1
|
Hu J, Sa X, Yang Y, Han Y, Wu J, Sun M, Shafi S, Ahmad N, Siraj S, Yang J, Zhou Y. Multi-transcriptomics reveals niche-specific expression programs and endothelial cells in glioblastoma. J Transl Med 2025; 23:444. [PMID: 40234880 PMCID: PMC11998397 DOI: 10.1186/s12967-025-06185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/29/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly lethal malignant intracranial tumor, distinguished from low-grade glioma by histopathological hallmarks such as pseudopalisading cells around necrosis (PAN) and microvascular proliferation (MVP). To date the spatial organization of the molecular and cellular components of these specific histopathological features has not been fully elucidated. METHODS Here, using bulk RNA sequencing, spatial transcriptomic and single cell RNA sequencing (scRNA-seq) data of GBM patients, we identified niche-specific transcriptional programs and characterized the differences in molecular expression and cellular organization between PAN and MVP. RESULTS Notably, we discovered spatially distinct domains within the tumor core and identified niche-specific signatures: NDRG1 and EPAS1, specifically expressed in the PAN and MVP regions. The clustering results showed two distinct phenotypes of endothelial cells (ECs) were enriched in the MVP and PAN regions, respectively. PAN-associated endothelial cells exhibit copy number variations similar to those in GBM cells. Single cell trajectory analysis reveals a pseudotime trajectory, indicating the differentiation of glioblastoma stem cells (GSCs) toward ECs. CONCLUSIONS Necrosis cores which are surrounded by hypoxic and perivascular niches and microvascular proliferation area within the glioblastoma tumor microenvironment, have been considered as standardized morphological indicators of aggressive GBM. Our findings provide a cellular and molecular insights into GBM progression.
Collapse
Affiliation(s)
- Jiukun Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Xiaohan Sa
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Yue Yang
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Jie Wu
- Department of Neurosurgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou, 215153, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Shaheryar Shafi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China
| | - Nafees Ahmad
- Institute of Biomedical & Genetic Engineering, 24-Mauve Area G-9/1, Islamabad, 44000, Pakistan
| | - Sami Siraj
- Institute of Pharmaceutical Sciences, Khyber Medical University, F1 Phase-6 Rd, Phase 5 Hayatabad, Peshawar, Khyber Pakhtunkhwa, 25100, Pakistan
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou, 215153, China.
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Department of Biomaterials and Stem Cells, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No.88, Suzhou, 215163, China.
| |
Collapse
|
2
|
Geng Z, Zhang Z, Wang M, Yu Z, Wang S, Lu J, Wang S, Guan S, Li J, Liu T, Zhu C. Targeting stromal cells in tumor microenvironment as a novel treatment strategy for glioma. Cancer Cell Int 2025; 25:58. [PMID: 39985022 PMCID: PMC11846374 DOI: 10.1186/s12935-025-03692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Glioma is the most common primary malignant tumor of the central nervous system in adults, characterized by high mortality, low cure rate and high recurrence rate. Among gliomas, glioblastoma multiforme (GBM) is the most malignant subtype. Currently, the standard treatment for patients with GBM is maximum surgical excision combined with radiotherapy and chemotherapy. But only a small percentage of patients benefit from this standard treatment. The tumor microenvironment plays an important role in the occurrence and development of most tumors. It is primarily composed of tumor cells, peripheral blood vessels, extracellular matrix, signaling molecules, stromal cells, and immune cells. The role of stromal cells in GBM has emerged as the focus of current research. The interaction among tumor, stromal, and immune cells within the tumor microenvironment can influence tumor development. Traditional research and drug therapy in glioma mainly focus on the tumor cells themselves, but recent studies have found that targeting stromal cells in the tumor microenvironment can also modulate tumor progression in GBM. Here, we review the influence of stromal cells in the tumor microenvironment of GBM on tumor cells and its related mechanism, as well as related molecular targets and signaling pathways, providing new ideas for the treatment and prognosis of GBM.
Collapse
Affiliation(s)
- Ziang Geng
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China
| | - Zheyuan Zhang
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China
| | - Miaohan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China
| | - Jun Lu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China
| | - Shisong Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China
| | - Jinna Li
- Department of Oncology, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, 110001, Liaoning, China.
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, 110001, Liaoning, China.
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
3
|
Tsuboi N, Otani Y, Uneda A, Ishida J, Suruga Y, Matsumoto Y, Fujimura A, Fujii K, Matsui H, Kurozumi K, Date I, Michiue H. New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline. Cancer Med 2024; 13:e70288. [PMID: 39440923 PMCID: PMC11497491 DOI: 10.1002/cam4.70288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND AIMS Anti-angiogenic therapies prolong patient survival in some malignancies but not glioblastoma. We focused on the relationship between the differentiation of glioma stem like cells (GSCs) into tumor derived endothelial cells (TDECs) and, anti-angiogenic therapy resistance. Especially we aimed to elucidate the mechanisms of drug resistance of TDECs to anti-angiogenic inhibitors and identify novel anti-angiogenic drugs with clinical applications. RESULTS The mouse GSCs, 005, were differentiated into TDECs under hypoxic conditions, and TDECs had endothelial cell characteristics independent of the vascular endothelial growth factor (VEGF) pathway. In vivo, inhibition of the VEGF pathway had no anti-tumor effect and increased the percentage of TDECs in the 005 mouse model. Novel anti-angiogenic drugs for glioblastoma were evaluated using a tube formation assay and a drug repositioning strategy with existing blood-brain barrier permeable drugs. Drug screening revealed that the antidepressant sertraline inhibited tube formation of TDECs. Sertraline was administered to differentiated TDECs in vitro and 005 mouse models in vivo to evaluate genetic changes by RNA-Seq and tumor regression effects by immunohistochemistry and MRI. Sertraline reduced Lama4 and Ang2 expressions of TDEC, which play an important role in non-VEGF-mediated angiogenesis in tumors. The combination of a VEGF receptor inhibitor axitinib, and sertraline improved survival and reduced tumor growth in the 005 mouse model. CONCLUSION Collectively, our findings showed the diversity of tumor vascular endothelial cells across VEGF and non-VEGF pathways led to anti-angiogenic resistance. The combination of axitinib and sertraline can represent an effective anti-angiogenic therapy for glioblastoma with safe, low cost, and fast availability.
