1
|
Tariq R, Hussain N, Bajwa MH, Aziz HF, Shamim MS, Enam SA. Multicentric low-grade glioma: A systematic review of a rare neuro-oncological disease. Clin Neurol Neurosurg 2025; 251:108821. [PMID: 40068356 DOI: 10.1016/j.clineuro.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Multicentric and multifocal gliomas are rare and mainly described in high-grade gliomas, however, they have rarely been reported with LGG in about 2-10 % of all cases. This study aims to identify the reported multicentric low-grade gliomas (mLGGs) in literature and review their pathologies, management, and outcomes. METHODS A systematic search using a pre-defined search strategy was conducted across three databases (PubMed, Cochrane Library, and Scopus). Following the PRISMA guidelines, relevant articles were selected. The data including demographic details, clinical presentations, lesion locations, pathology, neurosurgical interventions, extent of resection, adjuvant therapies, and survival outcomes were reported. RESULTS We identified 36 patients across 17 studies. Presenting symptoms varied, with seizures (27.7 %) and headaches (22.2 %) being the most common. Typical imaging features involve hypo- to isotense signals on T1-weighted images and hyperintensity on T2-weighted images, with MR spectroscopy aiding in differentiation. Histological consistency across tumor sites was observed in 29 cases, with some variability in a few. Survival was 66.6 % among patients, and initial reports in the 1960s indicated high mortality due to intracranial pressure shifts. Adjuvant therapies included chemotherapy (14 patients) and radiotherapy (9 patients), though many cases lacked complete therapy data. Although chemotherapy and radiotherapy lacked a significant impact on progression-free survival, early, extensive resection remains advocated, with a mean progression-free survival of 30.14 months. CONCLUSION Most of the current evidence surrounding mLGG consists of case reports with few retrospective case series. Early, extensive resection appears to be the most effective approach for managing mLGG, while adjuvant therapies have limited impact on progression-free survival, highlighting the need for more comprehensive molecular profiling to guide treatment. Further research into standardized protocols for adjuvant therapies and long-term outcomes is essential to optimize survival and improve management of unresectable or recurrent cases.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Nowal Hussain
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohammad Hamza Bajwa
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Muhammad Shahzad Shamim
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan; Center of Oncological Research in Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
2
|
Jiang N, Xu LP, Li F, Wang PP, Cao Y. Efficacy and safety of simultaneous integrated boost intensity-modulated radiotherapy combined with temozolomide for the postoperative chemotherapy treatment of multifocal high-grade glioma. Front Oncol 2025; 15:1539362. [PMID: 40196731 PMCID: PMC11973260 DOI: 10.3389/fonc.2025.1539362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background The multifocal manifestation of high-grade glioma is a rare disease with an unfavorable prognosis. The pathogenesis of multifocal gliomas and pathophysiological differences in unifocal gliomas are not fully understood. The optimal treatment for patients with multifocal high-grade glioma is not defined in the current guidelines; therefore, individual case series may be helpful as guidance for clinical decision-making. Methods Patients with multifocal high-grade glioma treated with simultaneous integrated boost intensity-modulated radiotherapy combined with temozolomide for postoperative treatment at our institution between January 2020 and December 2023 were retrospectively analyzed. Multifocality was neuroradiologically assessed and defined as at least two independent contrast-enhancing foci in the MRI T1 contrast-enhanced sequence. Overall and progression-free survival were calculated from the diagnosis until death and from the start of radiation therapy until the diagnosis of disease progression on MRI for all patients. Results A total of 42 patients with multifocal high-grade glioma were examined, of which 16 were female and 26 were male. The median age of all patients was 57 years (range: 23-77 years). The median KPS score was 80 (range: 50-100). Complete resection was performed in 10 cases, and partial resection was performed in 32 cases before the start of radiation therapy. The prescription schedule was 54 Gy (1.8 Gy × 30) with an SIB of 60 Gy (2 Gy × 30). Concomitant temozolomide chemotherapy was administered to 40 patients. Median survival was 19 months (95% CI 14.1-23.8 months) and median progression free survival after initiation of RT 13 months (95% CI 9.2-16.7 months). Five patients experienced grade 3 toxicity, none experienced grade 4 toxicity, and no treatment-related deaths occurred. Conclusion Multifocal high-grade gliomas can be treated safely and efficiently with simultaneous integrated boost intensity-modulated radiotherapy with concomitant and adjuvant TMZ chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Huang J, Li HY, Xu P, Ren XH, Lin S. Effects of Surgical Ventricular Entry on Gliomas Invading the Thalamus: Clinical Outcomes and Economic Burdens. World Neurosurg 2025; 196:123731. [PMID: 39929266 DOI: 10.1016/j.wneu.2025.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Surgical resection in gliomas invading the thalamus poses significant challenges due to the deep location and its localization near the ventricle. Ventricular entry (VE) during such operation is somewhat inevitable. However, the impact of VE on clinical outcomes is unclear. Additionally, it is unknown whether VE is associated with increased medical costs. METHODS This retrospective study was conducted on patients treated at Beijing Tiantan hospital from January 2013 to December 2021. Variables of interest were surgical VE and subventricular (SVZ) contact. Clinical outcomes of interest included perioperative complications, length of stay (LOS), postoperative hydrocephalus, leptomeningeal dissemination and distant parenchymal recurrence, progression-free survival (PFS) and overall survival (OS), and cost of illness was direct medical costs. Analysis was performed using multivariate logistic, Cox regression, and a multivariate generalized linear model. RESULTS Of the 100 patients pathologically diagnosed with glioma invading the thalamus, 64 (64.0%) patients underwent VE during resection. Multivariate analysis after adjusting confounders revealed that surgical VE, but not SVZ contact, was independently associated with the development of perioperative complications (odds ratio [OR] 3.52, 95% CI 1.19-10.40; P = 0.023), postoperative hydrocephalus (OR 3.70, 95%CI 1.10-12.45; P = 0.035), longer LOS (β 5.99, Wald X2 9.12; P = 0.003) and increased direct medical costs (β 5349.2, Wald X2 4.56; P = 0.033), but not with the distant parenchymal recurrence, PFS, and OS. CONCLUSIONS Although surgical VE does not impact survival, it may impose undesirable events and higher financial burdens for patients with gliomas invading the thalamus.
Collapse
Affiliation(s)
- Jian Huang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Hao-Yi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Xu
- Department of Neurosurgery, Linyi Central Hospital, Linyi, China
| | - Xiao-Hui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; National Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; National Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| |
Collapse
|
4
|
McDonald MF, Gopakumar S, Juratli TA, Eyüpoglu IY, Rao G, Mandel JJ, Jalali A. Discontiguous recurrences of IDH-wildtype glioblastoma share a common origin with the initial tumor and are frequently hypermutated. Acta Neuropathol Commun 2025; 13:9. [PMID: 39815367 PMCID: PMC11737192 DOI: 10.1186/s40478-024-01900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
Glioblastoma is the deadliest primary brain tumor, largely due to inevitable recurrence of the disease after treatment. While most recurrences are local, patients rarely present with a new discontiguous focus of glioblastoma. Little is currently known about the genetic profile of discontiguous recurrences. In our institutional database, we identified 22 patients with targeted exome sequencing of pairs of initial and recurrent IDH-wildtype glioblastoma. Recurrences were classified as contiguous or discontiguous based on the presence or absence of T2 FLAIR signal connection to the initial site of disease on MRI. Exome analysis revealed shared driver and passenger mutations between discontiguous recurrences and initial tumors, supporting a common origin. Discontiguous recurrences were more likely to be hypermutated compared to contiguous recurrences (p = 0.038). Analysis of 2 glioblastoma cases with discontiguous recurrence at a collaborating institution also exhibited hypermutation. In conclusion, discontiguous glioblastoma recurrences share a common origin with the initial tumor and are more likely to be hypermutated than contiguous recurrences.
Collapse
Affiliation(s)
- Malcolm F McDonald
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | | | - Tareq A Juratli
- Department of Neurosurgery, Faculty of Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01307, Dresden, Germany
| | - Ilker Y Eyüpoglu
- Department of Neurosurgery, Faculty of Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, 01307, Dresden, Germany
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jacob J Mandel
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Krenzlin H, Jankovic D, Dauth A, Lange F, Wetzel M, Schmidt L, Janssen I, Richter C, Stockinger M, Schmidberger H, Brockmann MA, Sommer C, Meyer B, Keric N, Ringel F. Multimodal treatment of glioblastoma with multiple lesions - a multi-center retrospective analysis. J Neurooncol 2024; 170:555-566. [PMID: 39560695 PMCID: PMC11614972 DOI: 10.1007/s11060-024-04810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE The presence of multiple localizations (ML) in glioblastoma is rare and associated with perceived poor prognosis. The aim of this study is to evaluate the impact of a multimodal treatment on progression-free survival (PFS) and overall survival (OS) in ML glioblastoma. METHODS Patients presenting with CNS WHO grade 4 glioblastoma with ML to 2 major German Departments of Neurosurgery between January 1st, 2008, to December 31st, 2020 were included in this study. Primary outcome parameters were extent of resection (EOR) using the 2021 RANO criteria, progression free- and overall survival. RESULTS A total of 483 patients with newly diagnosed glioblastoma (CNS WHO grade 4) were assessed. 134 patients presented with ML (72 multifocal (MF), 62 multicentric (MC)). The median PFS and OS did not differ among MC and MF glioblastomas. The EOR was a significant predictor of PFS and OS in ML glioblastoma. complete-, near total-, and subtotal resection significantly prolonged PFS (p < 0.0001) and OS (p < 0.0001) compared to biopsy alone. Standard radiotherapy (p = 0.045) and hypofractionated (p < 0.0001) radiotherapy and adjuvant treatment (Stupp protocol) prolonged PFS (p = 0.0012) and OS (p < 0.0001). In multivariate analysis Karnfosky performance score, EOR, and concomitant adjuvant treatment remained significant factors influencing OS. Propensity score matching of patients with ML and solitary lesion tumors showed similar PFS and OS (p = 0.08). CONCLUSION The presented data suggests that glioblastomas with multiple lesions treated with multimodal therapy equal survival rates compared to patients with solitary lesion tumors can be achieved. The results reflect the importance of an equally aggressive maximal treatment effort in this particular and often marginalized group of patients.
Collapse
Affiliation(s)
- Harald Krenzlin
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany.
