laminin β2 secretion, the 3 recombinant variants were secreted as efficiently as WT. However, the β2 variants lost pH dependency for heparin binding, resulting in aberrant binding under physiologic conditions. This suggests that the binding of laminin β2 to negatively charged molecules is involved in glomerular basement membrane (GBM) permselectivity. Moreover, the excessive binding of the β2 variants to other laminins appears to lead to their increased deposition in the GBM. Laminin β2 also serves as a potentially novel cell-adhesive ligand for integrin α4β1. Our findings define biochemical functions of laminin β2 variants influencing glomerular filtration that may underlie the pathogenesis of isolated nephropathy caused by LAMB2 abnormalities.
Collapse
Affiliation(s)
- Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taeko Hashimoto
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan.,Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiichi Takizawa
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiya Urae
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Masuda
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masumi Matsunuma
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuji Yamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Helen Liapis
- Department of Pathology and Immunology and Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Masataka Hisano
- Department of Nephrology, Chiba Children's Hospital, Chiba, Japan
| | - Yuko Akioka
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kenichiro Miura
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yutaka Harita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Neill T, Buraschi S, Kapoor A, Iozzo RV. Proteoglycan-driven Autophagy: A Nutrient-independent Mechanism to Control Intracellular Catabolism. J Histochem Cytochem 2020; 68:733-746. [PMID: 32623955 PMCID: PMC7649965 DOI: 10.1369/0022155420937370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Proteoglycans are rapidly emerging as versatile regulators of intracellular catabolic pathways. This is predominantly achieved via the non-canonical induction of autophagy, a fundamentally and evolutionarily conserved eukaryotic pathway necessary for maintaining organismal homeostasis. Autophagy facilitated by either decorin, a small leucine-rich proteoglycan, or perlecan, a basement membrane heparan sulfate proteoglycan, proceeds independently of ambient nutrient conditions. We found that soluble decorin evokes endothelial cell autophagy and breast carcinoma cell mitophagy by directly interacting with vascular endothelial growth factor receptor 2 (VEGFR2) or the Met receptor tyrosine kinase, respectively. Endorepellin, a soluble, proteolytic fragment of perlecan, induces autophagy and endoplasmic reticulum stress within the vasculature, downstream of VEGFR2. These potent matrix-derived cues transduce key biological information via receptor binding to converge upon a newly discovered nexus of core autophagic machinery comprised of Peg3 (paternally expressed gene 3) for autophagy or mitostatin for mitophagy. Here, we give a mechanistic overview of the nutrient-independent, proteoglycan-driven programs utilized for autophagic or mitophagic progression. We propose that catabolic control of cell behavior is an underlying basis for proteoglycan versatility and may provide novel therapeutic targets for the treatment of human disease.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Simone Buraschi
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Aastha Kapoor
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Renato V Iozzo
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
18
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
19
|
Fuseya S, Suzuki R, Okada R, Hagiwara K, Sato T, Narimatsu H, Yokoi H, Kasahara M, Usui T, Morito N, Yamagata K, Kudo T, Takahashi S. Mice lacking core 1-derived O-glycan in podocytes develop transient proteinuria, resulting in focal segmental glomerulosclerosis. Biochem Biophys Res Commun 2020; 523:1007-1013. [PMID: 31973821 DOI: 10.1016/j.bbrc.2020.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 12/25/2022]
Abstract
The glomerular filtration barrier is composed of podocytes, glomerular basement membrane, and endothelial cells. Disruption of these structures causes several glomerular injuries, such as focal segmental glomerulosclerosis (FSGS). The surface of podocyte apical membranes is coated by negatively charged sialic acids on core 1-derived mucin-type O-glycans. Here, we aimed to investigate the physiological role of core 1-derived O-glycans in the podocytes using adult mice lacking podocyte-specific core 1-derived O-glycans (iPod-Cos). iPod-Cos mice exhibited early and transient proteinuria with foot process effacements and developed typical FSGS-like disease symptoms. To identify the key molecules responsible for the FSGS-like phenotype, we focused on podocalyxin and podoplanin, which possess mucin-type O-glycans. Expression and localization of podocalyxin did not change in iPod-Cos glomeruli. Besides, western blot analysis revealed significantly lower levels of intact podocalyxin in isolated glomeruli of iPod-Cos mice, and high levels of processed forms in iPod-Cos glomeruli, as compared to that in control glomeruli. Conversely, podoplanin mRNA, and protein levels were lower in iPod-Cos mice than in control mice. These results demonstrated that core 1-derived O-glycan on podocytes is required for normal glomerular filtration and may contribute to the stable expression of podocalyxin and podoplanin.
Collapse
Affiliation(s)
- Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Japan
| | - Risa Okada
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kozue Hagiwara
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Japan
| | - Masato Kasahara
- Department of Clinical Research, Nara Medical University Hospital, Japan
| | - Toshiaki Usui
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan.
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan.
| |
Collapse
|
20
|
van der Vlag J, Buijsers B. Heparanase in Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:647-667. [PMID: 32274730 DOI: 10.1007/978-3-030-34521-1_26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.
Collapse
Affiliation(s)
- Johan van der Vlag
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Baranca Buijsers
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Chan GC, Eng DG, Miner JH, Alpers CE, Hudkins K, Chang A, Pippin JW, Shankland SJ. Differential expression of parietal epithelial cell and podocyte extracellular matrix proteins in focal segmental glomerulosclerosis and diabetic nephropathy. Am J Physiol Renal Physiol 2019; 317:F1680-F1694. [PMID: 31630546 PMCID: PMC6962515 DOI: 10.1152/ajprenal.00266.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023] Open
Abstract
In healthy glomeruli, parietal epithelial cell (PEC)-derived extracellular matrix (ECM) proteins include laminin-β1, perlecan, and collagen type IV-α2 and podocyte-specific ECM proteins include laminin-β2, agrin, and collagen type IV-α4. This study aimed to define individual ECM protein isoform expression by PECs in both experimental and human focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy (DN) and to determine if changes were CD44 dependent. In experimental FSGS induced with a cytotoxic podocyte antibody and in the BTBR ob/ob mouse model of DN, PEC-derived protein staining was significantly increased in PECs. Dual staining also showed de novo expression of the podocyte-specific ECM proteins laminin-β2 and agrin in PECs. Similar findings were observed in biopsies from patients with FSGS and DN. Increases in individual ECM proteins colocalized with CD44 in PECs in disease. To determine the role of CD44, FSGS was induced in CD44-/- and CD44+/+ mice. PEC staining for perlecan, collagen type IV-α2, laminin-β2, and agrin were significantly lower in diseased CD44-/- mice compared with diseased CD44+/+ mice. These results show that in experimental and human FSGS and DN, PECs typically in an activated state, produce both PEC-derived and podocyte-specific ECM protein isoforms, and that the majority of these changes were dependent on CD44.
