1
|
Martínez-Rojas MÁ, Bobadilla NA. Sodium-glucose cotransporter 2 inhibitors: a novel approach to prevent the transition from acute kidney injury to chronic kidney disease. Curr Opin Nephrol Hypertens 2025:00041552-990000000-00230. [PMID: 40265513 DOI: 10.1097/mnh.0000000000001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) often progresses to chronic kidney disease (CKD), yet standardized clinical guidelines for managing this transition remain lacking. Recent studies suggest that sodium-glucose cotransporter 2 inhibitors (SGLT2i) or flozins improve AKI outcomes. Studies on patients living with diabetes post-AKI show flozins reduce mortality, CKD progression, and recurrent AKI, highlighting their potential in mitigating maladaptive kidney repair. We discuss recent preclinical evidence supporting a role of SGLT2i during AKI repair and subsequent CKD. RECENT FINDINGS AKI is characterized by endothelial and tubular injury, hypoperfusion, metabolic dysfunction, inflammation, and cell death. SGLT2i restore renal hemodynamics, mitochondrial dysfunction, and reduce oxidative stress, improving recovery following AKI. Additionally, SGLT2i mitigate cell death by counteracting apoptosis and ferroptosis while reducing inflammation through suppression of pro-inflammatory cytokines and inflammasome activation. Beyond AKI, flozins exhibit long-term antifibrotic effects, reducing extracellular matrix deposition even after treatment discontinuation. Preclinical studies demonstrate a sustained protective effect on kidney integrity months after short-term treatment. SUMMARY These inhibitors hold promise for broad nephroprotection, with robust biological rationale in maladaptive repair. Further research is needed to optimize their use and establish clinical guidelines for AKI management in both diabetic and nondiabetic populations.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-Rojas
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico
- Departamento de Educación Médica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A Bobadilla
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mexico
- Departamento de Nefrología y Metabolismo Mineral
| |
Collapse
|
2
|
He J, Chen Y, Li Y, Feng Y. Molecular mechanisms and therapeutic interventions in acute kidney injury: a literature review. BMC Nephrol 2025; 26:144. [PMID: 40121405 PMCID: PMC11929251 DOI: 10.1186/s12882-025-04077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical challenge characterized by elevated morbidity and a substantial impact on individual health and socioeconomic factors. A comprehensive examination of the molecular pathways behind AKI is essential for its prevention and management. In recent years, vigorous research in the domain of AKI has concentrated on pathophysiological characteristics, early identification, and therapeutic approaches across many aetiologies and highlighted the principal themes of oxidative stress, inflammatory response, apoptosis, necrosis, and immunological response. This review comprehensively reviewed the molecular mechanisms underlying AKI, including oxidative stress, inflammatory pathways, immune cell-mediated injury, activation of the renin-angiotensin-aldosterone (RAAS) system, mitochondrial damage and autophagy, apoptosis, necrosis, etc. Inflammatory pathways are involved in the injuries in all four structural components of the kidney. We also summarized therapeutic techniques and pharmacological agents associated with the aforementioned molecular pathways. This work aims to clarify the molecular mechanisms of AKI thoroughly, offer novel insights for further investigations of AKI, and facilitate the formulation of efficient therapeutic methods to avert the progression of AKI.
Collapse
Affiliation(s)
- Jiajia He
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqin Chen
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China
| | - Yunlin Feng
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China.
| |
Collapse
|
3
|
Jaisser F, Barrera-Chimal J. Mineralocorticoid receptor antagonism for non-diabetic kidney disease. Nephrol Dial Transplant 2025; 40:i29-i36. [PMID: 39907538 DOI: 10.1093/ndt/gfae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 02/06/2025] Open
Abstract
The use of mineralocorticoid receptor antagonists (MRAs) in preclinical models of non-diabetic chronic kidney disease (CKD) has consistently shown a beneficial effect by preventing renal structural injury, reducing albuminuria and preserving renal function. In this context, MR activation in non-epithelial cells contributes to renal injury through the activation of inflammatory and fibrotic pathways, increasing oxidative stress and modulating renal hemodynamics. The protective effects of MRAs in animal models of CKD are not restricted to the kidney. Cardiovascular benefits, such as the prevention of cardiac fibrosis, hypoperfusion and vascular calcification, have also been observed. The translation of these preclinical findings into clinical practice has been difficult, mainly due to the lack of clinical studies testing the efficacy of steroidal MRAs in CKD patients due to their contraindication because of an increased risk of hyperkalemia in these patients. Here, we review the latest preclinical evidence showing new mechanisms by which MR inhibition results in beneficial effects against cardiorenal damage in non-diabetic kidney disease. Moreover, we summarize the clinical trials testing the safety and efficacy of steroidal and non-steroidal MRAs in patients with advanced non-diabetic CKD. PLAIN ENGLISH SUMMARY The mineralocorticoid receptor (MR) is known for its role in the regulation of sodium and potassium balance in the distal tubules of the kidney. However, under pathological conditions the activation of the MR in other renal cell types (including the vasculature and immune cells) leads to harmful effects, damaging the main structural components of the kidney, and ultimately causing renal dysfunction. Over the past 20 years, several studies performed in mouse and rat models of non-diabetic kidney disease have shown that using a specific drug class that inhibits the MR (MR antagonists: MRAs) positively impacts the preservation of the kidney structure and helps to prevent the decline of renal function, thus positioning MRAs as a good therapeutic option against kidney diseases from non-diabetic origin. In addition, the use of MRAs also benefited the cardiovascular system health as shown by improved cardiac structural and functional parameters as well as preventing the calcification of blood vessels. Nevertheless, an important barrier to translating these findings into clinical practice is that the use of MRAs could lead to increased serum potassium levels, particularly in kidney disease patients, an adverse effect that could lead to life-threatening cardiac arrhythmias. In this review, we summarize the latest data in animal models showing new evidences of MR benefits in non-diabetic kidney disease. In addition, we review the clinical trials that evaluated the safety and efficacy of MRAs in patients with advanced non-diabetic kidney disease including those that tested a new generation of MRAs (non-steroidal MRAs) and are expected to reduce the frequency of adverse effects while retaining their renal and cardiovascular benefits.