Collapse
Affiliation(s)
- Nobushige Tsuboi
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
| | - Yoshihiro Otani
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsuhito Uneda
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joji Ishida
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yasuki Suruga
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yuji Matsumoto
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsushi Fujimura
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kentaro Fujii
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hideki Matsui
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
- Department of PhysiologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kazuhiko Kurozumi
- Department of NeurosurgeryHamamatsu University School of MedicineShizuokaJapan
| | - Isao Date
- Department of Neurological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | | |
Collapse
|
4
|
Wang S, Mao S, Li X, Yang D, Zhou Y, Yue H, Li B, Li W, Li C, Zhang X. Identification and validation of potential prognostic biomarkers in glioblastoma via the mesenchymal stem cell infiltration level. Front Oncol 2024; 14:1406186. [PMID: 39286023 PMCID: PMC11403407 DOI: 10.3389/fonc.2024.1406186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Aims Mesenchymal stem cells (MSCs) are key components in promoting glioblastoma (GBM) progression. This study aimed to explore new therapeutic targets and related pathogenic mechanisms based on different MSCs infiltration levels in GBM patients. Methods We estimated the relationship between cell infiltration and prognosis of GBM. Subsequently, key risk genes were identified and prognostic models were constructed by LASSO-Cox analysis. The risk genes were validated by five independent external cohorts, single-cell RNA analysis, and immunohistochemistry of human GBM tissues. TIDE analysis predicted responsiveness to immune checkpoint inhibitors in different risk groups. Results The MSCs infiltration level was negatively associated with survival in GBM patients. LOXL1, LOXL4, and GUCA1A are key risk genes that promote GBM progression and may act through complex intercellular communication. Conclusion This research has provided a comprehensive study for exploring the MSCs infiltration environment on GBM progression, which could shed light on novel biomarkers and mechanisms involved in GBM progression.
Collapse
Affiliation(s)
- Shengyu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Senlin Mao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofu Li
- Department of Magnetic Resonance Imaging, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Yang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yinglian Zhou
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Yue
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Li
- Department of Neurology, Heilongjiang Hospital, Harbin, China
| | - Chengyun Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuemei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Li J, Zhang Y, Liang C, Yan X, Hui X, Liu Q. Advancing precision medicine in gliomas through single-cell sequencing: unveiling the complex tumor microenvironment. Front Cell Dev Biol 2024; 12:1396836. [PMID: 39156969 PMCID: PMC11327033 DOI: 10.3389/fcell.2024.1396836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Glioblastoma (GBM) displays an infiltrative growth characteristic that recruits neighboring normal cells to facilitate tumor growth, maintenance, and invasion into the brain. While the blood-brain barrier serves as a critical natural defense mechanism for the central nervous system, GBM disrupts this barrier, resulting in the infiltration of macrophages from the peripheral bone marrow and the activation of resident microglia. Recent advancements in single-cell transcriptomics and spatial transcriptomics have refined the categorization of cells within the tumor microenvironment for precise identification. The intricate interactions and influences on cell growth within the tumor microenvironment under multi-omics conditions are succinctly outlined. The factors and mechanisms involving microglia, macrophages, endothelial cells, and T cells that impact the growth of GBM are individually examined. The collaborative mechanisms of tumor cell-immune cell interactions within the tumor microenvironment synergistically promote the growth, infiltration, and metastasis of gliomas, while also influencing the immune status and therapeutic response of the tumor microenvironment. As immunotherapy continues to progress, targeting the cells within the inter-tumor microenvironment emerges as a promising novel therapeutic approach for GBM. By comprehensively understanding and intervening in the intricate cellular interactions within the tumor microenvironment, novel therapeutic modalities may be developed to enhance treatment outcomes for patients with GBM.
Collapse
Affiliation(s)
- Jinwei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Yang Zhang
- Graduate School of Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Cong Liang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xianlei Yan
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xuhui Hui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Liu
- Department of Neurosurgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
6
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
7
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and High-Grade Glioma-Associated Vascular Cells Differentially Regulate Tumor Growth. Mol Cancer Res 2024; 22:656-667. [PMID: 38441553 PMCID: PMC11217726 DOI: 10.1158/1541-7786.mcr-23-1069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
A key feature distinguishing high-grade glioma (HG) from low-grade glioma (LG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor-associated vasculature from HG is molecularly and functionally distinct from normal brain vasculature and expresses higher levels of protumorigenic factors that promote glioma growth and progression. However, it remains unclear whether vessels from LG also express protumorigenic factors, and to what extent they functionally contribute to glioma growth. Here, we profile the transcriptomes of glioma-associated vascular cells (GVC) from IDH-mutant (mIDH) LG and IDH-wild-type (wIDH) HG and show that they exhibit significant molecular and functional differences. LG-GVC show enrichment of extracellular matrix-related gene sets and sensitivity to antiangiogenic drugs, whereas HG-GVC display an increase in immune response-related gene sets and antiangiogenic resistance. Strikingly, conditioned media from LG-GVC inhibits the growth of wIDH glioblastoma cells, whereas HG-GVC promotes growth. In vivo cotransplantation of LG-GVC with tumor cells reduces growth, whereas HG-GVC enhances tumor growth in orthotopic xenografts. We identify ASPORIN (ASPN), a small leucine-rich repeat proteoglycan, highly enriched in LG-GVC as a growth suppressor of wIDH glioblastoma cells in vitro and in vivo. Together, these findings indicate that GVC from LG and HG are molecularly and functionally distinct and differentially regulate tumor growth. Implications: This study demonstrated that vascular cells from IDH-mutant LG and IDH-wild-type HG exhibit distinct molecular signatures and have differential effects on tumor growth via regulation of ASPN-TGFβ1-GPM6A signaling.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - David Wang
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Lubayna Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Amy Pham
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Fuying Gao
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Riki Kawaguchi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
8
|
Qin Z, Zhong Y, Li P, Ma Z, Kang H, Huang Y, Zhong Y, Wang L. Vasorin promotes endothelial differentiation of glioma stem cells via stimulating the transcription of VEGFR2. FASEB J 2024; 38:e23682. [PMID: 38780524 DOI: 10.1096/fj.202400159r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.
Collapse
Affiliation(s)
- Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqing Ma
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Youwei Huang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Ye Q, Jo J, Wang CY, Oh H, Zhan J, Choy TJ, Kim KI, D'Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a CCL2-CCR2 pathway and NO dysregulation. Cell Rep 2024; 43:114193. [PMID: 38709635 PMCID: PMC11210630 DOI: 10.1016/j.celrep.2024.114193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jiangshan Zhan
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Tiffany J Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyoung In Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 77030, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Wang Y, Zhang S, Zhao Z, Jin Q, Wang Z, Song Z, Liu L, Zhao Z. PSMC2 promotes glioma progression by regulating immune microenvironment and PI3K/AKT/mTOR pathway. Immunobiology 2024; 229:152802. [PMID: 38569452 DOI: 10.1016/j.imbio.2024.152802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Glioma, the most frequent and malignant central nervous system (CNS) cancer, has a bad outcome. Proteasome 26S subunit ATPase 2 (PSMC2) is an essential part of the 26S proteasome and promotes the development of several tumors. However, the pathway and function of PSMC2 in glioma have not been unelucidated. METHODS This study analyzed PSMC2 expression in glioma tissues and its predictive significance for patients. We examined the link between PSMC2 and DNA methylation, immune cell infiltration, tumor immune cycle, immune cell homeostasis, and immune checkpoints. Subsequently, immunohistochemistry and in vitro trials were employed to validate the expression, prognostic potential, and function of PSMC2 in glioma. The mechanisms of PSMC2 in glioma were further explored. RESULTS Our study revealed that PSMC2 expression increased in glioma tissues contrasted with healthy tissues, and patients with high PSMC2 glioma exhibited poor overall survival (OS) compared to the low-PSMC2 group. Immune profile analysis revealed that PSMC2 was positively related to immunosuppressive cell infiltration and immune checkpoints and adversely related to the cancer immune cycle and immune cell homeostasis. In cell-based investigations, the inhibition of PSMC2 was found to effectively suppress the aggressiveness and proliferation of glioma cell lines while also enhancing cell cycle arrest and promoting cell death. Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and in vitro experiments showed that PSMC2 promoted glioma development through the PI3K/AKT/mTOR pathway. CONCLUSIONS PSMC2 was upregulated in glioma and promoted cancer progression by modulating the tumor immune microenvironment, cancer cell biological behavior, immune cell homeostasis, and the PI3K/AKT/mTOR pathway, providing a new option to treat glioma.