Collapse
Affiliation(s)
- Gek Cher Chan
- Division of Nephrology, University of Washington, Seattle, Washington
- Division of Nephrology, National University Hospital, Singapore
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E Alpers
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kelly Hudkins
- Department of Pathology, University of Washington, Seattle, Washington
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | | |
Collapse
|
22
|
Khalil R, Lalai RA, Wiweger MI, Avramut CM, Koster AJ, Spaink HP, Bruijn JA, Hogendoorn PCW, Baelde HJ. Glomerular permeability is not affected by heparan sulfate glycosaminoglycan deficiency in zebrafish embryos. Am J Physiol Renal Physiol 2019; 317:F1211-F1216. [PMID: 31461353 DOI: 10.1152/ajprenal.00126.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Proteinuria develops when specific components in the glomerular filtration barrier have impaired function. Although the precise components involved in maintaining this barrier have not been fully identified, heparan sulfate proteoglycans are believed to play an essential role in maintaining glomerular filtration. Although in situ studies have shown that a loss of heparan sulfate glycosaminoglycans increases the permeability of the glomerular filtration barrier, recent studies using experimental models have shown that podocyte-specific deletion of heparan sulfate glycosaminoglycan assembly does not lead to proteinuria. However, tubular reabsorption of leaked proteins might have masked an increase in glomerular permeability in these models. Furthermore, not only podocytes but also glomerular endothelial cells are involved in heparan sulfate synthesis in the glomerular filtration barrier. Therefore, we investigated the effect of a global heparan sulfate glycosaminoglycan deficiency on glomerular permeability. We used a zebrafish embryo model carrying a homozygous germline mutation in the ext2 gene. Glomerular permeability was assessed with a quantitative dextran tracer injection method. In this model, we accounted for tubular reabsorption. Loss of anionic sites in the glomerular basement membrane was measured using polyethyleneimine staining. Although mutant animals had significantly fewer negatively charged areas in the glomerular basement membrane, glomerular permeability was unaffected. Moreover, heparan sulfate glycosaminoglycan-deficient embryos had morphologically intact podocyte foot processes. Glomerular filtration remains fully functional despite a global reduction of heparan sulfate.
Collapse
Affiliation(s)
- Ramzi Khalil
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reshma A Lalai
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Cristina M Avramut
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jan A Bruijn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Ferreras L, Moles A, Situmorang GR, El Masri R, Wilson IL, Cooke K, Thompson E, Kusche-Gullberg M, Vivès RR, Sheerin NS, Ali S. Heparan sulfate in chronic kidney diseases: Exploring the role of 3-O-sulfation. Biochim Biophys Acta Gen Subj 2019; 1863:839-848. [PMID: 30794825 DOI: 10.1016/j.bbagen.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
One of the main feature of chronic kidney disease is the development of renal fibrosis. Heparan Sulfate (HS) is involved in disease development by modifying the function of growth factors and cytokines and creating chemokine gradients. In this context, we aimed to understand the function of HS sulfation in renal fibrosis. Using a mouse model of renal fibrosis, we found that total HS 2-O-sulfation was increased in damaged kidneys, whilst, tubular staining of HS 3-O-sulfation was decreased. The expression of HS modifying enzymes significantly correlated with the development of fibrosis with HS3ST1 demonstrating the strongest correlation. The pro-fibrotic factors TGFβ1 and TGFβ2/IL1β significantly downregulated HS3ST1 expression in both renal epithelial cells and renal fibroblasts. To determine the implication of HS3ST1 in growth factor binding and signalling, we generated an in vitro model of renal epithelial cells overexpressing HS3ST1 (HKC8-HS3ST1). Heparin Binding EGF like growth factor (HB-EGF) induced rapid, transient STAT3 phosphorylation in control HKC8 cells. In contrast, a prolonged response was demonstrated in HKC8-HS3ST1 cells. Finally, we showed that both HS 3-O-sulfation and HB-EGF tubular staining were decreased with the development of fibrosis. Taken together, these data suggest that HS 3-O-sulfation is modified in fibrosis and highlight HS3ST1 as an attractive biomarker of fibrosis progression with a potential role in HB-EGF signalling.
Collapse
Affiliation(s)
- Laura Ferreras
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Anna Moles
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Gerhard R Situmorang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Rana El Masri
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Imogen L Wilson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Katie Cooke
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Emily Thompson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Marion Kusche-Gullberg
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | - Neil S Sheerin
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK; Newcastle upon Tyne Hospitals, NHS Foundation Trust, NIHR Newcastle Biomedical Research Centre, United Kingdom
| | - Simi Ali
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK.
| |
Collapse
|
24
|
Aoki S, Saito-Hakoda A, Yoshikawa T, Shimizu K, Kisu K, Suzuki S, Takagi K, Mizumoto S, Yamada S, van Kuppevelt TH, Yokoyama A, Matsusaka T, Sato H, Ito S, Sugawara A. The reduction of heparan sulphate in the glomerular basement membrane does not augment urinary albumin excretion. Nephrol Dial Transplant 2018; 33:26-33. [PMID: 28992095 DOI: 10.1093/ndt/gfx218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 04/23/2017] [Indexed: 01/12/2023] Open
Abstract
Background Heparan sulphate proteoglycan (HSPG) is present in the glomerular basement membrane (GBM) and is thought to play a major role in the glomerular charge barrier. Reductions and structural alterations of HSPG are observed in different types of kidney diseases accompanied by proteinuria. However, their causal relations remain unknown. Methods We generated podocyte-specific exostosin-like 3 gene (Extl3) knockout mice (Extl3KO) using a Cre-loxP recombination approach. A reduction of HSPG was expected in the GBM of these mice, because EXTL3 is involved in its synthesis. Mice were separated into three groups, according to the loads on the glomeruli: a high-protein diet group, a high-protein and high-sodium diet group and a hyperglycaemic group induced by streptozotocin treatment in addition to maintenance on a high-protein and high-sodium diet. The urinary albumin:creatinine ratio was measured at 7, 11, 15 and 19 weeks of age. Renal histology was also investigated. Results Podocyte-specific expression of Cre recombinase was detected by immunohistochemistry. Moreover, immunofluorescent staining demonstrated a significant reduction of HSPG in the GBM. Electron microscopy showed irregularities in the GBM and effacement of the foot processes in Extl3KO. The values of the urinary albumin:creatinine ratio were within the range of microalbuminuria in all groups and did not significantly differ between the control mice and Extl3KO. Conclusions The reduction of HSPG in the GBM did not augment urinary albumin excretion. HSPG's anionic charge appears to contribute little to the glomerular charge barrier.