Collapse
Affiliation(s)
- Frédéric Jaisser
- Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy 54500, France
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Jonatan Barrera-Chimal
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec H1T 2M4, Canada
| |
Collapse
|
4
|
Xie PF, Jin SR, Wang XJ. Letter: Effectiveness and Safety of Spironolactone in the Treatment of Nephropathy. Angiology 2025:33197241300759. [PMID: 39840522 DOI: 10.1177/00033197241300759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
|
5
|
Elbrolosy MA, Helal MG, Makled MN. CGS-21680 defers cisplatin-induced AKI-CKD transition in C57/BL6 mice. Chem Biol Interact 2024; 403:111255. [PMID: 39332792 DOI: 10.1016/j.cbi.2024.111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Acute kidney injury (AKI), with a high mortality and morbidity, is known as a risk factor for developing progressive chronic kidney disease (CKD). Targeting transition of AKI to CKD displays an excellent therapeutic potential. This study aims at investigating the role of CGS-21680, selective A2AR agonist, in deferring Cis-induced AKI-CKD transition. The AKI-CKD transition model was induced in C57/BL6 mice by repeated low doses of Cis (2.5 mg/kg i.p for 5 consecutive days in two cycles with a recovery phase of 16 days between two cycles). CGS-21680 was administered daily for 6 weeks (0.1 mg/kg, i.p). Urine, blood, and kidney were collected at three different time points to track the disease progression. CGS-21680 administration preserved kidney function and attenuated tubular damage as evidenced by hematoxylin-eosin (H&E) histopathology. CGS-21680 significantly restored oxidative status as reflected by reduced malondialdehyde (MDA) content and increased total antioxidant capacity (TAC). CGS-21680 showed anti-inflammatory effect as indicated by decreased TNF-α and iNOS. Additionally, CGS-21680 ameliorated endothelial dysfunction and enhanced renal vasodilation as evidenced by upregulation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) expression and down regulation of endothelin-1 (ET-1) and its receptor endothelin-A (ET-A) receptor expression. CGS-21680 also attenuated renal fibrosis as reflected by the reduction of percentage of fibrosis in Masson's trichome-stained renal sections and down regulation of transforming growth factor beta1 (TGF-β1) protein expression in IHC-stained renal sections. In conclusion, CGS-21680 could defer Cis-induced AKI-CKD transition via its vasodilatory, antioxidant, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Menna A Elbrolosy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Kanbay M, Copur S, Mizrak B, Mallamaci F, Zoccali C. Mineralocorticoid receptor antagonists in kidney transplantation. Eur J Clin Invest 2024; 54:e14206. [PMID: 38578116 DOI: 10.1111/eci.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The fundamental role of the renin-angiotensin-aldosterone system in the pathophysiology of chronic kidney disease, congestive heart failure, hypertension and proteinuria is well established in pre-clinical and clinical studies. Mineralocorticoid receptor antagonists are among the primary options for renin-angiotensin-aldosterone system blockage, along with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS In this narrative review, we aim to evaluate the efficiency and safety of mineralocorticoid receptor antagonists in kidney transplant recipients, including the potential underlying pathophysiology. RESULTS The efficiency and safety of mineralocorticoid receptor antagonists in managing chronic kidney disease and proteinuria, either non-nephrotic or nephrotic range, have been demonstrated among nontransplanted patients, though studies investigating the role of mineralocorticoid receptor antagonists among kidney transplant recipients are scarce. Nevertheless, promising results have been reported in pre-clinical and clinical studies among kidney transplant recipients regarding the role of mineralocorticoid receptor antagonists in terms of ischaemia-reperfusion injury, proteinuria, or calcineurin inhibitor-mediated nephrotoxicity without considerable adverse events such as hypotension, hyperkalaemia or worsening renal functions. CONCLUSION Even though initial results regarding the role of mineralocorticoid receptor antagonist therapy for kidney transplant recipients are promising, there is clear need for large-scale randomized clinical trials with long-term follow-up data.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Berk Mizrak
- Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli" & CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Associazione Ipertensione Nefrologia Trapianto Renal (IPNET), Reggio Calabria, Italy
| |
Collapse
|
7
|
Lu Y, Ni W, Qu X, Chen C, Shi S, Guo K, Lin K, Zhou H. Spironolactone for Preventing Contrast-Induced Nephropathy After Percutaneous Coronary Intervention in Patients With Acute Myocardial Infarction and Chronic Kidney Disease. Angiology 2024:33197241251889. [PMID: 38679489 DOI: 10.1177/00033197241251889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Patients with acute myocardial infarction (AMI) and chronic kidney disease (CKD) are at high risk of contrast-induced nephropathy (CIN), which can subsequently worsen the overall prognosis. To evaluate the efficacy of spironolactone for CIN prevention, 410 patients with AMI and CKD receiving percutaneous coronary intervention (PCI) were retrospectively analyzed. Among them, 240 and 170 patients were enrolled in the standard treatment and spironolactone groups (spironolactone was administered 2 days before and 3 days after PCI), respectively. The primary endpoint of CIN was defined as a 0.5 mg/dL or >25% increase from the baseline serum creatinine level within 48-72 h post-PCI. CIN incidence was significantly lower in the spironolactone group than in the standard treatment group (11.2 vs 26.7%, P < .001). Further, cardiac re-hospitalization (hazard ratio [HR]: 0.515; 95% CI: 0.382-0.694; P < .001) and cardiac death (HR: 0.612; 95% CI: 0.429-0.872; P = .007) risks were significantly lower in patients who received long-term spironolactone with a median treatment duration of 42 months after discharge. Spironolactone might lower the risk of CIN, and long-term use of spironolactone reduces the risk of cardiac re-hospitalization and cardiac death in patients with AMI and CKD undergoing PCI.
Collapse
Affiliation(s)
- Yucheng Lu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weicheng Ni
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Qu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changxi Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sanling Shi
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Guo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ken Lin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Li X, Fu YH, Tong XW, Zhang YT, Shan YY, Xu YX, Pu SD, Gao XY. RAAS in diabetic retinopathy: mechanisms and therapies. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e230292. [PMID: 38652701 PMCID: PMC11081058 DOI: 10.20945/2359-4292-2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/23/2023] [Indexed: 04/25/2024]
Abstract
Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.
Collapse
Affiliation(s)
- Xin Li
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yu-Hong Fu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Xue-Wei Tong
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yi-Tong Zhang
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yong-Yan Shan
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Yu-Xin Xu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Sheng-Dan Pu
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China
| | - Xin-Yuan Gao
- First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Department of Endocrinology, Harbin, China,
| |
Collapse
|
9
|
Martínez-Rojas MÁ, Balcázar H, Ponce-Nava MS, González-Soria I, Marquina-Castillo B, Pérez-Villalva R, Bobadilla NA. A short treatment with resveratrol after a renal ischaemia-reperfusion injury prevents maladaptive repair and long-term chronic kidney disease in rats. J Physiol 2024; 602:1835-1852. [PMID: 38529522 DOI: 10.1113/jp285979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-Rojas
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Hiram Balcázar
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Susana Ponce-Nava
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Isaac González-Soria
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Brenda Marquina-Castillo
- Department of Experimental Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
10
|
Chen Q, Wei G, Wang Y, Li X, Zhao Q, Zhu L, Xiao Q, Xiong X. Efficacy and safety of nonsteroidal mineralocorticoid receptor antagonists for renal and cardiovascular outcomes in patients with chronic kidney disease: a meta-analysis of randomized clinical trials. Front Pharmacol 2024; 15:1338044. [PMID: 38476327 PMCID: PMC10927749 DOI: 10.3389/fphar.2024.1338044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Objective: To systematically review the efficacy and safety of nonsteroidal mineralocorticoid receptor antagonists (MRAs) in chronic kidney disease (CKD). Methods: We systematically searched six databases to identify randomized controlled trials (RCTs) about nonsteroidal MRAs for CKD, from inception to 22 August 2023. Two reviewers independently screened the retrieved articles, extracted data, and assessed the risk of bias of included RCTs using the Cochrane risk of bias tool. We then conducted meta-analysis of the data using Stata 17.0 software. Results: 11 RCTs (n = 15,817) were included in this meta-analysis. Compared with placebo, nonsteroidal MRAs significantly reduced the proportion of patients with ≥40% decline in estimated glomerular filtration rate (eGFR) from baseline [RR = 0.85, 95% CI (0.78, 0.92), p < 0.001], although the magnitude of eGFR reduction was greater [WMD = -2.83, 95% CI (-3.95, -1.72), p < 0.001]. The experimental group also had lower incidence of composite renal outcome [RR = 0.86, 95% CI (0.79, 0.93), p < 0.001] and greater reduction in urine albumin-to-creatinine ratio (UACR) from baseline [WMD = -0.41, 95% CI (-0.49, -0.32), p < 0.001], as well as reduced cardiovascular events [RR = 0.88, 95% CI (0.80, 0.95), p = 0.003]. MRAs did not increase any adverse events compared to placebo [RR = 1.00, 95% CI (0.99, 1.01), p = 0.909], but had higher incidence of hyperkalemia [RR = 2.05, 95% CI (1.85, 2.280), p < 0.001]. Compared with eplerenone, there was no significant difference in the proportion of patients with ≥40% decline in eGFR [RR = 0.57, 95% CI (0.18, 1.79), p = 0.335] or hyperkalemia [RR = 0.95, 95%CI (0.48, 1.88), p = 0.875]. Conclusion: Nonsteroidal MRAs can reduce the incidence of end-stage renal disease and cardiovascular adverse events in patients. Although there was still a risk of hyperkalemia compared to placebo, there was no significant difference in any adverse events compared to either placebo or eplerenone. It has become a new option for drug treatment of CKD patients, but more clinical trials are still needed to verify its efficacy and safety. Especially further direct comparison of the nonsteroidal MRAs to eplerenone in view of the relatively small number of patients reviewed are needed.
Collapse
Affiliation(s)
- Qianlan Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guocui Wei
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanping Wang
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiuxia Li
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Zhao
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing Xiao
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuan Xiong
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Martínez-Rojas MÁ, Balcázar H, González-Soria I, González-Rivera JM, Rodríguez-Vergara ME, Velazquez-Villegas LA, León-Contreras JC, Pérez-Villalva R, Correa F, Rosetti F, Bobadilla NA. Transient inhibition of sodium-glucose cotransporter 2 after ischemia/reperfusion injury ameliorates chronic kidney disease. JCI Insight 2024; 9:e173675. [PMID: 38516890 PMCID: PMC11063941 DOI: 10.1172/jci.insight.173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.