Collapse
Affiliation(s)
- Yizheng Wang
- Pain Rehabilitation, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shiyang Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zijun Zhao
- Spine Center, Sanbo Brain Hospital, Capital Medical University, Beijing 100000, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zairan Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing 100000, China
| | - Zihan Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Liqiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Zongmao Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
11
|
Yadav N, Purow BW. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J Neurooncol 2024; 166:213-229. [PMID: 38180686 PMCID: PMC11056965 DOI: 10.1007/s11060-023-04536-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Glioblastoma (GBM) is a common and devastating primary brain tumor, with median survival of 16-18 months after diagnosis in the setting of substantial resistance to standard-of-care and inevitable tumor recurrence. Recent work has implicated the brain microenvironment as being critical for GBM proliferation, invasion, and resistance to treatment. GBM does not operate in isolation, with neurons, astrocytes, and multiple immune populations being implicated in GBM tumor progression and invasiveness. The goal of this review article is to provide an overview of the available in vitro, ex vivo, and in vivo experimental models for assessing GBM-brain interactions, as well as discuss each model's relative strengths and limitations. Current in vitro models discussed will include 2D and 3D co-culture platforms with various cells of the brain microenvironment, as well as spheroids, whole organoids, and models of fluid dynamics, such as interstitial flow. An overview of in vitro and ex vivo organotypic GBM brain slices is also provided. Finally, we conclude with a discussion of the various in vivo rodent models of GBM, including xenografts, syngeneic grafts, and genetically-engineered models of GBM.
Collapse
Affiliation(s)
- Niket Yadav
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia Comprehensive Cancer Center, University of Virginia Health System, Charlottesville, VA, 22903, USA.
| |
Collapse
|
12
|
Qin Z, Huang Y, Li Z, Pan G, Zheng L, Xiao X, Wang F, Chen J, Chen X, Lin X, Li K, Yan G, Zhang H, Xing F. Glioblastoma Vascular Plasticity Limits Effector T-cell Infiltration and Is Blocked by cAMP Activation. Cancer Immunol Res 2023; 11:1351-1366. [PMID: 37540804 DOI: 10.1158/2326-6066.cir-22-0872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/20/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Glioblastoma (GBM) is the deadliest form of brain cancer. It is a highly angiogenic and immunosuppressive malignancy. Although immune checkpoint blockade therapies have revolutionized treatment for many types of cancer, their therapeutic efficacy in GBM has been far less than expected or even ineffective. In this study, we found that the genomic signature of glioma-derived endothelial cells (GdEC) correlates with an immunosuppressive state and poor prognosis of patients with glioma. We established an in vitro model of GdEC differentiation for drug screening and used this to determine that cyclic adenosine monophosphate (cAMP) activators could effectively block GdEC formation by inducing oxidative stress. Furthermore, cAMP activators impaired GdEC differentiation in vivo, normalized the tumor vessels, and altered the tumor immune profile, especially increasing the influx and function of CD8+ effector T cells. Dual blockade of GdECs and PD-1 induced tumor regression and established antitumor immune memory. Thus, our study reveals that endothelial transdifferentiation of GBM shapes an endothelial immune cell barrier and supports the clinical development of combining GdEC blockade and immunotherapy for GBM. See related Spotlight by Lee et al., p. 1300.
Collapse
Affiliation(s)
- Zixi Qin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Youwei Huang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, P.R. China
| | - Zeying Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Guopeng Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Liangying Zheng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Kai Li
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Fan Xing
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
13
|
Duan W, Xia S, Tang M, Lin M, Liu W, Wang Q. Targeting of endothelial cells in brain tumours. Clin Transl Med 2023; 13:e1433. [PMID: 37830128 PMCID: PMC10570772 DOI: 10.1002/ctm2.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Aggressive brain tumours, whether primary gliomas or secondary metastases, are characterised by hypervascularisation and are fatal. Recent research has emphasised the crucial involvement of endothelial cells (ECs) in all brain tumour genesis and development events, with various patterns and underlying mechanisms identified. MAIN BODY Here, we highlight recent advances in knowledge about the contributions of ECs to brain tumour development, providing a comprehensive summary including descriptions of interactions between ECs and tumour cells, the heterogeneity of ECs and new models for research on ECs in brain malignancies. We also discuss prospects for EC targeting in novel therapeutic approaches. CONCLUSION Interventions targeting ECs, as an adjunct to other therapies (e.g. immunotherapies, molecular-targeted therapies), have shown promising clinical efficacy due to the high degree of vascularisation in brain tumours. Developing precise strategies to target tumour-associated vessels based on the heterogeneity of ECs is expected to improve anti-vascular efficacy.