Collapse
Affiliation(s)
- Satoshi Aoki
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiko Saito-Hakoda
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kyoko Shimizu
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kiyomi Kisu
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Susumu Suzuki
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijyo University, Nagoya, Aichi, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijyo University, Nagoya, Aichi, Japan
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Taiji Matsusaka
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Sato
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Miyagi, Japan
| | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
25
|
Genderen AM, Jansen J, Cheng C, Vermonden T, Masereeuw R. Renal Tubular- and Vascular Basement Membranes and their Mimicry in Engineering Vascularized Kidney Tubules. Adv Healthc Mater 2018; 7:e1800529. [PMID: 30091856 DOI: 10.1002/adhm.201800529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Indexed: 01/09/2023]
Abstract
The high prevalence of chronic kidney disease leads to an increased need for renal replacement therapies. While there are simply not enough donor organs available for transplantation, there is a need to seek other therapeutic avenues as current dialysis modalities are insufficient. The field of regenerative medicine and whole organ engineering is emerging, and researchers are looking for innovative ways to create (part of) a functional new organ. To biofabricate a kidney or its functional units, it is necessary to understand and learn from physiology to be able to mimic the specific tissue properties. Herein is provided an overview of the knowledge on tubular and vascular basement membranes' biochemical components and biophysical properties, and the major differences between the two basement membranes are highlighted. Furthermore, an overview of current trends in membrane technology for developing renal replacement therapies and to stimulate kidney regeneration is provided.
Collapse
Affiliation(s)
- Anne Metje Genderen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Jitske Jansen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Caroline Cheng
- Regenerative Medicine Center UtrechtUniversity Medical Center Utrecht 3584 CT Utrecht The Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center Utrecht 3508 GA Utrecht The Netherlands
- Department of Experimental CardiologyErasmus Medical Center 3015 GD Rotterdam The Netherlands
| | - Tina Vermonden
- Division of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| |
Collapse
|
26
|
Endothelial heparan sulfate deficiency reduces inflammation and fibrosis in murine diabetic nephropathy. J Transl Med 2018; 98:427-438. [PMID: 29330473 PMCID: PMC6247417 DOI: 10.1038/s41374-017-0015-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/22/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023] Open
Abstract
Inflammation plays a vital role in the development of diabetic nephropathy, but the underlying regulatory mechanisms are only partially understood. Our previous studies demonstrated that, during acute inflammation, endothelial heparan sulfate (HS) contributes to the adhesion and transendothelial migration of leukocytes into perivascular tissues by direct interaction with L-selectin and the presentation of bound chemokines. In the current study, we aimed to assess the role of endothelial HS on chronic renal inflammation and fibrosis in a diabetic nephropathy mouse model. To reduce sulfation of HS specifically in the endothelium, we generated Ndst1 f/f Tie2Cre + mice in which N-deacetylase/N-sulfotransferase-1 (Ndst1), the gene that initiates HS sulfation modifications in HS biosynthesis, was expressly ablated in endothelium. To induce diabetes, age-matched male Ndst1 f/f Tie2Cre - (wild type) and Ndst1 f/f Tie2Cre + mice on a C57Bl/6J background were injected intraperitoneally with streptozotocin (STZ) (50 mg/kg) on five consecutive days (N = 10-11/group). Urine and plasma were collected. Four weeks after diabetes induction the animals were sacrificed and kidneys were analyzed by immunohistochemistry and qRT-PCR. Compared to healthy controls, diabetic Ndst1 f/f Tie2Cre - mice showed increased glomerular macrophage infiltration, mannose binding lectin complement deposition and glomerulosclerosis, whereas these pathological reactions were prevented significantly in the diabetic Ndst1 f/f Tie2Cre + animals (all three p < 0.01). In addition, the expression of the podocyte damage marker desmin was significantly higher in the Ndst1 f/f Tie2Cre - group compared to the Ndst1 f/f Tie2Cre + animals (p < 0.001), although both groups had comparable numbers of podocytes. In the cortical tubulo-interstitium, similar analyses show decreased interstitial macrophage accumulation in the diabetic Ndst1 f/f Tie2Cre + animals compared to the diabetic Ndst1 f/f Tie2Cre - mice (p < 0.05). Diabetic Ndst1 f/f Tie2Cre + animals also showed reduced interstitial fibrosis as evidenced by reduced density of αSMA-positive myofibroblasts (p < 0.01), diminished collagen III deposition (p < 0.001) and reduced mRNA expression of collagen I (p < 0.001) and fibronectin (p < 0.001). Our studies indicate a pivotal role of endothelial HS in the development of renal inflammation and fibrosis in diabetic nephropathy in mice. These results suggest that HS is a possible target for therapy in diabetic nephropathy.
Collapse
|
27
|
Abstract
The glomerular basement membrane (GBM) is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1) and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell-matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease.
Collapse
Affiliation(s)
- Christine Chew
- Faculty of Biology Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Faculty of Biology Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
28
|
Vitova L, Tuma Z, Moravec J, Kvapil M, Matejovic M, Mares J. Early urinary biomarkers of diabetic nephropathy in type 1 diabetes mellitus show involvement of kallikrein-kinin system. BMC Nephrol 2017; 18:112. [PMID: 28359252 PMCID: PMC5372325 DOI: 10.1186/s12882-017-0519-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/21/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Additional urinary biomarkers for diabetic nephropathy (DN) are needed, providing early and reliable diagnosis and new insights into its mechanisms. Rigorous selection criteria and homogeneous study population may improve reproducibility of the proteomic approach. METHODS Long-term type 1 diabetes patients without metabolic comorbidities were included, 11 with sustained microalbuminuria (MA) and 14 without MA (nMA). Morning urine proteins were precipitated and resolved by 2D electrophoresis. Principal component analysis (PCA) and Projection to latent structures discriminatory analysis (PLS-DA) were adopted to assess general data validity, to pick protein fractions for identification with mass spectrometry (MS), and to test predictive value of the resulting model. RESULTS Proteins (n = 113) detected in more than 90% patients were considered representative. Unsupervised PCA showed excellent natural data clustering without outliers. Protein spots reaching Variable Importance in Projection score above 1 in PLS (n = 42) were subjected to MS, yielding 33 positive identifications. The PLS model rebuilt with these proteins achieved accurate classification of all patients (R2X = 0.553, R2Y = 0.953, Q2 = 0.947). Thus, multiple earlier recognized biomarkers of DN were confirmed and several putative new biomarkers suggested. Among them, the highest significance was met in kininogen-1. Its activation products detected in nMA patients exceeded by an order of magnitude the amount found in MA patients. CONCLUSIONS Reducing metabolic complexity of the diseased and control groups by meticulous patients' selection allows to focus the biomarker search in DN. Suggested new biomarkers, particularly kininogen fragments, exhibit the highest degree of correlation with MA and substantiate validation in larger and more varied cohorts.
