1
|
Purkait S, Praeger S, Felsberg J, Pauck D, Kaulich K, Wolter M, Koppstein D, Reifenberger G. Strong nuclear expression of HOXB13 is a reliable surrogate marker for DNA methylome profiling to distinguish myxopapillary ependymoma from spinal ependymoma. Acta Neuropathol 2025; 149:29. [PMID: 40137996 PMCID: PMC11947044 DOI: 10.1007/s00401-025-02866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Spinal ependymoma and myxopapillary ependymoma are the two most common spinal ependymal tumor types that feature distinct histological characteristics, genetic alterations and DNA methylation profiles. Their histological distinction may be difficult in individual cases and molecular diagnostic assessment, in particular DNA methylome profiling, may then be required to assign the correct diagnosis. Expression of the homeobox gene HOXB13 at the mRNA and protein levels has been reported as a frequent finding in myxopapillary ependymoma that may serve as a diagnostic marker for these tumors. Here, we evaluated the diagnostic role of HOXB13 immunostaining in 143 spinal neoplasms, comprising 54 histologically classified myxopapillary ependymomas, 46 histologically classified spinal ependymomas, and various other tumor types. Immunohistochemical results for HOXB13 protein were compared to molecular findings obtained by bead array-based DNA methylation and DNA copy number profiling, as well as next generation gene panel sequencing-based mutational analysis. Our findings indicate strong nuclear HOXB13 expression as a reliable diagnostic marker for molecularly confirmed myxopapillary ependymoma. Moreover, we provide evidence that differential HOXB13 protein expression is related to differential HOXB13-associated CpG site methylation in myxopapillary vs. spinal ependymomas, which can be assessed by targeted DNA methylation analysis. Taken together, immunohistochemistry for HOXB13 protein expression and targeted DNA methylation analysis of HOXB13 represent useful surrogate approaches that may substitute for DNA methylome profiling in routine diagnostics and facilitate precise classification of spinal ependymal tumors. In particular, strong nuclear HOXB13 immunoreactivity may serve as a novel diagnostic criterion for the classification of myxopapillary ependymoma.
Collapse
Affiliation(s)
- Suvendu Purkait
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sophia Praeger
- Cancer Bioinformatics and Multiomics (ED08), German Cancer Research Center Heidelberg and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - David Pauck
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Kerstin Kaulich
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - David Koppstein
- Cancer Bioinformatics and Multiomics (ED08), German Cancer Research Center Heidelberg and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Lim-Fat MJ, Bennett J, Ostrom Q, Touat M, Franceschi E, Schulte J, Bindra RS, Fangusaro J, Dhall G, Nicholson J, Jackson S, Davidson TB, Calaminus G, Robinson G, Whittle JR, Hau P, Ramaswamy V, Pajtler KW, Rudà R, Foreman NK, Hervey-Jumper SL, Das S, Dirks P, Bi WL, Huang A, Merchant TE, Fouladi M, Aldape K, Van den Bent MJ, Packer RJ, Miller JJ, Reardon DA, Chang SM, Haas-Kogan D, Tabori U, Hawkins C, Monje M, Wen PY, Bouffet E, Yeo KK. Central nervous system tumors in adolescents and young adults: A Society for Neuro-Oncology Consensus Review on diagnosis, management, and future directions. Neuro Oncol 2025; 27:13-32. [PMID: 39441704 PMCID: PMC11726256 DOI: 10.1093/neuonc/noae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Adolescents and young adults (AYAs; ages 15-39 years) are a vulnerable population facing challenges in oncological care, including access to specialized care, transition of care, unique tumor biology, and poor representation in clinical trials. Brain tumors are the second most common tumor type in AYA, with malignant brain tumors being the most common cause of cancer-related death. The 2021 WHO Classification for central nervous system (CNS) Tumors highlights the importance of integrated molecular characterization with histologic diagnosis in several tumors relevant to the AYA population. In this position paper from the Society for Neuro-Oncology (SNO), the diagnosis and management of CNS tumors in AYA is reviewed, focusing on the most common tumor types in this population, namely glioma, medulloblastoma, ependymoma, and CNS germ cell tumor. Current challenges and future directions specific to AYA are also highlighted. Finally, possible solutions to address barriers in the care of AYA patients are discussed, emphasizing the need for multidisciplinary and collaborative approaches that span the pediatric and adult paradigms of care, and incorporating advanced molecular testing, targeted therapy, and AYA-centered care.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Quinn Ostrom
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-oncologie, Paris, France
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna / AUSL di Bologna, Bologna, Italy
| | - Jessica Schulte
- Neurosciences Department, University of California San Diego, La Jolla, California, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jason Fangusaro
- Children’s Healthcare of Atlanta, Emory University, and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Girish Dhall
- Department of Hematology and Oncology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - James Nicholson
- Paediatric Oncology, Cambridge University Hospitals and Department of Paediatrics, Cambridge University, UK
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Tom Belle Davidson
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gabriele Calaminus
- Paediatric Haematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Giles Robinson
- Department of Oncology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James R Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, WEHI, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristian W Pajtler
- Hopp Children’s Cancer Center Heidelberg (KiTZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department Neuroscience Rita Levi Montalcini, University of Turin and City of Health and Science University Hospital, Turin, Italy
| | - Nicholas K Foreman
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Sunit Das
- Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dirks
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Annie Huang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Roger J Packer
- Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, District of Columbia, USA
| | - Julie J Miller
- Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Daphne Haas-Kogan
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Bouffet
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kee Kiat Yeo
- Department of Pediatric Oncology, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Bschorer M, Dottermusch M, Matschke J, Gempt J, Schüller U, Mohme M. 40-Year-old man with two asynchronous spinal cord tumors. Brain Pathol 2024; 34:e13309. [PMID: 39370146 PMCID: PMC11483506 DOI: 10.1111/bpa.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Affiliation(s)
- Maximilian Bschorer
- Department of NeurosurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Matthias Dottermusch
- Department of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jakob Matschke
- Department of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jens Gempt
- Department of NeurosurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ulrich Schüller
- Department of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Malte Mohme
- Department of NeurosurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
4
|
Westphal M, Mohme M. Spinal ependymal tumors. Neurooncol Adv 2024; 6:iii57-iii65. [PMID: 39430387 PMCID: PMC11485896 DOI: 10.1093/noajnl/vdad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Spinal ependymomas are strictly to be subdivided into intramedullary lesions and extramedullary lesions as they are histologically and genetically distinct. Whereas the intramedullary lesions (SPE) are assigned to the WHO grade 2 and very rarely grade 3, the extramedullary lesions or myxopapilary tumors (MPE) are only as recently also assigned to WHO grade 2. The major difference is that in general, an intramedullary lesion of grade 2 remains confined to the local site of origin, even when rarely recurring after complete resection. In contrast, the MPEs have the capacity to spread throughout the cerebrospinal fluid compartment but can also be controlled by cautious complete resection. We here review the clinical features of spinal ependymomas, contrasting the entities, and describe the treatment found best from the literature to manage these lesions including interdisciplinary approaches.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Kresbach C, Hack K, Ricklefs F, Schüller U. Specifics of spinal neuropathology in the molecular age. Neurooncol Adv 2024; 6:iii3-iii12. [PMID: 39430396 PMCID: PMC11485660 DOI: 10.1093/noajnl/vdad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Tumors located in the spinal cord and its coverings can be diagnostically challenging and require special consideration regarding treatment options. During the last decade, important advances regarding the molecular characterization of central and peripheral nervous system tumors were achieved, resulting in improved diagnostic precision, and understanding of the tumor spectrum of this compartment. In particular, array-based global DNA methylation profiling has emerged as a valuable tool to delineate biologically and clinically relevant tumor subgroups and has been incorporated in the current WHO classification for central nervous system tumors of 2021. In addition, several genetic drivers have been described, which may also help to define distinct tumor types and subtypes. Importantly, the current molecular understanding not only sharpens diagnostic precision but also provides the opportunity to investigate both targeted therapies as well as risk-adapted changes in treatment intensity. Here, we discuss the current knowledge and the clinical relevance of molecular neuropathology in spinal tumor entities.
Collapse
Affiliation(s)
- Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karoline Hack
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Franz Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Stegat L, Eckhardt A, Gocke A, Neyazi S, Pohl L, Schmid S, Dottermusch M, Frank S, Pinnschmidt H, Herms J, Glatzel M, Snuderl M, Schweizer L, Thomas C, Neumann J, Dorostkar MM, Schüller U, Wefers AK. Integrated analyses reveal two molecularly and clinically distinct subtypes of H3 K27M-mutant diffuse midline gliomas with prognostic significance. Acta Neuropathol 2024; 148:40. [PMID: 39256213 PMCID: PMC11387453 DOI: 10.1007/s00401-024-02800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
H3 K27M-altered diffuse midline gliomas (DMGs) are highly malignant tumours that arise in the midline structures of the CNS. Most DMGs carry an H3 K27M-mutation in one of the genes encoding for histone H3. Recent studies suggested that epigenetic subgroups of DMGs can be distinguished based on alterations in the MAPK-signalling pathway, tumour localisation, mutant H3-gene, or overall survival (OS). However, as these parameters were studied individually, it is unclear how they collectively influence survival. Hence, we analysed dependencies between different parameters, to define novel epigenetic, clinically meaningful subgroups of DMGs. We collected a multifaceted cohort of 149 H3 K27M-mutant DMGs, also incorporating data of published cases. DMGs were included in the study if they could be clearly allocated to the spinal cord (n = 31; one patient with an additional sellar tumour), medulla (n = 20), pons (n = 64) or thalamus (n = 33), irrespective of further known characteristics. We then performed global genome-wide DNA methylation profiling and, for a subset, DNA sequencing and survival analyses. Unsupervised hierarchical clustering of DNA methylation data indicated two clusters of DMGs, i.e. subtypes DMG-A and DMG-B. These subtypes differed in mutational spectrum, tumour localisation, age at diagnosis and overall survival. DMG-A was enriched for DMGs with MAPK-mutations, medullary localisation and adult age. 13% of DMG-A had a methylated MGMT promoter. Contrarily, DMG-B was enriched for cases with TP53-mutations, PDGFRA-amplifications, pontine localisation and paediatric patients. In univariate analyses, the features enriched in DMG-B were associated with a poorer survival. However, all significant parameters tested were dependent on the cluster attribution, which had the largest effect on survival: DMG-A had a significantly better survival compared to DMG-B (p < 0.001). Hence, the subtype attribution based on two methylation clusters can be used to predict survival as it integrates different molecular and clinical parameters.