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Dragan Jankovic
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Alice Dauth
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Felipa Lange
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Martin Wetzel
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Leon Schmidt
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Insa Janssen
- Department of Neurosurgery, University Medical Center, Technical University of Munich, Munich, Germany
| | - Christoph Richter
- Department of Radiation Oncology and Radiation Therapy, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Marcus Stockinger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, University Medical Center, Technical University of Munich, Munich, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center, Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Chen T, Meng J, Yu K, Huang T, Zhao J. Chromatin Licensing and DNA Replication Factor 1 (CDT1) Is a Potential Prognostic Biomarker Involved in the Malignant Biological Behavior of Glioma. ACS Pharmacol Transl Sci 2024; 7:3131-3143. [PMID: 39416957 PMCID: PMC11475523 DOI: 10.1021/acsptsci.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Glioma is the primary malignant tumor with the highest incidence rate in the adult central nervous system. The application of bioinformatics methods to analyze the RNA sequences of multiple gliomas revealed that the CDT1 gene has a significant impact on the cell cycle of glioma cells. Subsequently, we comprehensively and systematically investigated the expression of CDT1 in gliomas through bioinformatics analysis, clinical tissue specimens, and in vitro functional experiments. Our study is the first to report the expression of CDT1 in glioma. Our findings demonstrate that CDT1 plays a crucial role in the proliferation and invasion of glioma. Additionally, our bioinformatics analysis identified several other genes and signaling pathways that are dysregulated in multifocal gliomas, providing potential targets for further research and drug development.
Collapse
Affiliation(s)
- Tiange Chen
- Department
of Neurosurgery, Hainan General Hospital/Hainan
Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Jiawei Meng
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ke Yu
- Department
of Laboratory Medicine, The Third Xiangya
Hospital, Central South University, Changsha, Hunan 410013, China
| | - Tianxiang Huang
- Department
of Neurosurgery, and National Clinical Research Center of Geriatric
Disorders, Xiangya Hospital, Central South
University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Jiannong Zhao
- Department
of Neurosurgery, Hainan General Hospital/Hainan
Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| |
Collapse
|
7
|
Bakrbaldawi AAA, Al-Sheikh U, Jiang H, Zhu J. Multiple Glioblastomas Ablation by Laser Interstitial Thermal Therapy (LITT): A Rare Case. Cureus 2024; 16:e66726. [PMID: 39268310 PMCID: PMC11392511 DOI: 10.7759/cureus.66726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Multiple glioblastomas (GBMs) are aggressive, malignant, and sporadic brain tumors. We present the case of a 58-year-old patient with two GBMs in the right frontal lobe and associated edema. The patient presented with sudden left limb weakness accompanied by abnormal gait for five consecutive days. Magnetic resonance-guided laser interstitial thermal therapy (MRg-LITT), a minimally invasive technique that disperses thermal energy was used to cauterize the deep-seated brain lesions. Following two sessions of MRg-LITT, the patient showed full remission from symptoms. However, the disruption of the blood-brain barrier (BBB) induced vasogenic edema surrounding the necrotic GBMs. Post-operative nine-month MRI images revealed severe vasogenic edema and compression on the ventricles, shifting the midline toward the left side. Therefore the patient underwent an emergency craniectomy and continues to live with close follow-ups. Here, we established that LITT procedures were effective in cauterizing GBMs with no recurrence.
Collapse
Affiliation(s)
- Ahmed Abdulsalam Ali Bakrbaldawi
- Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, CHN
- Clinical Research Center, Neurological Diseases of Zhejiang Province, Hangzhou, CHN
- Epilepsy Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, CHN
| | - Umar Al-Sheikh
- Neurosurgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, CHN
- Neurobiology and Neurology, The Fourth Affiliated Hospital of Zhejiang University, School of Medicine, Yiwu, CHN
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, CHN
| | - Hongjie Jiang
- Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, CHN
- Clinical Research Center, Neurological Diseases of Zhejiang Province, Hangzhou, CHN
- Epilepsy Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, CHN
| | - Junming Zhu
- Neurosurgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, CHN
- Clinical Research Center, Neurological Diseases of Zhejiang Province, Hangzhou, CHN
- Epilepsy Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, CHN
| |
Collapse
|
8
|
Peng X, Huang X, Zhang S, Zhang N, Huang S, Wang Y, Zhong Z, Zhu S, Gao H, Yu Z, Yan X, Tao Z, Dai Y, Zhang Z, Chen X, Wang F, Claret FX, Elkabets M, Ji N, Zhong Y, Kong D. Sequential Inhibition of PARP and BET as a Rational Therapeutic Strategy for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307747. [PMID: 38896791 PMCID: PMC11321613 DOI: 10.1002/advs.202307747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
PARP inhibitors (PARPi) hold substantial promise in treating glioblastoma (GBM). However, the adverse effects have restricted their broad application. Through unbiased transcriptomic and proteomic sequencing, it is discovered that the BET inhibitor (BETi) Birabresib profoundly alters the processes of DNA replication and cell cycle progression in GBM cells, beyond the previously reported impact of BET inhibition on homologous recombination repair. Through in vitro experiments using established GBM cell lines and patient-derived primary GBM cells, as well as in vivo orthotopic transplantation tumor experiments in zebrafish and nude mice, it is demonstrated that the concurrent administration of PARPi and BETi can synergistically inhibit GBM. Intriguingly, it is observed that DNA damage lingers after discontinuation of PARPi monotherapy, implying that sequential administration of PARPi followed by BETi can maintain antitumor efficacy while reducing toxicity. In GBM cells with elevated baseline replication stress, the sequential regimen exhibits comparable efficacy to concurrent treatment, protecting normal glial cells with lower baseline replication stress from DNA toxicity and subsequent death. This study provides compelling preclinical evidence supporting the development of innovative drug administration strategies focusing on PARPi for GBM therapy.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Naixin Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Haiwang Gao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xiaotong Yan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhennan Tao
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Yuxiang Dai
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjin300020China
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Francois X. Claret
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Ning Ji
- National Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of PharmacyTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
9
|
Trip AK, Hedegaard Dahlrot R, Aaquist Haslund C, Muhic A, Rosendal Korshøj A, Laursen RJ, Rom Poulsen F, Skjøth-Rasmussen J, Lukacova S. Patterns of care and survival in patients with multifocal glioblastoma: A Danish cohort study. Neurooncol Pract 2024; 11:421-431. [PMID: 39006522 PMCID: PMC11241377 DOI: 10.1093/nop/npae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Background This Danish cohort study aims to (1) compare patterns of care (POC) and survival of patients with multifocal glioblastoma (mGBM) to those with unifocal glioblastoma (uGBM), and (2) explore the association of patient-related factors with treatment assignment and prognosis, respectively, in the subgroup of mGBM patients. Methods Data on all adults with newly diagnosed, pathology-confirmed GBM between 2015 and 2019 were extracted from the Danish Neuro-Oncology Registry. To compare POC and survival of mGBM to uGBM, we applied multivariable logistic and Cox regression analysis, respectively. To analyze the association of patient-related factors with treatment assignment and prognosis, we established multivariable logistic and Cox regression models, respectively. Results In this cohort of 1343 patients, 231 had mGBM. Of those, 42% underwent tumor resection and 41% were assigned to long-course chemoradiotherapy. Compared to uGBM, mGBM patients less often underwent a partial (odds ratio [OR] 0.4, 95% confidence interval [CI] 0.2-0.6), near-total (OR 0.1, 95% CI 0.07-0.2), and complete resection (OR 0.1, 95% CI 0.07-0.2) versus biopsy. mGBM patients were furthermore less often assigned to long-course chemoradiotherapy (OR 0.6, 95% CI 0.4-0.97). Median overall survival was 7.0 (95% CI 5.7-8.3) months for mGBM patients, and multifocality was an independent poor prognostic factor for survival (hazard ratio 1.3, 95% CI 1.1-1.5). In mGBM patients, initial performance, O[6]-methylguanine-DNA methyltransferase promotor methylation status, and extent of resection were significantly associated with survival. Conclusions Patients with mGBM were treated with an overall less intensive approach. Multifocality was a poor prognostic factor for survival with a moderate effect. Prognostic factors for patients with mGBM were identified.
Collapse
Affiliation(s)
- Anouk Kirsten Trip
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Hedegaard Dahlrot
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Aida Muhic
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anders Rosendal Korshøj
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- Clinical Institute & Brain Research—Interdisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Slavka Lukacova
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Pećina-Šlaus N, Hrašćan R. Glioma Stem Cells-Features for New Therapy Design. Cancers (Basel) 2024; 16:1557. [PMID: 38672638 PMCID: PMC11049195 DOI: 10.3390/cancers16081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
On a molecular level, glioma is very diverse and presents a whole spectrum of specific genetic and epigenetic alterations. The tumors are unfortunately resistant to available therapies and the survival rate is low. The explanation of significant intra- and inter-tumor heterogeneity and the infiltrative capability of gliomas, as well as its resistance to therapy, recurrence and aggressive behavior, lies in a small subset of tumor-initiating cells that behave like stem cells and are known as glioma cancer stem cells (GCSCs). They are responsible for tumor plasticity and are influenced by genetic drivers. Additionally, GCSCs also display greater migratory abilities. A great effort is under way in order to find ways to eliminate or neutralize GCSCs. Many different treatment strategies are currently being explored, including modulation of the tumor microenvironment, posttranscriptional regulation, epigenetic modulation and immunotherapy.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Reno Hrašćan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Smith CJ, Perfetti TA, Chokshi C, Venugopal C, Ashford JW, Singh SK. Risk factors for glioblastoma are shared by other brain tumor types. Hum Exp Toxicol 2024; 43:9603271241241796. [PMID: 38520250 DOI: 10.1177/09603271241241796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The reported risk factors for glioblastoma (GBM), i.e., ionizing radiation, Li-Fraumeni syndrome, Neurofibromatosis I, and Turcot syndrome, also increase the risk of other brain tumor types. Risk factors for human GBM are associated with different oncogenic mutation profiles. Pedigreed domestic dogs with a shorter nose and flatter face (brachycephalic dogs) display relatively high rates of glioma formation. The genetic profiles of canine gliomas are also idiosyncratic. The association of putatively different mutational patterns in humans and canines with GBM suggests that different oncogenic pathways can result in GBM formation. Strong epidemiological evidence for an association between exposure to chemical carcinogens and an increased risk for development of GBM is currently lacking. Ionizing radiation induces point mutations, frameshift mutations, double-strand breaks, and chromosomal insertions or deletions. Mutational profiles associated with chemical exposures overlap with the broad mutational patterns seen with ionizing radiation. Weak statistical associations between chemical exposures and GBM reported in epidemiology studies are biologically plausible. Molecular approaches comparing reproducible patterns seen in spontaneous GBM with analogous patterns found in GBMs resected from patients with known significant exposures to potentially carcinogenic chemicals can address difficulties presented by traditional exposure assessment.