Collapse
Affiliation(s)
- Lenka Vitova
- Department of Internal Medicine, Teaching Hospital Motol, V Uvalu 84, Prague, 5, 150 06, Czech Republic.
| | - Zdenek Tuma
- Proteomic Laboratory, Charles University School of Medicine in Pilsen, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Jiri Moravec
- Proteomic Laboratory, Charles University School of Medicine in Pilsen, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Milan Kvapil
- Department of Internal Medicine, Teaching Hospital Motol, V Uvalu 84, Prague, 5, 150 06, Czech Republic
| | - Martin Matejovic
- Department of Internal Medicine I, Charles University School of Medicine in Pilsen, alej Svobody 80, Pilsen, 304 60, Czech Republic
| | - Jan Mares
- Proteomic Laboratory, Charles University School of Medicine in Pilsen, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.,Department of Internal Medicine I, Charles University School of Medicine in Pilsen, alej Svobody 80, Pilsen, 304 60, Czech Republic
| |
Collapse
|
29
|
Kriz W, Löwen J, Federico G, van den Born J, Gröne E, Gröne HJ. Accumulation of worn-out GBM material substantially contributes to mesangial matrix expansion in diabetic nephropathy. Am J Physiol Renal Physiol 2017; 312:F1101-F1111. [PMID: 28228399 DOI: 10.1152/ajprenal.00020.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Thickening of the glomerular basement membrane (GBM) and expansion of the mesangial matrix are hallmarks of diabetic nephropathy (DN), generally considered to emerge from different sites of overproduction: GBM components from podocytes and mesangial matrix from mesangial cells. Reevaluation of 918 biopsies with DN revealed strong evidence that these mechanisms are connected to each other, wherein excess GBM components fail to undergo degradation and are deposited in the mesangium. These data do not exclude that mesangial cells also synthesize components that contribute to the accumulation of matrix in the mesangium. Light, electron microscopic, immunofluorescence, and in situ hybridization studies clearly show that the thickening of the GBM is due not only to overproduction of components of the mature GBM (α3 and α5 chains of collagen IV and agrin) by podocytes but also to resumed increased synthesis of the α1 chain of collagen IV and of perlecan by endothelial cells usually seen during embryonic development. We hypothesize that these abnormal production mechanisms are caused by different processes: overproduction of mature GBM-components by the diabetic milieu and regression of endothelial cells to an embryonic production mode by decreased availability of mediators from podocytes.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University Heidelberg, Germany;
| | - Jana Löwen
- Department of Neuroanatomy, Medical Faculty Mannheim, University Heidelberg, Germany.,Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; and
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; and
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Elisabeth Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; and
| | - Hermann Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; and
| |
Collapse
|
30
|
Xu G, Qin Q, Yang M, Qiao Z, Gu Y, Niu J. Heparanase-driven inflammation from the AGEs-stimulated macrophages changes the functions of glomerular endothelial cells. Diabetes Res Clin Pract 2017; 124:30-40. [PMID: 28081450 DOI: 10.1016/j.diabres.2016.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 01/03/2023]
Abstract
AIMS Amounts of macrophages were infiltrated in glomeruli in diabetic nephropathy. Heparanase has been thought to be closely related to proteinuria. Our aims were to determine the effect of heparanase on the inflammation in AGEs-stimulated macrophages and its role on the functions of glomerular endothelial cells (GEnCs). METHODS The expression of inflammation cytokines in macrophages were assayed by q-RT PCR, western, and ELISA. Then western was used to measure the expression of RAGE and key proteins in NF-κB pathway in macrophages. The expression of the adherence molecules and tight junction proteins in GEnCs were assessed by western. The adherence of mononuclear cells to GEnCs were observed by HE staining and transendothelial FITC-BSA were tested for the permeability of GEnCs. RESULTS HPA siRNA and heparanase inhibitor sulodexide could attenuate the increasing inflammatory factors (TNF-α and IL-1β) in AGEs-stimulated macrophages. NF-κB inhibitor PDTC could also decrease the augmented inflammation cytokines through inhibiting the activation of the NF-κB pathway induced by AGEs. The phosphorylation of NF-κB signaling pathway could be also attenuated by HPA siRNA and sulodexide, the same to the receptor of AGEs RAGE. When the macrophage-conditioned culture medium were added to the glomerular endothelial cells, we found HPA siRNA and sulodexide groups could decrease the increasing adherence and permeability of GEnCs induced by AGEs. CONCLUSIONS Heparanase increases the inflammation in AGEs-stimulated macrophages through activating the RAGE-NF-κB pathway. Heparanase driven inflammation from AGEs-stimulated macrophages increases the adherence of GEnCs and augments the permeability of GEnCs.
Collapse
Affiliation(s)
- Guang Xu
- Department of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qiaojing Qin
- Department of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Min Yang
- Department of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhongdong Qiao
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Yong Gu
- Department of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Department of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianying Niu
- Department of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Pathogenesis of proteinuria in idiopathic minimal change disease: molecular mechanisms. Pediatr Nephrol 2016; 31:2179-2189. [PMID: 27384691 DOI: 10.1007/s00467-016-3379-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022]
Abstract
Minimal change disease (MCD) is the most common type of nephrotic syndrome in children and adolescents. The pathogenesis of proteinuria in this condition is currently being reassessed. Following the Shalhoub hypothesis, most efforts have been placed on identifying the putative circulating factor, but recent advancement in podocyte biology has focused attention on the molecular changes at the glomerular capillary wall, which could explain the mechanism of proteinuria in MCD. This report critically reviews current knowledge on the different postulated mechanisms at the glomerular capillary wall level for increased permeability to plasma proteins in MCD. The report helps describe the rationale behind novel therapies and suggests future targeted therapies for MCD.