Collapse
Affiliation(s)
- Lotte Stegat
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alicia Eckhardt
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
| | - Antonia Gocke
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Neyazi
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Pohl
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Schmid
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Dottermusch
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Frank
- Department of Neuropathology, Institute of Pathology, Basel University Hospital, Basel, Switzerland
| | - Hans Pinnschmidt
- Institute of Medical Biometry and Epidemiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, USA
| | - Leonille Schweizer
- Edinger Institute (Institute of Neurology), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
- Karl Landsteiner Privatuniversität für Gesundheitswissenschaften, St. Pölten, Austria
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistrasse 52, N63 (HPI), 20251, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
7
|
Schumann Y, Dottermusch M, Schweizer L, Krech M, Lempertz T, Schüller U, Neumann P, Neumann JE. Morphology-based molecular classification of spinal cord ependymomas using deep neural networks. Brain Pathol 2024; 34:e13239. [PMID: 38205683 PMCID: PMC11328346 DOI: 10.1111/bpa.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Based on DNA-methylation, ependymomas growing in the spinal cord comprise two major molecular types termed spinal (SP-EPN) and myxopapillary ependymomas (MPE(-A/B)), which differ with respect to their clinical features and prognosis. Due to the existing discrepancy between histomorphogical diagnoses and classification using methylation data, we asked whether deep neural networks can predict the DNA methylation class of spinal cord ependymomas from hematoxylin and eosin stained whole-slide images. Using explainable AI, we further aimed to prospectively improve the consistency of histology-based diagnoses with DNA methylation profiling by identifying and quantifying distinct morphological patterns of these molecular ependymoma types. We assembled a case series of 139 molecularly characterized spinal cord ependymomas (nMPE = 84, nSP-EPN = 55). Self-supervised and weakly-supervised neural networks were used for classification. We employed attention analysis and supervised machine-learning methods for the discovery and quantification of morphological features and their correlation to the diagnoses of experienced neuropathologists. Our best performing model predicted the DNA methylation class with 98% test accuracy and used self-supervised learning to outperform pretrained encoder-networks (86% test accuracy). In contrast, the diagnoses of neuropathologists matched the DNA methylation class in only 83% of cases. Domain-adaptation techniques improved model generalization to an external validation cohort by up to 22%. Statistically significant morphological features were identified per molecular type and quantitatively correlated to human diagnoses. The approach was extended to recently defined subtypes of myxopapillary ependymomas (MPE-(A/B), 80% test accuracy). In summary, we demonstrated the accurate prediction of the DNA methylation class of spinal cord ependymomas (SP-EPN, MPE(-A/B)) using hematoxylin and eosin stained whole-slide images. Our approach may prospectively serve as a supplementary resource for integrated diagnostics and may even help to establish a standardized, high-quality level of histology-based diagnostics across institutions-in particular in low-income countries, where expensive DNA-methylation analyses may not be readily available.
Collapse
Affiliation(s)
- Yannis Schumann
- Chair for High Performance Computing, Helmut-Schmidt-University Hamburg, Hamburg, Germany
| | - Matthias Dottermusch
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Institute of Neuropathology, UKE, Hamburg, Germany
| | - Leonille Schweizer
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Maja Krech
- Institute for Neuropathology, Charité Berlin, Berlin, Germany
| | - Tasja Lempertz
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, UKE, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, UKE, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, UKE, Hamburg, Germany
| | - Philipp Neumann
- Chair for High Performance Computing, Helmut-Schmidt-University Hamburg, Hamburg, Germany
| | - Julia E Neumann
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Institute of Neuropathology, UKE, Hamburg, Germany
| |
Collapse
|
8
|
Wang C, Rooney MK, Alvarez-Breckenridge C, Beckham TH, Chung C, De BS, Ghia AJ, Grosshans D, Majd NK, McAleer MF, McGovern SL, North RY, Paulino AC, Perni S, Reddy JP, Rhines LD, Swanson TA, Tatsui CE, Tom MC, Yeboa DN, Li J. Outcomes and Pattern of Care for Spinal Myxopapillary Ependymoma in the Modern Era-A Population-Based Observational Study. Cancers (Basel) 2024; 16:2013. [PMID: 38893133 PMCID: PMC11171081 DOI: 10.3390/cancers16112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Myxopapillary ependymoma (MPE) is a rare tumor of the spine, typically slow-growing and low-grade. Optimal management strategies remain unclear due to limited evidence given the low incidence of the disease. (2) Methods: We analyzed data from 1197 patients with spinal MPE from the Surveillance, Epidemiology, and End Results (SEER) database (2000-2020). Patient demographics, treatment modalities, and survival outcomes were examined using statistical analyses. (3) Results: Most patients were White (89.9%) with a median age at diagnosis of 42 years. Surgical resection was performed in 95% of cases. The estimated 10-year overall survival was 91.4%. Younger age (hazard ratio (HR) = 1.09, p < 0.001) and receipt of surgery (HR = 0.43, p = 0.007) were associated with improved survival. Surprisingly, male sex was associated with worse survival (HR = 1.86, p = 0.008) and a younger age at diagnosis compared to females. (4) Conclusions: This study, the largest of its kind, underscores the importance of surgical resection in managing spinal MPE. The unexpected association between male sex and worse survival warrants further investigation into potential sex-specific pathophysiological factors influencing prognosis. Despite limitations, our findings contribute valuable insights for guiding clinical management strategies for spinal MPE.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Michael K. Rooney
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | | | - Thomas H. Beckham
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Brian S. De
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Amol J. Ghia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary F. McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Susan L. McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Robert Y. North
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.D.R.)
