1
|
Su JQ, Wu XQ, Wang Q, Xie BY, Xiao CY, Su HY, Tang JX, Yao CW. The microbial metabolite trimethylamine N-oxide and the kidney diseases. Front Cell Infect Microbiol 2025; 15:1488264. [PMID: 40134790 PMCID: PMC11933022 DOI: 10.3389/fcimb.2025.1488264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Trimethylamine N-oxide (TMAO), a metabolite, is a co-metabolite produced by both gut microbiota and livers, originating from foods rich in choline or carnitine. Emerging evidence suggests that TMAO may play a role in the pathogenesis of various kidney diseases, including acute kidney injury and chronic kidney disease. Research has demonstrated that heightened levels of TMAO are correlated with a heightened likelihood of kidney disease advancement and cardiovascular incidents among individuals with chronic kidney disease. Furthermore, TMAO has been observed to stimulate inflammation, oxidative stress, and fibrosis in animal models of kidney disease. Mechanistically, TMAO may contribute to kidney disease pathogenesis by inhibiting autophagy, activating the NLRP3 inflammasome, and inducing mitochondrial dysfunction. Therefore, targeting TMAO may represent a promising therapeutic strategy for the treatment of kidney diseases. Future studies are needed to further investigate the role of TMAO in kidney disease pathogenesis and to develop TMAO-targeted therapies for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Jin-Qi Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiang-Qi Wu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bo-Yang Xie
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Yan Xiao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hong-Yong Su
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Kim K, Cho WH, Hwang SD, Lee SW, Song JH. Association between constipation and incident chronic kidney disease in the UK Biobank study. Sci Rep 2024; 14:32106. [PMID: 39738665 PMCID: PMC11686077 DOI: 10.1038/s41598-024-83855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Despite previous studies supporting a close relationship between constipation and chronic kidney disease (CKD), the potential impact of constipation on incident CKD and the role of laxatives remains uncertain. We analyzed longitudinal data from the UK Biobank, which links baseline assessment data with follow-up data from hospital episode statistics and general practice records. Constipation was defined with diagnostic codes or regular use of laxatives at baseline as reported in the questionnaire. Cox proportional hazard models were used to evaluate the association between constipation and incident CKD. After excluding individuals with pre-existing CKD or missing covariates, 118,020 participants with general practice follow-up data were included in the main analysis. Over a median follow-up of 7.4 years, 6,833 (5.8%) patients developed CKD. Constipation was significantly associated with increased risk of CKD development in the multivariable adjusted models (hazard ratio [HR] 1.51, 95% confidence interval [CI] 1.37-1.67) for ICD-defined constipation, HR 1.34, 95% CI 1.23-1.47 for constipation defined by ICD codes or laxative use). Patients with ICD-defined constipation, even when taking laxatives, were found to have a higher risk of incident CKD than those without constipation (HR 1.42, 95% CI 1.08-1.85). We found no moderating effects of laxative use on the association between constipation and incident CKD. Constipation is independently associated with incident CKD in the large population-based longitudinal cohort. These findings highlight constipation as a potential risk factor or predictor of CKD development. Further research is warranted to elucidate the role of laxatives in controlled study designs.
Collapse
Affiliation(s)
- Kipyo Kim
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Won-Hee Cho
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Seun Deuk Hwang
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Seoung Woo Lee
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea
| | - Joon Ho Song
- Division of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27 Inhangro, Jung-gu, Incheon, 22332, Republic of Korea.
| |
Collapse
|
3
|
Jiang Q, Yang Q, Zhang C, Hou C, Hong W, Du M, Shan X, Li X, Zhou D, Wen D, Xiong Y, Yang K, Lin Z, Song J, Mo Z, Feng H, Xing Y, Fu X, Liu C, Peng F, Wu L, Li B, Lu W, Yuan JXJ, Wang J, Chen Y. Nephrectomy and high-salt diet inducing pulmonary hypertension and kidney damage by increasing Ang II concentration in rats. Respir Res 2024; 25:288. [PMID: 39080603 PMCID: PMC11290206 DOI: 10.1186/s12931-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for pulmonary hypertension (PH), a complication that adversely affects patient prognosis. However, the mechanisms underlying this association remain poorly understood. A major obstacle to progress in this field is the lack of a reliable animal model replicating CKD-PH. METHODS This study aimed to establish a stable rat model of CKD-PH. We employed a combined approach, inducing CKD through a 5/6 nephrectomy and concurrently exposing the rats to a high-salt diet. The model's hemodynamics were evaluated dynamically, alongside a comprehensive assessment of pathological changes in multiple organs. Lung tissues and serum samples were collected from the CKD-PH rats to analyze the expression of angiotensin-converting enzyme 2 (ACE2), evaluate the activity of key vascular components within the renin-angiotensin-aldosterone system (RAAS), and characterize alterations in the serum metabolic profile. RESULTS At 14 weeks post-surgery, the CKD-PH rats displayed significant changes in hemodynamic parameters indicative of pulmonary arterial hypertension. Additionally, right ventricular hypertrophy was observed. Notably, no evidence of pulmonary vascular remodeling was found. Further analysis revealed RAAS dysregulation and downregulated ACE2 expression within the pulmonary vascular endothelium of CKD-PH rats. Moreover, the serum metabolic profile of these animals differed markedly from the sham surgery group. CONCLUSIONS Our findings suggest that the development of pulmonary arterial hypertension in CKD-PH rats is likely a consequence of a combined effect: RAAS dysregulation, decreased ACE2 expression in pulmonary vascular endothelial cells, and metabolic disturbances.
Collapse
Grants
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- 82370063, 82170069, 82241012, 82120108001, 81970057, 82170065, 82000045, 82270052 National Natural Science Foundation of China
- National Key Research and Development Program of China
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Qifeng Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chi Hou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Min Du
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xiaoqian Shan
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xuanyi Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dansha Zhou
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Dongmei Wen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yuanhui Xiong
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jingjing Song
- Department of Stomatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhanjie Mo
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Huazhuo Feng
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Yue Xing
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Xin Fu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Fang Peng
- Department of Critical Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Liling Wu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Bing Li
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510320, Guangdong, China.
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120, Guangdong, China.