Collapse
Affiliation(s)
- Wenzhe Duan
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Shengkai Xia
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Mengyi Tang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Manqing Lin
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Wenwen Liu
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| | - Qi Wang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
14
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
15
|
Agnihotri TG, Salave S, Shinde T, Srikanth I, Gyanani V, Haley JC, Jain A. Understanding the role of endothelial cells in brain tumor formation and metastasis: a proposition to be explored for better therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:222-235. [PMID: 39035200 PMCID: PMC11256543 DOI: 10.1016/j.jncc.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 07/23/2024] Open
Abstract
Glioblastoma is one of the most devastating central nervous system disorders. Being a highly vascular brain tumor, it is distinguished by aberrant vessel architecture. This lends credence to the idea that endothelial cells (ECs) linked with glioblastoma vary fundamentally from ECs seen in the healthy human brain. To effectively design an antiangiogenic treatment, it is crucial to identify the functional and phenotypic characteristics of tumor-associated ECs. The ECs associated with glioblastoma are less prone to apoptosis than control cells and are resistant to cytotoxic treatments. Additionally, ECs associated with glioblastoma migrate more quickly than control ECs and naturally produce large amounts of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor (VEGF). For designing innovative antiangiogenic drugs that particularly target tumor-related ECs in gliomas, it is critical to comprehend these distinctive features of ECs associated with gliomas. This review discusses the process of angiogenesis, other factors involved in the genesis of tumors, and the possibility of ECs as a potential target in combating glioblastoma. It also sheds light on the association of tumor microenvironment and ECs with immunotherapy. This review, thus gives us the hope that neuro endothelial targeting with growth factors and angiogenesis regulators combined with gene therapy would open up new doorways and change our traditional perspective of treating cancer.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Induri Srikanth
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Vijay Gyanani
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Jeffrey C. Haley
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| |
Collapse
|
16
|
Zhang C, Zhou W. Machine learning-based identification of glycosyltransferase-related mRNAs for improving outcomes and the anti-tumor therapeutic response of gliomas. Front Pharmacol 2023; 14:1200795. [PMID: 37663248 PMCID: PMC10468601 DOI: 10.3389/fphar.2023.1200795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Glycosyltransferase participates in glycosylation modification, and glycosyltransferase alterations are involved in carcinogenesis, progression, and immune evasion, leading to poor outcomes. However, in-depth studies on the influence of glycosyltransferase on clinical outcomes and treatments are lacking. Methods: The analysis of differentially expressed genes was performed using the Gene Expression Profiling Interactive Analysis 2 database. A total of 10 machine learning algorithms were introduced, namely, random survival forest, elastic network, least absolute shrinkage and selection operator, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox, supervised principal components, generalized boosted regression modeling, and survival support vector machine. Gene Set Enrichment Analysis was performed to explore signaling pathways regulated by the signature. Cell-type identification by estimating relative subsets of RNA transcripts was used for estimating the fractions of immune cell types. Results: Here, we analyzed the genomic and expressive alterations in glycosyltransferase-related genes in gliomas. A combination of 80 machine learning algorithms was introduced to establish the glycosyltransferase-related mRNA signature (GRMS) based on 2,030 glioma samples from The Cancer Genome Atlas Program, Chinese Glioma Genome Atlas, Rembrandt, Gravendeel, and Kamoun cohorts. The GRMS was identified as an independent hazardous factor for overall survival and exhibited stable and robust performance. Notably, gliomas in the high-GRMS subgroup exhibited abundant tumor-infiltrating lymphocytes and tumor mutation burden values, increased expressive levels of hepatitis A virus cellular receptor 2 and CD274, and improved progression-free survival when subjected to anti-tumor immunotherapy. Conclusion: The GRMS may act as a powerful and promising biomarker for improving the clinical prognosis of glioma patients.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhou
- Department of Anesthesiology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| |
Collapse
|
17
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and high-grade glioma endothelial cells differentially regulate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548125. [PMID: 37461434 PMCID: PMC10350040 DOI: 10.1101/2023.07.07.548125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background A key feature distinguishing high-grade glioma (HGG) from low-grade glioma (LGG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor endothelial cells (TEC) from HGG are molecularly and functionally distinct from normal brain EC and secrete higher levels of pro-tumorigenic factors that promote glioma growth and progression. However, it remains unclear whether TEC from LGG also express pro-tumorigenic factors, and to what extent they functionally contribute to glioma growth. Methods Transcriptomic profiling was conducted on tumor endothelial cells (TEC) from grade II/III (LGG, IDH-mutant) and grade IV HGG (IDH-wildtype). Functional differences between LGG- and HGG-TEC were evaluated using growth assays, resistance to anti-angiogenic drugs and radiation therapy. Conditioned media and specific factors from LGG- and HGG-TEC were tested on patient-derived gliomasphere lines using growth assays in vitro and in co-transplantation studies in vivo in orthotopic xenograft models. Results LGG-TEC showed enrichment of extracellular matrix and cell cycle-related gene sets and sensitivity to anti-angiogenic therapy whereas HGG-TEC displayed an increase in immune response-related gene sets and anti-angiogenic resistance. LGG- and HGG-TEC displayed opposing effects on growth and proliferation of IDH-wildtype and mutant tumor cells. Asporin (ASPN), a small leucine rich proteoglycan enriched in LGG-TEC was identified as a growth suppressor of IDH-wildtype GBM by modulating TGFΒ1-GPM6A signaling. Conclusions Our findings indicate that TEC from LGG and HGG are molecularly and functionally heterogeneous and differentially regulate the growth of IDH-wildtype and mutant tumors.
Collapse
|
18
|
Yao X, Zeng Y. Tumour associated endothelial cells: origin, characteristics and role in metastasis and anti-angiogenic resistance. Front Physiol 2023; 14:1199225. [PMID: 37389120 PMCID: PMC10301839 DOI: 10.3389/fphys.2023.1199225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Tumour progression and metastasis remain the leading causes of cancer-related death worldwide. Tumour angiogenesis is essential for tumour progression. The vasculature surrounding tumours is not only a transport channel for nutrients, oxygen, and metabolites, but also a pathway for metastasis. There is a close interaction between tumour cells and endothelial cells in the tumour microenvironment. Recent studies have shown that tumour-associated endothelial cells have different characteristics from normal vascular endothelial cells, play an important role in tumour progression and metastasis, and are expected to be a key target for cancer therapy. This article reviews the tissue and cellular origin of tumour-associated endothelial cells and analyses the characteristics of tumour-associated endothelial cells. Finally, it summarises the role of tumour-associated endothelial cells in tumour progression and metastasis and the prospects for their use in clinical anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xinghong Yao
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Radiotherapy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Ye Q, Jo J, Wang CY, Oh H, Choy TJ, Kim K, D’Alessandro A, Reshetnyak YK, Jung SY, Chen Z, Marrelli SP, Lee HK. Astrocytic Slc4a4 regulates blood-brain barrier integrity in healthy and stroke brains via a NO-CCL2-CCR2 pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535167. [PMID: 37066295 PMCID: PMC10103986 DOI: 10.1101/2023.04.03.535167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests pH homeostasis is a new cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption and reactive gliosis, which were both rescued by pharmacological or genetic inhibition of the NO-CCL2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-NO-CCL2 axis as a pivotal mechanism controlling BBB integrity and repair, while providing insights for a novel therapeutic approach against BBB-related CNS disorders.
