1
|
Dai Q, Wei J, Li Z, Li T, Fang Y, Li X, Shen B, Xie Q, Wang M, Wu W. Mifepristone achieves tumor suppression and ferroptosis through PR/p53/HO1/GPX4 axis in meningioma cells. J Neurooncol 2025; 172:377-386. [PMID: 39751705 DOI: 10.1007/s11060-024-04918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE This study explores the effects of mifepristone on the proliferation, motility, and invasion of malignant and benign meningioma cells, aiming to identify mifepristone-sensitive types and investigate the underlying molecular mechanisms. METHODS IOMM-Lee and HBL-52 meningioma cells were treated with 0, vehicle control (VC), 5, 10, 20, 40, and 80 μM of mifepristone for 12, 24, 48, 72, and 96 h. Proliferation was assessed via CCK8 assay, while motility and invasion were measured using wound scratch and transwell assays. RNA sequencing and RT-PCR were used to analyze gene expression changes. RESULTS Mifepristone inhibited proliferation, motility, and invasion in both IOMM-Lee and HBL-52 cells in a dose- and time-dependent manner. RNA sequencing showed up-regulated genes significantly enriched in the ferroptosis pathway in both cell lines, confirmed by increased p53 and HO1 expression, decreased GPX4 expression, lipid peroxidation, Fe2+ accumulation, and ROS release. Immunofluorescence staining and RT-PCR also revealed a corresponding decrease in mifepristone-related progesterone receptor expression. CONCLUSION Mifepristone induces ferroptosis in meningioma cells via the PR/p53/HO1/GPX4 axis, suggesting its potential as a treatment for ferroptosis-sensitive meningiomas. It also supplies new clues regarding ferroptosis as a treatment entry point for meningiomas.
Collapse
Affiliation(s)
- Qin Dai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinfei Wei
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziwei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ting Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yenan Fang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bingyan Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiqi Xie
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Min Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Li H, Cui X, Shang Z, Yang W, Lu A, Guo H, Cheng Z, Zhou J, Wei Y, Li M, Chen G, Yu Z. Nonlinear ageing gero-marker dynamics of transcriptomic profile during calcific aortic valve mouse modeling. Arch Gerontol Geriatr 2025; 131:105777. [PMID: 39922128 DOI: 10.1016/j.archger.2025.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
The prevention and management of degenerative heart disease remain challenging and could potentially be significantly improved by understanding of ageing biomarker dynamics. In this study, we constructed the calcific aortic valve mouse model at different age points, measured valve function degeneration along with valve calcification, and investigated the nonlinear dynamics using sequencing data and deep learning models. In C57BL/6 N mouse model, the older mice had higher levels of peak transvalvular jet velocity in terms of valve function. Regarding valve calcification, collagen and elastic fiber calcification in the middle layer increased significantly at 48-week-old (p < 0.001), and the calcification spread to the inner endothelial cells at 72-week-old (p < 0.0001). RNA sequencing illustrated that 30 genes, including Acadsb, L2hgdh, and Cpped1, showed increased expression with age. Among them, four genes, namely Hipk2, 9430069I07Rik, Peli3, and Slc22a12, increased more than threefold in aortic tissues in 72-week-old mice compared to 6-week-old mice. Moreover, a large proportion of genes changed in a nonlinear pattern (6,325 out of 12,160, 52%). In conclusion, both linear and nonlinear gero-markers were found in the calcific aortic valve mouse modeling, which highlighted specific periods of significant wave with accelerated ageing (48-week-old in mice).
Collapse
Affiliation(s)
- Hongzheng Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China academy of Chinese Medical Sciences, Beijing, 100195, China; Postdoctoral Research Station, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, 100053, China
| | - Xiaoshan Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China academy of Chinese Medical Sciences, Beijing, 100195, China
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Wenwen Yang
- Department of Cardiology, Shaanxi Academy of Traditional Chinese Medicine, Xian, 710003, China
| | - Aimei Lu
- Beijing university of Chinese medicine, Beijing, 100129, China
| | - Hao Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China academy of Chinese Medical Sciences, Beijing, 100195, China
| | - Zhi'ang Cheng
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Jiayan Zhou
- School of Medicine, Stanford University, Stanford, 94305, USA
| | - Yue Wei
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China academy of Chinese Medical Sciences, Beijing, 100195, China
| | - Mengfan Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Guang Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, Hong Kong; The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China; Harvard Medical School, Harvard University, Boston, 02115, USA; Broad Institute of MIT and Harvard, Cambridge, 02142, USA.
| | - Zikai Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China academy of Chinese Medical Sciences, Beijing, 100195, China.
| |
Collapse
|
3
|
Li L, Wu T, Gong G, Li B, Feng J, Xu L, Zhao H, Gao X. NDRG1 alleviates Erastin-induced ferroptosis of hepatocellular carcinoma. BMC Cancer 2025; 25:522. [PMID: 40119318 PMCID: PMC11929176 DOI: 10.1186/s12885-025-13954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND NDRG1, a cell differentiation-associated factor, has recently emerged as a regulator ferroptosis. Nevertheless, its role in modulating ferroptosis within hepatocellular carcinoma (HCC) remains uncharacterized. METHODS The differential expression of NDRG1 and its prognostic value were analyzed in HCC using data from TCGA and GEO. Ferroptosis in HepG2 and Huh7 cells was assessed using flow cytometry, transmission electron microscopy, and propidium iodide staining following NDRG1 knockdown using shRNA. RNA-seq was performed to characterize the mRNA expression profiles in HepG2 cells, identifying differentially expressed mRNAs (DE-mRNAs) and NDRG1-related hub genes. RESULTS NDRG1 was overexpressed in multiple malignant tumors, including HCC, and was associated with a significantly poor prognosis in HCC patients. A nomogram model integrating NDRG1 expression and clinical parameters demonstrated robust prognostic accuracy. NDRG1 knockdown potentiated erastin-induced alterations in Fe2+, total ROS, lipid ROS, and ferroptosis markers (PTGS2, ACSL4, GPX4, SLC7A11, GSH, GSSG), while exacerbating mitochondrial ultrastructural damage in HepG2 and Huh7 cells. Erastin induction elicited 1,056 DE-mRNAs, while subsequent NDRG1 knockdown revealed 1,323 DE-mRNAs in HepG2 cells. These DE-mRNAs are mainly involved in metastasis, immunity, growth, ferroptosis, and are associated with AMPK, MAPK, and PI3K/AKT pathways. Moreover, NDRG1 potentially interacted with HSPA8, CDH1, ALDOC, ANGPTL4, ANKRD37, CA9, ERBB3, FOS. qRT-PCR confirmed their expression changes consistent with RNA-seq. CONCLUSION NDRG1 exhibits strong predictive value for HCC, and accelerates tumor progression by suppressing ferroptosis.
Collapse
Affiliation(s)
- Liuzheng Li
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China
| | - Tong Wu
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China.
| | - Guocha Gong
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China
| | - Bo Li
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China
| | - Jiawei Feng
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China
| | - Leisheng Xu
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China
| | - Hairong Zhao
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China
| | - Xuechang Gao
- Hepatobiliary Surgery, The People's Hospital of Lincang, No.116 Nantang Street, Lincang, Yunnan, 677000, China
| |
Collapse
|
4
|
Li X, Li Y, Xu J, Lu X, Ma S, Sun L, Chang C, Min L, Fan C. Terahertz Wave Desensitizes Ferroptosis by Inhibiting the Binding of Ferric Ions to the Transferrin. ACS NANO 2025; 19:6876-6889. [PMID: 39752147 DOI: 10.1021/acsnano.4c13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe3+ binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis. Here, we reported a nonpharmaceutical, noninvasive, and Tf-targeted electromagnetic intervention technique capable of desensitizing ferroptosis with directivity. First, we revealed that the THz radiation had the ability to significantly decrease binding affinity between the Fe3+ and Tf via molecular dynamics simulations, and the modulation was strongly wavelength-dependent. This result provides theoretical feasibility for the THz modulation-based ferroptosis intervention. Subsequent extracellular and cellular chromogenic activity assays indicated that the THz field at 8.7 μm (i.e., 34.5 THz) inhibited the most Fe3+ bound to the Tf, and the wavelength was in good agreement with the simulated one. Then, functional assays demonstrated that levels of intracellular Fe2+, lipid peroxidation, malondialdehyde (MDA) and cell death were all significantly reduced in cells treated with this 34.5 THz wave. Furthermore, the iron deposition, lipid peroxidation, and MDA in the ferroptosis disease model induced by ischemia-reperfusion injury could be nearly eliminated by the same radiation, validating THz wave-induced desensitization of ferroptosis in vivo. Together, this work provides a preclinical exemplar for electromagnetic irradiation-stimulated desensitization of ferroptosis and predicts an innovative, THz wave-based therapeutic method for ferroptosis-associated diseases in the future.