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
4
|
Wan M, King L, Baugh N, Arslan Z, Snauwaert E, Paglialonga F, Shroff R. Gutted: constipation in children with chronic kidney disease and on dialysis. Pediatr Nephrol 2023; 38:3581-3596. [PMID: 36622442 PMCID: PMC10514126 DOI: 10.1007/s00467-022-05849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 01/10/2023]
Abstract
Functional constipation is a common problem in otherwise healthy children. Children with chronic kidney disease (CKD) and on dialysis have additional disease-related risk factors including the uremic milieu, fluid and dietary restrictions, and decreased physical activity, as well as treatment-related risk factors such as dialysis therapy and polypharmacy that contribute to and compound the problem. Constipation causes significant distress for children and their caregivers. In children on peritoneal dialysis, severe constipation can impede catheter function and ultrafiltration. Accumulating evidence points to a possible bidirectional relationship between constipation and CKD, potentially mediated by gut dysbiosis with consequent increased generation of gut-derived uremic toxins and disruption of intestinal epithelium integrity leading to translocation of noxious luminal contents into the circulation inducing systemic inflammation. Effective management of constipation is required but there is little published data on the safety and effectiveness of treatments in adults or children with CKD. In this review, we discuss the diagnosis and epidemiology of functional constipation, provide an overview of its pathophysiology, summarize the therapeutic management, and reflect on the challenges in children with CKD.
Collapse
Affiliation(s)
- Mandy Wan
- Evelina Pharmacy Department, Evelina London Children's Hospital, NHS Foundation Trust, Guy's and St ThomasWestminster Bridge Road, London, SE1 7EH, UK.
- Institute of Pharmaceutical Science, King's College London, London, UK.
| | - Lillian King
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Natasha Baugh
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Zainab Arslan
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | | | - Fabio Paglialonga
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rukshana Shroff
- UCL Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| |
Collapse
|
5
|
Cha RR, Park SY, Camilleri M. Constipation in Patients With Chronic Kidney Disease. J Neurogastroenterol Motil 2023; 29:428-435. [PMID: 37814433 PMCID: PMC10577456 DOI: 10.5056/jnm23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Constipation is a frequent symptom in patients with chronic kidney disease (CKD). This review outlines the mechanisms and management of constipation in patients with CKD from a physician's perspective. Common causes of constipation in patients with CKD include concomitant medications, low dietary fiber intake, water-restricted diet, lack of physical activity, altered gut microbiota, and reduced gastrointestinal motility. Constipation has a negative impact on overall health, and, in particular, the presence of constipation has been associated with worsening kidney function and increased risk of developing advanced stages of CKD. Although lifestyle and dietary modifications may not always be practical for patients with CKD, they are recommended because they are beneficial as they lower mortality in patients with CKD. The use of laxatives containing magnesium salts, bulking agents, and osmotic laxatives may have insufficient efficacy and may be associated with adverse effects. In contrast, lactulose and lubiprostone have been shown to exhibit reno-protective effects. Linaclotide and plecanatide have very limited systemic absorption and appear safe in patients with CKD. Tenapanor reduces paracellular intestinal phosphate absorption in addition to blocking sodium uptake by enterocytes, and provides additional benefit in patients patients with CKD who have hyperphosphatemia and constipation. Prucalopride leads to improvements in bowel function and constipation-related symptoms in cases in which response to conventional laxatives are inadequate. However, the dose of prucalopride should be reduced to 1 mg once daily for patients with CKD. In conclusion, there are important advances on the impact and treatment of constipation in patients with CKD.
Collapse
Affiliation(s)
- Ra Ri Cha
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Gyeongsangnam-do, Korea
| | - Seon-Young Park
- Division of Gastroenterology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Randall DW, Kieswich J, Hoyles L, McCafferty K, Curtis M, Yaqoob MM. Gut Dysbiosis in Experimental Kidney Disease: A Meta-Analysis of Rodent Repository Data. J Am Soc Nephrol 2023; 34:533-553. [PMID: 36846952 PMCID: PMC10103368 DOI: 10.1681/asn.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.
Collapse
Affiliation(s)
- David W. Randall
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Julius Kieswich
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom
| | - Kieran McCafferty
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michael Curtis
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower Wing, Great Maze Pond, United Kingdom
| | - Muhammed M. Yaqoob
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Wang Q, Sun Y, Zhou T, Jiang C, A L, Xu W. Gut microbiota-dependent trimethylamine n-oxide pathway contributes to the bidirectional relationship between intestinal inflammation and periodontitis. Front Cell Infect Microbiol 2023; 12:1125463. [PMID: 36710972 PMCID: PMC9880481 DOI: 10.3389/fcimb.2022.1125463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Intestinal inflammation and periodontitis influence the development of each other through the bidirectional relationship. As the intestinal microbiome metabolite, trimethylamine-N-oxide (TMAO) could contribute to chronic inflammation in the gut by influencing the gut microbial composition and intestinal immunity. Increased circulating TMAO levels often accompany clinical findings in patients with experimental periodontitis. However, the role of TMAO in the bidirectional relationship between intestinal inflammation and periodontitis remains unclear. Thus, we explored whether TMAO influences the periodontitis process by affecting intestinal immunity and microbial composition in this article. Methods Periodontitis was induced by unilateral ligation of the first molar in mice, and 3,3-dimethyl-1-butanol (DMB) was used as an inhibitor to reduce TMAO circulating. Twenty-five BALB/c mice were randomly assigned to five study sets (n = 5/group): no periodontitis with DMB (Control group), periodontitis (P) group, periodontitis with TMAO (P+TMAO) group, periodontitis with TMAO and DMB (P+TMAO+DMB) group, and periodontitis with DMB (P+DMB) group. The effect of TMAO was determined by assessing changes in intestinal histology, intestinal flora composition, periodontal tissue, and periodontal pro-inflammatory factors at ten days. Results The outcomes indicated a marked improvement in the intestinal inflammation severity, and intestinal flora diversity was reduced. Firmicutes number and the ratio of Firmicutes/Bacteroidetes were improved in the P+TMAO group. In addition, the alveolar bone resorption and the degree of periodontal tissue inflammation were more severe in the P+TMAO group than in other groups. Immunohistochemistry showed higher levels of TGF-β and IL-1β expression in the periodontal tissues of P+TMAO. Conclusions Our data suggest that TMAO could influence periodontal immunity and promote periodontal inflammation by affecting the intestinal microenvironment, revealing TMAO may affect the development of periodontitis through the bidirectional relationship of the oral-gut axis.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China,*Correspondence: Lan A, ; Wenzhou Xu,
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China,Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China,*Correspondence: Lan A, ; Wenzhou Xu,
| |
Collapse
|
8
|
Stec A, Maciejewska M, Paralusz-Stec K, Michalska M, Giebułtowicz J, Rudnicka L, Sikora M. The Gut Microbial Metabolite Trimethylamine N-Oxide is Linked to Specific Complications of Systemic Sclerosis. J Inflamm Res 2023; 16:1895-1904. [PMID: 37152867 PMCID: PMC10162098 DOI: 10.2147/jir.s409489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Systemic sclerosis (SSc) is a rare immune-mediated connective tissue disease characterized by fibrosis of the skin and internal organs, whose pathogenesis is not fully understood. Recent studies have revealed dysbiosis in patients with systemic sclerosis and have indicated the possible role of the microbiota and its metabolites in the pathogenesis of the disease. Trimethylamine N-oxide (TMAO) is a compound produced by dysbiotic microbiota observed at higher concentrations in several autoimmune diseases. Objective To determine concentrations of the bacteria-derived metabolite TMAO in patients with systemic sclerosis and to assess possible correlation between TMAO and a specific manifestation of the disease. Patients and Methods The study included 63 patients with SSc and 47 matched control subjects. The concentration of TMAO was measured with high-performance liquid chromatography. Results Plasma TMAO level was significantly increased in patients with SSc (283.0 [188.5-367.5] ng/mL versus 205.5 [101.0-318.0] ng/mL; p < 0.01). An increased concentration of TMAO was observed in patients with concomitant interstitial lung disease (ILD) (302.0 ng/mL [212.0-385.5] ng/mL versus 204.0 [135.5-292.0] ng/mL; p < 0.01) and esophageal dysmotility (289.75 [213.75-387.5] ng/mL versus 209.5 ng/mL [141.5-315.0] ng/mL; p < 0.05) compared to patients without these complications. Furthermore, TMAO concentration exhibited significant correlation with markers of heart involvement (left ventricle ejection fraction, NT-proBNP), marker of ILD severity and Scleroderma Clinical Trials Consortium Damage Index. Conclusion The concentration of TMAO, gut microbiota-associated metabolite, is increased in systemic sclerosis, particularly in patients with advanced organ involvement. This is the first study evaluating plasma TMAO in systemic sclerosis. Bacterial metabolites may be a link between dysbiosis and organ involvement in the course of the disease. Modulation of gut bacterial-derived metabolites may represent a new therapeutic approach in the management of systemic sclerosis.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Correspondence: Mariusz Sikora, National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, Warsaw, 02-637, Poland, Tel +48 22 670 91 00, Fax +48 22 844 77 97, Email
| |
Collapse
|
9
|
Maksymiuk KM, Szudzik M, Gawryś-Kopczyńska M, Onyszkiewicz M, Samborowska E, Mogilnicka I, Ufnal M. Trimethylamine, a gut bacteria metabolite and air pollutant, increases blood pressure and markers of kidney damage including proteinuria and KIM-1 in rats. J Transl Med 2022; 20:470. [PMID: 36243862 PMCID: PMC9571686 DOI: 10.1186/s12967-022-03687-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Trimethylamine oxide (TMAO) is a biomarker in cardiovascular and renal diseases. TMAO originates from the oxidation of trimethylamine (TMA), a product of gut microbiota and manufacturing industries-derived pollutant, by flavin monooxygenases (FMOs). The effect of chronic exposure to TMA on cardiovascular and renal systems is undetermined. Methods Metabolic, hemodynamic, echocardiographic, biochemical and histopathological evaluations were performed in 12-week-old male SPRD rats receiving water (controls) or TMA (200 or 500 µM/day) in water for 18 weeks. TMA and TMAO levels, the expression of FMOs and renin-angiotensin system (RAS) genes were evaluated in various tissues. Results In comparison to controls, rats receiving high dose of TMA had significantly increased arterial systolic blood pressure (126.3 ± 11.4 vs 151.2 ± 19.9 mmHg; P = 0.01), urine protein to creatinine ratio (1.6 (1.5; 2.8) vs 3.4 (3.3; 4.2); P = 0.01), urine KIM-1 levels (2338.3 ± 732.0 vs. 3519.0 ± 953.0 pg/mL; P = 0.01), and hypertrophy of the tunica media of arteries and arterioles (36.61 ± 0.15 vs 45.05 ± 2.90 µm, P = 0.001 and 18.44 ± 0.62 vs 23.79 ± 2.60 µm, P = 0.006; respectively). Mild degeneration of renal bodies with glomerulosclerosis was also observed. There was no significant difference between the three groups in body weight, water-electrolyte balance, echocardiographic parameters and RAS expression. TMA groups had marginally increased 24 h TMA urine excretion, whereas serum levels and 24 h TMAO urine excretion were increased up to 24-fold, and significantly increased TMAO levels in the liver, kidneys and heart. TMA groups had lower FMOs expression in the kidneys. Conclusions Chronic exposure to TMA increases blood pressure and increases markers of kidney damage, including proteinuria and KIM-1. TMA is rapidly oxidized to TMAO in rats, which may limit the toxic effects of TMA on other organs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03687-y.
Collapse
Affiliation(s)
- Klaudia M Maksymiuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Marta Gawryś-Kopczyńska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Maksymilian Onyszkiewicz
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Emilia Samborowska
- Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, 02-091, Warsaw, Poland.