Collapse
Affiliation(s)
- Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Heavin Oh
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Tiffany J. Choy
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Kyoungin Kim
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean P. Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Wu H, Guo C, Wang C, Xu J, Zheng S, Duan J, Li Y, Bai H, Xu Q, Ning F, Wang F, Yang Q. Single-cell RNA sequencing reveals tumor heterogeneity, microenvironment, and drug-resistance mechanisms of recurrent glioblastoma. Cancer Sci 2023. [PMID: 36853018 DOI: 10.1111/cas.15773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Glioblastomas are highly heterogeneous brain tumors. Despite the availability of standard treatment for glioblastoma multiforme (GBM), i.e., Stupp protocol, which involves surgical resection followed by radiotherapy and chemotherapy, glioblastoma remains refractory to treatment and recurrence is inevitable. Moreover, the biology of recurrent glioblastoma remains unclear. Increasing evidence has shown that intratumoral heterogeneity and the tumor microenvironment contribute to therapeutic resistance. However, the interaction between intracellular heterogeneity and drug resistance in recurrent GBMs remains controversial. The aim of this study was to map the transcriptome landscape of cancer cells and the tumor heterogeneity and tumor microenvironment in recurrent and drug-resistant GBMs at a single-cell resolution and further explore the mechanism of drug resistance of GBMs. We analyzed six tumor tissue samples from three patients with primary GBM and three patients with recurrent GBM in which recurrence and drug resistance developed after treatment with the standard Stupp protocol using single-cell RNA sequencing. Using unbiased clustering, nine major cell clusters were identified. Upregulation of the expression of stemness-related and cell-cycle-related genes was observed in recurrent GBM cells. Compared with the initial GBM tissues, recurrent GBM tissues showed a decreased proportion of microglia, consistent with previous reports. Finally, vascular endothelial growth factor A expression and the blood-brain barrier permeability were high, and the O6 -methylguanine DNA methyltransferase-related signaling pathway was activated in recurrent GBM. Our results delineate the single-cell map of recurrent glioblastoma, tumor heterogeneity, tumor microenvironment, and drug-resistance mechanisms, providing new insights into treatment strategies for recurrent glioblastomas.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaoye Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Biometric Information, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiyun Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongming Bai
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Qiuyan Xu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fangling Ning
- Department of Medical Oncology, Binzhou Medical University Hospital, Binzhou, China
| | - Feng Wang
- Department of Medical Oncology, Binzhou Medical University Hospital, Binzhou, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
21
|
Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas. Nat Commun 2023; 14:1028. [PMID: 36823172 PMCID: PMC9950149 DOI: 10.1038/s41467-023-36707-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Diffuse midline glioma-H3K27M mutant (DMG) and glioblastoma (GBM) are the most lethal brain tumors that primarily occur in pediatric and adult patients, respectively. Both tumors exhibit significant heterogeneity, shaped by distinct genetic/epigenetic drivers, transcriptional programs including RNA splicing, and microenvironmental cues in glioma niches. However, the spatial organization of cellular states and niche-specific regulatory programs remain to be investigated. Here, we perform a spatial profiling of DMG and GBM combining short- and long-read spatial transcriptomics, and single-cell transcriptomic datasets. We identify clinically relevant transcriptional programs, RNA isoform diversity, and multi-cellular ecosystems across different glioma niches. We find that while the tumor core enriches for oligodendrocyte precursor-like cells, radial glial stem-like (RG-like) cells are enriched in the neuron-rich invasive niche in both DMG and GBM. Further, we identify niche-specific regulatory programs for RG-like cells, and functionally confirm that FAM20C mediates invasive growth of RG-like cells in a neuron-rich microenvironment in a human neural stem cell derived orthotopic DMG model. Together, our results provide a blueprint for understanding the spatial architecture and niche-specific vulnerabilities of DMG and GBM.
Collapse
|
22
|
Progresses, Challenges, and Prospects of CRISPR/Cas9 Gene-Editing in Glioma Studies. Cancers (Basel) 2023; 15:cancers15020396. [PMID: 36672345 PMCID: PMC9856991 DOI: 10.3390/cancers15020396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Glioma refers to a tumor that is derived from brain glial stem cells or progenitor cells and is the most common primary intracranial tumor. Due to its complex cellular components, as well as the aggressiveness and specificity of the pathogenic site of glioma, most patients with malignant glioma have poor prognoses following surgeries, radiotherapies, and chemotherapies. In recent years, an increasing amount of research has focused on the use of CRISPR/Cas9 gene-editing technology in the treatment of glioma. As an emerging gene-editing technology, CRISPR/Cas9 utilizes the expression of certain functional proteins to repair tissues or treat gene-deficient diseases and could be applied to immunotherapies through the expression of antigens, antibodies, or receptors. In addition, some research also utilized CRISPR/Cas9 to establish tumor models so as to study tumor pathogenesis and screen tumor prognostic targets. This paper mainly discusses the roles of CRISPR/Cas9 in the treatment of glioma patients, the exploration of the pathogenesis of neuroglioma, and the screening targets for clinical prognosis. This paper also raises the future research prospects of CRISPR/Cas9 in glioma, as well as the opportunities and challenges that it will face in clinical treatment in the future.
Collapse
|
23
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
24
|
Role of nerves in neurofibromatosis type 1-related nervous system tumors. Cell Oncol (Dordr) 2022; 45:1137-1153. [PMID: 36327093 DOI: 10.1007/s13402-022-00723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that affects nearly 1 in 3000 infants. Neurofibromin inactivation and NF1 gene mutations are involved in various aspects of neuronal function regulation, including neuronal development induction, electrophysiological activity elevation, growth factor expression, and neurotransmitter release. NF1 patients often exhibit a predisposition to tumor development, especially in the nervous system, resulting in the frequent occurrence of peripheral nerve sheath tumors and gliomas. Recent evidence suggests that nerves play a role in the development of multiple tumor types, prompting researchers to investigate the nerve as a vital component in and regulator of the initiation and progression of NF1-related nervous system tumors. CONCLUSION In this review, we summarize existing evidence about the specific effects of NF1 mutation on neurons and emerging research on the role of nerves in neurological tumor development, promising a new set of selective and targeted therapies for NF1-related tumors.
Collapse
|
25
|
Li J, Li X, Guo Q. Drug Resistance in Cancers: A Free Pass for Bullying. Cells 2022; 11:3383. [PMID: 36359776 PMCID: PMC9654341 DOI: 10.3390/cells11213383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
The cancer burden continues to grow globally, and drug resistance remains a substantial challenge in cancer therapy. It is well established that cancerous cells with clonal dysplasia generate the same carcinogenic lesions. Tumor cells pass on genetic templates to subsequent generations in evolutionary terms and exhibit drug resistance simply by accumulating genetic alterations. However, recent evidence has implied that tumor cells accumulate genetic alterations by progressively adapting. As a result, intratumor heterogeneity (ITH) is generated due to genetically distinct subclonal populations of cells coexisting. The genetic adaptive mechanisms of action of ITH include activating "cellular plasticity", through which tumor cells create a tumor-supportive microenvironment in which they can proliferate and cause increased damage. These highly plastic cells are located in the tumor microenvironment (TME) and undergo extreme changes to resist therapeutic drugs. Accordingly, the underlying mechanisms involved in drug resistance have been re-evaluated. Herein, we will reveal new themes emerging from initial studies of drug resistance and outline the findings regarding drug resistance from the perspective of the TME; the themes include exosomes, metabolic reprogramming, protein glycosylation and autophagy, and the relates studies aim to provide new targets and strategies for reversing drug resistance in cancers.
Collapse
Affiliation(s)
| | | | - Qie Guo
- The Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
26
|
Hsu CW, Cerda J, Kirk JM, Turner WD, Rasmussen TL, Flores Suarez CP, Dickinson ME, Wythe JD. EZ Clear for simple, rapid, and robust mouse whole organ clearing. eLife 2022; 11:e77419. [PMID: 36218247 PMCID: PMC9555867 DOI: 10.7554/elife.77419] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue clearing for whole organ cell profiling has revolutionized biology and imaging for exploration of organs in three-dimensional space without compromising tissue architecture. But complicated, laborious procedures, or expensive equipment, as well as the use of hazardous, organic solvents prevent the widespread adoption of these methods. Here, we report a simple and rapid tissue clearing method, EZ Clear, that can clear whole adult mouse organs in 48 hr in just three simple steps. Samples stay at room temperature and remain hydrated throughout the clearing process, preserving endogenous and synthetic fluorescence, without altering sample size. After wholemount clearing and imaging, samples processed with EZ Clear can be subjected to downstream applications, such as tissue embedding and cryosectioning followed by standard histology or immunofluorescent staining without loss of fluorescence signal from endogenous or synthetic reporters. Furthermore, we demonstrate that wholemount adult mouse brains processed with EZ Clear can be successfully immunolabeled for fluorescent imaging while still retaining signal from endogenous fluorescent reporters. Overall, the simplicity, speed, and flexibility of EZ Clear make it easy to adapt and implement in diverse imaging modalities in biomedical research.