Collapse
Affiliation(s)
- Xiangji Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
| | - Junxuan Xu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Xinlian Lu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, P. R. China
| | - Shixiang Ma
- Department of Retroperitoneal Tumor Surgery, Peking University International Hospital, Beijing 102206, P. R. China
| | - Lan Sun
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, P. R. China
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Li Min
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Ge W, Gao M, Dai Y, Zheng G, Yang L, Zuo W, Tian X. Comprehensive network pharmacology and experimental study to investigate the effect and mechanism of solasonine on breast carcinoma treatment. Cancer Cell Int 2025; 25:49. [PMID: 39962568 PMCID: PMC11834262 DOI: 10.1186/s12935-025-03665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Ferroptosis is a therapeutic strategy for breast carcinoma (BC). Solasonine (SS) was linked to ferroptosis as a tumor suppressor. However, whether SS could treat BC by activating ferroptosis and its underlying mechanisms has not been reported. METHODS We obtained the intersection of genes targeting SS and BC disease through network pharmacology. Bioinformatics analysis revealed that the intersection genes were primarily enriched in the extracellular signal-regulated kinase 2/mitogen-activated protein kinase (ERK2/MAPK) signaling pathway. The interaction modes of SS with ERK2 and epidermal growth factor receptor (EGFR) were simulated by molecular docking. We further detected the expressions of ERK2 and p-ERK2 in BC patients and the correlation between ERK2/p-ERK2 and ferroptosis. The effects and mechanism of SS on ferroptosis in BC were validated by mutation plasmids construction, immunohistology, wound healing, transwell assay, and western blotting using in vitro and in vivo models. RESULTS ERK2 and p-ERK2 were up-regulated in BC patients, and the ERK2/p-ERK2 ratio was negatively correlated with ferroptosis. Molecular docking indicated that SS could bind to ERK2 and EGFR to inhibit the activity of the ERK2/MAPK pathway. In vitro and in vivo experiments confirmed that SS induced ferroptosis by inhibiting the ERK2/MAPK pathway, inhibiting proliferation, migration, and invasion of BC cells. CONCLUSION SS could inactivate the ERK2/MAPK pathway, thereby inducing ferroptosis and further inhibiting BC cell proliferation, migration, and invasion. This study clarified the potential mechanism of SS in BC and provided a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Wenkai Ge
- Shandong Provincial Hospital, Shandong University, Jinan, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Min Gao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yingqi Dai
- Shandong Provincial Third Hospital, Shandong University, Jinan, China
| | - Gang Zheng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Yang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenshu Zuo
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingsong Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
6
|
Ma R, Yang W, Guo W, Zhang H, Wang Z, Ge Z. Single-cell transcriptome analysis reveals the dysregulated monocyte state associated with tuberculosis progression. BMC Infect Dis 2025; 25:210. [PMID: 39939918 PMCID: PMC11823163 DOI: 10.1186/s12879-025-10612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/06/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND In tuberculosis (TB) infection, monocytes play a crucial role in regulating the balance between immune tolerance and immune response through various mechanisms. A deeper understanding of the roles of monocyte subsets in TB immune responses may facilitate the development of novel immunotherapeutic strategies and improve TB prevention and treatment. METHODS We retrieved and processed raw single-cell RNA-seq data from SRP247583. Single-cell RNA-seq combined with bioinformatics analysis was employed to investigate the roles of monocytes in TB progression. RESULTS Our findings revealed that classical monocytes expressing inflammatory mediators increased as the disease progressed, whereas non-classical monocytes expressing molecules associated with anti-pathogen infection were progressively depleted. Pseudotime analysis delineated the differentiation trajectory of monocytes from classical to intermediate to non-classical subsets. An abnormal differentiation trajectory to non-classical monocytes may represent a key mechanism underlying TB pathogenesis, with CEBPB and CORO1A identified as genes potentially related to TB development. Analysis of key transcription factors in non-classical monocytes indicated that IRF9 was the only downregulated transcription factor with high AUC activity in this subset. The expression of IRF9 exhibited a decreasing trend in both latent TB infection (LTBI) and active TB groups. Furthermore, dysregulation of transcription factor regulatory networks appeared to impair ferroptosis, with ferroptosis-associated genes MEF2C, MICU1, and PRR5 identified as potential targets of IRF9. Through cell communication analysis, we found that interactions between non-classical monocytes and other subpopulations may mediate TB progression, with MIF and LGALS9 highlighted as potential signaling pathways. CONCLUSION This study employs bioinformatics analysis in conjunction with single-cell sequencing technology to uncover the crucial role of monocyte subsets in tuberculosis infection.
Collapse
Affiliation(s)
- Rong Ma
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wanzhong Yang
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Guo
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
| | - Honglai Zhang
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
| | - Zemin Wang
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China
| | - Zhaohui Ge
- The First Clinical Medical School of Ningxia Medical University, Yinchuan, China.
- General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
7
|
Wu A, Zhang A, Wang T, Chen J, Shi J. Inhibition of miR-9-3p facilitates ferroptosis by activating SAT1/p53 pathway in lung adenocarcinoma. Transl Lung Cancer Res 2024; 13:3426-3442. [PMID: 39830759 PMCID: PMC11736596 DOI: 10.21037/tlcr-24-762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) and accounts for about 40% of all lung cancer cases. This research aims to investigate the effects of miR-9-3p on ferroptosis in LUAD cells and to elucidate its regulatory mechanisms. Studies have shown that LUAD is related to ferroptosis, and specific microRNAs (miRNA) are also related to ferroptosis. However, further research is needed to elucidate the mechanisms by which miR-9-3p induces ferroptosis in LUAD. Methods Our study comprehensively analyzed multiple databases to investigate miR-9-3p expression in LUAD tissues. Quantitative polymerase chain reaction (qPCR) was utilized to detect miR-9-3p levels in LUAD cells and tissues, examining its prognostic significance. Reactive oxygen species (ROS) and superoxide dismutase (SOD) assays assessed the impact of miR-9-3p on lipid peroxidation in LUAD cells. Dual-luciferase reporter assays were conducted to evaluate the binding affinity between miR-9-3p and target genes, while Western blotting and immunofluorescence were used to examine the regulation of miR-9-3p on downstream signaling pathways. Results We observed that miR-9-3p was upregulated in LUAD cells by qPCR, and the ferroptosis of LUAD cells increased upon treatment with erastin following the transfection of miR-9-3p inhibitor. Cell Counting Kit-8 (CCK-8), ROS, and SOD activity assays confirmed that inhibiting miR-9-3p enhanced lipid peroxidation in LUAD cells, contributing to higher rates of ferroptosis. Subsequent dual-luciferase reporter assays validated spermidine/spermine N1-acetyltransferase 1 (SAT1) as a target gene of miR-9-3p. Further Western blot confirmed that miR-9-3p regulated the expression of SAT1 and p53 proteins in p53 wild-type (WT) LUAD cells. Rescue experiments demonstrated that SAT1 was necessary for miR-9-3p to promote cell proliferation and suppress ferroptosis in p53 WT LUAD cells. Additionally, the effect of miR-9-3p on ferroptosis in LUAD cells was regulated by p53 signaling pathway. Conclusions Overall, these findings demonstrate that miR-9-3p negatively regulates ferroptosis in LUAD cells through SAT1 and p53 signaling pathway, suggesting that miR-9-3p plays a crucial role in LUAD pathogenesis and targeting this miRNA with an inhibitor exhibits promising potential for the treatment of LUAD.
Collapse
Affiliation(s)
- Anqi Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Anping Zhang
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Tianyi Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianle Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
- Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
- Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
8
|
Li R, Huang T, Zhou J, Liu X, Li G, Zhang Y, Guo Y, Li F, Li Y, Liesz A, Li P, Wang Z, Wan J. Mef2c Exacerbates Neuron Necroptosis via Modulating Alternative Splicing of Cflar in Ischemic Stroke With Hyperlipidemia. CNS Neurosci Ther 2024; 30:e70144. [PMID: 39648651 PMCID: PMC11625962 DOI: 10.1111/cns.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024] Open
Abstract
AIM Hyperlipidemia is a common comorbidity of stroke patients, elucidating the mechanism that underlies the exacerbated ischemic brain injury after stroke with hyperlipidemia is emerging as a significant clinical problem due to the growing proportion of hyperlipidemic stroke patients. METHODS Mice were fed a high-fat diet for 12 weeks to induce hyperlipidemia. Transient middle cerebral artery occlusion was induced as a mouse model of ischemic stroke. Emx1Cre mice were crossed with Mef2cfl/fl mice to specifically deplete Mef2c in neurons. RESULTS We reported that hyperlipidemia significantly aggravated neuronal necroptosis and exacerbated long-term neurological deficits following ischemic stroke in mice. Mechanistically, Cflar, an upstream necroptotic regulator, was alternatively spliced into pro-necroptotic isoform (CflarR) in ischemic neurons of hyperlipidemic mice. Neuronal Mef2c was a transcription factor modulating Cflar splicing and upregulated by hyperlipidemia following stroke. Neuronal specific Mef2c depletion reduced cerebral level of CflarR and cFLIPR (translated by CflarR), while mitigated neuron necroptosis and neurological deficits following stroke in hyperlipidemic mice. CONCLUSIONS Our study highlights the pathogenic role of CflarR splicing mediated by neuronal Mef2c, which aggravates neuron necroptosis following stroke with comorbid hyperlipidemia and proposes CflarR splicing as a potential therapeutic target for hyperlipidemic stroke patients.