| |
Collapse
|
10
|
Li HB, Xu ML, Xu XD, Tang YY, Jiang HL, Li L, Xia WJ, Cui N, Bai J, Dai ZM, Han B, Li Y, Peng B, Dong YY, Aryal S, Manandhar I, Eladawi MA, Shukla R, Kang YM, Joe B, Yang T. Faecalibacterium prausnitzii Attenuates CKD via Butyrate-Renal GPR43 Axis. Circ Res 2022; 131:e120-e134. [PMID: 36164984 PMCID: PMC9588706 DOI: 10.1161/circresaha.122.320184] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Despite available clinical management strategies, chronic kidney disease (CKD) is associated with severe morbidity and mortality worldwide, which beckons new solutions. Host-microbial interactions with a depletion of Faecalibacterium prausnitzii in CKD are reported. However, the mechanisms about if and how F prausnitzii can be used as a probiotic to treat CKD remains unknown. METHODS We evaluated the microbial compositions in 2 independent CKD populations for any potential probiotic. Next, we investigated if supplementation of such probiotic in a mouse CKD model can restore gut-renal homeostasis as monitored by its effects on suppression on renal inflammation, improvement in gut permeability and renal function. Last, we investigated the molecular mechanisms underlying the probiotic-induced beneficial outcomes. RESULTS We observed significant depletion of Faecalibacterium in the patients with CKD in both Western (n=283) and Eastern populations (n=75). Supplementation of F prausnitzii to CKD mice reduced renal dysfunction, renal inflammation, and lowered the serum levels of various uremic toxins. These are coupled with improved gut microbial ecology and intestinal integrity. Moreover, we demonstrated that the beneficial effects in kidney induced by F prausnitzii-derived butyrate were through the GPR (G protein-coupled receptor)-43. CONCLUSIONS Using a mouse CKD model, we uncovered a novel beneficial role of F prausnitzii in the restoration of renal function in CKD, which is, at least in part, attributed to the butyrate-mediated GPR-43 signaling in the kidney. Our study provides the necessary foundation to harness the therapeutic potential of F prausnitzii for ameliorating CKD.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Xu-Dong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yu-Yan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hong-Li Jiang
- Department of Renal Dialysis, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
| | - Lu Li
- Department of Nephrology, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Nan Cui
- Department of Reproductive Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, China
| | - Juan Bai
- Department of Anesthesiology, Center for Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhi-Ming Dai
- Department of Anesthesiology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, 710061 Xi’an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Bo Peng
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Yuan-Yuan Dong
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Sachin Aryal
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Ishan Manandhar
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Mahmoud Ali Eladawi
- Department of Neuroscience, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Rammohan Shukla
- Department of Neuroscience, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Bina Joe
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Tao Yang
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| |
Collapse
|
11
|
The Microbiome and Uremic Solutes. Toxins (Basel) 2022; 14:toxins14040245. [PMID: 35448854 PMCID: PMC9033124 DOI: 10.3390/toxins14040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Uremic retention solutes, especially the protein-bound compounds, are toxic metabolites, difficult to eliminate with progressive renal functional decline. They are of particular interest because these uremic solutes are responsible for the pathogenesis of cardiovascular and chronic kidney diseases. Evidence suggests that the relation between uremic toxins, the microbiome, and its host is altered in patients with chronic kidney disease, with the colon’s motility, epithelial integrity, and absorptive properties also playing an important role. Studies found an alteration of the microbiota composition with differences in species proportion, diversity, and function. Since uremic toxins precursors are generated by the microbiota, multiple therapeutic options are currently being explored to address dysbiosis. While an oral adsorbent can decrease the transport of bacterial metabolites from the intestinal lumen to the blood, dietary measures, supplements (prebiotics, probiotics, and synbiotics), and antibiotics aim to target directly the gut microbiota composition. Innovative approaches, such as the modulation of bacterial enzymes, open new perspectives to decrease the plasma level of uremic toxins.
Collapse
|
12
|
Lohia S, Vlahou A, Zoidakis J. Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins (Basel) 2022; 14:toxins14030176. [PMID: 35324673 PMCID: PMC8951538 DOI: 10.3390/toxins14030176] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic kidney disease (CKD) is predominant in 10% of the world’s adult population, and is increasingly considered a silent epidemic. Gut microbiota plays an essential role in maintaining host energy homeostasis and gut epithelial integrity. Alterations in gut microbiota composition, functions and, specifically, production of metabolites causing uremic toxicity are often associated with CKD onset and progression. Here, we present the latest omics (transcriptomics, proteomics and metabolomics) studies that explore the connection between CKD and gut microbiome. A review of the available literature using PubMed was performed using the keywords “microb*”, “kidney”, “proteom”, “metabolom” and “transcript” for the last 10 years, yielding a total of 155 publications. Following selection of the relevant studies (focusing on microbiome in CKD), a predominance of metabolomics (n = 12) over transcriptomics (n = 1) and proteomics (n = 6) analyses was observed. A consensus arises supporting the idea that the uremic toxins produced in the gut cause oxidative stress, inflammation and fibrosis in the kidney leading to CKD. Collectively, findings include an observed enrichment of Eggerthella lenta, Enterobacteriaceae and Clostridium spp., and a depletion in Bacteroides eggerthii, Roseburia faecis and Prevotella spp. occurring in CKD models. Bacterial species involved in butyrate production, indole synthesis and mucin degradation were also related to CKD. Consequently, strong links between CKD and gut microbial dysbiosis suggest potential therapeutic strategies to prevent CKD progression and portray the gut as a promising therapeutic target.
Collapse
Affiliation(s)
- Sonnal Lohia
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (S.L.); (A.V.)
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Antonia Vlahou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (S.L.); (A.V.)
| | - Jerome Zoidakis
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (S.L.); (A.V.)
- Correspondence:
| |
Collapse
|
13
|
Gut Microbiota Dynamics and Uremic Toxins. Toxins (Basel) 2022; 14:toxins14020146. [PMID: 35202173 PMCID: PMC8878563 DOI: 10.3390/toxins14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
|
14
|
Inflammatory Burden and Immunomodulative Therapeutics of Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020804. [PMID: 35054989 PMCID: PMC8775955 DOI: 10.3390/ijms23020804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Phenotyping cardiovascular illness and recognising heterogeneities within are pivotal in the contemporary era. Besides traditional risk factors, accumulated evidence suggested that a high inflammatory burden has emerged as a key characteristic modulating both the pathogenesis and progression of cardiovascular diseases, inclusive of atherosclerosis and myocardial infarction. To mechanistically elucidate the correlation, signalling pathways downstream to Toll-like receptors, nucleotide oligomerisation domain-like receptors, interleukins, tumour necrosis factor, and corresponding cytokines were raised as central mechanisms exerting the effect of inflammation. Other remarkable adjuvant factors include oxidative stress and secondary ferroptosis. These molecular discoveries have propelled pharmaceutical advancements. Statin was suggested to confer cardiovascular benefits not only by lowering cholesterol levels but also by attenuating inflammation. Colchicine was repurposed as an immunomodulator co-administered with coronary intervention. Novel interleukin-1β and −6 antagonists exhibited promising cardiac benefits in the recent trials as well. Moreover, manipulation of gut microbiota and associated metabolites was addressed to antagonise inflammation-related cardiovascular pathophysiology. The gut-cardio-renal axis was therein established to explain the mutual interrelationship. As for future perspectives, artificial intelligence in conjunction with machine learning could better elucidate the sequencing of the microbiome and data mining. Comprehensively understanding the interplay between the gut microbiome and its cardiovascular impact will help identify future therapeutic targets, affording holistic care for patients with cardiovascular diseases.