| | - Arnold C. Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Subha Perni
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Jay P. Reddy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Laurence D. Rhines
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.D.R.)
| | - Todd A. Swanson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Claudio E. Tatsui
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (L.D.R.)
| | - Martin C. Tom
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Debra N. Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.K.R.); (D.G.); (A.C.P.); (M.C.T.); (J.L.)
| |
Collapse
|
9
|
Schüller U, Gocke A, Godbole S, Delbridge C, Thomas C, Neumann JE. Anaplastic histology and distinct molecular features in a small series of spinal cord ependymomas. Acta Neuropathol 2024; 147:83. [PMID: 38735021 PMCID: PMC11089008 DOI: 10.1007/s00401-024-02740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Gocke
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Section of Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shweta Godbole
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claire Delbridge
- Institute of Pathology, Department of Neuropathology, TUM School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Abe E, Suzuki M, Ichimura K, Arakawa A, Satomi K, Ogino I, Hara T, Iwamuro H, Ohara Y, Kondo A. Implications of DNA Methylation Classification in Diagnosing Ependymoma. World Neurosurg 2024; 185:e1019-e1029. [PMID: 38479644 DOI: 10.1016/j.wneu.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Ependymoma is a central nervous system (CNS) tumor that arises from the ependymal cells of the brain's ventricles and spinal cord. The histopathology of ependymomas is indistinguishable regardless of the site of origin, and the prognosis varies. Recent studies have revealed that the development site and prognosis reflect the genetic background. In this study, we used genome-wide DNA methylation array analysis to investigate the epigenetic background of ependymomas from different locations treated at our hospital. METHODS Four cases of posterior fossa ependymomas and 11 cases of spinal ependymomas were analyzed. RESULTS DNA methylation profiling using the DKFZ methylation classifier showed that the methylation diagnoses of the 2 cases differed from the histopathological diagnoses, and 2 cases could not be classified. Tumor that spread from the brain to the spinal cord was molecularly distinguishable from other primary spinal tumors. CONCLUSIONS Although adding DNA methylation classification to conventional diagnostic methods may be helpful, the diagnosis in some cases remains undetermined. This may affect decision-making regarding treatment strategies and follow-up. Further investigations are required to improve the diagnostic accuracy of these tumors.
Collapse
Affiliation(s)
- Eiji Abe
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukoh Ohara
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr M, Mock A, Buchstab O, Alber M, Ruff L, Montavon G, Müller KR. [Explainable artificial intelligence in pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:133-139. [PMID: 38315198 DOI: 10.1007/s00292-024-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
With the advancements in precision medicine, the demands on pathological diagnostics have increased, requiring standardized, quantitative, and integrated assessments of histomorphological and molecular pathological data. Great hopes are placed in artificial intelligence (AI) methods, which have demonstrated the ability to analyze complex clinical, histological, and molecular data for disease classification, biomarker quantification, and prognosis estimation. This paper provides an overview of the latest developments in pathology AI, discusses the limitations, particularly concerning the black box character of AI, and describes solutions to make decision processes more transparent using methods of so-called explainable AI (XAI).
Collapse
Affiliation(s)
- Frederick Klauschen
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland.
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland.
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland.
| | - Jonas Dippel
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland
| | - Philipp Keyl
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Philipp Jurmeister
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland
| | - Michael Bockmayr
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Pädiatrische Hämatologie und Onkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Forschungsinstitut Kinderkrebs-Zentrum Hamburg, Hamburg, Deutschland
| | - Andreas Mock
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland
| | - Oliver Buchstab
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Maximilian Alber
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Aignostics GmbH, Berlin, Deutschland
| | | | - Grégoire Montavon
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Deutschland
| | - Klaus-Robert Müller
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland.
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland.
- Department of Artificial Intelligence, Korea University, Seoul, Südkorea.
- Max-Planck-Institut für Informatik, Saarbrücken, Deutschland.
- Machine Learning/Intelligent Data Analysis (IDA), Technische Universität Berlin, Marchstr. 23, 10587, Berlin, Deutschland.