Collapse
Affiliation(s)
- Miguel Ángel Martínez-Rojas
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Hiram Balcázar
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Isaac González-Soria
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Jesús Manuel González-Rivera
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Mauricio E. Rodríguez-Vergara
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | | | - Juan Carlos León-Contreras
- Departmento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| | - Francisco Correa
- Departmento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Florencia Rosetti
- Departmento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma A. Bobadilla
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departmento de Nefrología y Metabolismo Mineral
| |
Collapse
|
12
|
Chen X, Li X, Zhang K, Lian K, Zhang W, Song Y, Kan C, Zhang J, Han F, Sun X, Guo Z. The role of a novel mineralocorticoid receptor antagonist, finerenone, in chronic kidney disease: mechanisms and clinical advances. Clin Exp Nephrol 2024; 28:125-135. [PMID: 37847437 DOI: 10.1007/s10157-023-02413-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) poses a significant health risk in contemporary society. Current CKD treatments primarily involve renin-angiotensin-aldosterone system inhibitors and mineralocorticoid receptor antagonists, albeit associated with hyperkalemia risks. A novel selective mineralocorticoid receptor antagonist, finerenone, offers a promising, safer alternative for CKD therapy. This review comprehensively assesses the role and efficacy of finerenone in CKD treatment by analyzing clinical and animal studies. Emerging evidence consistently supports finerenone's ability to effectively slow the progression of CKD. By targeting the mineralocorticoid receptor, finerenone not only mitigates renal damage but also exhibits a favorable safety profile, minimizing hyperkalemia concerns. CONCLUSION Finerenone emerges as a valuable addition to CKD therapy, demonstrating potential benefits in delaying CKD progression while minimizing side effects. Nevertheless, further clinical trials are necessary to provide a comprehensive understanding of its safety and efficacy.
Collapse
Affiliation(s)
- Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
13
|
Sarafidis P, Iatridi F, Ferro C, Alexandrou ME, Fernandez-Fernandez B, Kanbay M, Mallamaci F, Nistor I, Rossignol P, Wanner C, Cozzolino M, Ortiz A. Mineralocorticoid receptor antagonist use in chronic kidney disease with type 2 diabetes: a clinical practice document by the European Renal Best Practice (ERBP) board of the European Renal Association (ERA). Clin Kidney J 2023; 16:1885-1907. [PMID: 37915899 PMCID: PMC10616462 DOI: 10.1093/ckj/sfad139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D) represents a major public health issue; it develops in about 30%-40% of patients with diabetes mellitus and is the most common cause of CKD worldwide. Patients with CKD and T2D are at high risk of both developing kidney failure and of cardiovascular events. Renin-angiotensin system (RAS) blockers were considered the cornerstone of treatment of albuminuric CKD in T2D for more than 20 years. However, the residual risk of progression to more advanced CKD stages under RAS blockade remains high, while in major studies with these agents in patients with CKD and T2D no significant reductions in cardiovascular events and mortality were evident. Steroidal mineralocorticoid receptor antagonists (MRAs) are known to reduce albuminuria in individuals on RAS monotherapy, but their wide clinical use has been curtailed by the significant risk of hyperkalemia and absence of trials with hard renal outcomes. In recent years, non-steroidal MRAs have received increasing interest due to their better pharmacologic profile. Finerenone, the first compound of this class, was shown to effectively reduce the progression of kidney disease and of cardiovascular outcomes in participants with T2D in phase 3 trials. This clinical practice document prepared from a task force of the European Renal Best Practice board summarizes current knowledge on the role of MRAs in the treatment of CKD in T2D aiming to support clinicians in decision-making and everyday management of patients with this condition.
Collapse
Affiliation(s)
- Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charles Ferro
- Department of Nephrology, University Hospitals Birmingham and Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases, Ospedali Riuniti, Reggio Calabria, Italy
| | - Ionut Nistor
- Nephrology Department, University of Medicine and Pharmacy “Grigore T.Popa”, Iași, Romania
| | - Patrick Rossignol
- Université de Lorraine, INSERM CIC-P 1433, CHRU de Nancy, INSERM U1116, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Department of Medical Specialties and Nephrology-Hemodialysis, Princess Grace Hospital, Monaco, and Centre d'Hémodialyse Privé de Monaco, Monaco
| | - Christoph Wanner
- Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
14
|
Di Lullo L, Lavalle C, Scatena A, Mariani MV, Ronco C, Bellasi A. Finerenone: Questions and Answers-The Four Fundamental Arguments on the New-Born Promising Non-Steroidal Mineralocorticoid Receptor Antagonist. J Clin Med 2023; 12:3992. [PMID: 37373685 PMCID: PMC10299719 DOI: 10.3390/jcm12123992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the most common complications of diabetes mellitus and an independent risk factor for cardiovascular disease. Despite guideline-directed therapy of CKD in patients with type 2 diabetes, the risk of renal failure and cardiovascular events still remains high, and diabetes remains the leading cause of end-stage kidney disease in affected patients. To date, current medications for CKD and type 2 diabetes mellitus have not reset residual risk in patients due to a high grade of inflammation and fibrosis contributing to kidney and heart disease. This question-and-answer-based review will discuss the pharmacological and clinical differences between finerenone and other mineralocorticoid receptor antagonists and then move on to the main evidence in the cardiovascular and renal fields, closing, finally, on the potential role of therapeutic combination with sodium-glucose cotransporter 2 inhibitors (SGLT2is).
Collapse
Affiliation(s)
- Luca Di Lullo
- Department of Nephrology and Dialysis, L. Parodi—Delfino Hospital, 00034 Colleferro, Italy
| | - Carlo Lavalle
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (C.L.); (M.V.M.)
| | | | - Marco Valerio Mariani
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (C.L.); (M.V.M.)
| | - Claudio Ronco
- International Renal Research Institute (IRRIV), S. Bortolo Hospital, 36100 Vicenza, Italy
| | - Antonio Bellasi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland;
| |
Collapse
|
15
|
Yang G, Tan L, Yao H, Xiong Z, Wu J, Huang X. Long-Term Effects of Severe Burns on the Kidneys: Research Advances and Potential Therapeutic Approaches. J Inflamm Res 2023; 16:1905-1921. [PMID: 37152866 PMCID: PMC10162109 DOI: 10.2147/jir.s404983] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Burns are a seriously underestimated form of trauma that not only damage the skin system but also cause various complications, such as acute kidney injury (AKI). Recent clinical studies have shown that the proportion of chronic kidney diseases (CKD) in burn patients after discharge is significantly higher than that in the general population, but the mechanism behind this is controversial. The traditional view is that CKD is associated with hypoperfusion, AKI, sepsis, and drugs administered in the early stages of burns. However, recent studies have shown that burns can cause long-term immune dysfunction, which is a high-risk factor for CKD. This suggests that burns affect the kidneys more than previously recognized. In other words, severe burns are not only an acute injury but also a chronic disease. Neglecting to study long-term kidney function in burn patients also results in a lack of preventive and therapeutic methods being developed. Furthermore, stem cells and their exosomes have shown excellent comprehensive therapeutic properties in the prevention and treatment of CKD, making them increasingly the focus of research attention. Their engineering strategy further improved the therapeutic performance. This review will focus on the research advances in burns on the development of CKD, illustrating the possible mechanism of burn-induced CKD and introducing potential biological treatment options and their engineering strategies.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
- Department of Life Sciences, Yuncheng University, Yuncheng, 044006, People’s Republic of China
| | - Lishan Tan
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541004, People’s Republic of China
| | - Zuying Xiong
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, Verona, Venetia, 37134, Italy
| | - Xiaoyan Huang
- Division of Renal Medicine, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518000, People’s Republic of China
| |
Collapse
|
16
|
Lima-Posada I, Stephan Y, Soulié M, Palacios-Ramirez R, Bonnard B, Nicol L, Kolkhof P, Jaisser F, Mulder P. Benefits of the Non-Steroidal Mineralocorticoid Receptor Antagonist Finerenone in Metabolic Syndrome-Related Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2023; 24:ijms24032536. [PMID: 36768859 PMCID: PMC9916671 DOI: 10.3390/ijms24032536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
The mineralocorticoid receptor (MR) plays an important role in the development of chronic kidney disease (CKD) and associated cardiovascular complications. Antagonizing the overactivation of the MR with MR antagonists (MRA) is a therapeutic option, but their use in patients with CKD is limited due to the associated risk of hyperkalemia. Finerenone is a non-steroidal MRA associated with an improved benefit-risk profile in comparison to steroidal MRAs. In this study, we decided to test whether finerenone improves renal and cardiac function in male hypertensive and diabetic ZSF1 rats as an established preclinical HFpEF model. Finerenone was administered at 10 mg/kg/day for 12 weeks. Cardiac function/hemodynamics were assessed in vivo. ZSF1 rats showed classical signs of CKD with increased BUN, UACR, hypertrophy, and fibrosis of the kidney together with characteristic signs of HFpEF including cardiac fibrosis, diastolic dysfunction, and decreased cardiac perfusion. Finerenone treatment did not impact kidney function but reduced renal hypertrophy and cardiac fibrosis. Interestingly, finerenone ameliorated diastolic dysfunction and cardiac perfusion in ZSF1 rats. In summary, we show for the first time that non-steroidal MR antagonism by finerenone attenuates cardiac diastolic dysfunction and improves cardiac perfusion in a preclinical HFpEF model. These cardiac benefits were found to be largely independent of renal benefits.