Collapse
|
15
|
Ho H, Kikuchi K, Oikawa D, Watanabe S, Kanemitsu Y, Saigusa D, Kujirai R, Ikeda‐Ohtsubo W, Ichijo M, Akiyama Y, Aoki Y, Mishima E, Ogata Y, Oikawa Y, Matsuhashi T, Toyohara T, Suzuki C, Suzuki T, Mano N, Kagawa Y, Owada Y, Katayama T, Nakayama T, Tomioka Y, Abe T. SGLT-1-specific inhibition ameliorates renal failure and alters the gut microbial community in mice with adenine-induced renal failure. Physiol Rep 2021; 9:e15092. [PMID: 34921520 PMCID: PMC8683788 DOI: 10.14814/phy2.15092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Sodium-dependent glucose cotransporters (SGLTs) have attracted considerable attention as new targets for type 2 diabetes mellitus. In the kidney, SGLT2 is the major glucose uptake transporter in the proximal tubules, and inhibition of SGLT2 in the proximal tubules shows renoprotective effects. On the other hand, SGLT1 plays a role in glucose absorption from the gastrointestinal tract, and the relationship between SGLT1 inhibition in the gut and renal function remains unclear. Here, we examined the effect of SGL5213, a novel and potent intestinal SGLT1 inhibitor, in a renal failure (RF) model. SGL5213 improved renal function and reduced gut-derived uremic toxins (phenyl sulfate and trimethylamine-N-oxide) in an adenine-induced RF model. Histological analysis revealed that SGL5213 ameliorated renal fibrosis and inflammation. SGL5213 also reduced gut inflammation and fibrosis in the ileum, which is a primary target of SGL5213. Examination of the gut microbiota community revealed that the Firmicutes/Bacteroidetes ratio, which suggests gut dysbiosis, was increased in RF and SGL5213 rebalanced the ratio by increasing Bacteroidetes and reducing Firmicutes. At the genus level, Allobaculum (a major component of Erysipelotrichaceae) was significantly increased in the RF group, and this increase was canceled by SGL5213. We also measured the effect of SGL5213 on bacterial phenol-producing enzymes that catalyze tyrosine into phenol, following the reduction of phenyl sulfate, which is a novel marker and a therapeutic target for diabetic kidney disease DKD. We found that the enzyme inhibition was less potent, suggesting that the change in the microbial community and the reduction of uremic toxins may be related to the renoprotective effect of SGL5213. Because SGL5213 is a low-absorbable SGLT1 inhibitor, these data suggest that the gastrointestinal inhibition of SGLT1 is also a target for chronic kidney diseases.
Collapse
Affiliation(s)
- Hsin‐Jung Ho
- Department of Medical ScienceTohoku University Graduate School of Biomedical EngineeringSendaiJapan
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Koichi Kikuchi
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
- Department of Medical MegabankTohoku UniversitySendaiJapan
| | - Daiki Oikawa
- Department of Biomolecular Engineering Applied Life ChemistryTohoku University Graduate School of EngineeringSendaiJapan
| | - Shun Watanabe
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | | | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Ryota Kujirai
- Laboratory of OncologyPharmacy Practice and SciencesTohoku University Graduate School of Pharmaceutical SciencesSendaiJapan
| | - Wakako Ikeda‐Ohtsubo
- Laboratory of Animal Products ChemistryGraduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Mariko Ichijo
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Yukako Akiyama
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Yuichi Aoki
- Department of Integrative Genomics, Tohoku Medical Megabank OrganizationTohoku UniversitySendaiJapan
| | - Eikan Mishima
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshiaki Ogata
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshitsugu Oikawa
- Department of PediatricsTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuro Matsuhashi
- Department of PediatricsTohoku University Graduate School of MedicineSendaiJapan
| | - Takafumi Toyohara
- Department of Medical ScienceTohoku University Graduate School of Biomedical EngineeringSendaiJapan
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Chitose Suzuki
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Takehiro Suzuki
- Department of Medical ScienceTohoku University Graduate School of Biomedical EngineeringSendaiJapan
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
| | - Nariyasu Mano
- Department of Pharmaceutical SciencesTohoku University HospitalSendaiJapan
| | - Yoshiteru Kagawa
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Yuji Owada
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Takane Katayama
- Laboratory of Molecular Biology of BioresponseGraduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Toru Nakayama
- Department of Biomolecular Engineering Applied Life ChemistryTohoku University Graduate School of EngineeringSendaiJapan
| | - Yoshihisa Tomioka
- Laboratory of Molecular Biology of BioresponseGraduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Takaaki Abe
- Department of Medical ScienceTohoku University Graduate School of Biomedical EngineeringSendaiJapan
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
16
|
Two Gut Microbiota-Derived Toxins Are Closely Associated with Cardiovascular Diseases: A Review. Toxins (Basel) 2021; 13:toxins13050297. [PMID: 33921975 PMCID: PMC8143486 DOI: 10.3390/toxins13050297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) have become a major health problem because of the associated high morbidity and mortality rates observed in affected patients. Gut microbiota has recently been implicated as a novel endocrine organ that plays critical roles in the regulation of cardiometabolic and renal functions of the host via the production of bioactive metabolites. This review investigated the evidence from several clinical and experimental studies that indicated an association between the gut microbiota-derived toxins and CVDs. We mainly focused on the pro-inflammatory gut microbiota-derived toxins, namely lipopolysaccharides, derived from Gram-negative bacteria, and trimethylamine N-oxide and described the present status of research in association with these toxins, including our previous research findings. Several clinical studies aimed at exploring the effectiveness of reducing the levels of these toxins to inhibit cardiovascular events are currently under investigation or in the planning stages. We believe that some of the methods discussed in this review to eliminate or reduce the levels of such toxins in the body could be clinically applied to prevent CVDs in the near future.