Collapse
Affiliation(s)
- Carr J Smith
- Society for Brain Mapping and Therapeutics, Mobile, AL, USA
| | | | - Chirayu Chokshi
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Center for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - J Wesson Ashford
- Stanford University and VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sheila K Singh
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Center for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Xi J, Liu K, Peng Z, Dai X, Wang Y, Cai C, Yang D, Yan C, Li X. Toxic warhead-armed antibody for targeted treatment of glioblastoma. Crit Rev Oncol Hematol 2024; 193:104205. [PMID: 38036153 DOI: 10.1016/j.critrevonc.2023.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Glioblastoma is a fatal intracranial tumor with a poor prognosis, exhibiting uninterrupted malignant progression, widespread invasion throughout the brain leading to the destruction of normal brain tissue and inevitable death. Monoclonal antibodies alone or conjugated with cytotoxic payloads to treat patients with different solid tumors showed effective. This treatment strategy is being explored for patients with glioblastoma (GBM) to obtain meaningful clinical responses and offer new drug options for the treatment of this devastating disease. In this review, we summarize clinical data (from pubmed.gov database and clinicaltrial.gov database) on the efficacy and toxicity of naked antibodies and antibody-drug conjugates (ADCs) against multiple targets on GBM, elucidate the mechanisms that ADCs act at the site of GBM lesions. Finally, we discuss the potential strategies for ADC therapies currently used to treat GBM patients.
Collapse
Affiliation(s)
- Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
13
|
Hu LS, D'Angelo F, Weiskittel TM, Caruso FP, Fortin Ensign SP, Blomquist MR, Flick MJ, Wang L, Sereduk CP, Meng-Lin K, De Leon G, Nespodzany A, Urcuyo JC, Gonzales AC, Curtin L, Lewis EM, Singleton KW, Dondlinger T, Anil A, Semmineh NB, Noviello T, Patel RA, Wang P, Wang J, Eschbacher JM, Hawkins-Daarud A, Jackson PR, Grunfeld IS, Elrod C, Mazza GL, McGee SC, Paulson L, Clark-Swanson K, Lassiter-Morris Y, Smith KA, Nakaji P, Bendok BR, Zimmerman RS, Krishna C, Patra DP, Patel NP, Lyons M, Neal M, Donev K, Mrugala MM, Porter AB, Beeman SC, Jensen TR, Schmainda KM, Zhou Y, Baxter LC, Plaisier CL, Li J, Li H, Lasorella A, Quarles CC, Swanson KR, Ceccarelli M, Iavarone A, Tran NL. Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat Commun 2023; 14:6066. [PMID: 37770427 PMCID: PMC10539500 DOI: 10.1038/s41467-023-41559-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA.
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Fulvio D'Angelo
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Taylor M Weiskittel
- Mayo Clinic Alix School of Medicine Minnesota, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Francesca P Caruso
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Shannon P Fortin Ensign
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Mylan R Blomquist
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Matthew J Flick
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Mayo Clinic Alix School of Medicine Arizona, Scottsdale, AZ, USA
| | - Lujia Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christopher P Sereduk
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kevin Meng-Lin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gustavo De Leon
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashley Nespodzany
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Javier C Urcuyo
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Ashlyn C Gonzales
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Lee Curtin
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kyle W Singleton
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | - Aliya Anil
- Department of Neuroimaging Research, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Natenael B Semmineh
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teresa Noviello
- Department of Electrical Engineering and Information Technologies, University of Naples, "Federico II", I-80128, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, I-83031, Ariano Irpino, Italy
| | - Reyna A Patel
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Panwen Wang
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, The University of Hong Kong, Hong Kong SAR, China
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | | | - Pamela R Jackson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Itamar S Grunfeld
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
- Department of Psychology, The Graduate Center, The City University of New York, New York, NY, USA
| | | | - Gina L Mazza
- Quantitative Health Sciences, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Sam C McGee
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
| | - Lisa Paulson
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | | | | | - Kris A Smith
- Department of Neurosurgery, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner University Medical Center, University of Arizona, Phoenix, AZ, USA
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Richard S Zimmerman
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Chandan Krishna
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Devi P Patra
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Naresh P Patel
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark Lyons
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Matthew Neal
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Kliment Donev
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Alyx B Porter
- Department of Neurology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Kathleen M Schmainda
- Departments of Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Leslie C Baxter
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA
- Departments of Psychiatry and Psychology, Mayo Clinic, AZ, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Anna Lasorella
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - C Chad Quarles
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin R Swanson
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michele Ceccarelli
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Neurological Surgery, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
14
|
Park YW, Vollmuth P, Foltyn-Dumitru M, Sahm F, Ahn SS, Chang JH, Kim SH. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1-Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J Magn Reson Imaging 2023; 58:677-689. [PMID: 37069792 DOI: 10.1002/jmri.28743] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
The fifth edition of the World Health Organization (WHO) classification of central nervous system tumors published in 2021 advances the role of molecular diagnostics in the classification of gliomas by emphasizing integrated diagnoses based on histopathology and molecular information and grouping tumors based on genetic alterations. Importantly, molecular biomarkers that provide important prognostic information are now a parameter for establishing tumor grades in gliomas. Understanding the 2021 WHO classification is crucial for radiologists for daily imaging interpretation as well as communication with clinicians. Although imaging features are not included in the 2021 WHO classification, imaging can serve as a powerful tool to impact the clinical practice not only prior to tissue confirmation but beyond. This review represents the first of a three-installment review series on the 2021 WHO classification for gliomas, glioneuronal tumors, and neuronal tumors and implications on imaging diagnosis. This Part 1 Review focuses on the major changes to the classification of gliomas and imaging findings on adult-type diffuse gliomas. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Philipp Vollmuth
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Martha Foltyn-Dumitru
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University College of Medicine, Heidelberg, Germany
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Farhat M, Fuller GN, Wintermark M, Chung C, Kumar VA, Chen M. Multifocal and multicentric glioblastoma: Imaging signature, molecular characterization, patterns of spread, and treatment. Neuroradiol J 2023:19714009231193162. [PMID: 37559514 DOI: 10.1177/19714009231193162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Multifocal and multicentric glioblastoma (GBM) or collectively, m-GBM, is an imaging diagnosis present in up to 34% of patients with GBM. Compared to unifocal disease, patients with m-GBM have worse outcomes owing to the enhanced aggressive nature of the disease and its resistance to currently available treatments. To improve the understanding of its complex behavior, many associations have been established between the radiologic findings of m-GBM and its gross histology, genetic composition, and patterns of spread. Additionally, the holistic knowledge of the exact mechanisms of m-GBM genesis and progression is crucial for identifying potential targets permitting enhanced diagnosis and treatment. In this review, we aim to provide a comprehensive summary of the cumulative knowledge of the unique molecular biology and behavior of m-GBM and the association of these features with neuroimaging.
Collapse
Affiliation(s)
- Maguy Farhat
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory N Fuller
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42:2155-2165. [PMID: 37277603 PMCID: PMC10913075 DOI: 10.1038/s41388-023-02738-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.
Collapse
Affiliation(s)
- David Eisenbarth
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Alan Wang
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Guberina N, Padeberg F, Pöttgen C, Guberina M, Lazaridis L, Jabbarli R, Deuschl C, Herrmann K, Blau T, Wrede KH, Keyvani K, Scheffler B, Hense J, Layer JP, Glas M, Sure U, Stuschke M. Location of Recurrences after Trimodality Treatment for Glioblastoma with Respect to the Delivered Radiation Dose Distribution and Its Influence on Prognosis. Cancers (Basel) 2023; 15:cancers15112982. [PMID: 37296942 DOI: 10.3390/cancers15112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND While prognosis of glioblastoma after trimodality treatment is well examined, recurrence pattern with respect to the delivered dose distribution is less well described. Therefore, here we examine the gain of additional margins around the resection cavity and gross-residual-tumor. METHODS All recurrent glioblastomas initially treated with radiochemotherapy after neurosurgery were included. The percentage overlap of the recurrence with the gross tumor volume (GTV) expanded by varying margins (10 mm to 20 mm) and with the 95% and 90% isodose was measured. Competing-risks analysis was performed in dependence on recurrence pattern. RESULTS Expanding the margins from 10 mm to 15 mm, to 20 mm, to the 95%- and 90% isodose of the delivered dose distribution with a median margin of 27 mm did moderately increase the proportion of relative in-field recurrence volume from 64% to 68%, 70%, 88% and 88% (p < 0.0001). Overall survival of patients with in-and out-field recurrence was similar (p = 0.7053). The only prognostic factor significantly associated with out-field recurrence was multifocality of recurrence (p = 0.0037). Cumulative incidences of in-field recurrences at 24 months were 60%, 22% and 11% for recurrences located within a 10 mm margin, outside a 10 mm margin but within the 95% isodose, or outside the 95% isodose (p < 0.0001). Survival from recurrence was improved after complete resection (p = 0.0069). Integrating these data into a concurrent-risk model shows that extending margins beyond 10 mm has only small effects on survival hardly detectable by clinical trials. CONCLUSIONS Two-thirds of recurrences were observed within a 10 mm margin around the GTV. Smaller margins reduce normal brain radiation exposure allowing for more extensive salvage radiation therapy options in case of recurrence. Prospective trials using margins smaller than 20 mm around the GTV are warranted.
Collapse
Affiliation(s)
- Nika Guberina
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Florian Padeberg
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Pöttgen
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Maja Guberina
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Tobias Blau
- Institute of Neuropathology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
- DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Jörg Hense
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Julian P Layer
- Department of Radiation Oncology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University of Bonn, University Hospital Bonn, 53127 Bonn, Germany
| | - Martin Glas
- Department of Neurology, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
18
|
Martin KC, Ma C, Yip S. From Theory to Practice: Implementing the WHO 2021 Classification of Adult Diffuse Gliomas in Neuropathology Diagnosis. Brain Sci 2023; 13:brainsci13050817. [PMID: 37239289 DOI: 10.3390/brainsci13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse gliomas are the most common type of primary central nervous system (CNS) neoplasm to affect the adult population. The diagnosis of adult diffuse gliomas is dependent upon the integration of morphological features of the tumour with its underlying molecular alterations, and the integrative diagnosis has become of increased importance in the fifth edition of the WHO classification of CNS neoplasms (WHO CNS5). The three major diagnostic entities of adult diffuse gliomas are as follows: (1) astrocytoma, IDH-mutant; (2) oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and (3) glioblastoma, IDH-wildtype. The aim of this review is to summarize the pathophysiology, pathology, molecular characteristics, and major diagnostic updates encountered in WHO CNS5 of adult diffuse gliomas. Finally, the application of implementing the necessary molecular tests for diagnostic workup of these entities in the pathology laboratory setting is discussed.