Collapse
Affiliation(s)
- Ruqi Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianchen Huang
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianpo Zhou
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiansheng Liu
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gan Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fengshi Li
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMUMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Research CenterRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenghong Wang
- Department of Anesthesiology, Key Laboratory of the Ministry of EducationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jieqing Wan
- Cerebrovascular Diseases Center, Department of NeurosurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Zhang MY, Wei TT, Han C, Tan CY, Xie TH, Cai J, Yao Y, Zhu L. YAP O-GlcNAcylation contributes to corneal epithelial cell ferroptosis under cigarette smoke exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124764. [PMID: 39154884 DOI: 10.1016/j.envpol.2024.124764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Cigarette smoke (CS) is an important indoor air pollutant associated with an increased risk of ocular surface disease. As the eye's outermost layer, the cornea is highly sensitive to air pollutants like CS. However, the specific mechanisms linking CS exposure to corneal dysfunction have not been fully elucidated. In the present study, we found that CS exposure damages corneal epithelial cells, accompanied by increased iron (Fe2+) levels and lipid peroxidation, both hallmarks of ferroptosis. Ferroptosis inhibitors, including Ferrostatin-1 (Fer-1) and Deferoxamine mesylate (DFO), protect against CS-induced cell damage. To understand the underlying mechanisms, we investigated how CS affects iron and lipid metabolism. Our results showed that CS could upregulate intracellular iron levels by increasing TFRC expression and promote lipid peroxidation by increasing ACSL4 expression. Silencing ACSL4 or TFRC expression prevented CS-induced ferroptosis. Furthermore, we found that the upregulation of TFRC and ACSL4 was driven by increased YAP transcription. Pharmacological or genetic inhibition of YAP effectively prevented corneal epithelial cell ferroptosis under CS stimulation. Additionally, our results suggest that CS exposure could increase O-GlcNAc transferase activity, leading to YAP O-GlcNAcylation. This glycosylation of YAP interfered with its K48-linked ubiquitination, resulting in YAP stabilization. Collectively, we found that CS exposure induces corneal epithelial cell ferroptosis via the YAP O-GlcNAcylation, and provide evidence that CS exposure is a strong risk factor for ocular surface disease.
Collapse
Affiliation(s)
- Meng-Yuan Zhang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ting-Ting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Cheng Han
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Cheng-Ye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
10
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Muluh TA, Fu Q, Ai X, Wang C, Chen W, Zheng X, Wang W, Wang M, Shu XS, Ying Y. Targeting Ferroptosis as an Advance Strategy in Cancer Therapy. Antioxid Redox Signal 2024; 41:616-636. [PMID: 38959114 DOI: 10.1089/ars.2024.0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Significance: This study innovates by systematically integrating the molecular mechanisms of iron death and its application in cancer therapy. By deeply analyzing the interaction between iron death and the tumor microenvironment, the study provides a new theoretical basis for cancer treatment and directions for developing more effective treatment strategies. In addition, the study points to critical issues and barriers that need to be addressed in future research, providing valuable insights into the use of iron death in clinical translation. Recent Advances: These findings are expected to drive further advances in cancer treatment, bringing patients more treatment options and hope. Through this paper, we see the great potential of iron death in cancer treatment and look forward to more research results being translated into clinical applications in the future to contribute to the fight against cancer. Critical Issues: In today's society, cancer is still one of the major diseases threatening human health. Despite advances in existing treatments, cancer recurrence and drug resistance remain a severe problem. These problems increase the difficulty of treatment and bring a substantial physical and mental burden to patients. Therefore, finding new treatment strategies to overcome these challenges has become significant. Future Directions: The study delved into the molecular basis of iron death in tumor biology. It proposed a conceptual framework to account for the interaction of iron death with the tumor immune microenvironment, guide treatment selection, predict efficacy, explore combination therapies, and identify new therapeutic targets to overcome cancer resistance to standard treatments, peeving a path for future research and clinical translation of ferroptosis as a potential strategy in cancer therapy. Antioxid. Redox Signal. 41, 616-636. [Figure: see text].
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qianqian Fu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaojiao Ai
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Changfeng Wang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiangyi Zheng
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wei Wang
- Shanghai Waker Bioscience Co., Ltd., Shanghai, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xing-Sheng Shu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ying Ying
- Shenzhen University Medical School, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Wang S, Wu Z, Bu X, Peng X, Zhou Q, Song W, Gao W, Wang W, Xia Z. MEF2C Alleviates Postoperative Cognitive Dysfunction by Repressing Ferroptosis. CNS Neurosci Ther 2024; 30:e70066. [PMID: 39350345 PMCID: PMC11442332 DOI: 10.1111/cns.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Ferroptosis, a form of programmed cell death featured by lipid peroxidation, has been proposed as a potential etiology for postoperative cognitive dysfunction (POCD). Myocyte-specific enhancer factor 2C (MEF2C), a transcription factor expressed in various brain cell types, has been implicated in cognitive disorders. This study sought to ascertain whether MEF2C governs postoperative cognitive capacity by affecting ferroptosis. METHODS Transcriptomic analysis of public data was used to identify MEF2C as a candidate differentially expressed gene in the hippocampus of POCD mice. The POCD mouse model was established via aseptic laparotomy under isoflurane anesthesia after treatment with recombinant adeno-associated virus 9 (AAV9)-mediated overexpression of MEF2C and/or the glutathione peroxidase 4 (GPX4) inhibitor RSL3. Cognitive performance, Nissl staining, and ferroptosis-related parameters were assessed. Dual-luciferase reporter gene assays and chromatin immunoprecipitation assays were implemented to elucidate the mechanism by which MEF2C transcriptionally activates GPX4. RESULTS MEF2C mRNA and protein levels decreased in the mouse hippocampus following anesthesia and surgery. MEF2C overexpression ameliorated postoperative memory decline, hindered lipid peroxidation and iron accumulation, and enhanced antioxidant capacity, which were reversed by RSL3. Additionally, MEF2C was found to directly bind to the Gpx4 promoter and activate its transcription. CONCLUSIONS Our findings suggest that MEF2C may be a promising therapeutic target for POCD through its negative modulation of ferroptosis.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zankai Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuan Peng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qin Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
14
|
Zhou Y, Lu Y, Wu X, Bai J, Yue X, Liu Y, Cai Y, Xiao X. Plasma extracellular vesicles proteomics in meningioma patients. Transl Oncol 2024; 47:102046. [PMID: 38943923 PMCID: PMC11261147 DOI: 10.1016/j.tranon.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Tumor derived Extracellular vesicles (EVs) in circulating system may contain tumor-specific markers, and EV detection in body fluids could become an important tool for early tumor diagnosis, prognosis assessment. Meningiomas are the most common benign intracranial tumors, few studies have revealed specific protein markers for meningiomas from patients' body fluids. In this study, using proximity labeling technology and non-tumor patient plasma as a control, we detected protein levels of EVs in plasma samples from meningioma patients before and after surgery. Through bioinformatics analysis, we discovered that the levels of EV count and protein count in meningioma patients were significantly higher than those in healthy controls, and were significantly decreased postoperatively. Among EV proteins in meningioma patients, the levels of MUC1, SIGLEC11, E-Cadherin, KIT, and TASCTD2 were found not only significantly elevated than those in healthy controls, but also significantly decreased after tumor resection. Moreover, using publicly available GEO databases, we verified that the mRNA level of MUC1, SIGLEC11, and CDH1 in meningiomas were significantly higher in comparison with normal dura mater tissues. Additionally, by analyzing human meningioma specimens collected in this study, we validated the protein levels of MUC1 and SIGLEC11 were significantly increased in WHO grade 2 meningiomas and were positively correlated with tumor proliferation levels. This study indicates that meningiomas secret EV proteins into circulating system, which may serve as specific markers for diagnosis, malignancy predicting and tumor recurrent assessment.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China
| | - Yanxin Lu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiaolong Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China
| | - Jie Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China
| | - Xupeng Yue
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yifei Liu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute (CHINA-INI), National Medical Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
15
|
Wang W, Fu R, Gao R, Luo L, Wang Z, Xue Y, Sun J, Pan M, Hong M, Qiao L, Qiao W, Mei Q, Wu J, Wang Y, Zhong Y, Liu J, Tong F. H 2S-Powered Nanomotors for Active Therapy of Tumors by Inducing Ferroptosis and Lactate-Pyruvate Axis Disorders. ACS Biomater Sci Eng 2024; 10:3994-4008. [PMID: 38736179 DOI: 10.1021/acsbiomaterials.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Renquan Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Rui Gao
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Lei Luo
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongchao Wang
- Institute of Cardiovascular Disease, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yingli Xue
- Xi'an Medical University, Xi'an, 710000, PR China
| | - Jiahui Sun
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Min Pan
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Miaofang Hong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Lingyan Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Weiwei Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Qibing Mei
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yini Wang
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Yali Zhong
- Southwest University of Science and Technology, 621000 Mianyang, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Fei Tong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- School of Medicine, Zhejiang University, 310000 Hangzhou, China
| |
Collapse
|
16
|
Zhang Y, Lin W, Yang Y, Zhu S, Chen Y, Wang H, Teng L. MEF2D facilitates liver metastasis of gastric cancer cells through directly inducing H1X under IL-13 stimulation. Cancer Lett 2024; 591:216878. [PMID: 38609001 DOI: 10.1016/j.canlet.2024.216878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Liver metastasis is the most common metastatic occurrence in gastric cancer patients, although the precise mechanism behind it remains unclear. Through a combination of proteomics and quantitative RT-PCR, our study has revealed a significant correlation between the upregulation of myocyte enhancer factor-2D (MEF2D) and both distant metastasis and poor prognosis in gastric cancer patients. In mouse models, we observed that overexpressing or knocking down MEF2D in gastric cancer cells respectively promoted or inhibited liver metastasis. Furthermore, our research has demonstrated that MEF2D regulates the transcriptional activation of H1X by binding to the H1X promoter. This regulation leads to the upregulation of H1X, which, in turn, promotes the in vivo metastasis of gastric cancer cells along with the upregulation of the downstream gene β-CATENIN. Additionally, we found that the expression of MEF2D and H1X at both mRNA and protein levels can be induced by the inflammatory factor IL-13, and this induction exhibits a time gradient dependence. In human gastric cancer tissues, the expression of IL13RA1, the receptor for IL-13, positively correlates with the expression of MEF2D and H1X. IL13RA1 has been identified as an intermediate receptor through which IL-13 regulates MEF2D. In conclusion, our findings suggest that MEF2D plays a crucial role in promoting liver metastasis of gastric cancer by upregulating H1X and downstream target β-CATENIN in response to IL-13 stimulation. Targeting MEF2D could therefore be a promising therapeutic strategy for the clinical management of gastric cancer. STATEMENT OF SIGNIFICANCE: MEF2D promotes its transcriptional activation in gastric cancer cells by binding to the H1X promoter and is upregulated by IL-13-IL13RA1, thereby promoting distant metastasis of gastric cancer.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Wu Lin
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China.