Collapse
|
17
|
Chou LF, Chen TW, Yang HY, Tian YC, Chang MY, Hung CC, Hsu SH, Tsai CY, Ko YC, Yang CW. Transcriptomic signatures of exacerbated progression in leptospirosis subclinical chronic kidney disease with secondary nephrotoxic injury. Am J Physiol Renal Physiol 2021; 320:F1001-F1018. [PMID: 33779314 DOI: 10.1152/ajprenal.00640.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High-incidence regions of leptospirosis caused by Leptospira spp. coincide with chronic kidney disease. This study investigated whether asymptomatic leptospirosis is an emerging culprit that predisposes to progressive chronic kidney disease when superimposed on secondary nephrotoxic injury. Kidney histology/function and whole transcriptomic profiles were evaluated for Leptospira-infected C57/BL6 mice with adenine-induced kidney injury. The extent of tubulointerstitial kidney lesions and expression of inflammation/fibrosis genes in infected mice with low-dose (0.1%) adenine, particularly in high-dose (0.2%) adenine-fed superimposed on Leptospira-infected mice, were significantly increased compared with mice following infection or adenine diet alone, and the findings are consistent with renal transcriptome analysis. Pathway enrichment findings showed that integrin-β- and fibronectin-encoding genes had distinct expression within the integrin-linked kinase-signaling pathway, which were upregulated in 0.2% adenine-fed Leptospira-infected mice but not in 0.2% adenine-fed mice, indicating that background subclinical Leptospiral infection indeed enhanced subsequent secondary nephrotoxic kidney injury and potential pathogenic molecules associated with secondary nephrotoxic leptospirosis. Comparative analysis of gene expression patterns with unilateral ureteric obstruction-induced mouse renal fibrosis and patients with chronic kidney disease showed that differentially expressed orthologous genes such as hemoglobin-α2, PDZ-binding kinase, and DNA topoisomerase II-α were identified in infected mice fed with low-dose and high-dose adenine, respectively, revealing differentially expressed signatures identical to those found in the datasets and may serve as markers of aggravated kidney progression. This study indicates that background subclinical leptospirosis, when subjected to various degrees of subsequent secondary nephrotoxic injury, may predispose to exacerbated fibrosis, mimicking the pathophysiological process of progressive chronic kidney disease.NEW & NOTEWORTHY Leptospira-infected mice followed by secondary nephrotoxic injury exacerbated immune/inflammatory responses and renal fibrosis. Comparison with the murine model revealed candidates involved in the progression of renal fibrosis in chronic kidney disease (CKD). Comparative transcriptome study suggests that secondary nephrotoxic injury in Leptospira-infected mice recapitulates the gene expression signatures found in CKD patients. This study indicates that secondary nephrotoxic injury may exacerbate CKD in chronic Leptospira infection implicating in the progression of CKD of unknown etiology.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Ikee R, Sasaki N, Yasuda T, Fukazawa S. Chronic Kidney Disease, Gut Dysbiosis, and Constipation: A Burdensome Triplet. Microorganisms 2020; 8:microorganisms8121862. [PMID: 33255763 PMCID: PMC7760012 DOI: 10.3390/microorganisms8121862] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Gut dysbiosis has been implicated in the progression of chronic kidney disease (CKD). Alterations in the gut environment induced by uremic toxins, the dietary restriction of fiber-rich foods, and multiple drugs may be involved in CKD-related gut dysbiosis. CKD-related gut dysbiosis is considered to be characterized by the expansion of bacterial species producing precursors of harmful uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, and the contraction of species generating beneficial short-chain fatty acids, such as butyrate. Gut-derived uremic toxins cause oxidative stress and pro-inflammatory responses, whereas butyrate exerts anti-inflammatory effects and contributes to gut epithelial integrity. Gut dysbiosis is associated with the disruption of the gut epithelial barrier, which leads to the translocation of endotoxins. Research on CKD-related gut dysbiosis has mainly focused on chronic inflammation and consequent cardiovascular and renal damage. The pathogenic relationship between CKD-related gut dysbiosis and constipation has not yet been investigated in detail. Constipation is highly prevalent in CKD and affects the quality of life of these patients. Under the pathophysiological state of gut dysbiosis, altered bacterial fermentation products may play a prominent role in intestinal dysmotility. In this review, we outline the factors contributing to constipation, such as the gut microbiota and bacterial fermentation; introduce recent findings on the pathogenic link between CKD-related gut dysbiosis and constipation; and discuss potential interventions. This pathogenic link needs to be elucidated in more detail and may contribute to the development of novel treatment options not only for constipation, but also cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Ryota Ikee
- Sapporo Nephrology Satellite Clinic, 9-2-15, Hassamu 6-jo, Nishi-ku, Sapporo 063-0826, Japan;
- Correspondence:
| | - Naomi Sasaki
- Sapporo Nephrology Clinic, 20-2-12, Nishimachikita, Nishi-ku, Sapporo 063-0061, Japan; (N.S.); (S.F.)
| | - Takuji Yasuda
- Sapporo Nephrology Satellite Clinic, 9-2-15, Hassamu 6-jo, Nishi-ku, Sapporo 063-0826, Japan;
| | - Sawako Fukazawa
- Sapporo Nephrology Clinic, 20-2-12, Nishimachikita, Nishi-ku, Sapporo 063-0061, Japan; (N.S.); (S.F.)
| |
Collapse
|
19
|
Zhou D, Wu Y, Wang S, Li J, Luan J. Harnessing noncoding RNA-based macrophage polarization: Emerging therapeutic opportunities for fibrosis. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:793-806. [PMID: 33080104 PMCID: PMC7654411 DOI: 10.1002/iid3.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Aim Organ fibrosis is a common pathological outcome of persistent tissue injury correlated with organ failure and death. Although current antifibrotic therapies have led to unprecedented successes, only a minority of patients with fibrosis benefit from these treatments. There is an urgent need to identify new targets and biomarkers that could be exploited in the diagnosis and treatment of fibrosis. Methods Macrophages play a dual role in the fibrogenesis across different organs either by promoting pro‐inflammatory or anti‐inflammatory responses. Noncoding RNAs (ncRNAs) have been demonstrated to play key roles in macrophage functions by manipulating macrophage polarization. Therefore, understanding the mechanism of ncRNA‐associated macrophage polarization is important to move toward therapeutic interventions. Results In this review, we provide an overview of recent insights into the role of ncRNAs in different fibrotic diseases by modulating macrophage phenotypic plasticity and functional heterogeneity. We also discuss the potential mechanisms of different ncRNAs integrate heterogeneous macrophages in fibrogenesis,including regulatory signatures, networks, and reciprocal interactions. Conclusions A broader understanding of how ncRNA‐directed macrophage phenotype transition in immunity and fibrosis might promote the development of a novel strategy for antifibrotic treatment.
Collapse
Affiliation(s)
- Dexi Zhou
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| | - Yilai Wu
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China.,School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
20
|
Ruszkowski J, Heleniak Z, Król E, Tarasewicz A, Gałgowska J, Witkowski JM, Dębska-Ślizień A. Constipation and the Quality of Life in Conservatively Treated Chronic Kidney Disease Patients: A Cross-sectional Study. Int J Med Sci 2020; 17:2954-2963. [PMID: 33173416 PMCID: PMC7646105 DOI: 10.7150/ijms.49648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Constipation is a common gastrointestinal disorder that in general population is associated with worse health-related quality of life (HRQoL). The epidemiology of constipation has not been reliably determined in conservatively-treated CKD patients. We aimed to determine the prevalence of constipation and constipation-related symptoms in conservatively-treated CKD patients, to find factors associated with their altered prevalence ratio (PR), and to verify the associations between constipation and HRQoL. Methods: In this cross-sectional study, 111 conservatively-treated CKD outpatients fulfilled questionnaires that included questions addressing HRQoL (SF-36v2®), constipation-related symptoms (The Patient Assessment of Constipation-Symptoms questionnaire), the Bristol stool form scale (BSFS), Rome III criteria of functional constipation (FC), and frequency of bowel movement (BM). Results: Depending on the used definition, the prevalence of constipation was 6.6-28.9%. Diuretics and paracetamol were independently associated with increased PR of BSFS-diagnosed constipation (PR 2.86, 95% CI 1.28-6.37, P = 0.01) and FC (PR 2.67, 95% CI 1.07-6.64, P = 0.035), respectively. The most commonly reported symptoms were bloating (50.9%) and straining to pass a BM (42.7%). Abdominal discomfort (37.3%) was independently associated with worse scores in all analyzed HRQoL domains. In multiple regressions, FC and having <7 BM/week, but not BSFS-diagnosed constipation, were associated with lower scores in several HRQoL domains. Conclusions: Constipation and related symptoms are prevalent in CKD patients. FC and decreased frequency of defecation, but not BSFS-diagnosed constipation, are associated with worse assessment of HRQoL in conservatively-treated CKD patients.