Collapse
Affiliation(s)
- Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Optical Imaging and Vital Microscopy Core, Advance Technology Cores, Baylor College of MedicineHoustonUnited States
- Department of Education, Innovation and Technology, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
| | - Juan Cerda
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Jason M Kirk
- Optical Imaging and Vital Microscopy Core, Advance Technology Cores, Baylor College of MedicineHoustonUnited States
| | - Williamson D Turner
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Tara L Rasmussen
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
| | | | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Optical Imaging and Vital Microscopy Core, Advance Technology Cores, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
| | - Joshua D Wythe
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- Cardiovascular Research Institute, Baylor College of MedicineHoustonUnited States
- Department of Neurosurgery, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
27
|
左 明, 刘 艳. [Latest Research Findings on the Role of Non-Tumor Cells in Glioma Microenvironment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:573-578. [PMID: 35871725 PMCID: PMC10409475 DOI: 10.12182/20220760204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 06/15/2023]
Abstract
As the tumor cell-centered treatment strategies cannot curb the malignant progression of glioblastoma effectively, the therapeutic effect of glioblastoma is still not satisfactory. In addition to glioma cells, glioma microenvironment (GME) comprises massive numbers of non-tumor cells and soluble cytokines. The non-tumor cells include endothelial cells, pericytes, microglia/macrophages, mesenchymal cells, astrocytes, neurons, etc. These non-tumor cell components, together with glioma cells, form one organism which regulates the progression of glioma. Considerable progress has been been in research on GME, which will be conducive to the development of non-tumor cell targeted therapies and and improvements in the prognosis of glioma patients. Herein, we summarized the interaction of glioma cells with endothelial cells, pericytes, microglia/macrophages, astrocytes, neurons and mesenchymal cells, a topic that has been extensively researched, as well as the corresponding translational studies. We also discussed the potential challenges and opportunities of developing glioma treatments based on tumor microenvironment.
Collapse
Affiliation(s)
- 明荣 左
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 艳辉 刘
- 四川大学华西医院 神经外科 (成都 610041)Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Keep RF, Jones HC, Drewes LR. Advances in brain barriers and brain fluids research in 2021: great progress in a time of adversity. Fluids Barriers CNS 2022; 19:48. [PMID: 35681151 PMCID: PMC9178944 DOI: 10.1186/s12987-022-00343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
This editorial highlights advances in brain barrier and brain fluid research in 2021. It covers research on components of the blood–brain barrier, neurovascular unit and brain fluid systems; how brain barriers and brain fluid systems are impacted by neurological disorders and their role in disease progression; and advances in strategies for treating such disorders.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | | | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
29
|
Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The Vascular Microenvironment in Glioblastoma: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061285. [PMID: 35740307 PMCID: PMC9219822 DOI: 10.3390/biomedicines10061285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial–tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Correspondence:
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| |
Collapse
|
30
|
Cai S, Shi Z, Zhou S, Liang Y, Wang L, Wang K, Zhang L. Cerebrovascular Dysregulation in Patients with Glioma Assessed with Time-shifted BOLD fMRI. Radiology 2022; 304:155-163. [PMID: 35380491 DOI: 10.1148/radiol.212192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Microscopic vascular events, such as neovascularization and neurovascular uncoupling, are common in cerebral glioma. Mapping the cerebrovascular network remodeling at the macroscopic level may provide an alternative approach to assess hemodynamic dysregulation in patients with glioma. Purpose To investigate cerebrovascular dynamics and their relevance to tumor aggressiveness by using time-shift analysis (TSA) of the systemic low-frequency oscillation (sLFO) of the resting-state blood oxygenation level-dependent signal and a decision tree model. Materials and Methods In this retrospective study, 96 patients with histologically confirmed cerebral glioma were consecutively included (March 2012 to February 2017). TSA was performed to quantify the temporal properties of sLFO signals. Alteration in the time-shift properties was assessed in the tumor region and the contralesional hemisphere relative to the brains of healthy controls by using the Mann-Whitney U test. A decision tree model based on time-shift features was developed to predict the World Health Organization (WHO) glioma grade. Results A total of 88 patients with glioma (WHO grade II, 45; grade III, 21; grade IV, 22; mean age, 42 years; age range, 20-73 years; 51 men) and 40 healthy individuals from the 1000 Functional Connectomes Project (mean age, 32 years; age range, 24-49 years; 19 men) were included. The sLFO of the brain tissues was characterized by increased time shift in the tumor region and enhanced correlation with the global reference signal in the contralesional hemisphere compared with healthy brains. The proportion of tumor voxels with negative correlation to the reference signal significantly increased with the glioma malignancy grade. The decision tree model achieved an accuracy of 91% (80 of 88 patients) in predicting the glioma malignancy grade at the individual level (P = .004) based on the time-shift features. Conclusion Gliomas induced grade-specific cerebrovascular dysregulation in the entire brain, with altered time-shift features of systemic low-frequency oscillation signals. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Siqi Cai
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Zhifeng Shi
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Shihui Zhou
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Yuchao Liang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Lei Wang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Kai Wang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Lijuan Zhang
- From the Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Shenzhen 518055, China (S.C., S.Z., L.Z.); University of the Chinese Academy of Sciences, Beijing, China (S.C., S.Z.); Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China (Z.S.); and Departments of Neurosurgery (Y.L., L.W.) and Radiology (K.W.), Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Tobar LE, Farnsworth RH, Stacker SA. Brain Vascular Microenvironments in Cancer Metastasis. Biomolecules 2022; 12:biom12030401. [PMID: 35327593 PMCID: PMC8945804 DOI: 10.3390/biom12030401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
Primary tumours, particularly from major solid organs, are able to disseminate into the blood and lymphatic system and spread to distant sites. These secondary metastases to other major organs are the most lethal aspect of cancer, accounting for the majority of cancer deaths. The brain is a frequent site of metastasis, and brain metastases are often fatal due to the critical role of the nervous system and the limited options for treatment, including surgery. This creates a need to further understand the complex cell and molecular biology associated with the establishment of brain metastasis, including the changes to the environment of the brain to enable the arrival and growth of tumour cells. Local changes in the vascular network, immune system and stromal components all have the potential to recruit and foster metastatic tumour cells. This review summarises our current understanding of brain vascular microenvironments, fluid circulation and drainage in the context of brain metastases, as well as commenting on current cutting-edge experimental approaches used to investigate changes in vascular environments and alterations in specialised subsets of blood and lymphatic vessel cells during cancer spread to the brain.