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Songting Zhu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
| |
Collapse
|
17
|
Ye Y, Xu L, Zhang L, Zhao P, Cai W, Fu G, Wang T, Tao Z, Shi W, Gu W, Hu J, Yuan G, Wei Y, Xu K, Bao Z, Chao H, Liu N, Zhao L, Tu Y, Ji J. Meningioma achieves malignancy and erastin-induced ferroptosis resistance through FOXM1-AURKA-NRF2 axis. Redox Biol 2024; 72:103137. [PMID: 38642502 PMCID: PMC11047291 DOI: 10.1016/j.redox.2024.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024] Open
Abstract
The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.
Collapse
Affiliation(s)
- Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Liuchao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengzhan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wanzhi Cai
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guoqiang Fu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zeqiang Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wenqian Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Wei Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jingming Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guangyao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yutian Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ke Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Gusu School, Nanjing Medical University, Suzhou, China; Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Artux, Xinjiang, China.
| |
Collapse
|
18
|
Bao J, Yu X, Yang Y, Sun W, Wang Z, Chen L. Effects of the ferroptosis inducer erastin on osteogenic differentiation and biological pathways of primary osteoblasts. Connect Tissue Res 2024; 65:202-213. [PMID: 38578221 DOI: 10.1080/03008207.2024.2338348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Periodontitis is a chronic destructive inflammatory disease exacerbated by osteoblast dysfunction. Ferroptosis has emerged as a significant factor that could contribute to the pathological changes observed in periodontitis. However, the impact of ferroptosis on osteogenic differentiation and gene expression patterns of primary osteoblasts remain elusive. METHODS In this study, osteoblasts were osteogenically induced for specific durations with and without the ferroptosis inducer erastin. Subsequently, cell proliferation, ferroptosis-related molecules, and osteogenic differentiation capacity were assessed. Furthermore, the differences in transcriptome expression following erastin treatment were analyzed by RNA sequencing. RESULTS The results demonstrated that erastin treatment induced ferroptosis, resulting in suppressed cell proliferation and impaired osteogenic differentiation. Transcriptomic analysis revealed significant alterations in processes such as hydrogen peroxide catabolism, response to lipid peroxidation, and metal iron binding, as well as BMP receptor activity and collagen type XI trimer. CONCLUSION The ferroptosis inducer erastin inhibited osteoblast proliferation and differentiation. Our study provides novel insights into the effect of ferroptosis on osteogenesis, suggesting that targeting ferroptosis may present a promising approach in the treatment of periodontitis.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xufei Yu
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiu Wang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
20
|
Yamaguchi I, Katoh H. Merlin/NF2 regulates SLC7A11/xCT expression and cell viability under glucose deprivation at high cell density in glioblastoma cells. J Biochem 2024; 175:313-322. [PMID: 38102738 DOI: 10.1093/jb/mvad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The cystine/glutamate transporter SLC7A11/xCT is highly expressed in many cancer cells and plays an important role in antioxidant activity by supplying cysteine for glutathione synthesis. Under glucose-depleted conditions, however, SLC7A11-mediated cystine uptake causes oxidative stress and cell death called disulfidptosis, a new form of cell death. We previously reported that high cell density (HD) promotes lysosomal degradation of SLC7A11 in glioblastoma cells, allowing them to survive under glucose-depleted conditions. In this study, we found that the neurofibromatosis type 2 gene, Merlin/NF2 is a key regulator of SLC7A11 in glioblastoma cells at HD. Deletion of Merlin increased SLC7A11 protein level and cystine uptake at HD, leading to promotion of cell death under glucose deprivation. Furthermore, HD significantly decreased SLC7A11 mRNA level, which was restored by Merlin deletion. This study suggests that Merlin suppresses glucose deprivation-induced cell death by downregulating SLC7A11 expression in glioblastoma cells at HD.
Collapse
Affiliation(s)
- Itsuki Yamaguchi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hironori Katoh
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
21
|
Nie A, Shen C, Zhou Z, Wang J, Sun B, Zhu C. Ferroptosis: Potential opportunities for natural products in cancer therapy. Phytother Res 2024; 38:1173-1190. [PMID: 38116870 DOI: 10.1002/ptr.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Cancer cells often exhibit defects in the execution of cell death, resulting in poor clinical outcomes for patients with many cancer types. Ferroptosis is a newly discovered form of programmed cell death characterized by intracellular iron overload and lipid peroxidation in the cell membrane. Increasing evidence suggests that ferroptosis is closely associated with a wide variety of physiological and pathological processes, particularly in cancer. Notably, various bioactive natural products have been shown to induce the initiation and execution of ferroptosis in cancer cells, thereby exerting anticancer effects. In this review, we summarize the core regulatory mechanisms of ferroptosis and the multifaceted roles of ferroptosis in cancer. Importantly, we focus on natural products that regulate ferroptosis in cancer cells, such as terpenoids, polyphenols, alkaloids, steroids, quinones, and polysaccharides. The clinical efficacy, adverse effects, and drug-drug interactions of these natural products need to be evaluated in further high-quality studies to accelerate their application in cancer treatment.
Collapse
Affiliation(s)
- Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Huaihua, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Zhang H, Chen N, Ding C, Zhang H, Liu D, Liu S. Ferroptosis and EMT resistance in cancer: a comprehensive review of the interplay. Front Oncol 2024; 14:1344290. [PMID: 38469234 PMCID: PMC10926930 DOI: 10.3389/fonc.2024.1344290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Ferroptosis differs from traditional cell death mechanisms like apoptosis, necrosis, and autophagy, primarily due to its reliance on iron metabolism and the loss of glutathione peroxidase activity, leading to lipid peroxidation and cell death. The dysregulation of iron metabolism is a hallmark of various cancers, contributing to tumor progression, metastasis, and notably, drug resistance. The acquisition of mesenchymal characteristics by epithelial cells is known as Epithelial-Mesenchymal Transition (EMT), a biological process intricately linked to cancer development, promoting traits such as invasiveness, metastasis, and resistance to therapeutic interventions. EMT plays a pivotal role in cancer progression and contributes significantly to the complex dynamics of carcinogenesis. Research findings indicate that mesenchymal cancer cells exhibit greater susceptibility to ferroptosis compared to their epithelial counterparts. The induction of ferroptosis becomes more effective in eliminating drug-resistant cancer cells during the process of EMT. The interplay between ferroptosis and EMT, a process where epithelial cells transform into mobile mesenchymal cells, is crucial in understanding cancer progression. EMT is associated with increased cancer metastasis and drug resistance. The review delves into how ferroptosis and EMT influence each other, highlighting the role of key proteins like GPX4, which protects against lipid peroxidation, and its inhibition can induce ferroptosis. Conversely, increased GPX4 expression is linked to heightened resistance to ferroptosis in cancer cells. Moreover, the review discusses the implications of EMT-induced transcription factors such as Snail, Zeb1, and Twist in modulating the sensitivity of tumor cells to ferroptosis, thereby affecting drug resistance and cancer treatment outcomes. Targeting the ferroptosis pathway offers a promising therapeutic strategy, particularly for tumors resistant to conventional treatments. The induction of ferroptosis in these cells could potentially overcome drug resistance. However, translating these findings into clinical practice presents challenges, including understanding the precise mechanisms of ferroptosis induction, identifying predictive biomarkers, and optimizing combination therapies. The review underscores the need for further research to unravel the complex interactions between ferroptosis, EMT, and drug resistance in cancer. This could lead to the development of more effective, targeted cancer treatments, particularly for drug-resistant tumors, offering new hope in cancer therapeutics.