Collapse
Affiliation(s)
- Jakub Ruszkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Heleniak
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Król
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Tarasewicz
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Gałgowska
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M. Witkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
21
|
Sumida K, Dashputre AA, Potukuchi PK, Thomas F, Obi Y, Molnar MZ, Gatwood JD, Streja E, Kalantar-Zadeh K, Kovesdy CP. Laxative Use and Change in Estimated Glomerular Filtration Rate in Patients With Advanced Chronic Kidney Disease. J Ren Nutr 2020; 31:361-369. [PMID: 32952006 DOI: 10.1053/j.jrn.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/30/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Constipation is highly prevalent in advanced chronic kidney disease (CKD), due in part to dietary (e.g., fiber) restrictions, and is often managed by laxatives; however, the effect of laxative use on kidney function in advanced CKD remains unclear. We aimed to examine the association of laxative use with longitudinal change in estimated glomerular filtration rate (eGFR) in patients with advanced CKD. DESIGN AND METHODS In a retrospective cohort of 43,622 US veterans transitioning to end-stage renal disease (ESRD) from 2007 to 2015, we estimated changes in eGFR (slope) by linear mixed-effects models using ≥2 available outpatient eGFR measurements during the 2-year period before transition to ESRD. The association of laxative use with change in eGFR was examined by testing the interaction of time-varying laxative use with time for eGFR slope in the mixed-effects models with adjustment for fixed and time-varying confounders. RESULTS Laxatives were prescribed in 49.8% of patients during the last 2-year pre-ESRD period. In the crude model, time-varying laxative use was modestly associated with more progressive eGFR decline compared with non-use of laxatives (median [interquartile interval] -7.1 [-11.9, -4.3] vs. -6.8 [-11.6, -4.0] mL/min/1.73 m2/year, P < .001). After multivariable adjustment, a faster eGFR decline associated with laxative use (vs. non-use of laxatives) remained statistically significant, although the between-group difference in eGFR slope was minimal (median [interquartile interval] -8.8 [-12.9, -5.9] vs. -8.6 [-12.6, -5.6] mL/min/1.73 m2/year, P < .001). The significant association was no longer evident across different types of laxatives (i.e., stool softeners, stimulants, or hyperosmotics). CONCLUSIONS There was a clinically negligible association of laxative use with change in eGFR during the last 2-year pre-ESRD period, suggesting the renal safety profile of laxatives in advanced CKD patients.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ankur A Dashputre
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Institute for Health Outcomes and Policy, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Praveen K Potukuchi
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Institute for Health Outcomes and Policy, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Fridtjof Thomas
- Division of Biostatistics, Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yoshitsugu Obi
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Miklos Z Molnar
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; James D. Eason Transplant Institute, Methodist University Hospital, Memphis, Tennessee; Division of Transplant, Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee; Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Justin D Gatwood
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Nashville, Tennessee
| | - Elani Streja
- Division of Nephrology and Hypertension, Harold Simmons Center for Chronic Disease Research and Epidemiology, University of California Irvine, Orange, California
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, Harold Simmons Center for Chronic Disease Research and Epidemiology, University of California Irvine, Orange, California
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee.
| |
Collapse
|
22
|
Germ-Free Conditions Modulate Host Purine Metabolism, Exacerbating Adenine-Induced Kidney Damage. Toxins (Basel) 2020; 12:toxins12090547. [PMID: 32859011 PMCID: PMC7551802 DOI: 10.3390/toxins12090547] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations in microbiota are known to affect kidney disease conditions. We have previously shown that germ-free conditions exacerbated adenine-induced kidney damage in mice; however, the mechanism by which this occurs has not been elucidated. To explore this mechanism, we examined the influence of germ-free conditions on purine metabolism and renal immune responses involved in the kidney damage. Germ-free mice showed higher expression levels of purine-metabolizing enzymes such as xanthine dehydrogenase, which converts adenine to a nephrotoxic byproduct 2,8-dihydroxyadenine (2,8-DHA). The germ-free mice also showed increased urinary excretion of allantoin, indicating enhanced purine metabolism. Metabolome analysis demonstrated marked differences in the purine metabolite levels in the feces of germ-free mice and mice with microbiota. Furthermore, unlike the germ-free condition, antibiotic treatment did not increase the expression of purine-metabolizing enzymes or exacerbate adenine-induced kidney damage. Considering renal immune responses, the germ-free mice displayed an absence of renal IL-17A expression. However, the adenine-induced kidney damage in wild-type mice was comparable to that in IL-17A-deficient mice, suggesting that IL-17A does not play a major role in the disease condition. Our results suggest that the enhanced host purine metabolism in the germ-free mice potentially promotes the conversion of the administered adenine into 2,8-DHA, resulting in exacerbated kidney damage. This further suggests a role of the microbiota in regulating host purine metabolism.