Collapse
|
32
|
Herman-Edelstein M, Chagnac A, Nevo Z, Skutelsky E, Evron Y, Hirsch Y, Ben-Dor L, Schwartz I, Schwartz D, Weinstein T. Angiotensin converting-enzyme inhibition restores glomerular glycosaminoglycans in rat puromycin nephrosis. ACTA ACUST UNITED AC 2016; 68:543-552. [DOI: 10.1016/j.etp.2016.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022]
|
33
|
Yu D, Li HX, Liu Y, Ying ZW, Guo JJ, Cao CY, Wang J, Li YF, Yang HR. The Reference Intervals for Serum C-Terminal Agrin Fragment in Healthy Individuals and as a Biomarker for Renal Function in Kidney Transplant Recipients. J Clin Lab Anal 2016; 31. [PMID: 27638235 DOI: 10.1002/jcla.22059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/31/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND C-terminal agrin fragment (CAF) has been shown to be a promising new biomarker for kidney function. The aim of this study was to verify the reference intervals for CAF in Chinese healthy adults and to assess the efficiency of CAF for monitoring renal function after transplantation. METHODS Serum samples were collected from 200 healthy adult subjects and 60 living donor kidney recipients before and on day 1, day 2 and at 6 months after transplantation. We measured serum CAF, creatinine, cystatin C and NGAL concentrations at each time. Estimated glomerular filtration rate (eGFR) was evaluated by Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Reference intervals for CAF were determined at 2.5th and 97.5th percentiles. RESULTS Serum CAF concentrations were observed to be higher in females of old age groups while no significant differences were discovered in males between age groups. There were significant gender-related differences in CAF in old age groups (50-64 and ≥65 years). Serum CAF correlated positively with serum creatinine, cystatin C and negatively with eGFR on day 1, day 2 and at 6 months after kidney transplantation. CAF and NGAL fell rapidly into the normal range on the second postoperative day, prior to creatinine and cystatin C. CONCLUSIONS This study verified the reference intervals for serum CAF. CAF could be a potential new biomarker for kidney function monitoring.
Collapse
Affiliation(s)
- Dan Yu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Hai-Xia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yi Liu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Ze-Wei Ying
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Jing-Jing Guo
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chen-Ying Cao
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jia Wang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yuan-Fang Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Hui-Rong Yang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
Borza DB. Glomerular basement membrane heparan sulfate in health and disease: A regulator of local complement activation. Matrix Biol 2016; 57-58:299-310. [PMID: 27609404 DOI: 10.1016/j.matbio.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022]
Abstract
The glomerular basement membrane (GBM) is an essential component of the glomerular filtration barrier. Heparan sulfate proteoglycans such as agrin are major components of the GBM, along with α345(IV) collagen, laminin-521 and nidogen. A loss of GBM heparan sulfate chains is associated with proteinuria in several glomerular diseases and may contribute to the underlying pathology. As the major determinants of the anionic charge of the GBM, heparan sulfate chains have been thought to impart charge selectivity to the glomerular filtration, a view challenged by the negligible albuminuria in mice that lack heparan sulfate in the GBM. Recent studies provide increasing evidence that heparan sulfate chains modulate local complement activation by recruiting complement regulatory protein factor H, the major inhibitor of the alternative pathway in plasma. Factor H selectively inactivates C3b bound to surfaces bearing host-specific polyanions such as heparan sulfate, thus limiting complement activation on self surfaces such as the GBM, which are not protected by cell-bound complement regulators. We discuss mechanisms whereby the acquired loss of GBM heparan sulfate can impair the local regulation of the alternative pathway, exacerbating complement activation and glomerular injury in immune-mediated kidney diseases such as membranous nephropathy and lupus nephritis.
Collapse
Affiliation(s)
- Dorin-Bogdan Borza
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Dr. D. B. Todd, Jr., Blvd., Nashville, TN 37208, USA.
| |
Collapse
|
35
|
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311:F831-F843. [PMID: 27582102 DOI: 10.1152/ajprenal.00313.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
36
|
Daryadel A, Haubitz M, Figueiredo M, Steubl D, Roos M, Mäder A, Hettwer S, Wagner CA. The C-Terminal Fragment of Agrin (CAF), a Novel Marker of Renal Function, Is Filtered by the Kidney and Reabsorbed by the Proximal Tubule. PLoS One 2016; 11:e0157905. [PMID: 27380275 PMCID: PMC4933355 DOI: 10.1371/journal.pone.0157905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
Agrin, a multidomain proteoglycan and neurotrypsin, a neuronal serine protease, are important for forming (neuromuscular) synapses. Proteolytical activity of neurotrypsin produces a C-terminal fragment of agrin, termed CAF, of approximately 22 kDA molecular size which also circulates in blood. The presence of CAF in urine suggests either glomerular filtration or secretion into urine. Blood levels of CAF have been identified as a potential novel marker of kidney function. Here we describe that several nephron segments in the mouse kidney express agrin and neutrotrypsin in addition to the localization of both protein in the glomerulum. Agrin mRNA and protein was detected in almost all nephron segments and mRNA abundance was highest in the inner medullary collecting duct. Neurotrypsin mRNA was mostly detected in the thick ascending limb of the loop of Henle, the distal convoluted tubule, and the inner medullary collecting duct. Moreover, we show that the proximal tubule absorbs injected recombinant CAF by a process shared with receptor-mediated and fluid phase endocytosis. Co-injection of CAF with recombinant human transferrin, a substrate of the receptor-mediated endocytic pathway as well as with FITC-labelled dextran (10 kDa), a marker of fluid phase endocytosis, showed partial colocalization of CAF with both markers. Further colocalization of CAF with the lysosomal marker cathepsin B suggested degradation of CAF by the lysosome in the proximal tubule. Thus, the murine kidney expresses agrin and neurotrypsin in nephron segments beyond the glomerulum. CAF is filtered by the glomerulum and is reabsorbed by endocytosis by the proximal tubule. Thus, impaired kidney function could impair glomerular clearance of CAF and thereby increase circulating CAF levels.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | - Marta Figueiredo
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Dominik Steubl
- Department of Nephrology, Klinikum rechts der Isar, Munich, Germany
| | - Marcel Roos
- Department of Nephrology, Klinikum rechts der Isar, Munich, Germany
| | | | | | - Carsten A. Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
37
|
Progress and controversies in unraveling the glomerular filtration mechanism. Curr Opin Nephrol Hypertens 2016; 24:208-16. [PMID: 25887902 DOI: 10.1097/mnh.0000000000000116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW At first sight, the glomerular filter appears like a problem that should be easily solved. The majority of researchers view the filter like an impermeable wall perforated by specialized and size-selective pores (pore model). However, the fact that this model is in conflict with many of the experimental findings suggests that it may not yet be complete. RECENT FINDINGS In the more recent electrokinetic model, we have proposed including electrical effects (streaming potentials). The present review investigates how this can provide a relatively simple mechanistic explanation for the great majority of the so far unexplained characteristics of the filter, for example why the filter never clogs. SUMMARY Understanding how the glomerular filter functions is a prerequisite to investigate the pathogenesis of proteinuric glomerular diseases and the link between glomerular proteinuria and cardiovascular disease.