Collapse
Affiliation(s)
- Huiming Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Naifeng Chen
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Chenglong Ding
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Huinan Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Dejiang Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
23
|
Xie Q, Xu X, Xiong D, Yao M, Zhou Y. CircRNA Larp4b/miR-298-5p/Mef2c Regulates Cardiac Hypertrophy Induced by Angiotensin II. Int J Sports Med 2024; 45:33-40. [PMID: 37956874 DOI: 10.1055/a-2172-8171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiac hypertrophy (CH) is an early marker in the clinical course of heart failure. Circular RNAs (circRNAs) play important roles in human disease. However, the role of circ_Larp4b in myocardial hypertrophy has not been studied. Angiotensin II (Ang II) treated HL-1 cells to induce a CH cell model. Quantitative real-time polymerase chain reaction was used to detect the expression of circ_Larp4b, microRNA-298-5p, and myocyte enhancer factor 2 (Mef2c). Western blot detected the protein level of alpha-actinin-2 (ACTN2), beta-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and Mef2c. The relationship between miR-298-5p and circ_Larp4b or Mef2c was verified by dual-luciferase reporter assay and RNA pull-down assay. Circ_Larp4b and Mef2c were upregulated in HL-1 cells treated with Ang II. Moreover, circ_Larp4b down-regulation regulated the progress of CH induced by Ang II. MiR-298-5p was a target of circ_Larp4b, and Mef2c was a target of miR-298-5p. Overexpressed Mef2c reversed the cell size inhibited by miR-298-5p in Ang II-induced HL-1 cells. Circ_Larp4b regulated CH progress by regulating miR-298-5p/Mef2c axis.
Collapse
Affiliation(s)
- Qihai Xie
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cardiology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Xu
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danqun Xiong
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Man Yao
- Department of Cardiology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yafeng Zhou
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Farzipour S, Zefrei FJ, Bahadorikhalili S, Alvandi M, Salari A, Shaghaghi Z. Nanotechnology Utilizing Ferroptosis Inducers in Cancer Treatment. Anticancer Agents Med Chem 2024; 24:571-589. [PMID: 38275050 DOI: 10.2174/0118715206278427231215111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Current cancer treatment options have presented numerous challenges in terms of reaching high efficacy. As a result, an immediate step must be taken to create novel therapies that can achieve more than satisfying outcomes in the fight against tumors. Ferroptosis, an emerging form of regulated cell death (RCD) that is reliant on iron and reactive oxygen species, has garnered significant attention in the field of cancer therapy. Ferroptosis has been reported to be induced by a variety of small molecule compounds known as ferroptosis inducers (FINs), as well as several licensed chemotherapy medicines. These compounds' low solubility, systemic toxicity, and limited capacity to target tumors are some of the significant limitations that have hindered their clinical effectiveness. A novel cancer therapy paradigm has been created by the hypothesis that ferroptosis induced by nanoparticles has superior preclinical properties to that induced by small drugs and can overcome apoptosis resistance. Knowing the different ideas behind the preparation of nanomaterials that target ferroptosis can be very helpful in generating new ideas. Simultaneously, more improvement in nanomaterial design is needed to make them appropriate for therapeutic treatment. This paper first discusses the fundamentals of nanomedicine-based ferroptosis to highlight the potential and characteristics of ferroptosis in the context of cancer treatment. The latest study on nanomedicine applications for ferroptosis-based anticancer therapy is then highlighted.
Collapse
Affiliation(s)
- Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali Zefrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Shaghaghi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
25
|
Wang L, Li Q, Liu H, Li L. HPCAL1 is a novel driver of autophagy-dependent ferroptosis. J Zhejiang Univ Sci B 2023; 24:1053-1056. [PMID: 37961807 PMCID: PMC10646400 DOI: 10.1631/jzus.b2300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/18/2023] [Indexed: 11/15/2023]
Abstract
自噬是细胞内一种高度保守的生理过程,可通过溶酶体系统降解过量或受损的细胞器、有毒的蛋白聚集体和病原体等。最新研究表明,海马钙素样1(HPCAL1)可作为特异性自噬受体和铁死亡的正调节因子。HPCAL1可选择性降解钙粘素2(CDH2),加速脂质过氧化,促进癌细胞铁死亡。iHPCAL1是抑制HPCAL1的小分子化合物,可抑制Erastin诱导的肿瘤细胞铁死亡。此外,它还可以抑制铁死亡诱导的急性胰腺炎。本文通过对HPCAL1在铁死亡中的具体作用机制进行概述,为HPCAL1作为铁死亡相关疾病的潜在治疗靶点提供新思路和理论依据。
Collapse
Affiliation(s)
- Liwen Wang
- Institute of Pharmaceutical Pharmacology, School of Pharmacy, University of South China, Hengyang 421001, China
| | - Qin Li
- Institute of Pharmaceutical Pharmacology, School of Pharmacy, University of South China, Hengyang 421001, China
| | - Huimei Liu
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Institute of Pharmaceutical Pharmacology, School of Pharmacy, University of South China, Hengyang 421001, China.
| |
Collapse
|
26
|
Andersen MS, Kofoed MS, Paludan-Müller AS, Pedersen CB, Mathiesen T, Mawrin C, Wirenfeldt M, Kristensen BW, Olsen BB, Halle B, Poulsen FR. Meningioma animal models: a systematic review and meta-analysis. J Transl Med 2023; 21:764. [PMID: 37898750 PMCID: PMC10612271 DOI: 10.1186/s12967-023-04620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Animal models are widely used to study pathological processes and drug (side) effects in a controlled environment. There is a wide variety of methods available for establishing animal models depending on the research question. Commonly used methods in tumor research include xenografting cells (established/commercially available or primary patient-derived) or whole tumor pieces either orthotopically or heterotopically and the more recent genetically engineered models-each type with their own advantages and disadvantages. The current systematic review aimed to investigate the meningioma model types used, perform a meta-analysis on tumor take rate (TTR), and perform critical appraisal of the included studies. The study also aimed to assess reproducibility, reliability, means of validation and verification of models, alongside pros and cons and uses of the model types. METHODS We searched Medline, Embase, and Web of Science for all in vivo meningioma models. The primary outcome was tumor take rate. Meta-analysis was performed on tumor take rate followed by subgroup analyses on the number of cells and duration of incubation. The validity of the tumor models was assessed qualitatively. We performed critical appraisal of the methodological quality and quality of reporting for all included studies. RESULTS We included 114 unique records (78 using established cell line models (ECLM), 21 using primary patient-derived tumor models (PTM), 10 using genetically engineered models (GEM), and 11 using uncategorized models). TTRs for ECLM were 94% (95% CI 92-96) for orthotopic and 95% (93-96) for heterotopic. PTM showed lower TTRs [orthotopic 53% (33-72) and heterotopic 82% (73-89)] and finally GEM revealed a TTR of 34% (26-43). CONCLUSION This systematic review shows high consistent TTRs in established cell line models and varying TTRs in primary patient-derived models and genetically engineered models. However, we identified several issues regarding the quality of reporting and the methodological approach that reduce the validity, transparency, and reproducibility of studies and suggest a high risk of publication bias. Finally, each tumor model type has specific roles in research based on their advantages (and disadvantages). SYSTEMATIC REVIEW REGISTRATION PROSPERO-ID CRD42022308833.
Collapse
Affiliation(s)
- Mikkel Schou Andersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark.