Collapse
Affiliation(s)
- Ixchel Lima-Posada
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Yohan Stephan
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| | - Matthieu Soulié
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| | - Roberto Palacios-Ramirez
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Lionel Nicol
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| | - Peter Kolkhof
- Cardiovascular Precision Medicines, Research and Early Development, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, UMRS 1138, INSERM, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- INSERM, Clinical Investigation Centre 1433, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), 54500 Nancy, France
- Correspondence: ; Tel.: +33-144276485
| | - Paul Mulder
- INSERM EnVI UMR 1096, Univ Rouen Normandie, 76183 Rouen, France
| |
Collapse
|
17
|
Jerome JR, Deliyanti D, Suphapimol V, Kolkhof P, Wilkinson-Berka JL. Finerenone, a Non-Steroidal Mineralocorticoid Receptor Antagonist, Reduces Vascular Injury and Increases Regulatory T-Cells: Studies in Rodents with Diabetic and Neovascular Retinopathy. Int J Mol Sci 2023; 24:ijms24032334. [PMID: 36768656 PMCID: PMC9917037 DOI: 10.3390/ijms24032334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Vision loss in diabetic retinopathy features damage to the blood-retinal barrier and neovascularization, with hypertension and the renin-angiotensin system (RAS) having causal roles. We evaluated if finerenone, a non-steroidal mineralocorticoid receptor (MR) antagonist, reduced vascular pathology and inflammation in diabetic and neovascular retinopathy. Diabetic and hypertensive transgenic (mRen-2)27 rats overexpressing the RAS received the MR antagonist finerenone (10 mg/kg/day, oral gavage) or the angiotensin-converting enzyme inhibitor perindopril (10 mg/kg/day, drinking water) for 12 weeks. As retinal neovascularization does not develop in diabetic rodents, finerenone (5 mg/kg/day, i.p.) was evaluated in murine oxygen-induced retinopathy (OIR). Retinal vasculopathy was assessed by measuring gliosis, vascular leakage, neovascularization, and VEGF. Inflammation was investigated by quantitating retinal microglia/macrophages, pro-inflammatory mediators, and anti-inflammatory regulatory T-cells (Tregs). In diabetes, both treatments reduced systolic blood pressure, gliosis, vascular leakage, and microglial/macrophage density, but only finerenone lowered VEGF, ICAM-1, and IL-1ß. In OIR, finerenone reduced neovascularization, vascular leakage, and microglial density, and increased Tregs in the blood, spleen, and retina. Our findings, in the context of the FIDELIO-DKD and FIGARO-DKD trials reporting the benefits of finerenone on renal and cardiovascular outcomes in diabetic kidney disease, indicate the potential of finerenone as an effective oral treatment for diabetic retinopathy.
Collapse
Affiliation(s)
- Jack R. Jerome
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Devy Deliyanti
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Varaporn Suphapimol
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Jennifer L. Wilkinson-Berka
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
18
|
Czopek A, Moorhouse R, Gallacher PJ, Pugh D, Ivy JR, Farrah TE, Godden E, Hunter RW, Webb DJ, Tharaux PL, Kluth DC, Dear JW, Bailey MA, Dhaun N. Endothelin blockade prevents the long-term cardiovascular and renal sequelae of acute kidney injury in mice. Sci Transl Med 2022; 14:eabf5074. [PMID: 36516266 DOI: 10.1126/scitranslmed.abf5074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is common and associated with increased risks of cardiovascular and chronic kidney disease. Causative molecular/physiological pathways are poorly defined. There are no therapies to improve long-term outcomes. An activated endothelin system promotes cardiovascular and kidney disease progression. We hypothesized a causal role for this in the transition of AKI to chronic disease. Plasma endothelin-1 was threefold higher; urine endothelin-1 was twofold higher; and kidney preproendothelin-1, endothelin-A, and endothelin-B receptor message up-regulated in patients with AKI. To show causality, AKI was induced in mice by prolonged ischemia with a 4-week follow-up. Ischemic injury resulted in hypertension, endothelium-dependent and endothelium-independent macrovascular and microvascular dysfunction, and an increase in circulating inflammatory Ly6Chigh monocytes. In the kidney, we observed fibrosis, microvascular rarefaction, and inflammation. Administration of endothelin-A antagonist, but not dual endothelin-A/B antagonist, normalized blood pressure, improved macrovascular and microvascular function, and prevented the transition of AKI to CKD. Endothelin-A blockade reduced circulating and renal proinflammatory Ly6Chigh monocytes and B cells, and promoted recruitment of anti-inflammatory Ly6Clow monocytes to the kidney. Blood pressure reduction alone provided no benefits; blood pressure reduction alongside blockade of the endothelin system was as effective as endothelin-A antagonism in mitigating the long-term sequelae of AKI in mice. Our studies suggest up-regulation of the endothelin system in patients with AKI and show in mice that existing drugs that block the endothelin system, particularly those coupling vascular support and anti-inflammatory action, can prevent the transition of AKI to chronic kidney and cardiovascular disease.
Collapse
Affiliation(s)
- Alicja Czopek
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rebecca Moorhouse
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Peter J Gallacher
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Dan Pugh
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Jessica R Ivy
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tariq E Farrah
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Emily Godden
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert W Hunter
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - David J Webb
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France
| | - David C Kluth
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - James W Dear
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK.,Paris Cardiovascular Research Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France
| |
Collapse
|
19
|
Repeated Episodes of Ischemia/Reperfusion Induce Heme-Oxygenase-1 (HO-1) and Anti-Inflammatory Responses and Protects against Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms232314573. [PMID: 36498913 PMCID: PMC9739146 DOI: 10.3390/ijms232314573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Preconditioning episodes of ischemia/reperfusion (IR) induce protection against acute kidney injury (AKI), however their long-term effect still unknown. We evaluated AKI to chronic kidney disease (CKD) transition, after three-mild or three-severe episodes of IR. AKI was induced by single bilateral IR (1IR), or three episodes of IR separated by 10-day intervals (3IR) of mild (20 min) or severe (45 min) ischemia. Sham-operated rats served as controls. During 9-months, the 1IR group (20 or 45 min) developed CKD evidenced by progressive proteinuria and renal fibrosis. In contrast, the long-term adverse effects of AKI were markedly ameliorated in the 3IR group. The acute response in 3IR, contrasted with the 1IR group, that was characterized by an increment in heme oxygenase-1 (HO-1) and an anti-inflammatory response mediated by a NFkB-p65 phosphorylation and IL-6 decrease, together with an increase in TGF-β, and IL-10 expression, as well as in M2-macrophages. In addition, three episodes of IR downregulated endoplasmic reticulum (ER) stress markers expression, CHOP and BiP. Thus, repeated episodes of IR with 10-day intervals induced long-term renal protection accompanied with HO-1 overexpression and M2-macrophages increase.