Collapse
|
38
|
Takashima Y, Keino-Masu K, Yashiro H, Hara S, Suzuki T, van Kuppevelt TH, Masu M, Nagata M. Heparan sulfate 6-O-endosulfatases, Sulf1 and Sulf2, regulate glomerular integrity by modulating growth factor signaling. Am J Physiol Renal Physiol 2016; 310:F395-408. [PMID: 26764203 DOI: 10.1152/ajprenal.00445.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/27/2015] [Indexed: 12/11/2022] Open
Abstract
Glomerular integrity and functions are maintained by growth factor signaling. Heparan sulfate, the major component of glomerular extracellular matrixes, modulates growth factor signaling, but its roles in glomerular homeostasis are unknown. We investigated the roles of heparan sulfate 6-O-endosulfatases, sulfatase (Sulf)1 and Sulf2, in glomerular homeostasis. Both Sulf1 and Sulf2 were expressed in the glomeruli of wild-type (WT) mice. Sulf1 and Sulf2 double-knockout (DKO) mice showed glomerular hypercellularity, matrix accumulation, mesangiolysis, and glomerular basement membrane irregularity. Platelet-derived growth factor (PDGF)-B and PDGF receptor-β were upregulated in Sulf1 and Sulf2 DKO mice compared with WT mice. Glomeruli from Sulf1 and Sulf2 DKO mice in vitro stimulated by either PDGF-B, VEGF, or transforming growth factor-β similarly showed reduction of phospho-Akt, phospho-Erk1/2, and phospho-Smad2/3, respectively. Since glomerular lesions in Sulf1 and Sulf2 DKO mice were reminiscent of diabetic nephropathy, we examined the effects of Sulf1 and Sulf2 gene disruption in streptozotocin-induced diabetes. Diabetic WT mice showed an upregulation of glomerular Sulf1 and Sulf2 mRNA by in situ hybridization. Diabetic DKO mice showed significant increases in albuminuria and serum creatinine and an acceleration of glomerular pathology without glomerular hypertrophy; those were associated with a reduction of glomerular phospho-Akt. In conclusion, Sulf1 and Sulf2 play indispensable roles to maintain glomerular integrity and protective roles in diabetic nephropathy, probably by growth factor modulation.
Collapse
Affiliation(s)
- Yasutoshi Takashima
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kazuko Keino-Masu
- Molecular Neurobiology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; and
| | - Hiroshi Yashiro
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Hara
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomo Suzuki
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Toin H van Kuppevelt
- Department of Matrix Biochemistry, Nijmegen Center for Molecular Life Sciences, Radbout University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Masayuki Masu
- Molecular Neurobiology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; and
| | - Michio Nagata
- Kidney and Vascular Pathology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan;
| |
Collapse
|
39
|
The Basement Membrane Proteoglycans Perlecan and Agrin: Something Old, Something New. CURRENT TOPICS IN MEMBRANES 2015; 76:255-303. [PMID: 26610917 DOI: 10.1016/bs.ctm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several members of the proteoglycan family are integral components of basement membranes; other proteoglycan family members interact with or bind to molecular residents of the basement membrane. Proteoglycans are polyfunctional molecules, for they derive their inherent bioactivity from the amino acid motifs embedded in the core protein structure as well as the glycosaminoglycan (GAG) chains that are covalently attached to the core protein. The presence of the covalently attached GAG chains significantly expands the "partnering" potential of proteoglycans, permitting them to interact with a broad spectrum of targets, including growth factors, cytokines, chemokines, and morphogens. Thus proteoglycans in the basement membrane are poised to exert diverse effects on the cells intimately associated with basement membranes.
Collapse
|
40
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
41
|
Assady S, Alter J, Axelman E, Zohar Y, Sabo E, Litvak M, Kaplan M, Ilan N, Vlodavsky I, Abassi Z. Nephroprotective effect of heparanase in experimental nephrotic syndrome. PLoS One 2015; 10:e0119610. [PMID: 25786136 PMCID: PMC4364762 DOI: 10.1371/journal.pone.0119610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 02/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Heparanase, an endoglycosidase that cleaves heparan sulfate (HS), is involved in various biologic processes. Recently, an association between heparanase and glomerular injury was suggested. The present study examines the involvement of heparanase in the pathogenesis of Adriamycin-induced nephrotic syndrome (ADR-NS) in a mouse model. METHODS BALB/c wild-type (wt) mice and heparanase overexpressing transgenic mice (hpa-TG) were tail-vein injected with either Adriamycin (ADR, 10 mg/kg) or vehicle. Albuminuria was investigated at days 0, 7, and 14 thereafter. Mice were sacrificed at day 15, and kidneys were harvested for various analyses: structure and ultrastructure alterations, podocyte proteins expression, and heparanase enzymatic activity. RESULTS ADR-injected wt mice developed severe albuminuria, while ADR-hpa-TG mice showed only a mild elevation in urinary albumin excretion. In parallel, light microscopy of stained cross sections of kidneys from ADR-injected wt mice, but not hpa-TG mice, showed mild to severe glomerular and tubular damage. Western blot and immunofluorescence analyses revealed significant reduction in nephrin and podocin protein expression in ADR-wt mice, but not in ADR-hpa-TG mice. These results were substantiated by electron-microscopy findings showing massive foot process effacement in injected ADR-wt mice, in contrast to largely preserved integrity of podocyte architecture in ADR-hpa-TG mice. CONCLUSIONS Our results suggest that heparanase may play a nephroprotective role in ADR-NS, most likely independently of HS degradation. Moreover, hpa-TG mice comprise an invaluable in vivo platform to investigate the interplay between heparanase and glomerular injury.
Collapse
Affiliation(s)
- Suheir Assady
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Joel Alter
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Elena Axelman
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Michael Litvak
- Department of Nephrology, Rambam Health Care Campus, Haifa, Israel
| | - Marielle Kaplan
- Clinical Laboratories Division, Rambam Health Care Campus, Haifa, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Centre, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Centre, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zaid Abassi
- Research Unit, Rambam Health Care Campus, Haifa, Israel; Department of Physiology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
42
|
Borza CM, Chen X, Zent R, Pozzi A. Cell Receptor-Basement Membrane Interactions in Health and Disease: A Kidney-Centric View. CURRENT TOPICS IN MEMBRANES 2015; 76:231-53. [PMID: 26610916 PMCID: PMC4913201 DOI: 10.1016/bs.ctm.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-extracellular matrix (ECM) interactions are essential for tissue development, homeostasis, and response to injury. Basement membranes (BMs) are specialized ECMs that separate epithelial or endothelial cells from stromal components and interact with cells via cellular receptors, including integrins and discoidin domain receptors. Disruption of cell-BM interactions due to either injury or genetic defects in either the ECM components or cellular receptors often lead to irreversible tissue injury and loss of organ function. Animal models that lack specific BM components or receptors either globally or in selective tissues have been used to help with our understanding of the molecular mechanisms whereby cell-BM interactions regulate organ function in physiological and pathological conditions. We review recently published works on animal models that explore how cell-BM interactions regulate kidney homeostasis in both health and disease.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Xiwu Chen
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| |
Collapse
|
43
|
Abstract
Diabetes is characterised by widespread endothelial cell dysfunction that underlies the development of both the micro- and macrovascular complications of the disease, including nephropathy, cardiomyopathy, and non-proliferative retinopathy. In the kidney, major changes are noted in glomerular endothelial cell structure in their fenestrations and glycocalyx. These changes, along with endothelial cell loss and capillary rarefaction in both the glomerulus and tubulointerstitium, lead to the progressive loss of glomerular filtration that render diabetes the most common cause of end-stage renal disease in much of the developed world. New treatments in diabetes that directly address the abnormal structure and function of the endothelial cell are desperately needed.