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mikkel Seremet Kofoed
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Asger Sand Paludan-Müller
- Nordic Cochrane Centre, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Centre for Evidence-Based Medicine Odense (CEBMO) and NHTA: Market Access & Health Economics Consultancy, Copenhagen, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Christian Mawrin
- Department of Neuropathology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Martin Wirenfeldt
- Department of Pathology and Molecular Biology, Hospital South West Jutland, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern, Odense, Denmark
| | | | - Birgitte Brinkmann Olsen
- Clinical Physiology and Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Peng M, Hu Q, Wu Z, Wang B, Wang C, Yu F. Mutation of TP53 Confers Ferroptosis Resistance in Lung Cancer Through the FOXM1/MEF2C Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1587-1602. [PMID: 37236507 DOI: 10.1016/j.ajpath.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Ferroptosis is a highly regulated tumor suppressor process. Loss or mutation of TP53 can cause changes in sensitivity to ferroptosis. Mutations in TP53 may be associated with the malignant or indolent progression of ground glass nodules in early lung cancer, but whether ferroptosis may also be involved in determining this biological process has not yet been determined. Using in vivo and in vitro gain- and loss-of-function approaches, this study used clinical tissue for mutation analysis and pathological research to show that wild-type TP53 inhibited the expression of forkhead box M1 (FOXM1) by binding to peroxisome proliferator-activated receptor-γ coactivator 1α, maintaining the mitochondrial function and thus affecting the sensitivity to ferroptosis. This function was absent in mutant cells, resulting in overexpression of FOXM1 and ferroptosis resistance. Mechanistically, FOXM1 activated the transcription level of myocyte-specific enhancer factor 2C in the mitogen-activated protein kinase signaling pathway, leading to stress protection when exposed to ferroptosis inducers. This study provides new insights into the mechanism of association between TP53 mutation and ferroptosis tolerance, which can aid a deeper understanding of the role of TP53 in the malignant progression of lung cancer.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zeyu Wu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Cheng Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
28
|
Ke W, Liao Z, Liang H, Tong B, Song Y, Li G, Ma L, Wang K, Feng X, Li S, Hua W, Wang B, Yang C. Stiff Substrate Induces Nucleus Pulposus Cell Ferroptosis via YAP and N-Cadherin Mediated Mechanotransduction. Adv Healthc Mater 2023; 12:e2300458. [PMID: 37022980 DOI: 10.1002/adhm.202300458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Indexed: 04/07/2023]
Abstract
Increased tissue stiffness is associated with various pathological processes, such as fibrosis, inflammation, and aging. The matrix stiffness of the nucleus pulposus (NP) tissues increases gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In this study, the results indicate that ferroptosis is involved in stiff substrate-induced NP cell death. The expression of acyl-CoA synthetase long-chain family member 4 (ACSL4) increases in NP cells of the stiff group, which mediates lipid peroxidation and ferroptosis in NP cells. In addition, stiff substrate activates the hippo signaling cascade and induces the nuclear translocation of yes-associated protein (YAP). Interestingly, inhibition of YAP is efficient to reverse the increase of ACSL4 expression caused by matrix stiffness. Furthermore, stiff substrate suppresses the expression of N-cadherin in NP cells. N-cadherin overexpression can inhibit YAP nuclear translocation via the formation of the N-cadherin/β-catenin/YAP complex, and reverse matrix stiffness-induced ferroptosis in NP cells. Finally, the effects of YAP inhibition and N-cadherin overexpression on IDD progression are further illustrated in animal models. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for the treatment of IDD.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
29
|
Cheng X, Zhang J, Xiao Y, Wang Z, He J, Ke M, Liu S, Wang Q, Zhang L. Mitochondrial Regulation of Ferroptosis in Cancer Therapy. Int J Mol Sci 2023; 24:10037. [PMID: 37373183 DOI: 10.3390/ijms241210037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, characterized by glutamate overload, glutathione depletion, and cysteine/cystine deprivation during iron- and oxidative-damage-dependent cell death, is a particular mode of regulated cell death. It is expected to effectively treat cancer through its tumor-suppressor function, as mitochondria are the intracellular energy factory and a binding site of reactive oxygen species production, closely related to ferroptosis. This review summarizes relevant research on the mechanisms of ferroptosis, highlights mitochondria's role in it, and collects and classifies the inducers of ferroptosis. A deeper understanding of the relationship between ferroptosis and mitochondrial function may provide new strategies for tumor treatment and drug development based on ferroptosis.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Jiale Zhang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Yichen Xiao
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Zhihang Wang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Jin He
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Mengquan Ke
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Sijie Liu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Qun Wang
- School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- School of Basic Medical Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
30
|
Wei J, Wang L, Zhang Y, Sun T, Zhang C, Hu Z, Zhou L, Liu X, Wan J, Ma L. TRIM25 promotes temozolomide resistance in glioma by regulating oxidative stress and ferroptotic cell death via the ubiquitination of keap1. Oncogene 2023:10.1038/s41388-023-02717-3. [PMID: 37188737 DOI: 10.1038/s41388-023-02717-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
Resistance to temozolomide (TMZ) remains an important cause of treatment failure in patients with glioblastoma multiforme (GBM). TRIM25, as a tripartite motif-containing (TRIM) family member, plays a significant role in cancer progression and chemoresistance. However, the function of TRIM25 and its precise mechanism in regulating GBM progression and TMZ resistance remain poorly understood. We found that the expression of TRIM25 was upregulated in GBM, and it was associated with tumor grade and TMZ resistance. Elevated TRIM25 expression predicted a poor prognosis in GBM patients and enhanced tumor growth in vitro and in vivo. Further analysis revealed that elevated TRIM25 expression inhibited oxidative stress and ferroptotic cell death in glioma cells under TMZ treatment. Mechanistically, TRIM25 regulates TMZ resistance by promoting the nuclear import of nuclear factor erythroid 2-related factor 2(Nrf2) via keap1 ubiquitination. Knockdown of Nrf2 abolished the ability of TRIM25 to promote glioma cell survival and TMZ resistance. Our results support the targeting of TRIM25 as a new therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Clinical Laboratory of Henan province, Zhengzhou, 450052, China
| | - Cai Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Clinical Laboratory of Henan province, Zhengzhou, 450052, China
| | - Zhonglan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Clinical Laboratory of Henan province, Zhengzhou, 450052, China
| | - Lijuan Zhou
- Electron Microscopy Laboratory of Renal Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, 450052, China.
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Clinical Laboratory of Henan province, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Zhang Y, Chen C, Li D, Chen P, Hang L, Yang J, Xie J. Exploration and identification of six novel ferroptosis-related hub genes as potential gene signatures for peripheral nerve injury. Front Genet 2023; 14:1156467. [PMID: 37091802 PMCID: PMC10119587 DOI: 10.3389/fgene.2023.1156467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Specific biomarkers of ferroptosis after peripheral nerve injury (PNI) are still under debate. In this study, 52 differentially expressed ferroptosis-related genes (DE-FRGs) were retrieved from publicly accessible sequencing data of intact and injured samples of rats with sciatic nerve crush injury. Functional enrichment analyses revealed that adipogenesis, mitochondrial gene sets, and pathways of MAPK, p53, and CD28 family were predominantly engaged in ferroptosis after PNI. Next, Cdkn1a, Cdh1, Hif1a, Hmox1, Nfe2l2, and Tgfb1 were investigated as new ferroptosis-associated hub genes after PNI. Subsequently, clustering correlation heatmap shows six hub genes are linked to mitochondria. The immunofluorescence assay at 0, 1, 4, 7, and 14 days indicated the temporal expression patterns of Tgfb1, Hmox1, and Hif1a after PNI were consistent with ferroptosis validated by PI and ROS staining, while Cdh1, Cdkn1a, and Nfe2l2 were the opposite. In summary, this study identified six hub genes as possible ferroptosis-related biomarkers for PNI, which may offer therapeutic targets for peripheral nerve regeneration and provide a therapeutic window for ferroptosis.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Chun Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dawei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Hang
- Business School, Tianhua College, Shanghai Normal University, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| | - Jin Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Lei Hang, ; Jun Yang, ; Jin Xie,
| |
Collapse
|
32
|
Zheng Y, Fan J, Jiang X. The role of ferroptosis-related genes in airway epithelial cells of asthmatic patients based on bioinformatics. Medicine (Baltimore) 2023; 102:e33119. [PMID: 36862916 PMCID: PMC9981416 DOI: 10.1097/md.0000000000033119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
It has been reported that airway epithelial cells and ferroptosis have certain effect on asthma. However, the action mechanism of ferroptosis-related genes in airway epithelial cells of asthmatic patients is still unclear. Firstly, the study downloaded the GSE43696 training set, GSE63142 validation set and GSE164119 (miRNA) dataset from the gene expression omnibus database. 342 ferroptosis-related genes were downloaded from the ferroptosis database. Moreover, differentially expressed genes (DEGs) between asthma and control samples in the GSE43696 dataset were screened by differential analysis. Consensus clustering analysis was performed on asthma patients to classify clusters, and differential analysis was performed on clusters to obtain inter-cluster DEGs. Asthma-related module was screened by weighted gene co-expression network analysis. Then, DEGs between asthma and control samples, inter-cluster DEGs and asthma-related module were subjected to venn analysis for obtaining candidate genes. The last absolute shrinkage and selection operator and support vector machines were respectively applied to the candidate genes to screen for feature genes, and functional enrichment analysis was performed. Finally, a competition endogenetic RNA network was constructed and drug sensitivity analysis was conducted. There were 438 DEGs (183 up-regulated and 255 down-regulated) between asthma and control samples. 359 inter-cluster DEGs (158 up-regulated and 201 down-regulated) were obtained by screening. Then, the black module was significantly and strongly correlated with asthma. The venn analysis yielded 88 candidate genes. 9 feature genes (NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2) were screened and they were involved in proteasome, dopaminergic synapse etc. Besides, 4 mRNAs, 5 miRNAs, and 2 lncRNAs collectively formed competition endogenetic RNA regulatory network, which included RNF182-hsa-miR-455-3p-LINC00319 and so on. The predicted therapeutic drug network map contained NAV3-bisphenol A and other relationship pairs. The study investigated the potential molecular mechanisms of NAV3, ITGA10, SYT4, NOX1, SNTG2, RNF182, UPK1B, POSTN, SHISA2 in airway epithelial cells of asthmatic patients through bioinformatics analysis, providing a reference for the research of asthma and ferroptosis.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofeng Jiang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xiaofeng Jiang, Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, No. 766, Xiangan North Street, Harbin 150028, China (e-mail )
| |
Collapse
|
33
|
Li Y, Yang SR, Chen YB, Adusumilli PS, Bialik A, Bodd FM, Ladanyi M, Lopardo J, Offin MD, Rusch VW, Travis WD, Zauderer MG, Chang JC, Sauter JL. Neurofibromatosis Type 2-Yes-Associated Protein and Transcriptional Coactivator With PDZ-Binding Motif Dual Immunohistochemistry Is a Reliable Marker for the Detection of Neurofibromatosis Type 2 Alterations in Diffuse Pleural Mesothelioma. Mod Pathol 2023; 36:100030. [PMID: 36788094 PMCID: PMC10428583 DOI: 10.1016/j.modpat.2022.100030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofibromatosis type 2 (NF2) loss occurs in approximately 30% to 50% of diffuse pleural mesothelioma (DPM) with accumulation of yes-associated protein (YAP) 1 and transcriptional coactivator with PDZ-binding motif (TAZ) in tumor nuclei. NF2 and YAP/TAZ represent potential therapeutic targets. We investigated the performance of NF2-YAP/TAZ dual immunohistochemistry (IHC) in identifying DPM that harbors NF2 alterations and in distinguishing DPM from benign mesothelial proliferations. NF2-YAP/TAZ IHC was subsequently performed in a Discovery cohort of DPMs with (n = 10) or without (n = 10) NF2 alterations detected by next-generation sequencing (NGS) and 9 benign cases. The cutoff values for loss of NF2 expression and YAP/TAZ overexpression using IHC were determined in the Discovery cohort. The performance characteristics of NF2-YAP/TAZ IHC were investigated in a Validation cohort (20 DPMs and 10 benign cases). In the Discovery cohort, all DPMs with NF2 alterations using NGS showed NF2 IHC scores of <2, whereas all NF2-wild-type DPMs showed scores of ≥2. NF2-altered DPMs had significantly higher YAP/TAZ H-scores (P < .001) than NF2-wild-type DPM and benign pleura (median H-scores: 237.5 [range, 185-275], 130.0 [range, 40-225], and 10.0 [range, 0-75], respectively). NF2-YAP/TAZ IHC demonstrated 95.2% sensitivity, 100% specificity, 100% positive predictive value, and 95% negative predictive value for detecting NF2 alterations in DPM (n = 40) with NGS as the gold standard and 87.5% sensitivity and 100% specificity for distinguishing DPM (n = 40) from benign mesothelial proliferations (n = 19). NF2-YAP/TAZ IHC has a high sensitivity and specificity for detecting NF2 alterations in DPM and a high specificity for malignancy, highlighting potential utility for guiding NF2-targeted therapies and distinguishing DPM from benign mimics.