Collapse
Affiliation(s)
- Karina Chornenka Martin
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Crystal Ma
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
19
|
Ikeda S, Sakata A, Fushimi Y, Okuchi S, Arakawa Y, Makino Y, Mineharu Y, Nakajima S, Hinoda T, Yoshida K, Miyamoto S, Nakamoto Y. Telomerase reverse transcriptase promoter mutation and histologic grade in IDH wild-type histological lower-grade gliomas: The value of perfusion-weighted image, diffusion-weighted image, and 18F-FDG-PET. Eur J Radiol 2023; 159:110658. [PMID: 36571926 DOI: 10.1016/j.ejrad.2022.110658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE The telomerase reverse transcriptase promoter (TERTp) mutation is an unfavorable prognostic factor in isocitrate dehydrogenase-wildtype (IDHwt) histologically lower-grade astrocytoma (LGA), which was incorporated as a key component in the WHO 2021 classification of IDHwt LGA, replacing histologic grades in the WHO 2016 classification. The purpose of this study was to identify the imaging characteristics predictive of TERTp mutations in IDHwt LGA. METHODS This retrospective study was approved by our institutional review board. This single-center study retrospectively included 59 patients with pathologically confirmed IDHwt LGA with known TERTp mutation status. In addition to clinical information and morphological characteristics, semi-quantitative imaging biomarkers such as the tumor-to-normal ratio (T/N ratio) on 18F-FDG-PET, normalized apparent diffusion coefficient (nADC), and histogram parameters from normalized relative cerebral blood volume (nrCBV) maps were compared between (a) TERTp-wildtype and TERTp-mutant tumors or (b) grade II and grade III astrocytoma. A p value < 0.05 was considered significant. RESULTS There were no significant differences in the conventional imaging findings, T/N ratio on FDG-PET, nrCBV or ADC histogram metrics between IDHwt LGA with TERTp mutations and those without. Grade III IDHwt astrocytomas exhibited significantly higher nrCBV values, T/N ratio and lower ADC parameters than grade II IDHwt astrocytoma. CONCLUSIONS In patients with IDHwt LGA, T/N ratio, nrCBV values and nADC may be surrogate markers for predicting histologic grade, but are not useful for predicting TERTp mutations.
Collapse
Affiliation(s)
- Satoshi Ikeda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhide Makino
- Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa Mukaihata-cho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
20
|
Oraee-Yazdani S, Akhlaghpasand M, Rostami F, Golmohammadi M, Tavanaei R, Shokri G, Hafizi M, Oraee-Yazdani M, Zali AR, Soleimani M. Case report: Stem cell-based suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene reduces tumor progression in multifocal glioblastoma. Front Neurol 2023; 14:1060180. [PMID: 37034076 PMCID: PMC10075310 DOI: 10.3389/fneur.2023.1060180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The prognosis for glioblastoma multiforme (GBM), a malignant brain tumor, is poor despite recent advancements in treatments. Suicide gene therapy is a therapeutic strategy for cancer that requires a gene to encode a prodrug-activating enzyme which is then transduced into a vector, such as mesenchymal stem cells (MSCs). The vector is then injected into the tumor tissue and exerts its antitumor effects. Case presentation A 37-year-old man presented to our department with two evident foci of glioblastoma multiforme at the left frontal and left parietal lobes. The patient received an injection of bone marrow-derived MSCs delivering the herpes simplex virus thymidine kinase (HSV-tk) gene to the frontal focus of the tumor, followed by ganciclovir administration as a prodrug for 14 days. For follow-up, the patient was periodically assessed using magnetic resonance imaging (MRI). The growth and recurrence patterns of the foci were assessed. After the injection on 09 February 2019, the patient's follow-up appointment on 19 December 2019 MRI revealed a recurrence of parietal focus. However, the frontal focus had a slight and unremarkable enhancement. On the last follow-up (18 March 2020), the left frontal focus had no prominent recurrence; however, the size of the left parietal focus increased and extended to the contralateral hemisphere through the corpus callosum. Eventually, the patient passed away on 16 July 2020 (progression-free survival (PFS) = 293 days, overall survival (OS) = 513 days). Conclusion The gliomatous focus (frontal) treated with bone marrow-derived MSCs carrying the HSV-TK gene had a different pattern of growth and recurrence compared with the non-treated one (parietal). Trial registration IRCT20200502047277N2. Registered 10 May 2020-Retrospectively registered, https://eng.irct.ir/trial/48110.
Collapse
Affiliation(s)
- Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Saeed Oraee-Yazdani
| | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rostami
- Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Golmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Tavanaei
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Reza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Makino R, Higa N, Akahane T, Yonezawa H, Uchida H, Takajo T, Fujio S, Kirishima M, Hamada T, Yamahata H, Kamimura K, Yoshiura T, Yoshimoto K, Tanimoto A, Hanaya R. Alterations in EGFR and PDGFRA are associated with the localization of contrast-enhancing lesions in glioblastoma. Neurooncol Adv 2023; 5:vdad110. [PMID: 37744696 PMCID: PMC10516461 DOI: 10.1093/noajnl/vdad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Background Glioblastoma (GBM) is a malignant brain tumor, with radiological and genetic heterogeneity. We examined the association between radiological characteristics and driver gene alterations. Methods We analyzed the driver genes of 124 patients with IDH wild-type GBM with contrast enhancement using magnetic resonance imaging. We used a next-generation sequencing panel to identify mutations in driver genes and matched them with radiological information. Contrast-enhancing lesion localization of GBMs was classified into 4 groups based on their relationship with the subventricular zone (SVZ) and cortex (Ctx). Results The cohort included 69 men (55.6%) and 55 women (44.4%) with a mean age of 66.4 ± 13.3 years. EGFR and PDGFRA alterations were detected in 28.2% and 22.6% of the patients, respectively. Contrast-enhancing lesion touching both the SVZ and Ctx was excluded because it was difficult to determine whether it originated from the SVZ or Ctx. Contrast-enhancing lesions touching the SVZ but not the Ctx had significantly worse overall survival than non-SVZ lesions (441 days vs. 897 days, P = .002). GBM touching only the Ctx had a better prognosis (901 days vs. 473 days, P < .001) than non-Ctx lesions and was associated with EGFR alteration (39.4% vs. 13.2%, P = .015). Multiple contrast lesions were predominant in PDGFRA alteration and RB1-wild type (P = .036 and P = .031, respectively). Conclusions EGFR alteration was associated with cortical lesions. And PDGFRA alteration correlated with multiple lesions. Our results suggest that clarifying the association between driver genes and tumor localization may be useful in clinical practice, including prognosis prediction.
Collapse
Affiliation(s)
- Ryutaro Makino
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Mari Kirishima
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Taiji Hamada
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hitoshi Yamahata
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kiyohisa Kamimura
- Department of Advanced Radiological Imaging, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Yoshiura
- Department of Advanced Radiological Imaging, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Ryosuke Hanaya
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
22
|
Santellan-Hernandez JO, Alvarez-Castro JA, Aguilar-Hidalgo KM, Soto FC, Escalante JR, Ichikawa-Escamilla E, Silva MJA, Mejia-Perez SI. Multifocal glioblastoma and hormone replacement therapy in a transgender female. Surg Neurol Int 2023; 14:106. [PMID: 37025534 PMCID: PMC10070268 DOI: 10.25259/sni_104_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 04/08/2023] Open
Abstract
Background Glioblastoma multiforme represents approximately 60% of all brain tumors in adults. This malignancy shows a high level of biological and genetic heterogeneity associated with exceptional aggressiveness, leading to poor patient survival. One of the less common presentations is the appearance of primary multifocal lesions, which are linked with a worse prognosis. Among the multiple triggering factors in glioma progression, the administration of sex steroids and their analogs has been studied, but their role remains unclear to date. Case Description A 43-year-old transgender woman who has a personal pathological history of receiving intramuscular (IM) hormone treatment for 27 years based on algestone/estradiol 150 mg/10 mg/mL. Three months ago, the patient suddenly experienced hemiplegia and hemiparesis in her right lower extremity, followed by a myoclonic focal epileptic seizure, vertigo, and a right frontal headache with a visual analog scale of 10/10. Magnetic resonance imaging images revealed an intra-axial mass with poorly defined, heterogeneous borders, and thick borders with perilesional edema in the left parietal lobe, as well as a rounded hypodense image with well-defined walls in the right internal capsule. The tumor was resected, and samples were sent to the pathology department, which confirmed the diagnosis of wild-type glioblastoma. Conclusion This report identifies prolonged use of steroid-based hormone replacement therapy as the only predisposing factor in the oncogenesis of multifocal glioblastoma. It is an example that highlights the importance for physicians not to consider pathologies related to the human immunodeficiency virus rather than neoplasms in transgender patients in view of progressive neurological deterioration.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan Ramos Escalante
- Department of Neurosurgery, National Institute of Neurology and Neurosurgery “Manuel Velasco Suarez”, Mexico City, Mexico
| | - Eduardo Ichikawa-Escamilla
- Department of Neurosurgery, National Institute of Neurology and Neurosurgery “Manuel Velasco Suarez”, Mexico City, Mexico
| | | | - Sonia Iliana Mejia-Perez
- Department of Neurosurgical Oncology, Mexico City, Mexico
- Corresponding author: Sonia Iliana Mejia-Perez, Department of Neurosurgical Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico.
| |
Collapse
|
23
|
Wu L, Wu W, Zhang J, Zhao Z, Li L, Zhu M, Wu M, Wu F, Zhou F, Du Y, Chai RC, Zhang W, Qiu X, Liu Q, Wang Z, Li J, Li K, Chen A, Jiang Y, Xiao X, Zou H, Srivastava R, Zhang T, Cai Y, Liang Y, Huang B, Zhang R, Lin F, Hu L, Wang X, Qian X, Lv S, Hu B, Zheng S, Hu Z, Shen H, You Y, Verhaak RG, Jiang T, Wang Q. Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma. Cancer Discov 2022; 12:2820-2837. [PMID: 36122307 PMCID: PMC9716251 DOI: 10.1158/2159-8290.cd-22-0196] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/05/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Lingxiang Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Liangyu Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Min Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fengqi Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rui-Chao Chai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quanzhong Liu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Kening Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yinan Jiang
- John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatric Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatric Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tingting Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ruohan Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, China
| | - Lang Hu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sali Lv
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas.,Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Roel G.W. Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Qianghu Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| |
Collapse
|
24
|
Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. Molecular and Circulating Biomarkers in Patients with Glioblastoma. Int J Mol Sci 2022; 23:7474. [PMID: 35806478 PMCID: PMC9267689 DOI: 10.3390/ijms23137474] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most aggressive malignant tumor of the central nervous system with a low survival rate. The difficulty of obtaining this tumor material represents a major limitation, making the real-time monitoring of tumor progression difficult, especially in the events of recurrence or resistance to treatment. The identification of characteristic biomarkers is indispensable for an accurate diagnosis, the rigorous follow-up of patients, and the development of new personalized treatments. Liquid biopsy, as a minimally invasive procedure, holds promise in this regard. The purpose of this paper is to summarize the current literature regarding the identification of molecular and circulating glioblastoma biomarkers and the importance of their integration as a valuable tool to improve patient care.