| |
Collapse
|
12
|
Neyazi S, Yamazawa E, Hack K, Tanaka S, Nagae G, Kresbach C, Umeda T, Eckhardt A, Tatsuno K, Pohl L, Hana T, Bockmayr M, Kim P, Dorostkar MM, Takami T, Obrecht D, Takai K, Suwala AK, Komori T, Godbole S, Wefers AK, Otani R, Neumann JE, Higuchi F, Schweizer L, Nakanishi Y, Monoranu CM, Takami H, Engertsberger L, Yamada K, Ruf V, Nomura M, Mohme T, Mukasa A, Herms J, Takayanagi S, Mynarek M, Matsuura R, Lamszus K, Ishii K, Kluwe L, Imai H, von Deimling A, Koike T, Benesch M, Kushihara Y, Snuderl M, Nambu S, Frank S, Omura T, Hagel C, Kugasawa K, Mautner VF, Ichimura K, Rutkowski S, Aburatani H, Saito N, Schüller U. Transcriptomic and epigenetic dissection of spinal ependymoma (SP-EPN) identifies clinically relevant subtypes enriched for tumors with and without NF2 mutation. Acta Neuropathol 2024; 147:22. [PMID: 38265489 PMCID: PMC10808175 DOI: 10.1007/s00401-023-02668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Collapse
Affiliation(s)
- Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Karoline Hack
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Takayoshi Umeda
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Alicia Eckhardt
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumor Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kenji Tatsuno
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Lara Pohl
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Phyo Kim
- Utsunomiya Neurospine Center, Symphony Clinic, Utsunomiya, Japan
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Keisuke Takai
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shweta Godbole
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ryohei Otani
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fumi Higuchi
- Department of Neurosurgery, University of Teikyo Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Leonille Schweizer
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt Am Main, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt Am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt Am Main, Germany
| | - Yuta Nakanishi
- Department of Neurosurgery, Osaka Metropolitan City University Graduate School of Medicine, Osaka, Japan
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lara Engertsberger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Keisuke Yamada
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Theresa Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiko Matsuura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kazuhiko Ishii
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hideaki Imai
- Department of Neurosurgery, Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York City, USA
| | - Shohei Nambu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Takaki Omura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kazuha Kugasawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Viktor F Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr M, Mock A, Buchstab O, Alber M, Ruff L, Montavon G, Müller KR. Toward Explainable Artificial Intelligence for Precision Pathology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:541-570. [PMID: 37871132 DOI: 10.1146/annurev-pathmechdis-051222-113147] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.
Collapse
Affiliation(s)
- Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich Partner Site, Munich, Germany
| | - Jonas Dippel
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- Machine Learning Group, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany;
| | - Philipp Keyl
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
- German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich Partner Site, Munich, Germany
| | - Michael Bockmayr
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Andreas Mock
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
- German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich Partner Site, Munich, Germany
| | - Oliver Buchstab
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
| | - Maximilian Alber
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Aignostics, Berlin, Germany
| | | | - Grégoire Montavon
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- Machine Learning Group, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany;
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Klaus-Robert Müller
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- Machine Learning Group, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany;
- Department of Artificial Intelligence, Korea University, Seoul, Korea
- Max Planck Institute for Informatics, Saarbrücken, Germany
| |
Collapse
|
14
|
Pohl LC, Leitheiser M, Obrecht D, Schweizer L, Wefers AK, Eckhardt A, Raffeld M, Sturm D, Pajtler KW, Rutkowski S, Fukuoka K, Ichimura K, Bockmayr M, Schüller U. Molecular characteristics and improved survival prediction in a cohort of 2023 ependymomas. Acta Neuropathol 2024; 147:24. [PMID: 38265522 PMCID: PMC10808151 DOI: 10.1007/s00401-023-02674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
The diagnosis of ependymoma has moved from a purely histopathological review with limited prognostic value to an integrated diagnosis, relying heavily on molecular information. However, as the integrated approach is still novel and some molecular ependymoma subtypes are quite rare, few studies have correlated integrated pathology and clinical outcome, often focusing on small series of single molecular types. We collected data from 2023 ependymomas as classified by DNA methylation profiling, consisting of 1736 previously published and 287 unpublished methylation profiles. Methylation data and clinical information were correlated, and an integrated model was developed to predict progression-free survival. Patients with EPN-PFA, EPN-ZFTA, and EPN-MYCN tumors showed the worst outcome with 10-year overall survival rates of 56%, 62%, and 32%, respectively. EPN-PFA harbored chromosome 1q gains and/or 6q losses as markers for worse survival. In supratentorial EPN-ZFTA, a combined loss of CDKN2A and B indicated worse survival, whereas a single loss did not. Twelve out of 200 EPN-ZFTA (6%) were located in the posterior fossa, and these tumors relapsed or progressed even earlier than supratentorial tumors with a combined loss of CDKN2A/B. Patients with MPE and PF-SE, generally regarded as non-aggressive tumors, only had a 10-year progression-free survival of 59% and 65%, respectively. For the prediction of the 5-year progression-free survival, Kaplan-Meier estimators based on the molecular subtype, a Support Vector Machine based on methylation, and an integrated model based on clinical factors, CNV data, and predicted methylation scores achieved balanced accuracies of 66%, 68%, and 73%, respectively. Excluding samples with low prediction scores resulted in balanced accuracies of over 80%. In sum, our large-scale analysis of ependymomas provides robust information about molecular features and their clinical meaning. Our data are particularly relevant for rare and hardly explored tumor subtypes and seemingly benign variants that display higher recurrence rates than previously believed.