Collapse
Affiliation(s)
- Yan Li
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ann Bialik
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francis M Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica Lopardo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael D Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Valerie W Rusch
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jason C Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
34
|
Li X, Wang Q, Xu C, Zhang L, Zhou J, Lv J, Xu M, Jiang D. Ferroptosis Inducers Kill Mesenchymal Stem Cells Affected by Neuroblastoma. Cancers (Basel) 2023; 15:cancers15041301. [PMID: 36831642 PMCID: PMC9954189 DOI: 10.3390/cancers15041301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Bone marrow (BM) is the most common site of neuroblastoma (NB) metastasis, and its involvement represents poor patient prognosis. In accordance with the "seed and soil" theory of tumor metastasis, BM provides a favorable environment for NB metastasis while bone marrow mesenchymal stem cells (BMSCs) have been recognized as a central part of tumor stroma formation. Yet, there is currently no effective method for intervening these BMSCs. We found that BMSCs affected by NB (NB-BMSCs) could significantly promote NB growth and migration. Additionally, tumor cell-endowed BMSCs showed stronger resistance to several chemotherapeutic agents. Surprisingly, NB-BMSCs were more sensitive to ferroptosis than normal BMSCs. NB-BMSCs had lower levels of intracellular free iron while synthesizing more iron-sulfur clusters and heme. Moreover, the Xc-/glutathione/glutathione peroxidase 4 (Xc-/GSH/GPX4) pathway of the anti-ferroptosis system was significantly downregulated. Accordingly, ferroptosis inducers erastin and RAS-selective lethal 3 (RSL3) could significantly kill NB-BMSCs with limited effects on normal BMSCs. BMSCs from NB patients with BM metastasis also showed poor anti-ferroptosis ability compared with those from NB patients without BM metastasis. In vivo studies suggested that co-injection of mice with BMSCs and NB cells could significantly promote the growth of tumor tissues compared with injecting NB cells alone. However, treatment with erastin or RSL3 resulted in the opposite effect to some extent. Our results revealed that NB-BMSCs were vulnerable to ferroptosis from downregulation of the Xc-/GSH/GPX4 pathway. Ferroptosis inducers could effectively kill NB-BMSCs, but not normal BMSCs. This study provides possible new ideas for the treatment of tumor-associated BMSCs in NB patients.
Collapse
|
35
|
Zhao Y, Zhang H, Cui JG, Wang JX, Chen MS, Wang HR, Li XN, Li JL. Ferroptosis is critical for phthalates driving the blood-testis barrier dysfunction via targeting transferrin receptor. Redox Biol 2023; 59:102584. [PMID: 36580806 DOI: 10.1016/j.redox.2022.102584] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The global rate of human male infertility is rising at an alarming rate owing to environmental and lifestyle changes. Phthalates are the most hazardous chemical additives in plastics and have an apparently negative impact on the function of male reproductive system. Ferroptosis is a recently described form of iron-dependent cell death and has been linked to several diseases. Transferrin receptor (TfRC), a specific ferroptosis marker, is a universal iron importer for all cells using extracellular transferrin. We aim to investigate the potential involvement of ferroptosis during male reproductive toxicity, and provide means for drawing conclusions on the effect of ferroptosis in phthalates-induced male reproductive disease. In this study, we found that di (2-ethylhexyl) phthalate (DEHP) triggered blood-testis barrier (BTB) dysfunction in the mouse testicular tissues. DEHP also induced mitochondrial morphological changes and lipid peroxidation, which are manifestations of ferroptosis. As the primary metabolite of DEHP, mono-2-ethylhexyl phthalate (MEHP) induced ferroptosis by inhibiting glutathione defense network and increasing lipid peroxidation. TfRC knockdown blocked MEHP-induced ferroptosis by decreasing mitochondrial and intracellular levels of Fe2+. Our findings indicate that TfRC can regulate Sertoli cell ferroptosis and therefore is a novel therapeutic molecule for reproductive disorders in male patients with infertility.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao-Ran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
36
|
Jia YJ, Li QS. Ferroptosis: a critical player and potential therapeutic target in traumatic brain injury and spinal cord injury. Neural Regen Res 2023; 18:506-512. [DOI: 10.4103/1673-5374.350187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Shen D, Yang F, Li Q. Detection of Ferroptosis in Models of Brain Diseases. Methods Mol Biol 2023; 2712:233-251. [PMID: 37578711 DOI: 10.1007/978-1-0716-3433-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a regulated form of non-apoptotic cell death driven by iron-dependent lipid peroxidation. In the past decade, ferroptosis has been reported to be involved in the pathological role in the central nervous system degenerative diseases (e.g., Alzheimer's disease, Huntington's disease, and Parkinson's disease), stroke, traumatic brain injury, and brain tumor. However, how to reliably detect and classify ferroptosis from other cell death in pathological conditions remains a great challenge, especially in primary brain cells and brain tissues. Here, we summarize the methods and protocols (such as real-time PCR, western blotting, immunofluorescence staining, lipid peroxidation assay kits and probe, immunofluorescence staining, GPX activity and glutathione depletion assay kits, iron detection, and TEM) used in the present study to detect and classify ferroptosis in the brain.
Collapse
Affiliation(s)
- Danmin Shen
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fei Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China.
| |
Collapse
|
38
|
Yao Y, Ji P, Chen H, Ge J, Xu Y, Wang P, Xu L, Yan Z. Ferroptosis-based drug delivery system as a new therapeutic opportunity for brain tumors. Front Oncol 2023; 13:1084289. [PMID: 36910646 PMCID: PMC9996339 DOI: 10.3389/fonc.2023.1084289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
The brain tumor is a kind of malignant tumor with brutal treatment, high recurrence rate, and poor prognosis, and the incidence and death rate is increasing yearly. Surgery is often used to remove the primary tumor, supplemented by radiotherapy and chemotherapy, which have highly toxic side effects. Therefore, there is an urgent need to explore new strategies, methods, and technologies that can genuinely improve the treatment of brain tumors. Ferroptosis differs from traditional apoptosis's morphological and biochemical characteristics, and ferroptosis possesses its unique characteristics and mechanisms, opening up a new field of ferroptosis treatment for cancer. It has been found that there is a close relationship between ferroptosis and brain tumors, and a novel nano-drug delivery system based on ferroptosis has been used for the ferroptosis treatment of brain tumors with remarkable effects. This review firstly analyzes the characteristics of ferroptosis, summarizes the mechanism of its occurrence and some factors that can be involved in the regulation of ferroptosis, introduces the potential link between ferroptosis and brain tumors, and clarifies the feasibility of ferroptosis in the treatment of brain tumors. It then presents the ferroptosis nano drug delivery systems developed under different metabolic pathways for ferroptosis treatment of brain tumors. Finally, it summarizes the current problems and solutions of ferroptosis nano drugs for brain tumor treatment, aiming to provide a reference for developing ferroptosis nano drugs against brain tumors.