Collapse
|
20
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
21
|
Kolkhof P, Lawatscheck R, Filippatos G, Bakris GL. Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems. Int J Mol Sci 2022; 23:9243. [PMID: 36012508 PMCID: PMC9408839 DOI: 10.3390/ijms23169243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Perception of the role of the aldosterone/mineralocorticoid receptor (MR) ensemble has been extended from a previously renal epithelial-centered focus on sodium and volume homeostasis to an understanding of their role as systemic modulators of reactive oxygen species, inflammation, and fibrosis. Steroidal MR antagonists (MRAs) are included in treatment paradigms for resistant hypertension and heart failure with reduced ejection fraction, while more recently, the nonsteroidal MRA finerenone was shown to reduce renal and cardiovascular outcomes in two large phase III trials (FIDELIO-DKD and FIGARO-DKD) in patients with chronic kidney disease and type 2 diabetes, respectively. Here, we provide an overview of the pathophysiologic role of MR overactivation and preclinical evidence with the nonsteroidal MRA finerenone in a range of different disease models with respect to major components of the aggregate mode of action, including interfering with reactive oxygen species generation, inflammation, fibrosis, and hypertrophy. We describe a time-dependent effect of these mechanistic components and the potential modification of major clinical parameters, as well as the impact on clinical renal and cardiovascular outcomes as observed in FIDELIO-DKD and FIGARO-DKD. Finally, we provide an outlook on potential future clinical indications and ongoing clinical studies with finerenone, including a combination study with a sodium-glucose cotransporter-2 inhibitor.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiology Precision Medicines, Research & Early Development, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Robert Lawatscheck
- Clinical Development, Bayer AG, Müller Straße 178, Building P300, 13342 Berlin, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Mikras Asias 75, 115 27 Athina, Greece
| | - George L. Bakris
- Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
22
|
Upregulation of Mineralocorticoid Receptor Contributes to Development of Salt-Sensitive Hypertension after Ischemia-Reperfusion Injury in Rats. Int J Mol Sci 2022; 23:ijms23147831. [PMID: 35887178 PMCID: PMC9324399 DOI: 10.3390/ijms23147831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The ischemia-reperfusion injury (IRI) of rat kidneys is used as a model of acute kidney injury. Salt-sensitive hypertension occurs in rats after IRI, and the distal nephrons play important roles in the development of this condition. We investigated the role of the mineralocorticoid receptor (MR) in the progression of IRI-induced salt-sensitive hypertension in rats. Fourteen days after right-side nephrectomy, IRI was induced by clamping the left renal artery, with sham surgery performed as a control. IRI rats were provided with normal water or water with 1.0% NaCl (IRI/NaCl), or they were implanted with an osmotic mini-pump to infuse vehicle or aldosterone (IRI/Aldo). Esaxerenone, a non-steroidal MR blocker (MRB), was administered to IRI/NaCl and IRI/Aldo rats for 6 weeks. MR expression increased by day 7 post-IRI. Blood pressure and urinary protein excretion increased in IRI/NaCl and IRI/Aldo rats over the 6-week period, but these effects were negated by MRB administration. The MRB attenuated the expression of the gamma-epithelial sodium channel (ENaC) and renal damage. The ENaC inhibitor, amiloride, ameliorated hypertension and renal damage in IRI/NaCl and IRI/Aldo rats. Our findings thus showed that MR upregulation may play a pivotal role in ENaC-mediated sodium uptake in rats after IRI, resulting in the development of salt-sensitive hypertension in response to salt overload or the activation of the renin-angiotensin-aldosterone system.
Collapse
|
23
|
Zaman A, Banday AA. Angiotensin1-7 Protects Against Renal Ischemia-Reperfusion Injury via Regulating the Expression of NRF2 and microRNAs in Fisher 344 Rats. Am J Physiol Renal Physiol 2022; 323:F33-F47. [PMID: 35532070 DOI: 10.1152/ajprenal.00283.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) is considered the primary cause of acute kidney injury and is higher among older individuals. While ischemic episodes are hard to predict and prevent, detrimental ischemic effects could be mitigated by exogenous intervention. This study aims to identify the protective role of angiotensin (ANG)1-7 against I/R-induced renal injury in adult vs. aged rats. Adult and aged male Fisher 344 rats were subjected to 40-minute bilateral renal ischemia followed by 28-days reperfusion. ANG1-7 was administered intraperitoneally in ischemic rats for 28 days without or with Mas receptor antagonist A779. I/R increased blood pressure, plasma creatinine, urinary 8-isoprostane, and renal infiltration of pro and anti-inflammatory macrophages and reduced glomerular filtration rate in both adult and aged rats compared to shams. In addition to causing glomerular sclerosis and tubular damage, I/R increased the expression of pathogenic microRNAs (miRNAs): miR-20a-5p, miR-21-5p, miR-24-3p, and miR-194-5p in both the age groups. ANG1-7 treatment of ischemic rats mitigated oxidative stress and renal inflammation, restored renal structure and function, and reduced high blood pressure. Also, ANG1-7 suppressed the expression of pathogenic miRNAs. In addition, ANG1-7 treatment of I/R rats increased the expression of redox-sensitive transcription factor NRF2 and phase II antioxidant enzymes. The beneficial effects of ANG1-7 were sensitive to A779. Collectively, these data suggest that ANG1-7 associated with NRF2 activation could alleviate post-I/R-induced kidney injury and therefore serve as a potential therapeutic compound to protect against biochemical and morphological pathologies of I/R in both adults and aged populations.
Collapse
Affiliation(s)
- Asif Zaman
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas, United States
| | - Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, Texas, United States
| |
Collapse
|
24
|
Nakamura T, Girerd S, Jaisser F, Barrera-Chimal J. Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney Int Suppl (2011) 2022; 12:12-18. [DOI: 10.1016/j.kisu.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
|
25
|
Luan ZL, Zhang C, Ming WH, Huang YZ, Guan YF, Zhang XY. Nuclear receptors in renal health and disease. EBioMedicine 2022; 76:103855. [PMID: 35123268 PMCID: PMC8819107 DOI: 10.1016/j.ebiom.2022.103855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.
Collapse
Affiliation(s)
- Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Wen-Hua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ying-Zhi Huang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, Liaoning 116044, China.
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
26
|
Barrera-Chimal J, Lima-Posada I, Bakris GL, Jaisser F. Mineralocorticoid receptor antagonists in diabetic kidney disease - mechanistic and therapeutic effects. Nat Rev Nephrol 2022; 18:56-70. [PMID: 34675379 DOI: 10.1038/s41581-021-00490-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease (CKD) is the leading complication in type 2 diabetes (T2D) and current therapies that limit CKD progression and the development of cardiovascular disease (CVD) include angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and sodium-glucose co-transporter 2 (SGLT2) inhibitors. Despite the introduction of these therapeutics, an important residual risk of CKD progression and cardiovascular death remains in patients with T2D. Mineralocorticoid receptor antagonists (MRAs) are a promising therapeutic option in diabetic kidney disease (DKD) owing to the reported effects of mineralocorticoid receptor activation in inflammatory cells, podocytes, fibroblasts, mesangial cells and vascular cells. In preclinical studies, MRAs consistently reduce albuminuria, CKD progression, and activation of fibrotic and inflammatory pathways. DKD clinical studies have similarly demonstrated that steroidal MRAs lead to albuminuria reduction compared with placebo, although hyperkalaemia is a major secondary effect. Non-steroidal MRAs carry a lower risk of hyperkalaemia than steroidal MRAs, and the large FIDELIO-DKD clinical trial showed that the non-steroidal MRA finerenone also slowed CKD progression and reduced the risk of adverse cardiovascular outcomes compared with placebo in patients with T2D. Encouragingly, other non-steroidal MRAs have anti-albuminuric properties in DKD. Whether or not combining MRAs with other renoprotective drugs such as SGLT2 inhibitors might provide additive protective effects warrants further investigation.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ixchel Lima-Posada
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - George L Bakris
- American Heart Association Comprehensive Hypertension Centre, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France. .,Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France.
| |
Collapse
|
27
|
Immunomodulatory Potential of Diuretics. BIOLOGY 2021; 10:biology10121315. [PMID: 34943230 PMCID: PMC8698805 DOI: 10.3390/biology10121315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
In this review, diuretics and their immunomodulatory functions are described. The effects on the immune response of this group of drugs are reported in patients suffering from hypertension and under experimental conditions involving animal models and cell line studies. The pathogenesis of hypertension is strongly connected to chronic inflammation. The vast majority of diuretics modulate the immune response, changing it in favor of the anti-inflammatory response, but depending on the drug, these effects may differ. This topic is significantly important in medical practice regarding the treatment of patients who have coexisting diseases with chronic inflammatory pathogenesis, including hypertension or chronic heart failure. In patients with metabolic syndrome, allergies, or autoimmune disorders, the anti-inflammatory effect is favorable, because of the overstimulation of their immune system. Otherwise, in the geriatric population, it is important to find the proper anti- and pro-inflammatory balance to avoid an enhancement of immune response suppression, which can result in reducing the risk of serious infections that can occur due to the age-diminished function of the immune system. This article is intended to facilitate the selection of an antihypertensive drug that depends on the patient's immune situation.