Collapse
Affiliation(s)
- Lara C Pohl
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Maximilian Leitheiser
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Pathology, Ludwig Maximilians University Hospital Munich, Munich, Germany
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonille Schweizer
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alicia Eckhardt
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumor Center-University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominik Sturm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit, Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kohei Fukuoka
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Chatzopoulos K, Hytiroglou P, Charville GW, Toland AMS, Martinez-Lage M, Cimino PJ, Rosenblum MK, Linos K. When a dermatopathologist encounters the ultra-rare: A case series of superficial soft tissue/cutaneous myxopapillary ependymomas. J Cutan Pathol 2024; 51:20-29. [PMID: 37317818 PMCID: PMC10721733 DOI: 10.1111/cup.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
Myxopapillary ependymoma (MPE) is an uncommon variant of ependymoma, almost exclusively seen in conus medullaris or filum terminale. MPE can be diagnostically challenging, especially when arising extra-axially. Here we report 5 cases of superficial soft tissue/cutaneous MPE, identified across three tertiary institutions. All patients were female and three of them (3/5, 60%) were children (median age 11 years, range 6-58 years). The tumors presented as slow-growing masses of the sacrococcygeal subcutaneous soft tissues, occasionally identified after minor trauma and clinically favored to be pilonidal sinuses. Imaging showed no neuraxis connection. Macroscopically, tumors were well-circumscribed, lobulated, and solid and microscopically they exhibited typical histopathology of MPE, at least focally. Two of the tumors (2/5, 40%) showed predominantly solid or trabecular architecture with greater cellular pleomorphism, scattered giant cells, and increased mitotic activity. All tumors (5/5, 100%) showed strong diffuse immunohistochemical expression of GFAP. One tumor clustered at the category "ependymoma, myxopapillary" by methylome analysis. Two patients (2/5, 40%) had local recurrence at 8 and 30 months after the initial surgery. No patients developed metastases during the follow-up period (median 60 months, range 6-116 months). Since a subset of extra-axial MPEs behaves more aggressively, timely and accurate diagnosis is of paramount importance.
Collapse
Affiliation(s)
| | | | - Gregory W. Charville
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angus M. S. Toland
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Patrick J. Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | - Marc K. Rosenblum
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, NY, NY, USA
| | - Konstantinos Linos
- Department of Pathology & Laboratory Medicine, Memorial Sloan Kettering Cancer Center, NY, NY, USA
| |
Collapse
|
16
|
Engertsberger L, Benesch M, Mynarek M, Tonn S, Obrecht-Sturm D, Perwein T, Stickan-Verfürth M, Funk A, Timmermann B, Bockmayr M, Eckhardt A, Claviez A, Kortmann RD, Riemenschneider MJ, Pietsch T, Bison B, Warmuth-Metz M, Pajtler KW, Rutkowski S, Schüller U. Impact of molecular classification on prognosis in children and adolescents with spinal ependymoma: Results from the HIT-MED database. Neurooncol Adv 2024; 6:vdae179. [PMID: 39713042 PMCID: PMC11662162 DOI: 10.1093/noajnl/vdae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Background Ependymomas of the spinal cord are rare among children and adolescents, and the individual risk of disease progression is difficult to predict. This study aims to evaluate the prognostic impact of molecular typing on pediatric spinal cord ependymomas. Methods Eighty-three patients with spinal ependymomas ≤22 years registered in the HIT-MED database (German brain tumor registry for children, adolescents, and adults with medulloblastoma, ependymoma, pineoblastoma, and CNS-primitive neuroectodermal tumors) between 1992 and 2022 were included. Forty-seven tumors were analyzed by DNA methylation array profiling. In 6 cases, HOXB13 and MYCN proteins were detected as surrogate markers for specific methylation classes. Ten patients had NF2-related schwannomatosis. Results With a median follow-up time of 4.9 years, 5- and 10-year overall survival (OS) were 100% and 86%, while 5- and 10-year progression-free survival (PFS) were 65% and 54%. Myxopapillary ependymoma (SP-MPE, n = 32, 63%) was the most common molecular type followed by spinal ependymoma (SP-EPN, n = 17, 33%) and MYCN-amplified ependymoma (n = 2, 4%). One case could not be molecularly classified, and one was reclassified as anaplastic pilocytic astrocytoma. 5-year PFS did not significantly differ between SP-MPE and SP-EPN (65% vs. 78%, P = .64). MYCN-amplification was associated with early relapses (<2.3 years) in both cases and death in one patient. Patients with SP-MPE subtype B (n = 9) showed a non-significant trend for better 5 years-PFS compared to subtype A (n = 18; 86% vs. 56%, P = .15). The extent of resection and WHO tumor grades significantly influenced PFS in a uni- and multivariate analysis. Conclusions Molecular typing of pediatric spinal ependymomas aids in identifying very high-risk MYCN-amplified ependymomas. Further insights into the molecular heterogeneity of spinal ependymomas are needed for future clinical decision-making.
Collapse
Affiliation(s)
- Lara Engertsberger
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Martin Benesch
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Martin Mynarek
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Svenja Tonn
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht-Sturm
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Perwein
- Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Martina Stickan-Verfürth
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Angela Funk
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Michael Bockmayr
- bAIome - Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alicia Eckhardt
- Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Claviez
- Department of Pediatric and Adolescent Medicine, Pediatric Hematology and Oncology, University Hospital Magdeburg, Magdeburg, Germany
| | | | | | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Brigitte Bison
- Neuroradiological Reference Center for the pediatric brain tumor (HIT) studies of the German Society of Pediatric Oncology and Hematology, University Hospital Würzburg (until 2020), University Augsburg, Faculty of Medicine (since 2021), Germany
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Jünger ST, Zschernack V, Messing-Jünger M, Timmermann B, Pietsch T. Ependymoma from Benign to Highly Aggressive Diseases: A Review. Adv Tech Stand Neurosurg 2024; 50:31-62. [PMID: 38592527 DOI: 10.1007/978-3-031-53578-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Ependymomas comprise biologically distinct tumor types with respect to age distribution, (epi)genetics, localization, and prognosis. Multimodal risk-stratification, including histopathological and molecular features, is essential in these biologically defined tumor types. Gross total resection (GTR), achieved with intraoperative monitoring and neuronavigation, and if necessary, second-look surgery, is the most effective treatment. Adjuvant radiation therapy is mandatory in high-risk tumors and in case of residual tumor. There is yet growing evidence that some ependymal tumors may be cured by surgery alone. To date, the role of chemotherapy is unclear and subject of current studies.Even though standard therapy can achieve reasonable survival rates for the majority of ependymoma patients, long-term follow-up still reveals a high probability of relapse in certain biological entities.With increasing knowledge of biologically distinct tumor types, risk-adapted adjuvant therapy gains importance. Beyond initial tumor control, and avoidance of therapy-induced morbidity for low-risk patients, intensified treatment for high-risk patients comprises another challenge. With identification of specific risk features regarding molecular alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany.