Collapse
Affiliation(s)
- Lucas E. Tobar
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rae H. Farnsworth
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven A. Stacker
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.E.T.); (R.H.F.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3050, Australia
- Correspondence: ; Tel.: +61-3-8559-7106
| |
Collapse
|
32
|
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, Tang XM, Sun F, Lu HM, Deng J, Bai J, Li J, Wu CY, Lin QL, Lv ZW, Wang GR, Jiang GX, Ma YS, Fu D. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer 2022; 21:25. [PMID: 35057806 PMCID: PMC8772097 DOI: 10.1186/s12943-022-01505-z] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Primary lung cancer is one of the most common malignant tumors in China. Approximately 60% of lung cancer patients have distant metastasis at the initial diagnosis, so it is necessary to find new tumor markers for early diagnosis and individualized treatment. Tumor markers contribute to the early diagnosis of lung cancer and play important roles in early detection and treatment, as well as in precision medicine, efficacy monitoring, and prognosis prediction. The pathological diagnosis of lung cancer in small biopsy specimens determines whether there are tumor cells in the biopsy and tumor type. Because biopsy is traumatic and the compliance of patients with multiple biopsies is poor, liquid biopsy has become a hot research direction. Liquid biopsies are advantageous because they are nontraumatic, easy to obtain, reflect the overall state of the tumor, and allow for real-time monitoring. At present, liquid biopsies mainly include circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. This review introduces the research progress and clinical application prospect of liquid biopsy technology for lung cancer.
Collapse
|
33
|
Wesseling P, Rozowsky JS. Neurooncology: 2022 update. FREE NEUROPATHOLOGY 2022; 3:4. [PMID: 37284148 PMCID: PMC10209868 DOI: 10.17879/freeneuropathology-2022-3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/08/2023]
Abstract
This 'Neurooncology: 2022 update' presents topics that were selected by the authors as top ten discoveries published in 2021 in the broader field of neurooncological pathology. This time, the spectrum of topics includes: papers with a direct impact on daily diagnostic practice of CNS tumors in general and with information on how to improve grading of meningiomas; studies shedding new light on the oncogenesis of gliomas (in particular 'optic gliomas' and H3-mutant gliomas); several 'multi-omic' investigations unraveling the intra-tumoral heterogeneity of especially glioblastomas further; a study indicating the potential of 'repurposing' Prozac® for the treatment of glioblastomas; liquid biopsy using CSF for assessment of residual medulloblastoma. In the last part of this review some other papers are mentioned that didn't make it to this (quite subjective) top ten list.
Collapse
Affiliation(s)
- Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081HV AmsterdamThe Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS UtrechtThe Netherlands
| | - Jacob S. Rozowsky
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081HV AmsterdamThe Netherlands
| |
Collapse
|
34
|
Pan D, Jia D. Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity. Front Mol Biosci 2021; 8:757024. [PMID: 34722635 PMCID: PMC8554142 DOI: 10.3389/fmolb.2021.757024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor heterogeneity, a hallmark of cancer, impairs the efficacy of cancer therapy and drives tumor progression. Exploring inter- and intra-tumoral heterogeneity not only provides insights into tumor development and progression, but also guides the design of personalized therapies. Previously, high-throughput sequencing techniques have been used to investigate the heterogeneity of tumor ecosystems. However, they could not provide a high-resolution landscape of cellular components in tumor ecosystem. Recently, advance in single-cell technologies has provided an unprecedented resolution to uncover the intra-tumoral heterogeneity by profiling the transcriptomes, genomes, proteomes and epigenomes of the cellular components and also their spatial distribution, which greatly accelerated the process of basic and translational cancer research. Importantly, it has been demonstrated that some cancer cells are able to transit between different states in order to adapt to the changing tumor microenvironment, which led to increased cellular plasticity and tumor heterogeneity. Understanding the molecular mechanisms driving cancer cell plasticity is critical for developing precision therapies. In this review, we summarize the recent progress in dissecting the cancer cell plasticity and tumor heterogeneity by use of single-cell multi-omics techniques.
Collapse
Affiliation(s)
- Deshen Pan
- Laboratory of Cancer Genomics and Biology, Department of Urology, and Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deshui Jia
- Laboratory of Cancer Genomics and Biology, Department of Urology, and Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Wang X, Li X, Zhang Y, Long X, Zhang H, Xu T, Niu C. Coaxially Bioprinted Cell-Laden Tubular-Like Structure for Studying Glioma Angiogenesis. Front Bioeng Biotechnol 2021; 9:761861. [PMID: 34660561 PMCID: PMC8517394 DOI: 10.3389/fbioe.2021.761861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022] Open
Abstract
Glioblastomas are the most frequently diagnosed and one of the most lethal primary brain tumors, and one of their key features is a dysplastic vascular network. However, because the origin of the tumor blood vessels remains controversial, an optimal preclinical tumor model must be established to elucidate the tumor angiogenesis mechanism, especially the role of tumor cells themselves in angiogenesis. Therefore, shell-glioma cell (U118)-red fluorescent protein (RFP)/core-human umbilical vein endothelial cell (HUVEC)-green fluorescent protein (GFP) hydrogel microfibers were coaxially bioprinted. U118–RFP and HUVEC–GFP cells both exhibited good proliferation in a three-dimensional (3D) microenvironment. The secretability of both vascular endothelial growth factor A and basic fibroblast growth factor was remarkably enhanced when both types of cells were cocultured in 3D models. Moreover, U118 cells promoted the vascularization of the surrounding HUVECs by secreting vascular growth factors. More importantly, U118–HUVEC-fused cells were found in U118–RFP/HUVEC–GFP hydrogel microfibers. Most importantly, our results indicated that U118 cells can not only recruit the blood vessels of the surrounding host but also directly transdifferentiate into or fuse with endothelial cells to participate in tumor angiogenesis in vivo. The coaxially bioprinted U118–RFP/HUVEC–GFP hydrogel microfiber is a model suitable for mimicking the glioma microenvironment and for investigating tumor angiogenesis.
Collapse
Affiliation(s)
- Xuanzhi Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, China
| | - Haitao Zhang
- East China Institute of Digital Medical Engineering, Shangrao, China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, China.,Department of Precision Medicine and Healthcare, Tsinghua Berkeley Shenzhen Institute, Shenzhen, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
36
|
Yao H, Liu J, Zhang C, Shao Y, Li X, Yu Z, Huang Y. Apatinib inhibits glioma cell malignancy in patient-derived orthotopic xenograft mouse model by targeting thrombospondin 1/myosin heavy chain 9 axis. Cell Death Dis 2021; 12:927. [PMID: 34635636 PMCID: PMC8505401 DOI: 10.1038/s41419-021-04225-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
We determined the antitumor mechanism of apatinib in glioma using a patient-derived orthotopic xenograft (PDOX) glioma mouse model and glioblastoma (GBM) cell lines. The PDOX mouse model was established using tumor tissues from two glioma patients via single-cell injections. Sixteen mice were successfully modeled and randomly divided into two equal groups (n = 8/group): apatinib and normal control. Survival analysis and in vivo imaging was performed to determine the effect of apatinib on glioma proliferation in vivo. Candidate genes in GBM cells that may be affected by apatinib treatment were screened using RNA-sequencing coupled with quantitative mass spectrometry, data mining of The Cancer Genome Atlas, and Chinese Glioma Genome Atlas databases, and immunohistochemistry analysis of clinical high-grade glioma pathology samples. Quantitative reverse transcription-polymerase chain reaction (qPCR), western blotting, and co-immunoprecipitation (co-IP) were performed to assess gene expression and the apatinib-mediated effect on glioma cell malignancy. Apatinib inhibited the proliferation and malignancy of glioma cells in vivo and in vitro. Thrombospondin 1 (THBS1) was identified as a potential target of apatinib that lead to inhibited glioma cell proliferation. Apatinib-mediated THBS1 downregulation in glioma cells was confirmed by qPCR and western blotting. Co-IP and mass spectrometry analysis revealed that THBS1 could interact with myosin heavy chain 9 (MYH9) in glioma cells. Simultaneous THBS1 overexpression and MYH9 knockdown suppressed glioma cell invasion and migration. These data suggest that apatinib targets THBS1 in glioma cells, potentially via MYH9, to inhibit glioma cell malignancy and may provide novel targets for glioma therapy.