Collapse
Affiliation(s)
- Richard E Gilbert
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, Ontario, Canada, M5C 2 T2,
| |
Collapse
|
44
|
Sverrisson K, Axelsson J, Rippe A, Asgeirsson D, Rippe B. Dynamic, size-selective effects of protamine sulfate and hyaluronidase on the rat glomerular filtration barrier in vivo. Am J Physiol Renal Physiol 2014; 307:F1136-43. [PMID: 25209861 DOI: 10.1152/ajprenal.00181.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proteinuric actions of protamine sulfate (PS) have classically been, at least partly, attributed to alterations of the negatively charged glomerular endothelial glycocalyx. To investigate whether the charge-selective properties of the glomerular filtration barrier (GFB) would be altered by PS, we assessed the glomerular sieving of conventional, uncharged, polydispersed Ficoll (n-Ficoll) compared with charge modified, conformationally intact, anionic (carboxymethylated) Ficoll (a-Ficoll) before and after systemic infusions of PS in rats. For comparison, we also investigated the impact of hyaluronidase (hyase), which partially degrades the glycocalyx, on GFB permeability. In anaesthetized Wistar rats, blood access was achieved, and the left ureter was cannulated for urine collection. Rats were infused with either n-Ficoll or a-Ficoll before and during systemic infusions with either PS or hyase. Plasma and urine samples were taken repeatedly and analyzed by high-performance size exclusion chromatography to assess glomerular sieving coefficients (θ) for Ficoll (radius 10-80 Å). The GFB showed a significant glomerular charge selectivity for Ficoll molecules of radius 20-35 Å. PS and hyase infusions reversibly increased θ for large Ficoll molecules (Ficoll molecules of radius 50-80 Å). Thus, for PS, θ for a-Ficoll molecules of radius 70 Å increased from 2.47 × 10(-5) ± 1.1(-5) to 7.25 × 10(-5) ± 1.1(-5) (P < 0.05) at 15 min. For hyase, changes in a-Ficoll molecules of radius 50-80 Å were, however, not statistically significant. Neither PS nor hyase had any effect on θ for n-Ficoll molecules of radius 20-45 Å or a-Ficoll molecules of radius 20-45 Å. It is concluded that systemically administered PS and hyase in moderate doses dynamically decreased the size selectivity of the rat GFB without affecting its charge selective properties.
Collapse
Affiliation(s)
| | | | - Anna Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| | | | - Bengt Rippe
- Department of Nephrology, Lund University, Lund, Sweden
| |
Collapse
|
45
|
The protective role of fucosylated chondroitin sulfate, a distinct glycosaminoglycan, in a murine model of streptozotocin-induced diabetic nephropathy. PLoS One 2014; 9:e106929. [PMID: 25192337 PMCID: PMC4156394 DOI: 10.1371/journal.pone.0106929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/03/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Heparanase-1 activation, albuminuria, and a decrease in glomerular heparan sulfate (HS) have been described in diabetic nephropathy (DN). Glycosaminoglycan (GAG)-based drugs have been shown to have renoprotective effects in this setting, although recent trials have questioned their clinical effectiveness. Here, we describe the effects of fucosylated chondroitin sulfate (FCS), a novel GAG extracted from a marine echinoderm, in experimentally induced DN compared to a widely used GAG, enoxaparin (ENX). METHODS Diabetes mellitus (DM) was induced by streptozotocin in male Wistar rats divided into three groups: DM (without treatment), FCS (8 mg/kg), and ENX (4 mg/kg), administered subcutaneously. After 12 weeks, we measured blood glucose, blood pressure, albuminuria, and renal function. The kidneys were evaluated for mesangial expansion and collagen content. Immunohistochemical quantifications of macrophages, TGF-β, nestin and immunofluorescence analysis of heparanase-1 and glomerular basement membrane (GBM) HS content was also performed. Gene expression of proteoglycan core proteins and enzymes involved in GAG assembly/degradation were analyzed by TaqMan real-time PCR. RESULTS Treatment with GAGs prevented albuminuria and did not affect the glucose level or other functional aspects. The DM group exhibited increased mesangial matrix deposition and tubulointerstitial expansion, and prevention was observed in both GAG groups. TGF-β expression and macrophage infiltration were prevented by the GAG treatments, and podocyte damage was halted. The diabetic milieu resulted in the down-regulation of agrin, perlecan and collagen XVIII mRNAs, along with the expression of enzymes involved in GAG biosynthesis. Treatment with FCS and ENX positively modulated such changes. Heparanase-1 expression was significantly reduced after GAG treatment without affecting the GBM HS content, which was uniformly reduced in all of the diabetic animals. CONCLUSIONS Our results demonstrate that the administration of FCS prevented several pathological features of ND in rats. This finding should stimulate further research on GAG treatment for this complication of diabetes.
Collapse
|
46
|
The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? FIBROGENESIS & TISSUE REPAIR 2014; 7:4. [PMID: 24678881 PMCID: PMC3986639 DOI: 10.1186/1755-1536-7-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Interstitial fibrosis is the common endpoint of end-stage chronic kidney disease (CKD) leading to kidney failure. The clinical course of many renal diseases, and thereby of CKD, is highly variable. One of the major challenges in deciding which treatment approach is best suited for a patient but also in the development of new treatments is the lack of markers able to identify and stratify patients with stable versus progressive disease. At the moment renal biopsy is the only means of diagnosing renal interstitial fibrosis. Novel biomarkers should improve diagnosis of a disease, estimate its prognosis and assess the response to treatment, all in a non-invasive manner. Existing markers of CKD do not fully and specifically address these requirements and in particular do not specifically reflect renal fibrosis. The aim of this review is to give an insight of the involvement of the extracellular matrix (ECM) proteins in kidney diseases and as a source of potential novel biomarkers of renal fibrosis. In particular the use of the protein fingerprint technology, that identifies neo-epitopes of ECM proteins generated by proteolytic cleavage by proteases or other post-translational modifications, might identify such novel biomarkers of renal fibrosis.