Collapse
|
28
|
Barrera-Chimal J, Jaisser F, Anders HJ. The mineralocorticoid receptor in chronic kidney disease. Br J Pharmacol 2021; 179:3152-3164. [PMID: 34786690 DOI: 10.1111/bph.15734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health concern, affecting approximately 10% of the population worldwide. CKD of glomerular or tubular origin leads to the activation of stress mechanisms, including the renin angiotensin aldosterone system and mineralocorticoid receptor (MR) activation. Over the last two decades, blockade of the MR has arisen as a potential therapeutic approach against various forms of kidney disease. In this review, we summarize the experimental studies that have shown a protective effect of MR antagonists (MRAs) in non-diabetic and diabetic CKD animal models. Moreover, we review the main clinical trials that have shown the clinical application of MRAs to reduce albuminuria and, importantly, to slow CKD progression. Recent evidence from the FIDELIO trial showed that the MRA finerenone can reduce hard kidney outcomes when added to the standard of care in CKD associated with type 2 diabetes. Finally, we discuss the effects of MRAs relative to those of SGLT2 inhibitors, as well as the potential benefit of combination therapy to maximize organ protection.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ziemssenstr. 1, D-80336, München
| |
Collapse
|
29
|
Yao J, Qian Z, Tian X, Fu G, Wang B, Li L. Involvement of BDNF Signalling Pathway in Spironolactone- Mediated Protective Effects in Sepsis-Induced Cardiac Injury in Rats. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.577.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Droebner K, Pavkovic M, Grundmann M, Hartmann E, Goea L, Nordlohne J, Klar J, Eitner F, Kolkhof P. Direct Blood Pressure-Independent Anti-Fibrotic Effects by the Selective Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone in Progressive Models of Kidney Fibrosis. Am J Nephrol 2021; 52:588-601. [PMID: 34515038 DOI: 10.1159/000518254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in chronic kidney disease patients with type 2 diabetes. Precise molecular mechanisms responsible for these benefits are incompletely understood. Here, we investigated potential direct anti-fibrotic effects and mechanisms of nonsteroidal MR antagonism by finerenone or SGLT2 inhibition by empagliflozin in 2 relevant mouse kidney fibrosis models: unilateral ureter obstruction and sub-chronic ischemia reperfusion injury. METHODS Kidney fibrosis was induced in mice via unilateral ureteral obstruction or ischemia. In a series of experiments, mice were treated orally with the MR antagonist finerenone (3 or 10 mg/kg), the SGLT2 inhibitor empagliflozin (10 or 30 mg/kg), or in a direct comparison of both drugs. Interstitial myofibroblast accumulation was quantified via alpha-smooth muscle actin and interstitial collagen deposition via Sirius Red/Fast Green staining in both models. Secondary analyses included the assessment of inflammatory cells, kidney mRNA expression of fibrotic markers as well as functional parameters (serum creatinine and albuminuria) in the ischemic model. Blood pressure was measured via telemetry in healthy conscious compound-treated animals. RESULTS Finerenone dose-dependently decreased pathological myofibroblast accumulation and collagen deposition with no effects on systemic blood pressure and inflammatory markers in the tested dose range. Reduced kidney fibrosis was paralleled by reduced kidney plasminogen activator inhibitor-1 (PAI-1) and naked cuticle 2 (NKD2) expression in finerenone-treated mice. In contrast, treatment with empagliflozin strongly increased urinary glucose excretion in both models and reduced ischemia-induced albuminuria but had no effects on kidney myofibroblasts or collagen deposition. DISCUSSION/CONCLUSION Finerenone has direct anti-fibrotic properties resulting in reduced myofibroblast and collagen deposition accompanied by a reduction in renal PAI-1 and NKD2 expression in mouse models of progressive kidney fibrosis at blood pressure-independent dosages.
Collapse
Affiliation(s)
- Karoline Droebner
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Mira Pavkovic
- Biomarker Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Manuel Grundmann
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Elke Hartmann
- Research Pathology, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Laura Goea
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Johannes Nordlohne
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Jürgen Klar
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Frank Eitner
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Peter Kolkhof
- Cardiovascular Research, Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
31
|
Hao J, Liu L, Liu Z, Chen G, Xiong Y, Wang X, Ma X, Xu Q. Aldosterone Induces the Proliferation of Renal Tubular Epithelial Cells In Vivo but Not In Vitro. J Renin Angiotensin Aldosterone Syst 2021; 2021:9943848. [PMID: 34386059 PMCID: PMC8337160 DOI: 10.1155/2021/9943848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the proliferation effect of aldosterone on renal tubular epithelial cells in vivo and in vitro. METHODS Thirty-two male C57BL/6J mice (20-22 g) were divided randomly into four groups: sham, unilateral nephrectomy (UN), unilateral nephrectomy plus aldosterone infusion (UA), and UA plus eplerenone (UAE). The kidneys were removed 6 weeks after treatment. Expression of proliferating cell nuclear antigen (PCNA) was detected by immunohistochemistry and western blotting. Human kidney proximal tubular epithelial (HK2) and mouse distal convoluted tubule (mDCT) cell lines were stimulated by aldosterone (0, 10-9, 10-8, 10-7, and 10-6 mol/L) in vitro. Cells were collected after 3, 6, 12, 24, 36, and 48 h, and proliferation of each group detected by western blotting, flow cytometry, live imaging, and the MTT assay. In addition, mDCT cells were costimulated with a medium containing a final concentration of 161 mmol/L Na+ and different concentrations of aldosterone, and the number of cells and cellular DNA content was measured by the MTT assay and flow cytometry. RESULTS Aldosterone could induce a significant increase in the number of PCNA-positive cells in mouse kidneys accompanied by increased deposition of collagen fibers. Eplerenone could inhibit aldosterone-induced cell proliferation and collagen deposition. HK2 cells and mDCT cells administered different concentrations, and different times of aldosterone stimulation failed to cause cell proliferation, and costimulation of aldosterone and salt did not cause proliferation changes in mDCT cells. CONCLUSIONS Aldosterone perfusion can induce proliferation of mouse kidney cells in vivo, and eplerenone can inhibit this change, but aldosterone stimulates HK2 cells and mDCT in vitro without causing their proliferation.
Collapse
Affiliation(s)
- Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lingjin Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Gege Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yunzhao Xiong
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Internal Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangting Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Internal Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuelian Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Internal Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Internal Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
32
|
Matsuura R, Yamashita T, Hayase N, Hamasaki Y, Noiri E, Numata G, Takimoto E, Nangaku M, Doi K. Preexisting heart failure with reduced ejection fraction attenuates renal fibrosis after ischemia reperfusion via sympathetic activation. Sci Rep 2021; 11:15091. [PMID: 34302012 PMCID: PMC8302613 DOI: 10.1038/s41598-021-94617-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Although chronic heart failure is clinically associated with acute kidney injury (AKI), the precise mechanism that connects kidney and heart remains unknown. Here, we elucidate the effect of pre-existing heart failure with reduced ejection fraction (HFrEF) on kidney via sympathetic activity, using the combining models of transverse aortic constriction (TAC) and unilateral renal ischemia reperfusion (IR). The evaluation of acute (24 h) and chronic (2 weeks) phases of renal injury following IR 8 weeks after TAC in C57BL/6 mice revealed that the development of renal fibrosis in chronic phase was significantly attenuated in TAC mice, but not in non-TAC mice, whereas no impact of pre-existing heart failure was observed in acute phase of renal IR. Expression of transforming growth factor-β, monocyte chemoattractant protein-1, and macrophage infiltration were significantly reduced in TAC mice. Lastly, to investigate the effect of sympathetic nerve activity, we performed renal sympathetic denervation two days prior to renal IR, which abrogated attenuation of renal fibrosis in TAC mice. Collectively, we demonstrate the protective effect of pre-existing HFrEF on long-term renal ischemic injury. Renal sympathetic nerve may contribute to this protection; however, further studies are needed to fully clarify the comprehensive mechanisms associated with attenuated renal fibrosis and pre-existing HFrEF.