Collapse
Affiliation(s)
- Hui Yao
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Jiangang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Chi Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Yunxiang Shao
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China
| | - Xuetao Li
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215124, Jiangsu, China
| | - Zhengquan Yu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China.
| | - Yulun Huang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, No188, Shizi Street, Suzhou, 215007, Jiangsu, China.
- Department of Neurosurgery, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, 215124, Jiangsu, China.
| |
Collapse
|
37
|
Álvaro-Espinosa L, de Pablos-Aragoneses A, Valiente M, Priego N. Brain Microenvironment Heterogeneity: Potential Value for Brain Tumors. Front Oncol 2021; 11:714428. [PMID: 34540682 PMCID: PMC8440906 DOI: 10.3389/fonc.2021.714428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Uncovering the complexity of the microenvironment that emerges in brain disorders is key to identify potential vulnerabilities that might help challenging diseases affecting this organ. Recently, genomic and proteomic analyses, especially at the single cell level, have reported previously unrecognized diversity within brain cell types. The complexity of the brain microenvironment increases during disease partly due to the immune infiltration from the periphery that contributes to redefine the brain connectome by establishing a new crosstalk with resident brain cell types. Within the rewired brain ecosystem, glial cell subpopulations are emerging hubs modulating the dialogue between the Immune System and the Central Nervous System with important consequences in the progression of brain tumors and other disorders. Single cell technologies are crucial not only to define and track the origin of disease-associated cell types, but also to identify their molecular similarities and differences that might be linked to specific brain injuries. These altered molecular patterns derived from reprogramming the healthy brain into an injured organ, might provide a new generation of therapeutic targets to challenge highly prevalent and lethal brain disorders that remain incurable with unprecedented specificity and limited toxicities. In this perspective, we present the most relevant clinical and pre-clinical work regarding the characterization of the heterogeneity within different components of the microenvironment in the healthy and injured brain with a special interest on single cell analysis. Finally, we discuss how understanding the diversity of the brain microenvironment could be exploited for translational purposes, particularly in primary and secondary tumors affecting the brain.
Collapse
Affiliation(s)
| | | | | | - Neibla Priego
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
38
|
Dual role of WNT5A in promoting endothelial differentiation of glioma stem cells and angiogenesis of glioma derived endothelial cells. Oncogene 2021; 40:5081-5094. [PMID: 34188250 DOI: 10.1038/s41388-021-01922-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023]
Abstract
Glioma is a devastating cancer with a rich vascular network. No anti-angiogenic treatment is available for prolonging the overall survival of glioma patients. Recent studies have demonstrated that the endothelial differentiation of glioma stem cells (GSCs) into glioma-derived endothelial cells (GDECs) may be a novel target for anti-angiogenic therapy in glioma; however, the underlying mechanisms of this process remain unknown. Here, we report that wingless-related integration site (WNT) family member 5A (WNT5A) plays significant roles in GSC endothelial differentiation and GDECs angiogenesis. WNT5A is preferentially secreted by GDECs, and inhibition of WNT5A suppresses angiogenesis and tumorigenesis in GDECs. Silencing of WNT5A in GDECs also disrupts the impact of GDECs on stimulating GSC endothelial differentiation. Frizzled-4 is a receptor that mediates the effect of WNT5A on GSC endothelial differentiation and angiogenesis of GDECs via GSK3β/β-catenin/epithelial-mesenchymal transition signalling. The shWNT5A@cRGD-DDD liposomes, targeting WNT5A, exert anti-angiogenic effects in vivo. In this study, we identified that WNT5A has a dual functional role in modulating the endothelial differentiation of GSCs and angiogenesis of GDECs, indicating that WNT5A is a potential target for anti-angiogenesis-based therapeutics in glioma.
Collapse
|
39
|
Sun W, Zhou H, Han X, Hou L, Xue X. Circular RNA: A novel type of biomarker for glioma (Review). Mol Med Rep 2021; 24:602. [PMID: 34165178 PMCID: PMC8240176 DOI: 10.3892/mmr.2021.12240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
With the rapid development of sequencing technologies, the characteristics and functions of circular RNAs (circRNAs) in different tissues, and their underlying pathophysiological mechanisms, have been identified. circRNAs are significantly enriched in the brain and are continually expressed from the embryonic stage to the adult stage in rats. Previous studies have reported that certain circRNAs are differentially expressed in glioma and regulate a number of biological processes, such as cell proliferation, metastasis and oncogenesis of glioma. Furthermore, certain circRNAs have been associated with tumor size, World Health Organization tumor grade and poor prognosis in patients with glioma. It has been hypothesized that circRNAs may be involved in the onset and progression of glioma through transcriptional regulation, protein translation and binding to microRNAs. These properties and functions suggest the potential of circRNAs as prognostic biomarkers and therapeutic targets for glioma. For the present review, published studies were examined from PubMed, Embase, Cochrane Central and the reference lists of the retrieved articles. The aim of the present review was to summarize the progress of circRNA research in glioma, discuss the potential diagnostic and prognostic values, and the roles of circRNAs in glioma, and provide a novel theoretical basis and research concepts for the prediction, diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
40
|
Rosińska S, Gavard J. Tumor Vessels Fuel the Fire in Glioblastoma. Int J Mol Sci 2021; 22:6514. [PMID: 34204510 PMCID: PMC8235363 DOI: 10.3390/ijms22126514] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, a subset of aggressive brain tumors, deploy several means to increase blood vessel supply dedicated to the tumor mass. This includes typical program borrowed from embryonic development, such as vasculogenesis and sprouting angiogenesis, as well as unconventional processes, including co-option, vascular mimicry, and transdifferentiation, in which tumor cells are pro-actively engaged. However, these neo-generated vascular networks are morphologically and functionally abnormal, suggesting that the vascularization processes are rather inefficient in the tumor ecosystem. In this review, we reiterate the specificities of each neovascularization modality in glioblastoma, and, how they can be hampered mechanistically in the perspective of anti-cancer therapies.
Collapse
Affiliation(s)
- Sara Rosińska
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
| | - Julie Gavard
- CRCINA, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
- Integrated Center for Oncology, ICO, 44800 St. Herblain, France
| |
Collapse
|
41
|
Winkler F. In glioma, all endothelial cells are not created the same. Neuro Oncol 2021; 23:863-864. [PMID: 33705550 DOI: 10.1093/neuonc/noab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Frank Winkler
- Neurology Clinic, University Hospital Heidelberg, Neurooncology Program at the National Center for Tumor Disease, German Cancer Consortium (DKTK), Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|