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium, Essen, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
18
|
Pratt D, Penas-Prado M, Gilbert MR. Clinical impact of molecular profiling in rare brain tumors. Curr Opin Neurol 2023; 36:579-586. [PMID: 37973025 DOI: 10.1097/wco.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the commonly used molecular diagnostics and illustrate the prognostic importance to the more accurate diagnosis that also may uncover therapeutic targets. RECENT FINDINGS The most recent WHO Classification of Central Nervous System Tumours (2021) lists over 100 distinct tumor types. While traditional histology continues to be an important component, molecular testing is increasingly being incorporated as requisite diagnostic criteria. Specific molecular findings such as co-deletion of the short arm of chromosome 1 (1p) and long arm of chromosome 19 (19q) now define IDH-mutant gliomas as oligodendroglioma. In recent years, DNA methylation profiling has emerged as a dynamic tool with high diagnostic accuracy. The integration of specific genetic (mutations, fusions) and epigenetic (CpG methylation) alterations has led to diagnostic refinement and the discovery of rare brain tumor types with distinct clinical outcomes. Molecular profiling is anticipated to play an increasing role in routine surgical neuropathology, although costs, access, and logistical concerns remain challenging. SUMMARY This review summarizes the current state of molecular testing in neuro-oncology highlighting commonly used and developing technologies, while also providing examples of new tumor types/subtypes that have emerged as a result of improved diagnostic precision.
Collapse
Affiliation(s)
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Cerretti G, Pessina F, Franceschi E, Barresi V, Salvalaggio A, Padovan M, Manara R, Di Nunno V, Bono BC, Librizzi G, Caccese M, Scorsetti M, Maccari M, Minniti G, Navarria P, Lombardi G. Spinal ependymoma in adults: from molecular advances to new treatment perspectives. Front Oncol 2023; 13:1301179. [PMID: 38074692 PMCID: PMC10704349 DOI: 10.3389/fonc.2023.1301179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/24/2023] [Indexed: 12/21/2024] Open
Abstract
Ependymomas are rare glial tumors with clinical and biological heterogeneity, categorized into supratentorial ependymoma, posterior fossa ependymoma, and spinal cord ependymoma, according to anatomical localization. Spinal ependymoma comprises four different types: spinal ependymoma, spinal ependymoma MYCN-amplified, myxopapillary ependymoma, and subependymoma. The clinical onset largely depends on the spinal location of the tumor. Both non-specific and specific sensory and/or motor symptoms can be present. Owing to diverse features and the low incidence of spinal ependymomas, most of the current clinical management is derived from small retrospective studies, particularly in adults. Treatment involves primarily surgical resection, aiming at maximal safe resection. The use of radiotherapy remains controversial and the optimal dose has not been established; it is usually considered after subtotal resection for WHO grade 2 ependymoma and for WHO grade 3 ependymoma regardless of the extent of resection. There are limited systemic treatments available, with limited durable results and modest improvement in progression-free survival. Thus, chemotherapy is usually reserved for recurrent cases where resection and/or radiation is not feasible. Recently, a combination of temozolomide and lapatinib has shown modest results with a median progression-free survival (PFS) of 7.8 months in recurrent spinal ependymomas. Other studies have explored the use of temozolomide, platinum compounds, etoposide, and bevacizumab, but standard treatment options have not yet been defined. New treatment options with targeted treatments and immunotherapy are being investigated. Neurological and supportive care are crucial, even in the early stages. Post-surgical rehabilitation can improve the consequences of surgery and maintain a good quality of life, especially in young patients with long life expectancy. Here, we focus on the diagnosis and treatment recommendations for adults with spinal ependymoma, and discuss recent molecular advances and new treatment perspectives.