Collapse
Affiliation(s)
- Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Sara Louati
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy of Rabat, Mohammed Vth University, Rabat 10000, Morocco;
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| |
Collapse
|
25
|
Two Patterns of White Matter Connection in Multiple Gliomas: Evidence from Probabilistic Fiber Tracking. J Clin Med 2022; 11:jcm11133693. [PMID: 35806978 PMCID: PMC9267772 DOI: 10.3390/jcm11133693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Multiple lesions are uncommon in brain gliomas, and their pathophysiology is poorly understood. Invasive growth along white matter tracts is an important clinicopathological characteristic of gliomas, and a major factor in a poor therapeutic outcome. Here, we used probabilistic fiber tracking and cluster analysis to investigate the inter-focal connectivity relationships of multiple gliomas, in order to seek inferential evidence of common origin. Methods: MRI scans of 46 patients with multiple gliomas were retrospectively analyzed. Before surgery, all patients underwent multimodal functional MR imaging, including diffusion tensor imaging, enhanced 3D T1-weighted imaging, diffusion-weighted imaging, 1H MR spectroscopy, and dynamic susceptibility contrast perfusion-weighted imaging. Probabilistic fiber tracking was used to quantify white matter connectivity between neoplastic foci. Hierarchical cluster analysis was performed to identify patterns of white matter connection. Results: Cluster analysis reveals two patterns of connectivity, one with smaller, and one with greater, connectivity (2675 ± 1098 versus 30432 ± 22707, p < 0.0001). The two subgroups show significant differences in relative cerebral blood volume (2.31 ± 0.95 versus 1.73 ± 0.48, p = 0.002) and lipid/creatine ratio (0.32 ± 0.22 versus 0.060 ± 0.051, p = 0.006). Conclusion: Two distinct patterns of white matter connection exist in multiple gliomas. Those with lower connectivity tend to have independent origins, and can be termed true multicentric glioma, whereas those with greater connectivity tend to share common origin, and spread along white matter tracts. True multicentric gliomas have higher vascularity and more intratumoral necrosis. These findings may help to develop personalized therapeutic strategies for multiple gliomas.
Collapse
|
26
|
Koh L, Novera W, Lim SW, Chong YK, Pang QY, Low D, Ang BT, Tang C. Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacol Res 2022; 182:106308. [PMID: 35714825 DOI: 10.1016/j.phrs.2022.106308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
This review describes recent technological advances applied to glioblastoma (GBM), a brain tumor with dismal prognosis. International consortial efforts suggest the presence of molecular subtypes within histologically identical GBM tumors. This emphasizes that future treatment decisions should no longer be made based solely on morphological analyses, but must now take into consideration such molecular and cellular heterogeneity. The use of single-cell technologies has advanced our understanding and assignation of functional subtypes revealing therapeutic vulnerabilities. Our team has developed stratification approaches in the past few years, and we have been able to identify patient cohorts enriched for various signaling pathways. Importantly, our Glioportal brain tumor resource has been established under the National Neuroscience Institute Tissue Bank in 2021. This resource offers preclinical capability to validate working hypotheses established from patient clinical datasets. This review highlights recent developments with the ultimate goal of assigning functional meaning to molecular subtypes, revealing therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lynnette Koh
- Department of Research, National Neuroscience Institute, Singapore.
| | - Wisna Novera
- Department of Research, National Neuroscience Institute, Singapore
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, Singapore
| | - Qing You Pang
- Department of Research, National Neuroscience Institute, Singapore
| | - David Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
27
|
Yan Y, Dai W, Mei Q. Multicentric Glioma: An Ideal Model to Reveal the Mechanism of Glioma. Front Oncol 2022; 12:798018. [PMID: 35747806 PMCID: PMC9209746 DOI: 10.3389/fonc.2022.798018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
As a special type of glioma, multicentric glioma provides an ideal pathological model for glioma research. According to the stem-cell-origin theory, multiple lesions of multicentric glioma share the same neuro-oncological origin, both in gene level and in cell level. Although the number of studies focusing on genetic evolution in gliomas with the model of multicentric gliomas were limited, some mutations, including IDH1 mutations, TERTp mutations and PTEN deletions, are found to be at an early stage in the process of genetic aberrance during glioma evolution based on the results of these studies. This article reviews the clinical reports and genetic studies of multicentric glioma, and intends to explain the various clinical phenomena of multicentric glioma from the perspective of genetic aberrance accumulation and tumor cell evolution. The malignant degree of a glioma is determined by both the tumorigenicity of early mutant genes, and the stemness of early suffered cells.
Collapse
Affiliation(s)
- Yong Yan
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wei Dai
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyong Mei
- Departmentof Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
28
|
Sun H, Sun R, Song X, Gu W, Shao Y. Mechanism and clinical value of exosomes and exosomal contents in regulating solid tumor radiosensitivity. J Transl Med 2022; 20:189. [PMID: 35484557 PMCID: PMC9052527 DOI: 10.1186/s12967-022-03392-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Radiotherapy is among the routine treatment options for malignant tumors. And it damages DNA and other cellular organelles in target cells by using ionizing radiation produced by various rays, killing the cells. In recent years, multiple studies have demonstrated that exosomes are mechanistically involved in regulating tumor formation, development, invasion and metastasis, and immune evasion. The latest research shows that radiation can affect the abundance and composition of exosomes as well as cell-to-cell communication. In the environment, exosome-carried miRNAs, circRNA, mRNA, and proteins are differentially expressed in cancer cells, while these molecules play a role in numerous biological processes, including the regulation of oncogene expression, mediation of signaling pathways in cancer cells, remodeling of tumor-related fibroblasts, regulation of cell radiosensitivity, and so forth. Therefore, elucidation of the mechanism underlying the role of exosomes in radiotherapy of malignant tumors is crucial for improving the efficacy of radiotherapy. This review will summarize the research advances in radiosensitivity of malignant tumors related to exosomes.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Rui Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xing Song
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
29
|
Hasanau T, Pisarev E, Kisil O, Nonoguchi N, Le Calvez-Kelm F, Zvereva M. Detection of TERT Promoter Mutations as a Prognostic Biomarker in Gliomas: Methodology, Prospects, and Advances. Biomedicines 2022; 10:728. [PMID: 35327529 PMCID: PMC8945783 DOI: 10.3390/biomedicines10030728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
This article reviews the existing approaches to determining the TERT promoter mutational status in patients with various tumoral diseases of the central nervous system. The operational characteristics of the most common methods and their transferability in medical practice for the selection or monitoring of personalized treatments based on the TERT status and other related molecular biomarkers in patients with the most common tumors, such as glioblastoma, oligodendroglioma, and astrocytoma, are compared. The inclusion of new molecular markers in the course of CNS clinical management requires their rapid and reliable assessment. Availability of molecular evaluation of gliomas facilitates timely decisions regarding patient follow-up with the selection of the most appropriate treatment protocols. Significant progress in the inclusion of molecular biomarkers for their subsequent clinical application has been made since 2016 when the WHO CNS classification first used molecular markers to classify gliomas. In this review, we consider the methodological approaches used to determine mutations in the promoter region of the TERT gene in tumors of the central nervous system. In addition to classical molecular genetical methods, other methods for determining TERT mutations based on mass spectrometry, magnetic resonance imaging, next-generation sequencing, and nanopore sequencing are reviewed with an assessment of advantages and disadvantages. Beyond that, noninvasive diagnostic methods based on the determination of the mutational status of the TERT promoter are discussed.
Collapse
Affiliation(s)
- Tsimur Hasanau
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Eduard Pisarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Kisil
- Gause Institute of New Antibiotics, 119021 Moscow, Russia;
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Florence Le Calvez-Kelm
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Maria Zvereva
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
30
|
Gai QJ, Fu Z, He J, Mao M, Yao XX, Qin Y, Lan X, Zhang L, Miao JY, Wang YX, Zhu J, Yang FC, Lu HM, Yan ZX, Chen FL, Shi Y, Ping YF, Cui YH, Zhang X, Liu X, Yao XH, Lv SQ, Bian XW, Wang Y. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther 2022; 7:33. [PMID: 35105853 PMCID: PMC8807725 DOI: 10.1038/s41392-021-00855-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Platelet-derived growth subunit A (PDGFA) plays critical roles in development of glioblastoma (GBM) with substantial evidence from TCGA database analyses and in vivo mouse models. So far, only platelet-derived growth receptor α (PDGFRA) has been identified as receptor for PDGFA. However, PDGFA and PDGFRA are categorized into different molecular subtypes of GBM in TCGA_GBM database. Our data herein further showed that activity or expression deficiency of PDGFRA did not effectively block PDGFA activity. Therefore, PDGFRA might be not necessary for PDGFA function.To profile proteins involved in PDGFA function, we performed co-immunoprecipitation (Co-IP) and Mass Spectrum (MS) and delineated the network of PDGFA-associated proteins for the first time. Unexpectedly, the data showed that EPHA2 could be temporally activated by PDGFA even without activation of PDGFRA and AKT. Furthermore, MS, Co-IP, in vitro binding thermodynamics, and proximity ligation assay consistently proved the interaction of EPHA2 and PDGFA. In addition, we observed that high expression of EPHA2 leaded to upregulation of PDGF signaling targets in TCGA_GBM database and clinical GBM samples. Co-upregulation of PDGFRA and EPHA2 leaded to worse patient prognosis and poorer therapeutic effects than other contexts, which might arise from expression elevation of genes related with malignant molecular subtypes and invasive growth. Due to PDGFA-induced EPHA2 activation, blocking PDGFRA by inhibitor could not effectively suppress proliferation of GBM cells, but simultaneous inhibition of both EPHA2 and PDGFRA showed synergetic inhibitory effects on GBM cells in vitro and in vivo. Taken together, our study provided new insights on PDGFA function and revealed EPHA2 as a potential receptor of PDGFA. EPHA2 might contribute to PDGFA signaling transduction in combination with PDGFRA and mediate the resistance of GBM cells to PDGFRA inhibitor. Therefore, combination of inhibitors targeting PDGFRA and EHA2 represented a promising therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Qu-Jing Gai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Xue Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Qin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei-Cheng Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui-Min Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Biobank of Institute of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fang-Lin Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
31
|
Lv SQ, Fu Z, Yang L, Li QR, Zhu J, Gai QJ, Mao M, He J, Qin Y, Yao XX, Lan X, Wang YX, Lu HM, Xiang Y, Zhang ZX, Huang GH, Yang W, Kang P, Sun Z, Shi Y, Yao XH, Bian XW, Wang Y. Comprehensive omics analyses profile genesets related with tumor heterogeneity of multifocal glioblastomas and reveal LIF/CCL2 as biomarkers for mesenchymal subtype. Theranostics 2022; 12:459-473. [PMID: 34987659 PMCID: PMC8690928 DOI: 10.7150/thno.65739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Rationale: Around 10%-20% patients with glioblastoma (GBM) are diagnosed with more than one tumor lesions or multifocal GBM (mGBM). However, the understanding on genetic, DNA methylomic, and transcriptomic characteristics of mGBM is still limited. Methods: In this study, we collected nine tumor foci from three mGBM patients followed by whole genome sequencing, whole genome bisulfite sequencing, RNA sequencing, and immunohistochemistry. The data were further examined using public GBM databases and GBM cell line. Results: Analysis on genetic data confirmed common features of GBM, including gain of chr.7 and loss of chr.10, loss of critical tumor suppressors, high frequency of PDGFA and EGFR amplification. Through profiling DNA methylome of individual tumor foci, we found that promoter methylation status of genes involved in detection of chemical stimulus, immune response, and Hippo/YAP1 pathway was significantly changed in mGBM. Although both CNV and promoter methylation alteration were involved in heterogeneity of different tumor foci from same patients, more CNV events than promoter hypomethylation events were shared by different tumor foci, implying CNV were relatively earlier than promoter methylation alteration during evolution of different tumor foci from same mGBM. Moreover, different tumor foci from same mGBM assumed different molecular subtypes and mesenchymal subtype was prevalent in mGBM, which might explain the worse prognosis of mGBM than single GBM. Interestingly, we noticed that LIF and CCL2 was tightly correlated with mesenchymal subtype tumor focus in mGBM and predicted poor survival of GBM patients. Treatment with LIF and CCL2 produced mesenchymal-like transcriptome in GBM cells. Conclusions: Together, our work herein comprehensively profiled multi-omics features of mGBM and emphasized that components of extracellular microenvironment, such as LIF and CCL2, contributed to the evolution and prognosis of tumor foci in mGBM patients.