Collapse
|
23
|
Abstract
Fecal microbial community changes are associated with numerous disease states, including cardiovascular disease (CVD). However, such data are merely associative. A causal contribution for gut microbiota in CVD has been further supported by a multitude of more direct experimental evidence. Indeed, gut microbiota transplantation studies, specific gut microbiota-dependent pathways, and downstream metabolites have all been shown to influence host metabolism and CVD, sometimes through specific identified host receptors. Multiple metaorganismal pathways (involving both microbe and host) both impact CVD in animal models and show striking clinical associations in human studies. For example, trimethylamine N-oxide and, more recently, phenylacetylglutamine are gut microbiota-dependent metabolites whose blood levels are associated with incident CVD risks in large-scale clinical studies. Importantly, a causal link to CVD for these and other specific gut microbial metabolites/pathways has been shown through numerous mechanistic animal model studies. Phenylacetylglutamine, for example, was recently shown to promote adverse cardiovascular phenotypes in the host via interaction with multiple ARs (adrenergic receptors)-a class of key receptors that regulate cardiovascular homeostasis. In this review, we summarize recent advances of microbiome research in CVD and related cardiometabolic phenotypes that have helped to move the field forward from associative to causative results. We focus on microbiota and metaorganismal compounds/pathways, with specific attention paid to short-chain fatty acids, secondary bile acids, trimethylamine N-oxide, and phenylacetylglutamine. We also discuss novel therapeutic strategies for directly targeting the gut microbiome to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Marco Witkowski
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome and Human Health (M.W., S.L.H.), Cleveland Clinic, OH
| | - Taylor L Weeks
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute (S.L.H.), Cleveland Clinic, OH
| | - Stanley L Hazen
- From the Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.W., T.L.W., S.L.H.), Cleveland Clinic, OH.,Center for Microbiome and Human Health (M.W., S.L.H.), Cleveland Clinic, OH
| |
Collapse
|
24
|
Makhloufi C, Crescence L, Darbousset R, McKay N, Massy ZA, Dubois C, Panicot-Dubois L, Burtey S, Poitevin S. Assessment of Thrombotic and Bleeding Tendency in Two Mouse Models of Chronic Kidney Disease: Adenine-Diet and 5/6th Nephrectomy. TH OPEN 2020; 4:e66-e76. [PMID: 32309772 PMCID: PMC7162676 DOI: 10.1055/s-0040-1705138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
The coexistence of bleeding and thrombosis in patients with chronic kidney disease (CKD) is frequent and poorly understood. Mouse models are essential to understand complications of CKD and to develop new therapeutic approaches improving the health of patients. We evaluated the hemostasis in two models of renal insufficiency: adenine-diet and 5/6th nephrectomy (5/6Nx). Compared with 5/6Nx mice, mice fed with 0.25% adenine had more severe renal insufficiency and so higher levels of prothrombotic uremic toxins like indoxyl sulfate. More severe renal inflammation and fibrosis were observed in the adenine group, as demonstrated by histological and reverse transcription quantitative polymerase chain reaction experiments. Liver fibrinogen γ chain expression and level of plasma fibrinogen were increased only in adenine mice. In both CKD mouse models, tissue factor (TF) expression was increased in kidney and aorta extracts. Immunochemistry analysis of kidney sections showed that TF is localized in the vascular walls. Thrombin–antithrombin complexes were significantly increased in plasma from both adenine and 5/6Nx mice. Tail bleeding time increased significantly only in adenine mice, whereas platelet count was not significant altered. Finally, results obtained by intravital microscopy after laser-induced endothelial injury showed impaired platelet function in adenine mice and an increase in fibrin generation in 5/6Nx mice. To summarize, adenine diet causes a more severe renal insufficiency compared with 5/6Nx. The TF upregulation and the hypercoagulable state were observed in both CKD models. Bleeding tendency was observed only in the adenine model of CKD that recapitulates the whole spectrum of hemostasis abnormalities observed in advanced human CKD.
Collapse
Affiliation(s)
| | - Lydie Crescence
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France
| | - Roxane Darbousset
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Nathalie McKay
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France
| | - Ziad A Massy
- Centre for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, Villejuif, France.,Department of Nephrology, Ambroise Paré University Hospital, Boulogne Billancourt/Paris, France
| | | | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM 1263, INRAE, C2VN, Marseille, France.,Centre de Néphrologie et Transplantation Rénale, APHM, Marseille, France
| | | |
Collapse
|
25
|
Sumida K, Yamagata K, Kovesdy CP. Constipation in CKD. Kidney Int Rep 2020; 5:121-134. [PMID: 32043026 PMCID: PMC7000799 DOI: 10.1016/j.ekir.2019.11.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Constipation is one of the most common gastrointestinal disorders among patients with chronic kidney disease (CKD) partly because of their sedentary lifestyle, low fiber and fluid intake, concomitant medications (e.g., phosphate binders), and multiple comorbidities (e.g., diabetes). Although constipation is usually perceived as a benign, often self-limited condition, recent evidence has challenged this most common perception of constipation. The chronic symptoms of constipation negatively affect patients' quality of life and impose a considerable social and economic burden. Furthermore, recent epidemiological studies have revealed that constipation is independently associated with adverse clinical outcomes, such as end-stage renal disease (ESRD), cardiovascular (CV) disease, and mortality, potentially mediated by the alteration of gut microbiota and the increased production of fecal metabolites. Given the importance of the gut in the disposal of uremic toxins and in acid-base and mineral homeostasis with declining kidney function, the presence of constipation in CKD may limit or even preclude these ancillary gastrointestinal roles, potentially contributing to excess morbidity and mortality. With the advent of new drug classes for constipation, some of which showing unique renoprotective properties, the adequate management of constipation in CKD may provide additional therapeutic benefits beyond its conventional defecation control. Nevertheless, the problem of constipation in CKD has long been underrecognized and its management strategies have scarcely been documented. This review outlines the current understanding of the diagnosis, prevalence, etiology, outcome, and treatment of constipation in CKD, and aims to discuss its novel clinical and therapeutic implications.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
26
|
Plata C, Cruz C, Cervantes LG, Ramírez V. The gut microbiota and its relationship with chronic kidney disease. Int Urol Nephrol 2019; 51:2209-2226. [PMID: 31576489 DOI: 10.1007/s11255-019-02291-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide health problem, because it is one of the most common complications of metabolic diseases including obesity and type 2 diabetes. Patients with CKD also develop other comorbidities, such as hypertension, hyperlipidemias, liver and cardiovascular diseases, gastrointestinal problems, and cognitive deterioration, which worsens their health. Therapy includes reducing comorbidities or using replacement therapy, such as peritoneal dialysis, hemodialysis, and organ transplant. Health care systems are searching for alternative treatments for CKD patients to mitigate or retard their progression. One new topic is the study of uremic toxins (UT), which are excessively produced during CKD as products of food metabolism or as a result of the loss of renal function that have a negative impact on the kidneys and other organs. High urea concentrations significantly modify the microbiota in the gut also, cause a decrease in bacterial strains that produce anti-inflammatory and fuel molecules and an increase in bacterial strains that can metabolize urea, but also produce UT, including indoxyl sulfate and p-cresol sulfate. UT activates several cellular processes that induce oxidative environments, inflammation, proliferation, fibrosis development, and apoptosis; these processes mainly occur in the gut, heart, and kidney. The study of the microbiota during CKD allowed for the implementation of therapy schemes to try to reduce the circulating concentrations of UT and reduce the damage. The objective of this review is to show an overview to know the main UT produced in end-stage renal disease patients, and how prebiotics and probiotics intervention acts as a helpful tool in CKD treatment.
Collapse
Affiliation(s)
- Consuelo Plata
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15. Tlalpan, 14080, Mexico City, Mexico
| | - Cristino Cruz
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15. Tlalpan, 14080, Mexico City, Mexico
| | - Luz G Cervantes
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Tlalpan, 14080, Mexico City, Mexico
| | - Victoria Ramírez
- Departamento de Cirugía Experimental, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|