Collapse
|
47
|
Lennon R, Randles MJ, Humphries MJ. The importance of podocyte adhesion for a healthy glomerulus. Front Endocrinol (Lausanne) 2014; 5:160. [PMID: 25352829 PMCID: PMC4196579 DOI: 10.3389/fendo.2014.00160] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022] Open
Abstract
Podocytes are specialized epithelial cells that cover the outer surfaces of glomerular capillaries. Unique cell junctions, known as slit diaphragms, which feature nephrin and Neph family proteins in addition to components of adherens, tight, and gap junctions, connect adjacent podocyte foot processes. Single gene disorders affecting the slit diaphragm result in nephrotic syndrome in humans, characterized by massive loss of protein across the capillary wall. In addition to specialized cell junctions, interconnecting podocytes also adhere to the glomerular basement membrane (GBM) of the capillary wall. The GBM is a dense network of secreted, extracellular matrix (ECM) components and contains tissue-restricted isoforms of collagen IV and laminin in addition to other structural proteins and ECM regulators such as proteases and growth factors. The specialized niche of the GBM provides a scaffold for endothelial cells and podocytes to support their unique functions and human genetic mutations in GBM components lead to renal failure, thus highlighting the importance of cell-matrix interactions in the glomerulus. Cells adhere to ECM via adhesion receptors, including integrins, syndecans, and dystroglycan and in particular the integrin heterodimer α3β1 is required to maintain barrier integrity. Therefore, the sophisticated function of glomerular filtration relies on podocyte adhesion both at cell junctions and at the interface with the ECM. In health, the podocyte coordinates signals from cell junctions and cell-matrix interactions, in response to environmental cues in order to regulate filtration and as our understanding of mechanisms that control cell adhesion in the glomerulus develops, then insight into the effects of disease will improve. The ultimate goal will be to develop targeted therapies to prevent or repair defects in the filtration barrier and to restore glomerular function.
Collapse
Affiliation(s)
- Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- *Correspondence: Rachel Lennon, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK e-mail:
| | - Michael J. Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
48
|
Steubl D, Hettwer S, Vrijbloed W, Dahinden P, Wolf P, Luppa P, Wagner CA, Renders L, Heemann U, Roos M. C-terminal agrin fragment--a new fast biomarker for kidney function in renal transplant recipients. Am J Nephrol 2013; 38:501-8. [PMID: 24356308 DOI: 10.1159/000356969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/01/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The C-terminal agrin fragment (CAF) is a cleavage product of agrin, the major proteoglycan of the glomerular basement membrane. This article studies if CAF could serve as a biomarker for renal function in renal transplant recipients. MATERIAL AND METHODS We measured serum CAF and creatinine concentrations and calculated estimated glomerular filtration rate (eGFR) (MDRD) in 96 healthy individuals and in 110 end-stage renal disease patients undergoing kidney transplantation before and after transplantation. Correlation between CAF and creatinine concentrations/eGFR was calculated as within-patient (cWP) and between-patient correlations (cBP). Moreover, we evaluated the association of CAF with delayed graft function (DGF). The diagnostic value of CAF for early detection of DGF compared to creatinine was evaluated by receiver operating characteristics (ROC) analysis. RESULTS CAF concentrations strongly correlated with creatinine (r = 0.86 (cWP), r = 0.74 (cBP)) and eGFR (MDRD) (r = 0.86 (cWP), r = 0.77 (cBP)). Pre-transplant (pre-Tx) CAF concentrations were 19-fold higher than in healthy individuals (1,115.0 (258.4-3,990.0) vs. 56.6 (20.0-109.5) pM). After transplantation, CAF decreased significantly faster than creatinine (postoperative days 1-3 (POD 1-3): 562.8 (101.6-2,113.0) pM; creatinine: pre-Tx 6.9 (3.1-15.7), POD 1-3: 6.4 (1.7-12.7) mg/dl, p < 0.001). Stable concentrations were reached 1-3 months after transplantation for CAF and creatinine (CAF 145.1 (6.7-851.0) pM; creatinine 1.6 (0.7-8.0) mg/dl). CAF concentrations at POD 1-3 were significantly associated with DGF and outperformed creatinine in early detection of DGF (area under the curve (AUC) CAF 80.7% (95% CI 72.3-89.1%) vs. AUC creatinine 71.3% (95% CI 61.8-81.1%), p = 0.061). CONCLUSION CAF is a promising new and fast biomarker for kidney function and may serve as a new tool for the early detection of DGF.
Collapse
Affiliation(s)
- Dominik Steubl
- Abteilung für Nephrologie, Klinikum rechts der Isar, München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Garsen M, Rops AL, Rabelink TJ, Berden JH, van der Vlag J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol Dial Transplant 2013; 29:49-55. [DOI: 10.1093/ndt/gft410] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Sugar T, Wassenhove-McCarthy DJ, Esko JD, van Kuppevelt TH, Holzman L, McCarthy KJ. Podocyte-specific deletion of NDST1, a key enzyme in the sulfation of heparan sulfate glycosaminoglycans, leads to abnormalities in podocyte organization in vivo. Kidney Int 2013; 85:307-18. [PMID: 23924956 PMCID: PMC4624314 DOI: 10.1038/ki.2013.281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 01/18/2023]
Abstract
Heparan sulfate proteoglycans have been shown to modulate podocyte adhesion to- and pedicel organization on- the glomerular basement membrane. Recent studies showed that foot process effacement developed in a mutant mouse model whose podocytes were unable to assemble heparan sulfate glycosaminoglycan chains. This study, a further refinement, explored the role of heparan N-sulfation on podocyte behavior. A novel mutant mouse (Ndst1-/-) was developed, having podocyte-specific deletion of NDST1, the enzyme responsible for N-sulfation of heparan sulfate chains. Podocytes having this mutation had foot process effacement and abnormal adhesion to Bowman's capsule. Although glomerular hypertrophy did develop in the kidneys of mutant animals, mesangial expansion was not seen. The lack of heparan N-sulfation did not affect the expression of agrin or perlecan proteoglycan core proteins. Loss of N-sulfation did not result in significant proteinuria, but the increase in the albumin/creatinine ratio was coincident with the development of the enlarged lysosomes in the proximal tubules. Thus, although the renal phenotype of the Ndst1-/- mouse is mild, the data show that heparan chain N-sulfation plays a key role in podocyte organization.
Collapse
Affiliation(s)
- Terrel Sugar
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana, USA
| | | | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, California, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lawrence Holzman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin J McCarthy
- 1] Department of Cell Biology and Anatomy, LSU Health Sciences Center, Shreveport, Louisiana, USA [2] Department of Pathology, LSU Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|