Collapse
Affiliation(s)
- Ryo Matsuura
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Yamashita
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Hayase
- Department of Acute Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yoshifumi Hamasaki
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kent Doi
- Department of Acute Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
33
|
Spencer S, Wheeler-Jones C, Elliott J. Hypoxia and chronic kidney disease: Possible mechanisms, therapeutic targets, and relevance to cats. Vet J 2021; 274:105714. [PMID: 34252550 DOI: 10.1016/j.tvjl.2021.105714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
There is mounting evidence that kidney ischaemia/hypoxia plays an important role in feline chronic kidney disease (CKD) development and progression, as well as in human disease and laboratory animal models. Ischaemic acute kidney injury is widely accepted as a cause of CKD in people and data from laboratory species has identified some of the pathways underlying this continuum. Experimental kidney ischaemia in cats results in morphological changes, namely chronic tubulointerstitial inflammation, tubulointerstitial fibrosis, and tubular atrophy, akin to those observed in naturally-occurring CKD. Multiple situations are envisaged that could result in acute or chronic episodes of kidney hypoxia in cats, while risk factors identified in epidemiological studies provide further support that kidney hypoxia contributes to spontaneously occurring feline CKD. This review evaluates the evidence for the role of kidney ischaemia/hypoxia in feline CKD and the proposed mechanisms and consequences of kidney hypoxia. As no effective treatments exist that substantially slow or prevent feline CKD progression, there is a need for novel therapeutic strategies. Targeting kidney hypoxia is one such promising approach, with therapies including those that attenuate the hypoxia-inducible factor (HIF) pathway already being utilised in human CKD.
Collapse
Affiliation(s)
- Sarah Spencer
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| | - Caroline Wheeler-Jones
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Jonathan Elliott
- Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
34
|
Sánchez‐Navarro A, Martínez‐Rojas MÁ, Caldiño‐Bohn RI, Pérez‐Villalva R, Zambrano E, Castro‐Rodríguez DC, Bobadilla NA. Early triggers of moderately high-fat diet-induced kidney damage. Physiol Rep 2021; 9:e14937. [PMID: 34291592 PMCID: PMC8295594 DOI: 10.14814/phy2.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Most of the obesity murine models inducing renal injury use calorie-enriched foods, where fat represents 60% of the total caloric supply, however, this strategy doubles the standard proportion of fat ingestion in obese patients. Therefore, it is crucial to study the impact of a high-fat intake on kidney physiology that resembles common obesity in humans to understand the trigger mechanisms of the long-term consequences of overweight and obesity. In this study, we analyzed whether chronic feeding with a moderately high fat diet (MHFD) representing 45% of total calories, may induce kidney function and structural injury compared to C57BL/6 mice fed a control diet. After 14 weeks, MHFD induced significant mice obesity. At the functional level, obese mice showed signs of kidney injury characterized by increased albuminuria/creatinine ratio and higher excretion of urinary biomarkers of kidney damage. While, at the structural level, glomerular hypertrophy was observed. Although, we did not detect renal fibrosis, the obese mice exhibited a significant elevation of Tgfb1 mRNA levels. Kidney damage caused by the exposure to MHFD was associated with greater oxidative stress, renal inflammation, higher endoplasmic reticulum (ER)-stress, and disruption of mitochondrial dynamics. In summary, our data demonstrate that obesity induced by a milder fat content diet is enough to establish renal injury, where oxidative stress, inflammation, ER-stress, and mitochondrial damage take relevance, pointing out the importance of opportune interventions to avoid the long-term consequences associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Sánchez‐Navarro
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Miguel Ángel Martínez‐Rojas
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rebecca I. Caldiño‐Bohn
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Rosalba Pérez‐Villalva
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Elena Zambrano
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| | - Diana C. Castro‐Rodríguez
- Department of Biology of ReproductionInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
- CONACyT‐CátedrasMexico CityMexico
| | - Norma A. Bobadilla
- Molecular Physiology UnitInstituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Department of NephrologyInstituto Nacional de Ciencias Médicas y NutriciónSalvador ZubiránMexico CityMexico
| |
Collapse
|
35
|
Patel V, Joharapurkar A, Jain M. Role of mineralocorticoid receptor antagonists in kidney diseases. Drug Dev Res 2021; 82:341-363. [PMID: 33179798 DOI: 10.1002/ddr.21760] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Mineralocorticoid receptor (MR) antagonists, for example, spironolactone and eplerenone, are in clinical use to treat hypertension. Increasing evidence suggests that mineralocorticoid receptor activation causes the pathogenesis and progression of chronic kidney disease. Aldosterone-induced MR activation increases inflammation, fibrosis, and oxidative stress in the kidney. MR antagonists (MRAs) have demonstrated therapeutic actions in chronic kidney disease (CKD), diabetic nephropathy (DN), renal fibrosis, and drug-induced renal injury in preclinical and clinical studies. We have summarized and discussed these studies in this review. The nonsteroidal MRA, esaxerenone, recently received approval for the treatment of hypertension. It has also shown a positive therapeutic effect in phase 3 clinical trials in patients with DN. Other nonsteroidal MRA such as apararenone, finerenone, AZD9977, and LY2623091 are in different clinical trials in patients with hypertension suffering from renal or hepatic fibrotic diseases. Hyperkalemia associated with MRA therapy has frequently led to the discontinuation of the treatment. The new generation nonsteroidal MRAs like esaxerenone are less likely to cause hyperkalemia at therapeutic doses. It appears that the nonsteroidal MRAs can provide optimum therapeutic benefit for patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Vishal Patel
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| | | | - Mukul Jain
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, India
| |
Collapse
|
36
|
Zhu Y, Liu Y, Cai R, Zheng D, Liang X, Tao M, Jin J, Li Y, He Q. The safety and efficacy of low-dose mineralocorticoid receptor antagonists in dialysis patients: A meta-analysis. Medicine (Baltimore) 2021; 100:e24882. [PMID: 33663116 PMCID: PMC7909172 DOI: 10.1097/md.0000000000024882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/01/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Our aim was to evaluate the safety and efficacy of low-dose mineralocorticoid receptor antagonists (MRAs) in dialysis patients. METHODS We systematically searched PubMed, EMBASE, and Cochrane libraries for clinical trials on the use of MRAs in dialysis patients. Review Manager 5.3 software was used to analyze relevant data and evaluate the quality of evidence. RESULTS We identified nine randomized controlled trials including 1128 chronic dialysis patients. In terms of safety, when hyperkalemia was defined as serum potassium level ≥5.5 mmol/L, low-dose MRAs were significantly associated with hyperkalemia (relative risk [RR] 1.76, 95% confidence intervals [CI] 1.07-2.89, P = .02); however, when hyperkalemia was defined as serum potassium level ≥6.0 mmol/L or serum potassium level ≥6.5 mmol/L, no significant association was observed between low-dose MRAs and hyperkalemia (RR 1.40, 95% CI 0.83-2.37, P = .20; RR 1.98, 95% CI 0.91-4.30, P = .09, respectively). Use of low-dose MRAs can reduce cardiovascular mortality by 54% compared with the control group (0.46, 95% CI 0.28-0.76, P = .003). Similarly, the RR of all-cause mortality for the low-dose MRAs group was 0.48 (95% CI 0.33-0.72, P = .0003). CONCLUSION Low-dose MRAs may benefit dialysis patients without significantly increasing moderate to severe hyperkalemia.
Collapse
Affiliation(s)
- Yifan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yueming Liu
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Ruyi Cai
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Danna Zheng
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Xudong Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Mei Tao
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital 310053, P.R. China
- Peoples’ Hospital of Hangzhou Medical College
- Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
37
|
Spencer S, Wheeler‐Jones C, Elliott J. Aldosterone and the mineralocorticoid receptor in renal injury: A potential therapeutic target in feline chronic kidney disease. J Vet Pharmacol Ther 2020; 43:243-267. [PMID: 32128854 PMCID: PMC8614124 DOI: 10.1111/jvp.12848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/20/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022]
Abstract
There is a growing body of experimental and clinical evidence supporting mineralocorticoid receptor (MR) activation as a powerful mediator of renal damage in laboratory animals and humans. Multiple pathophysiological mechanisms are proposed, with the strongest evidence supporting aldosterone-induced vasculopathy, exacerbation of oxidative stress and inflammation, and increased growth factor signalling promoting fibroblast proliferation and deranged extracellular matrix homeostasis. Further involvement of the MR is supported by extensive animal model experiments where MR antagonists (such as spironolactone and eplerenone) abrogate renal injury, including ischaemia-induced damage. Additionally, clinical trials have shown MR antagonists to be beneficial in human chronic kidney disease (CKD) in terms of reducing proteinuria and cardiovascular events, though current studies have not evaluated primary end points which allow conclusions to made about whether MR antagonists reduce mortality or slow CKD progression. Although differences between human and feline CKD exist, feline CKD shares many characteristics with human disease including tubulointerstitial fibrosis. This review evaluates the evidence for the role of the MR in renal injury and summarizes the literature concerning aldosterone in feline CKD. MR antagonists may represent a promising therapeutic strategy in feline CKD.