Collapse
Affiliation(s)
- Yansheng Yao
- Department of Endocrinology, The Affiliated Taixing People's Hospital of Medical College, Yangzhou University, Taixing, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Hao Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Jianwen Ge
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Yajing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Peng Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Li Xu
- Department of Nursing, Liaoning Vocational College of Medicine, Shenyang, China
| | - Zhirong Yan
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian, China
| |
Collapse
|
39
|
Huang R, Wang X, Yin X, Zhou Y, Sun J, Yin Z, Zhu Z. Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma. Front Genet 2022; 13:976990. [PMID: 36338972 PMCID: PMC9626532 DOI: 10.3389/fgene.2022.976990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Osteosarcoma (OS) is a kind of solid tumor with high heterogeneity at tumor microenvironment (TME), genome and transcriptome level. In view of the regulatory effect of metabolism on TME, this study was based on four metabolic models to explore the intertumoral heterogeneity of OS at the RNA sequencing (RNA-seq) level and the intratumoral heterogeneity of OS at the bulk RNA-seq and single cell RNA-seq (scRNA-seq) level. Methods: The GSVA package was used for single-sample gene set enrichment analysis (ssGSEA) analysis to obtain a glycolysis, pentose phosphate pathway (PPP), fatty acid oxidation (FAO) and glutaminolysis gene sets score. ConsensusClusterPlus was employed to cluster OS samples downloaded from the Target database. The scRNA-seq and bulk RNA-seq data of immune cells from GSE162454 dataset were analyzed to identify the subsets and types of immune cells in OS. Malignant cells and non-malignant cells were distinguished by large-scale chromosomal copy number variation. The correlations of metabolic molecular subtypes and immune cell types with four metabolic patterns, hypoxia and angiogenesis were determined by Pearson correlation analysis. Results: Two metabolism-related molecular subtypes of OS, cluster 1 and cluster 2, were identified. Cluster 2 was associated with poor prognosis of OS, active glycolysis, FAO, glutaminolysis, and bad TME. The identified 28608 immune cells were divided into 15 separate clusters covering 6 types of immune cells. The enrichment scores of 5 kinds of immune cells in cluster-1 and cluster-2 were significantly different. And five kinds of immune cells were significantly correlated with four metabolic modes, hypoxia and angiogenesis. Of the 28,608 immune cells, 7617 were malignant cells. The four metabolic patterns of malignant cells were significantly positively correlated with hypoxia and negatively correlated with angiogenesis. Conclusion: We used RNA-seq to reveal two molecular subtypes of OS with prognosis, metabolic pattern and TME, and determined the composition and metabolic heterogeneity of immune cells in OS tumor by bulk RNA-seq and single-cell RNA-seq.
Collapse
Affiliation(s)
- Ruichao Huang
- Department of Orthopedics, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaohu Wang
- Department of Orthopedics, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiangyun Yin
- Department of Orthopedics, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| | - Yaqi Zhou
- Department of Orthopedics, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| | - Jiansheng Sun
- Department of Orthopedics, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhongxiu Yin
- Nanchang University Queen Mary School, Nanchang, China
| | - Zhi Zhu
- Department of Orthopedics, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhi Zhu,
| |
Collapse
|
40
|
miR-127-5p Targets JAM3 to Regulate Ferroptosis, Proliferation, and Metastasis in Malignant Meningioma Cells. DISEASE MARKERS 2022; 2022:6423237. [PMID: 35818586 PMCID: PMC9271006 DOI: 10.1155/2022/6423237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Objective Meningiomas are one of the most common primary tumors of the central nervous system. Most of them are benign and can be cured by surgery, while a few meningiomas are malignant. Ferroptosis gene characteristics might be associated with drug therapy and survival in patients with clinically aggressive, unresectable meningiomas. This study explored the mechanism of differentially expressed miRNAs and ferroptosis in meningioma to provide a new reference to treat meningioma. Methods Bioinformatics analysis of differential miRNA profiles and functions in patients with meningioma was performed. The contents of lactate dehydrogenase (LDH), malondialdehyde (MDA), and Fe2+ were determined. Reactive oxygen species (ROS) values, as well as cell cycle changes, were analyzed by flow cytometry. The targets of miR-127-5p and JAM3 were detected by dual luciferase assays. Cell counting kit-8 (CCK8) and Transwell assays were used to analyze cell activity. Ki67 expression was analyzed by immunohistochemistry. Expression levels of miR-127-5p and JAM3 were analyzed by RT-qPCR. GPX4 expression was quantified by western blotting. Results miR-127-5p was expressed at low levels in IOMM-Lee cells, while JAM3 was highly expressed in IOMM-Lee cells. A dual luciferase assay demonstrated that miR-127-5p could target JAM3. Upregulation of miR-127-5p in IOMM-Lee cells resulted in cell cycle arrest and inhibition of cell activity. Upregulation of miR-127-5p increased LDH, MDA, and ROS levels and Fe2+ content and inhibited the expression of GPX4 protein. Upregulation of JAM3 reversed the results of miR-127-5p upregulation. Conclusion miR-127-5p regulated meningioma formation and ferroptosis through JAM3, providing insights for the development of new treatments for meningioma.
Collapse
|
41
|
Hsp90 induces Acsl4-dependent glioma ferroptosis via dephosphorylating Ser637 at Drp1. Cell Death Dis 2022; 13:548. [PMID: 35697672 PMCID: PMC9192632 DOI: 10.1038/s41419-022-04997-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is a newly identified form of regulated cell death (RCD) characterized by the iron-dependent lipid reactive oxygen species (ROS) accumulation, but its mechanism in gliomas remains elusive. Acyl-coenzyme A (CoA) synthetase long-chain family member 4 (Acsl4), a pivotal enzyme in the regulation of lipid biosynthesis, benefits the initiation of ferroptosis, but its role in gliomas needs further clarification. Erastin, a classic inducer of ferroptosis, has recently been found to regulate lipid peroxidation by regulating Acsl4 other than glutathione peroxidase 4 (GPX4) in ferroptosis. In this study, we demonstrated that heat shock protein 90 (Hsp90) and dynamin-related protein 1 (Drp1) actively regulated and stabilized Acsl4 expression in erastin-induced ferroptosis in gliomas. Hsp90 overexpression and calcineurin (CN)-mediated Drp1 dephosphorylation at serine 637 (Ser637) promoted ferroptosis by altering mitochondrial morphology and increasing Acsl4-mediated lipid peroxidation. Importantly, promotion of the Hsp90-Acsl4 pathway augmented anticancer activity of erastin in vitro and in vivo. Our discovery reveals a novel and efficient approach to ferroptosis-mediated glioma therapy.
Collapse
|
42
|
Zhao J, Wang Y, Tao L, Chen L. Iron Transporters and Ferroptosis in Malignant Brain Tumors. Front Oncol 2022; 12:861834. [PMID: 35530363 PMCID: PMC9071296 DOI: 10.3389/fonc.2022.861834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Malignant brain tumors represent approximately 1.5% of all malignant tumors. The survival rate among patients is relatively low and the mortality rate of pediatric brain tumors ranks first among all childhood malignant tumors. At present malignant brain tumors remain incurable. Although some tumors can be treated with surgery and chemotherapy, new treatment strategies are urgent owing to the poor clinical prognosis. Iron is an essential trace element in many biological processes of the human body. Iron transporters play a crucial role in iron absorption and transport. Ferroptosis, an iron-dependent form of nonapoptotic cell death, is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism. Recently, compelling evidence has shown that inducing ferroptosis of tumor cells is a potential therapeutic strategy. In this review, we will briefly describe the significant regulatory factors of ferroptosis, iron, its absorption and transport under physiological conditions, especially the function of iron transporters. Then we will summarize the relevant mechanisms of ferroptosis and its role in malignant brain tumors, wherein the role of transporters is not to be ignored. Finally, we will introduce the current research progress in the treatment of malignant brain tumors by inducing ferroptosis in order to explain the current biological principles of potential treatment targets and treatment strategies for malignant brain tumors.
Collapse
Affiliation(s)
- Jingyu Zhao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Yaqi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ligong Chen,
| |
Collapse
|
43
|
Dahlmanns M, Yakubov E, Dahlmanns JK. Genetic Profiles of Ferroptosis in Malignant Brain Tumors and Off-Target Effects of Ferroptosis Induction. Front Oncol 2021; 11:783067. [PMID: 34926298 PMCID: PMC8671613 DOI: 10.3389/fonc.2021.783067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma represents the most devastating form of human brain cancer, associated with a very poor survival rate of patients. Unfortunately, treatment options are currently limited and the gold standard pharmacological treatment with the chemotherapeutic drug temozolomide only slightly increases the survival rate. Experimental studies have shown that the efficiency of temozolomide can be improved by inducing ferroptosis – a recently discovered form of cell death, which is different from apoptosis, necrosis, or necroptosis and, which is characterized by lipid peroxidation and reactive oxygen species accumulation. Ferroptosis can also be activated to improve treatment of malignant stages of neuroblastoma, meningioma, and glioma. Due to their role in cancer treatment, ferroptosis-gene signatures have recently been evaluated for their ability to predict survival of patients. Despite positive effects during chemotherapy, the drugs used to induce ferroptosis – such as erastin and sorafenib – as well as genetic manipulation of key players in ferroptosis – such as the cystine-glutamate exchanger xCT and the glutathione peroxidase GPx4 – also impact neuronal function and cognitive capabilities. In this review, we give an update on ferroptosis in different brain tumors and summarize the impact of ferroptosis on healthy tissues.
Collapse
Affiliation(s)
- Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | | |
Collapse
|
44
|
Guo Q, Li L, Hou S, Yuan Z, Li C, Zhang W, Zheng L, Li X. The Role of Iron in Cancer Progression. Front Oncol 2021; 11:778492. [PMID: 34858857 PMCID: PMC8631356 DOI: 10.3389/fonc.2021.778492] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liwen Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenhui Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|