Collapse
Affiliation(s)
- Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federico Pessina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Renzo Manara
- Department of Neuroscience, Azienda Ospedale-Università di Padova, Padua, Italy
- Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Beatrice Claudia Bono
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Librizzi
- Department of Neuroscience, Azienda Ospedale-Università di Padova, Padua, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marta Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
20
|
Zhang YW, Wang B, An SY, Liu WH, Wang C, Yan H, Xu YL, Wang YZ, Jia WQ. Clinical management and prognosis of spinal myxopapillary ependymoma: a single-institution cohort of 72 patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:2459-2467. [PMID: 37027035 DOI: 10.1007/s00586-023-07690-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/12/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE Myxopapillary ependymoma (MPE) was classified as grade 2 tumor in the 2021 World Health Organization central nervous system classification because of its high recurrence probability. This study aimed to investigate predictive factors and management of tumor recurrence. METHODS Seventy-two patients with spinal MPE underwent initial surgical treatment at our hospital between 2011 and 2021. Kaplan-Meier curves and Cox regression were used to analyze the correlation between clinical variables and progression-free survival (PFS). RESULTS The median age at diagnosis was 33.5 years (range 8-60 years). Twenty-one patients (29.2%) had preoperative spinal drop metastases. Gross total resection (GTR) was performed in 37 patients (51.4%). The median follow-up was 7.2 years, and the follow-up rate was 88.9% (64 of 72 cases). Twelve of the 64 patients (18.9%) relapsed, and preoperative drop metastasis occurred in 7 patients (58.3%). The estimated 5-year and 10-year PFS rates were 82% and 77%, respectively. Univariate analysis showed that GTR was associated with improved PFS (hazard ratio [HR] 0.149, p = 0.014), while preoperative drop metastasis (HR 3.648, p = 0.027) and tumor involvement sacrococcygeal region (HR 7.563, p = 0.003) were associated with tumor recurrence. Adjuvant radiotherapy (RT) was significantly associated with improved PFS in patients with preoperative drop metastasis (p = 0.039). CONCLUSION Complete surgical resection under the premise of protecting neurological function is an important factor in reducing spinal MPE recurrence. Adjuvant RT is recommended when the tumor invades the capsule with preoperative drop metastasis or adhesion to the nerve and cannot reach GTR.
Collapse
Affiliation(s)
- Yao-Wu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Song-Yuan An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Wei-Hao Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hao Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yu-Lun Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yong-Zhi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Wen-Qing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
21
|
Asa SL, Mete O, Schüller U, Ramani B, Mirchia K, Perry A. Cauda Equina Neuroendocrine Tumors: Distinct Epithelial Neuroendocrine Neoplasms of Spinal Origin. Am J Surg Pathol 2023; 47:469-475. [PMID: 36543154 DOI: 10.1097/pas.0000000000002009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor formerly known as "cauda equina paraganglioma" was recently renamed as cauda equina neuroendocrine tumor (CENET) based on distinct biological and genetic properties. Nevertheless, it remains insufficiently understood. For this study, we retrieved CENETs (some previously reported), from the pathology files of 3 institutions; we examined their immunohistochemical profile, including common neuroendocrine tumor-associated hormones and transcription factors. We identified 24 CENETs from 7 female and 17 male adult patients, with a median age of 47 years. Six included neurofilament-positive ganglion cells. All tumors tested were positive for INSM1, synaptophysin, chromogranin A, SSTR2, and CD56 as well as at least 1 keratin (AE1/AE3, CAM5.2); CK7 and CK20 were negative. Glial fibrillary acidic protein was negative, except for peripheral nontumoral elements. S100 protein was variable but mainly expressed in scattered sustentacular cells. All but 1 tumor tested were positive for HOXB13; several stained for SATB2, and all tumors were consistently negative for GATA3. All tumors tested were negative for transcription factors found in various other epithelial neuroendocrine neoplasms including TTF1, CDX2, PIT1, TPIT, SF1, and PAX8; staining for T-brachyury was negative. Four of 5 CENETs tested had at least focal tyrosine hydroxylase reactivity. Serotonin expression was detected in all 21 tumors tested; it was diffusely positive in 5 and had variable positivity in the remainder. A few tumors had scattered cells expressing gastrin, calcitonin, pancreatic polypeptide, and peptide YY, while glucagon, adrenocorticotropic hormone, and monoclonal carcinoembryonic antigen were negative. PSAP expression was found focally in 4 of 5 tumors examined. SDHB was consistently intact; ATRX was intact in 14 tumors and showed only focal loss in 3. The median Ki-67 labeling index was 4.5% (range: 1% to 15%). We conclude that CENET represents a distinct neuroendocrine neoplasm; the subset with ganglion cells qualifies for designation as composite gangliocytoma/neuroma-neuroendocrine tumor (CoGNET) as defined in the 2022 WHO classification of neuroendocrine neoplasms. In addition to INSM1, chromogranin, synaptophysin, and keratins, the most characteristic finding is nuclear HOXB13 expression; a subset also express SATB2. Serotonin is the most common hormone expressed. The cytogenesis and pathogenesis of these lesions remains unclear.
Collapse
Affiliation(s)
- Sylvia L Asa
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Ozgur Mete
- University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | - Kanish Mirchia
- University of California San Francisco, San Francisco, CA
| | - Arie Perry
- University of California San Francisco, San Francisco, CA
| |
Collapse
|
22
|
Bromodomain and Extra-Terminal Protein Inhibitors: Biologic Insights and Therapeutic Potential in Pediatric Brain Tumors. Pharmaceuticals (Basel) 2022; 15:ph15060665. [PMID: 35745584 PMCID: PMC9227239 DOI: 10.3390/ph15060665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Pediatric brain tumors have surpassed leukemia as the leading cause of cancer-related death in children. Several landmark studies from the last two decades have shown that many pediatric brain tumors are driven by epigenetic dysregulation within specific developmental contexts. One of the major determinants of epigenetic control is the histone code, which is orchestrated by a number of enzymes categorized as writers, erasers, and readers. Bromodomain and extra-terminal (BET) proteins are reader proteins that bind to acetylated lysines in histone tails and play a crucial role in regulating gene transcription. BET inhibitors have shown efficacy in a wide range of cancers, and a number have progressed to clinical phase testing. Here, we review the evidence for BET inhibitors in pediatric brain tumor experimental models, as well as their translational potential.
Collapse
|