Collapse
|
32
|
Abstract
Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.
Collapse
|
33
|
Catalase Overexpression Drives an Aggressive Phenotype in Glioblastoma. Antioxidants (Basel) 2021; 10:antiox10121988. [PMID: 34943091 PMCID: PMC8750785 DOI: 10.3390/antiox10121988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.
Collapse
|
34
|
Koutsouras GW, Amsellem A, Richardson T, Babu H. Multifocal spinal glioblastoma and leptomeningeal carcinomatosis in an elderly male with hydrocephalus and myelopathy. Surg Neurol Int 2021; 12:595. [PMID: 34992912 PMCID: PMC8720450 DOI: 10.25259/sni_985_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Primary spinal glioblastoma multiforme with multifocal leptomeningeal enhancement is rarely diagnosed or documented. We describe a rare case of multifocal spinal isocitrate dehydrogenase (IDH) wild type glioblastoma with leptomeningeal carcinomatosis in an elderly male presenting with a chronic subdural hematoma, progressive myelopathy, and communicating hydrocephalus. CASE DESCRIPTION A 77-year-old male with a medical history of an acoustic schwannoma, anterior cranial fossa meningioma, and immune thrombocytopenic purpura presented with right-sided weakness after repeated falls. Magnetic resonance imaging of the brain and spine demonstrated a left-sided subdural hematoma, leptomeningeal enhancement of the brain and skull base, ventricles, and the cranial nerves, and along with florid enhancement of the leptomeninges from the cervicomedullary junction to the cauda equina. Most pertinent was focal thickening of the leptomeninges at T1 and T6 with mass effect on the spinal cord. A T6 laminectomy with excisional biopsy of the lesion was planned and completed. Findings were significant for glioblastoma the World Health Organization Grade IV IDH 1 wild type of the thoracic spinal cord. Subsequently, his mental status declined, and he developed progressive hydrocephalus which required cerebrospinal fluid diversion. Unfortunately, the patient had minimal improvement in his neurological exam and unfortunately died 2 months later. CONCLUSION In a review of the limited literature describing similar cases of primary spinal glioblastoma, the prognosis of this aggressive tumor remains unfavorable, despite aggressive treatment options. The purpose of this report is to increase awareness of this rare condition as a potential differential diagnosis in patients presenting with multifocal invasive spinal lesions.
Collapse
Affiliation(s)
- George W. Koutsouras
- Department of Neurosurgery, Upstate University Hospital, Syracuse, New York, United States
| | - Annelle Amsellem
- Department of Internal Medicine, New York Institute of Technology College of Osteopathic Medicine, Glen Head, New York, United States
| | - Timothy Richardson
- Department of Pathology, Upstate University Hospital, Syracuse, New York, United States
| | - Harish Babu
- Department of Neurosurgery, Upstate University Hospital, Syracuse, New York, United States
| |
Collapse
|
35
|
Wang R, Song Y, Hu T, Wang X, Jiang Y, Zhang D, Yu J, Han S, Kan L. Decreased CD8 + Lymphocytic Infiltration in Multifocal and Multicentric Glioblastomas. Front Oncol 2021; 11:748277. [PMID: 34646781 PMCID: PMC8503598 DOI: 10.3389/fonc.2021.748277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Multifocal and multicentric glioblastomas (mGBMs) are associated with a poorer prognosis compared to unifocal glioblastoma (uGBM). The presence of CD8+ tumor-infiltrating lymphocytes (TILs) is predictive of clinical outcomes in human malignancies. Here, we examined the CD8+ lymphocytic infiltration in mGBMs. Methods The clinical data of 57 consecutive IDH wildtype primary mGBM patients with histopathological diagnoses were retrospectively reviewed. CD8+ TILs were quantitatively evaluated by immunohistochemical staining. The survival function of CD8+ TILs was assessed by Kaplan–Meier analysis and Cox proportional hazard models. Results No significant difference in the concentration of CD8+ TILs was observed among foci from the same patient (P>0.150). The presence of CD8+ TILs was similar between multifocal and multicentric GBMs (P=0.885). The concentration of CD8+ TILs was significantly lower in mGBMs than in uGBMs (P=0.002). In mGBM patients, the CD8+ TIL level was associated with preoperative KPS (P=0.018). The median overall survival (OS) of the 57 mGBMs was 9 months. A low CD8+ TIL level (multivariate HR 4.404, 95% CI 1.954-9.926, P=0.0004) was an independent predictor of poor OS, while postoperative temozolomide chemotherapy (multivariate HR 6.076, 95% CI 2.330-15.842, P=0.0002) was independently associated with prolonged OS in mGBMs. Conclusions Decreased CD8+ TIL levels potentially correlate with unfavorable clinical outcome in mGBMs, suggesting an influence of the local immuno-microenvironment on the progression of mGBMs.
Collapse
Affiliation(s)
- Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Juanhan Yu
- Department of Pathology, China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Young JS, Gogos AJ, Pereira MP, Morshed RA, Li J, Barkovich MJ, Hervey-Jumper SL, Berger MS. Effects of ventricular entry on patient outcome during glioblastoma resection. J Neurosurg 2021; 135:989-997. [PMID: 33418530 DOI: 10.3171/2020.7.jns201362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/29/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tumor proximity to the ventricle and ventricular entry (VE) during surgery have both been associated with worse prognoses; however, the interaction between these two factors is poorly understood. Given the benefit of maximal tumor resection, it is imperative for surgical planning and technique to know if VE has negative consequences for patient survival and tumor dissemination. METHODS The University of California, San Francisco tumor registry was searched for patients with newly diagnosed and recurrent supratentorial glioblastoma (GBM) who underwent resection by the senior author between 2013 and 2018. Tumor location with respect to the subventricular zone (SVZ), size, and extent of resection were assessed using pre- and postoperative imaging. VE was determined by postoperative imaging and/or the operative report. RESULTS In this 200-patient cohort of newly diagnosed and recurrent GBM, 26.5% of patients had VE during resection. Patients with VE were more likely to have preexisting subependymal disease (41.5% vs 15.0%, p < 0.001). Comparing patients with VE to those without VE, there was no difference in the rates of postoperative hydrocephalus (1.9% vs 4.8%, p = 0.36), ventriculoperitoneal shunting (0% vs 3.4%, p = 0.17), pseudomeningoceles (7.5% vs 5.4%, p = 0.58), or subdural hematomas (11.3% vs 3.4%, p = 0.07). Importantly, rates of subsequent leptomeningeal disease (7.5% vs 10.2%, p = 0.57) and distant parenchymal recurrence (17.0% vs 23.1%, p = 0.35) were not different between the groups. Newly diagnosed patients with tumors contacting the SVZ (type I or II) had worse survival than patients with tumors that did not contact the SVZ (type III or IV) (1.27 vs 1.84 years, p = 0.014, HR 1.8, 95% CI 1.08-3.03), but VE was not associated with worse survival in these patients with high-risk SVZ type I and II tumors (1.15 vs 1.68 years, p = 0.151, HR 0.59, 95% CI 0.26-1.34). CONCLUSIONS VE was well tolerated, with postoperative complications being rare events. There was no increase in leptomeningeal spread or distant parenchymal recurrence in patients with VE. Finally, although survival was worse for patients with preoperative subependymal disease, VE did not change survival for patients with tumors contacting the ventricle. Therefore, VE during GBM resection is not associated with adverse patient outcomes and should be used by surgeons to enhance extent of resection.■ CLASSIFICATION OF EVIDENCE Type of question: therapeutic; study design: retrospective cohort; evidence: class II.
Collapse
Affiliation(s)
| | | | | | | | - Jing Li
- 1Department of Neurological Surgery
| | - Matthew J Barkovich
- 3Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | | | | |
Collapse
|
37
|
Agopyan-Miu AHCW, Banu MA, Miller ML, Troy C, Hargus G, Canoll P, Wang TJC, Feldstein N, Haggiagi A, McKhann GM. Synchronous supratentorial and infratentorial oligodendrogliomas with incongruous IDH1 mutations, a case report. Acta Neuropathol Commun 2021; 9:160. [PMID: 34587990 PMCID: PMC8482672 DOI: 10.1186/s40478-021-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Infratentorial oligodendrogliomas, a rare pathological entity, are generally considered metastatic lesions from supratentorial primary tumors. Here, we report the case of a 23-year-old man presenting with a histopathologically confirmed right precentral gyrus grade 2 oligodendroglioma and a concurrent pontine grade 3 oligodendroglioma. The pontine lesion was biopsied approximately a year after the biopsy of the precentral lesion due to disease progression despite 4 cycles of procarbazine-CCNU-vincristine (PCV) chemotherapy and stable supratentorial disease. Histology and genetic analysis of the pontine biopsy were consistent with grade 3 oligodendroglioma, and comparison of the two lesions demonstrated common 1p/19q co-deletions and TERT promoter mutations but distinct IDH1 mutations, with a non-canonical IDH1 R132G mutation identified in the infratentorial lesion and a R132H mutation identified in the cortical lesion. Initiation of Temozolomide led to complete response of the supratentorial lesion and durable disease control, while Temozolomide with subsequent radiation therapy of 54 Gy in 30 fractions resulted in partial response of the pontine lesion. This case report supports possible distinct molecular pathogenesis in supratentorial and infratentorial oligodendrogliomas and raises questions about the role of different IDH1 mutant isoforms in explaining treatment resistance to different chemotherapy regimens. Importantly, this case suggests that biopsies of all radiographic lesions, when feasible and safe, should be considered in order to adequately guide management in multicentric oligodendrogliomas.