Collapse
Affiliation(s)
- Sarah Spencer
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| | | | - Jonathan Elliott
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| |
Collapse
|
38
|
Dumanlı GY, Dilken O, Ürkmez S. Use of Spironolactone in SARS-CoV-2 ARDS Patients. Turk J Anaesthesiol Reanim 2020; 48:254-255. [PMID: 32551456 PMCID: PMC7279869 DOI: 10.5152/tjar.2020.569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Güleren Yartaş Dumanlı
- Department of Intensive Care, İstanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Olcay Dilken
- Department of Intensive Care, İstanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Seval Ürkmez
- Department of Intensive Care, İstanbul University-Cerrahpaşa, Cerrahpaşa School of Medicine, İstanbul, Turkey
| |
Collapse
|
39
|
Gupta G, Dahiya R, Singh Y, Mishra A, Verma A, Gothwal SK, Aljabali AA, Dureja H, Prasher P, Negi P, Kapoor DN, Goyal R, Tambuwala MM, Chellappan DK, Dua K. Monotherapy of RAAS blockers and mobilization of aldosterone: A mechanistic perspective study in kidney disease. Chem Biol Interact 2020; 317:108975. [DOI: 10.1016/j.cbi.2020.108975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
|
40
|
Impact of mineralocorticoid receptor antagonist in renal transplant patients: a systematic review and meta-analysis of randomized controlled trials. J Nephrol 2019; 33:529-538. [DOI: 10.1007/s40620-019-00681-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
|
41
|
Ogbadu J, Singh G, Aggarwal D. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives. Eur J Pharmacol 2019; 865:172711. [DOI: 10.1016/j.ejphar.2019.172711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
|
42
|
Aggarwal D, Singh G. Effects of single and dual RAAS blockade therapy on progressive kidney disease transition to CKD in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:615-627. [PMID: 31773183 DOI: 10.1007/s00210-019-01759-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Ischemic reperfusion (I/R) is the primary cause of acute kidney injury (AKI) in hospitalized patients. Although AKI resolution occurs in few days, it predisposes kidneys to progressive renal injury. Previously, administration of rennin-angiotensin-aldosterone system (RAAS) blocker spironolactone in acute phase was reported to attenuate various manifestations of chronic kidney disease (CKD) in rats. The present study investigates the effects of RAAS blockade during progressive kidney disease (30 days onwards) on CKD outcomes in rodent model of I/R injury. CKD was induced by clamping both renal pedicles for 45 min followed by 90 days of reperfusion in rats. Single and dual RAAS blocker therapy was initiated at 30 days post-I/R injury and continued until the end of the study period. Evaluation of proteinuria and creatinine levels was done every 30 days in various study groups. Assessment of CKD was done by analyzing renal tissue oxidative stress, inflammatory biomarker levels, and histological changes after 90 days of I/R injury. After 90 days, I/R rat kidneys displayed hypertrophy, reduced body weight, increased oxidative stress, elevated inflammatory biomarker levels, and histological abnormalities such as glomerulosclerosis, mesangial expansion, and tubulointerstitial fibrosis. Treatment with losartan or spironolactone alone significantly reduced various CKD-associated features. Remarkably, combined treatment with dual RAAS blocker in low dose or high dose exhibited highest beneficial effects on various parameters in CKD model, with low-dose combination showing fewer side effects. Therefore, we propose that combined low-dose RAAS blockade therapy might serve as a better therapeutic approach for retarding progressive kidney disease transition to CKD.
Collapse
Affiliation(s)
- Devesh Aggarwal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Gaaminepreet Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
43
|
Morales-Buenrostro LE, Ortega-Trejo JA, Pérez-Villalva R, Marino LA, González-Bobadilla Y, Juárez H, Zamora-Mejía FM, González N, Espinoza R, Barrera-Chimal J, Bobadilla NA. Spironolactone reduces oxidative stress in living donor kidney transplantation: a randomized controlled trial. Am J Physiol Renal Physiol 2019; 317:F519-F528. [DOI: 10.1152/ajprenal.00606.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mineralocorticoid receptor antagonism prevents acute kidney injury induced by ischemia-reperfusion in rodent and pig preclinical models. In a pilot study, we showed that spironolactone (25 mg) reduced oxidative stress after 5 days of kidney transplant (KT). In the present study, we investigated the effects of higher doses (50 and 100 mg) of spironolactone on kidney function, tubular injury markers, and oxidative stress in living donor KT recipients. We included KT recipients aged 18 yr or older who received immunosuppression therapy with IL-2 receptor antagonist, mycophenolate mofetil, corticosteroids, and tacrolimus with negative cross-match, and compatible blood group. Patients were randomized to receive placebo ( n = 27), spironolactone (50 mg, n = 25), or spironolactone (100 mg, n = 25). Treatment was given from 3 days before and up to 5 days after KT. Serum creatinine, K+, urine neutrophil gelatinase-associated lipocalin-2, heat shock protein 72, and 8-hydroxy-2-deoxyguanosine levels were assessed. As expected, kidney function was improved after KT. Serum K+ remained in the normal range along the study. There was no significant effect of spironolactone on urinary neutrophil gelatinase-associated lipocalin-2 levels, whereas the increase in urinary heat shock protein 72 levels tended to be less intense in the 100 mg spironolactone-treated group ( P = 0.054). In the placebo-treated group, urinary 8-hydroxylated-guanosine levels increased on days 3 and 5 after transplantation. This effect was prevented in patients that received spironolactone. In conclusion, spironolactone reduces the acute increase in urinary oxidative stress in living donor KT recipients.
Collapse
Affiliation(s)
| | - Juan Antonio Ortega-Trejo
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lluvia A. Marino
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Yvett González-Bobadilla
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hilda Juárez
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Flor M. Zamora-Mejía
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma González
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ramón Espinoza
- Transplantation Unit, Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad de Medicina Traslacional, UNAM-Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Norma A. Bobadilla
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
44
|
Amador-Martínez I, Pérez-Villalva R, Uribe N, Cortés-González C, Bobadilla NA, Barrera-Chimal J. Reduced endothelial nitric oxide synthase activation contributes to cardiovascular injury during chronic kidney disease progression. Am J Physiol Renal Physiol 2019; 317:F275-F285. [DOI: 10.1152/ajprenal.00020.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Major cardiovascular events are a common complication in patients with chronic kidney disease (CKD). Endothelial dysfunction can contribute to the cardiovascular injury observed in CKD. Here, we used a rat model of acute kidney injury to CKD transition to investigate heart alterations in the pathway activating endothelial nitric oxide synthase (eNOS) and its impact on the cardiac injury observed during CKD progression. Fifty male Wistar rats were subjected to sham surgery ( n = 25) or bilateral renal ischemia-reperfusion (IR-CKD) for 45 min ( n = 25). Rats were studied on a monthly basis up to 5 mo ( n = 5). In another set of sham and IR-CKD rats, l-arginine was administered starting on the third month after renal ischemia. CKD development and cardiac alterations were monitored in all groups. CKD was characterized by a progressive increase in proteinuria and renal dysfunction that was evident after the fifth month of followup. Heart hypertrophy was observed starting on the fourth month after ischemia-reperfusion. There was a significant increase in brain natriuretic peptide levels. In the heart, IR-CKD rats had increased eNOS phosphorylation at threonine 495 and reduced eNOS-heat shock protein-90α interactions. l-Arginine administration prevented the heart alterations observed during CKD and increased eNOS coupling/dimerization and activation. In summary, CKD progression is accompanied by cardiac hypertrophy, fibrosis, oxidative stress, and increased brain natriuretic peptide levels. These alterations were associated with limited eNOS activation in the heart, which may result in reduced nitric oxide bioavailability and contribute to cardiac injury during CKD.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalba Pérez-Villalva
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Norma Uribe
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - César Cortés-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Norma A. Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jonatan Barrera-Chimal
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|