Collapse
|
38
|
Battista F, Muscas G, Scoccianti S, Buccoliero AM, Gadda D, Della Puppa A. Brain low-grade gliomas with high-grade spinal localization. Report of a clinical case and systematic literature review. J Neurosurg Sci 2021; 66:151-157. [PMID: 34545732 DOI: 10.23736/s0390-5616.21.05446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Oncological aggressiveness and the ability to present distant localizations are known in high-grade gliomas (HGGs), but the knowledge about the possible aggressiveness of LGGs is scarce, especially concerning possible spinal localization. EVIDENCE ACQUISITION A systematic search of LGGs with spinal localization on the three primary online databases (PubMed/MEDLINE, Embase, and Cochrane) was conducted. We included adult patients with histological diagnosis of intracranial LGG and specified WHO grade showing a remote spinal localization during follow-up. Additionally, we present a case of a left temporal LGG presenting a spinal localization fourteen years after the first appearance. We compared the survival rates of LGGs in our series with those of LGGs without spinal localizations. EVIDENCE SYNTHESIS Seven articles dealing with the subject and eight patients were considered (including our case), with a mean age at diagnosis of 42.25 years (range 26-69 years). The mean latency between a diagnosis of intracranial LGGs and a spinal localization occurrence was 7.37 years (range 2-14 years), and an increased WHO grade of the spinal localization compared to the brain LGG was observed in all patients. There was no sign of intracranial progression at the time of spinal glioma diagnosis in four cases, including ours. Survival at ten years was 28% against a 10-year survival rate of 65-71% for LGGs without distant localization, as reported in the literature. CONCLUSIONS Spinal metastasis of intracranial LGGs is an adverse prognostic factor. Surgical violation of ventricles can play a role in the pathophysiology of CSF spread of tumor cells in LGGs.
Collapse
Affiliation(s)
- Francesca Battista
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Florence, Italy -
| | - Giovanni Muscas
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Florence, Italy
| | - Silvia Scoccianti
- Department of Radiation Oncology, Santa Maria Annunziata Hospital, Florence, Italy
| | - Anna Maria Buccoliero
- Pathology Unit, Meyer Children's Hospital and University of Florence, Florence, Italy
| | - Davide Gadda
- Department of Neuroradiology, Careggi University Hospital and University of Florence, Florence, Italy
| | - Alessandro Della Puppa
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), Careggi University Hospital, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Fleischmann DF, Schön R, Corradini S, Bodensohn R, Hadi I, Hofmaier J, Forbrig R, Thon N, Dorostkar M, Belka C, Niyazi M. Multifocal high-grade glioma radiotherapy safety and efficacy. Radiat Oncol 2021; 16:165. [PMID: 34454558 PMCID: PMC8400399 DOI: 10.1186/s13014-021-01886-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Multifocal manifestation of high-grade glioma is a rare disease with very unfavourable prognosis. The pathogenesis of multifocal glioma and pathophysiological differences to unifocal glioma are not fully understood. The optimal treatment of patients suffering from multifocal high-grade glioma is not defined in the current guidelines, therefore individual case series may be helpful as guidance for clinical decision-making. Methods Patients with multifocal high-grade glioma treated with conventionally fractionated radiation therapy (RT) in our institution with or without concomitant chemotherapy between April 2011 and April 2019 were retrospectively analysed. Multifocality was neuroradiologically assessed and defined as at least two independent contrast-enhancing foci in the MRI T1 contrast-enhanced sequence. IDH mutational status and MGMT methylation status were assessed from histopathology records. GTV, PTV as well as the V30Gy, V45Gy and D2% volumes of the brain were analysed. Overall and progression-free survival were calculated from the diagnosis until death and from start of radiation therapy until diagnosis of progression of disease in MRI for all patients. Results 20 multifocal glioma cases (18 IDH wild-type glioblastoma cases, one diffuse astrocytic glioma, IDH wild-type case with molecular features of glioblastoma and one anaplastic astrocytoma, IDH wild-type case) were included into the analysis. Resection was performed in two cases and stereotactic biopsy only in 18 cases before the start of radiation therapy. At the start of radiation therapy patients were 61 years old in median (range 42–84 years). Histopathological examination showed IDH wild-type in all cases and MGMT promotor methylation in 11 cases (55%). Prescription schedules were 60 Gy (2 Gy × 30), 59.4 Gy (1.8 Gy × 33), 55 Gy (2.2 Gy × 25) and 50 Gy (2.5 Gy × 20) in 15, three, one and one cases, respectively. Concomitant temozolomide chemotherapy was applied in 16 cases, combined temozolomide/lomustine chemotherapy was applied in one case and concomitant bevacizumab therapy in one case. Median number of GTVs was three. Median volume of the sum of the GTVs was 26 cm3. Median volume of the PTV was 425.7 cm3 and median PTV to brain ratio 32.8 percent. Median D2% of the brain was 61.5 Gy (range 51.2–62.7) and median V30Gy and V45 of the brain were 59.9 percent (range 33–79.7) and 40.7 percent (range 14.9–64.1), respectively. Median survival was eight months (95% KI 3.6–12.4 months) and median progression free survival after initiation of RT five months (95% CI 2.8–7.2 months). Grade 2 toxicities were detected in eight cases and grade 3 toxicities in four cases consisting of increasing edema in three cases and one new-onset seizure. One grade 4 toxicity was detected, which was febrile neutropenia related to concomitant chemotherapy. Conclusion Conventionally fractionated RT with concomitant chemotherapy could safely be applied in multifocal high-grade glioma in this case series despite large irradiation treatment fields.
Collapse
Affiliation(s)
- Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolph Schön
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Indrawati Hadi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jan Hofmaier
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Mario Dorostkar
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), partner site, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany. .,German Cancer Consortium (DKTK), partner site, Munich, Germany.
| |
Collapse
|
40
|
Lei H, Gertz EM, Schäffer AA, Fu X, Tao Y, Heselmeyer-Haddad K, Torres I, Li G, Xu L, Hou Y, Wu K, Shi X, Dean M, Ried T, Schwartz R. Tumor heterogeneity assessed by sequencing and fluorescence in situ hybridization (FISH) data. Bioinformatics 2021; 37:4704-4711. [PMID: 34289030 PMCID: PMC8665747 DOI: 10.1093/bioinformatics/btab504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Computational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation (SV) events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. RESULTS In the present work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization (miFISH) to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. By integrating such information in an integer linear programming (ILP) framework, we demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence, and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data. AVAILABILITY Source code is available on Github at https://github.com/CMUSchwartzLab/FISH_deconvolution.
Collapse
Affiliation(s)
- Haoyun Lei
- Computational Biology Dept, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - E Michael Gertz
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuecong Fu
- Shenzhen Luohu People's Hospital, Shenzhen, 518000, China
| | - Yifeng Tao
- Computational Biology Dept, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Kerstin Heselmeyer-Haddad
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Irianna Torres
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guibo Li
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark
| | - Liqin Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Yong Hou
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark
| | - Kui Wu
- Department of Biology, University of Copenhagen, Copenhagen, 1599, Denmark
| | - Xulian Shi
- Shenzhen Luohu People's Hospital, Shenzhen, 518000, China
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, U.S. National Institutes of Health, Gaithersburg, MD, 20814, USA
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Russell Schwartz
- Computational Biology Dept, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.,Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
41
|
Brognaro E. The inverse paradigm and the ancestral cell of IDH-wildtype glioblastoma. Clin Transl Oncol 2021; 24:13-23. [PMID: 34152549 DOI: 10.1007/s12094-021-02663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/30/2022]
Abstract
Rethinking IDH-wildtype glioblastoma through its unique features can help researchers find innovative and effective treatments. It is currently emerging that, after decades of therapeutic impasse, some traditional concepts regarding IDH-wildtype glioblastoma need to be supplemented and updated to overcome therapeutic resistance. Indeed, multiple clinical aspects and recent indirect and direct experimental data are providing evidence that the supratentorial brain parenchyma becomes entirely and quiescently micro-infiltrated long before primary tumor bulk growth. Furthermore, they are indicating that the known micro-infiltration that occurs during the IDH-wildtype glioblastoma growth and evolution is not at the origin of distant relapses. It follows that the ubiquitous supratentorial brain parenchyma micro-infiltration as a source for the development of widespread distant recurrences is actually due to the silent stage that precedes tumor growth rather than to the latter. All this implies that, in addition to the heterogeneity of the primary bulk, there is a second crucial cause of therapeutic resistance that has never hitherto been identified and challenged. In this regard, the ancestral founder cancer stem cell (CSC) appears as the key cell that can link the two causes of resistance.
Collapse
Affiliation(s)
- Enrico Brognaro
- Department of Neurosurgery, S. Maria della Misericordia Hospital, Viale Tre Martiri, 45100, Rovigo, Italy.
| |
Collapse
|
42
|
Park YW, Park JE, Ahn SS, Kim EH, Kang SG, Chang JH, Kim SH, Choi SH, Kim HS, Lee SK. Magnetic Resonance Imaging Parameters for Noninvasive Prediction of Epidermal Growth Factor Receptor Amplification in Isocitrate Dehydrogenase-Wild-Type Lower-Grade Gliomas: A Multicenter Study. Neurosurgery 2021; 89:257-265. [PMID: 33913501 DOI: 10.1093/neuros/nyab136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) amplification status of isocitrate dehydrogenase-wild-type (IDHwt) lower-grade gliomas (LGGs; grade II/III) is one of the key markers for diagnosing molecular glioblastoma. However, the association between EGFR status and imaging parameters is unclear. OBJECTIVE To identify noninvasive imaging parameters from diffusion-weighted and dynamic susceptibility contrast imaging for predicting the EGFR amplification status of IDHwt LGGs. METHODS A total of 86 IDHwt LGG patients with known EGFR amplification status (62 nonamplified and 24 amplified) from 3 tertiary institutions were included. Qualitative and quantitative imaging features, including histogram parameters from apparent diffusion coefficient (ADC), normalized cerebral blood volume (nCBV), and normalized cerebral blood flow (nCBF), were assessed. Univariable and multivariable logistic regression models were constructed. RESULTS On multivariable analysis, multifocal/multicentric distribution (odds ratio [OR] = 11.77, P = .006), mean ADC (OR = 0.01, P = .044), 5th percentile of ADC (OR = 0.01, P = .046), and 95th percentile of nCBF (OR = 1.24, P = .031) were independent predictors of EGFR amplification. The diagnostic performance of the model with qualitative imaging parameters increased significantly when quantitative imaging parameters were added, with areas under the curves of 0.81 and 0.93, respectively (P = .004). CONCLUSION The presence of multifocal/multicentric distribution patterns, lower mean ADC, lower 5th percentile of ADC, and higher 95th percentile of nCBF may be useful imaging biomarkers for EGFR amplification in IDHwt LGGs. Moreover, quantitative imaging biomarkers may add value to qualitative imaging parameters.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Pandkar MR, Dhamdhere SG, Shukla S. Oxygen gradient and tumor heterogeneity: The chronicle of a toxic relationship. Biochim Biophys Acta Rev Cancer 2021; 1876:188553. [PMID: 33915221 DOI: 10.1016/j.bbcan.2021.188553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The commencement of cancer is attributed to one or a few cells that become rogue and attain the property of immortality. The inception of distinct cancer cell clones during the hyperplastic and dysplastic stages of cancer progression is the utimate consequence of the dysregulated cellular pathways and the proliferative potential itself. Furthermore, a critical factor that adds a layer of complexity to this pre-existent intra-tumoral heterogeneity (ITH) is the foundation of an oxygen gradient, that is established due to the improper architecture of the tumor vasculature. Therefore, as a resultant effect, the poorly oxygenated regions thus formed and characterized as hypoxic, promote the emergence of aggressive and treatment-resistant cancer cell clones. The extraordinary property of the hypoxic cancer cells to exist harmoniously with cancerous and non-cancerous cells in the tumor microenvironment (TME) further increases the intricacies of ITH. Here in this review, the pivotal influence of differential oxygen concentrations in shaping the ITH is thoroughly discussed. We also emphasize on the vitality of the interacting networks that govern the overall fate of oxygen gradient-dependent origin of tumor heterogeneity. Additionally, the implications of less-appreciated reverse Warburg effect, a symbiotic metabolic coupling, and the associated epigenetic regulation of rewiring of cancer metabolism in response to oxygen gradients, have been highlighted as critical influencers of ITH.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Shruti G Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
44
|
Ishi Y, Okada H, Okamoto M, Motegi H, Tanaka S, Mitsuhashi T, Yamaguchi S. Distinct TERT promoter C228T and C250T mutations in a patient with an oligodendroglioma: A case report. Neuropathology 2021; 41:236-242. [PMID: 33899270 DOI: 10.1111/neup.12727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
The majority of oligodendroglial tumors harbor mutations in the telomerase reverse transcriptase (TERT) gene (TERT) promoter and the isocitrate dehydrogenase 1/2 (IDH1/2) gene (IDH1/2), as well as 1p/19q codeletion. Generally, TERT promoter mutations, C250T and C228T, are mutually exclusive. We present a case of oligodendroglioma harboring both C250T and C228T mutations in TERT promoter. A 38-year-old man presented with grand mal seizures and underwent a resection surgery for a left frontal lobe tumor. He was pathologically diagnosed as having oligodendroglioma and was carefully observed. At 48 years of age, he underwent another resection surgery due to tumor regrowth, with the pathological diagnosis of anaplastic oligodendroglioma. Genetic analysis of the initial tumor specimen revealed IDH1 R132H mutation and both C250T and C228T mutations in TERT promoter. Using mutation-specific primers, two mutations were considered to be distributed in different alleles. In the tumor specimen obtained during the second surgery, IDH1 R132H mutation was detected to be similar to that of the initial specimen; however, only C228T mutation was detected in TERT promoter. The 1p/19q codeletion was detected in both the initial and recurrent tumor specimens. According to the sequencing data from the two tumor specimens, although TERT promoter mutation has been considered to be an early genetic event in the tumorigenesis of oligodendroglial tumors, it is likely that the C250T and C228T mutations in TERT promoter are subclonally distributed in the same tumor specimen of the present case.
Collapse
Affiliation(s)
- Yukitomo Ishi
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Hiromi Okada
- Department of Cancer Pathology, Hokkaido University School of Medicine, Sapporo, Japan.,Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Michinari Okamoto
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
45
|
Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution. Front Med 2021; 15:551-561. [PMID: 33893983 DOI: 10.1007/s11684-020-0760-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Glioma is the most common lethal tumor of the human brain. The median survival of patients with primary World Health Organization grade IV glioma is only 14.6 months. The World Health Organization classification of tumors of the central nervous system categorized gliomas into lower-grade gliomas and glioblastomas. Unlike primary glioblastoma that usually develop de novo in the elderly, secondary glioblastoma enriched with an isocitrate dehydrogenase mutant typically progresses from lower-grade glioma within 5-10 years from the time of diagnosis. Based on various evolutional trajectories brought on by clonal and subclonal alterations, the evolution patterns of glioma vary according to different theories. Some important features distinguish the normal brain from other tissues, e.g., the composition of the microenvironment around the tumor cells, the presence of the blood-brain barrier, and others. The underlying mechanism of glioma recurrence and evolution patterns of glioma are different from those of other types of cancer. Several studies correlated tumor recurrence with tumor heterogeneity and the immune microenvironment. However, the detailed reasons for the progression and recurrence of glioma remain controversial. In this review, we introduce the different mechanisms involved in glioma progression, including tumor heterogeneity, the tumor microenvironment and drug resistance, and their pre-clinical implements in clinical trials. This review aimed to provide new insights into further clinical strategies for the treatment of patients with recurrent and secondary glioma.
Collapse
|
46
|
Gonzalez Castro LN, Tirosh I, Suvà ML. Decoding Cancer Biology One Cell at a Time. Cancer Discov 2021; 11:960-970. [PMID: 33811126 PMCID: PMC8030694 DOI: 10.1158/2159-8290.cd-20-1376] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022]
Abstract
Human tumors are composed of diverse malignant and nonmalignant cells, generating a complex ecosystem that governs tumor biology and response to treatments. Recent technological advances have enabled the characterization of tumors at single-cell resolution, providing a compelling strategy to dissect their intricate biology. Here we describe recent developments in single-cell expression profiling and the studies applying them in clinical settings. We highlight some of the powerful insights gleaned from these studies for tumor classification, stem cell programs, tumor microenvironment, metastasis, and response to targeted and immune therapies. SIGNIFICANCE: Intratumor heterogeneity (ITH) has been a major barrier to our understanding of cancer. Single-cell genomics is leading a revolution in our ability to systematically dissect ITH. In this review, we focus on single-cell expression profiling and lessons learned in key aspects of human tumor biology.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
47
|
TERT Promoter Alterations in Glioblastoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051147. [PMID: 33800183 PMCID: PMC7962450 DOI: 10.3390/cancers13051147] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Glioblastoma is the most common malignant primary brain tumor in adults. Glioblastoma accounts for 2 to 3 cases per 100,000 persons in North America and Europe. Glioblastoma classification is now based on histopathological and molecular features including isocitrate dehydrogenase (IDH) mutations. At the end of the 2000s, genome-wide sequencing of glioblastoma identified recurrent somatic genetic alterations involved in oncogenesis. Among them, the alterations in the promoter region of the telomerase reverse transcriptase (TERTp) gene are highly recurrent and occur in 70% to 80% of all glioblastomas, including glioblastoma IDH wild type and glioblastoma IDH mutated. This review focuses on recent advances related to physiopathological mechanisms, diagnosis, and clinical implications. Abstract Glioblastoma, the most frequent and aggressive primary malignant tumor, often presents with alterations in the telomerase reverse transcriptase promoter. Telomerase is responsible for the maintenance of telomere length to avoid cell death. Telomere lengthening is required for cancer cell survival and has led to the investigation of telomerase activity as a potential mechanism that enables cancer growth. The aim of this systematic review is to provide an overview of the available data concerning TERT alterations and glioblastoma in terms of incidence, physiopathological understanding, and potential therapeutic implications.
Collapse
|
48
|
Abstract
Only a small fraction of the tumor cell population, glioma-initiating cells (GICs) help glioblastoma propagate, invade, evade immune recognition, repair DNA in response to radiation more efficiently, remodel the microenvironment for optimal growth, and actively pump out chemotherapies. Recent data hint that efforts toward GIC characterization and quantification can help predict patient outcomes, and yet the different subpopulations of GICs remain incompletely understood. A better understanding of GIC subtypes and functions proves critical for engineering targeted therapies. Challenges for doing so are discussed, and dopamine receptor antagonists are introduced as new means to enhance the efficacy of the current standard-of-care against GICs.
Collapse
Affiliation(s)
- Yagmur Muftuoglu
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, 300 Stein Plaza Driveway, Suite 420, Los Angeles, CA 90095-1714, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1714, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
49
|
He C, Li L, Wang L, Meng W, Hao Y, Zhu G. Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med 2021; 18:21-33. [PMID: 33628582 PMCID: PMC7877182 DOI: 10.20892/j.issn.2095-3941.2020.0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most effective treatment methods for various solid tumors. Bidirectional signal transduction between cancer cells and stromal cells within the irradiated microenvironment is important in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted from cells, are now understood to perform a variety of functions in interactions within the tumor microenvironment. Exosome-mediated regulation processes are rebuilt under the irradiation stimuli, because the exosome production, uptake, and contents are markedly modified by irradiation. In turn, irradiation-modified exosomes may modulate the cell response to irradiation through feedback regulation. Here, we review current knowledge and discuss the roles of exosome-mediated interactions between cells under radiotherapy conditions.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Wanrong Meng
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Yaying Hao
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Becker AP, Sells BE, Haque SJ, Chakravarti A. Tumor Heterogeneity in Glioblastomas: From Light Microscopy to Molecular Pathology. Cancers (Basel) 2021; 13:761. [PMID: 33673104 PMCID: PMC7918815 DOI: 10.3390/cancers13040761] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
One of the main reasons for the aggressive behavior of glioblastoma (GBM) is its intrinsic intra-tumor heterogeneity, characterized by the presence of clonal and subclonal differentiated tumor cell populations, glioma stem cells, and components of the tumor microenvironment, which affect multiple hallmark cellular functions in cancer. "Tumor Heterogeneity" usually encompasses both inter-tumor heterogeneity (population-level differences); and intra-tumor heterogeneity (differences within individual tumors). Tumor heterogeneity may be assessed in a single time point (spatial heterogeneity) or along the clinical evolution of GBM (longitudinal heterogeneity). Molecular methods may detect clonal and subclonal alterations to describe tumor evolution, even when samples from multiple areas are collected in the same time point (spatial-temporal heterogeneity). In GBM, although the inter-tumor mutational landscape is relatively homogeneous, intra-tumor heterogeneity is a striking feature of this tumor. In this review, we will address briefly the inter-tumor heterogeneity of the CNS tumors that yielded the current glioma classification. Next, we will take a deeper dive in the intra-tumor heterogeneity of GBMs, which directly affects prognosis and response to treatment. Our approach aims to follow technological developments, allowing for characterization of intra-tumor heterogeneity, beginning with differences on histomorphology of GBM and ending with molecular alterations observed at single-cell level.
Collapse
Affiliation(s)
- Aline P. Becker
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.J.H.); (A.C.)
| | | | - S. Jaharul Haque
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.J.H.); (A.C.)
| | - Arnab Chakravarti
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA; (S.J.H.); (A.C.)
| |
Collapse
|