1
|
Gheorghiu A, Brunborg C, Johannesen TB, Helseth E, Zwart JA, Wiedmann MKH. Life-style and metabolic factors do not affect risk for glioma: a prospective population-based study (The Cohort of Norway). Front Oncol 2024; 14:1471733. [PMID: 39703841 PMCID: PMC11656313 DOI: 10.3389/fonc.2024.1471733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Background The identification of modifiable risk factors for intracranial glioma remains a significant challenge. While lifestyle factors and metabolic syndrome are well-established risk factors for various other cancers, their association with glioma risk remains unclear. Objectives This study aims to conduct a comprehensive analysis of lifestyle factors and metabolic factors in relation to glioma risk. Methods The Cohort of Norway (CONOR) is a prospective, population-based health survey encompassing anthropometric measurements, blood tests and health questionnaires. CONOR data were linked to the National Cancer Registry to identify incident glioma cases. Follow-up time was calculated in person-years from the baseline examination until the date of glioma diagnosis, death, or the end of the follow-up period. Cox proportional hazards regression was used to calculate hazard ratios (HR). Results The study cohort included 160,938 women and men. Over 2.8 million person-years of follow-up, 319 intracranial gliomas were diagnosed. Lifestyle factors such as physical activity, alcohol consumption, smoking, and marital status were not associated with glioma risk. There was no increased glioma risk among participants with diabetes mellitus or hypertension. Furthermore, metabolic syndrome in both women and men was not associated with an elevated risk of glioma. Blood lipids, including total cholesterol, triglycerides, and HDL, were not linked to glioma risk. However, increasing LDL levels were associated with a decreased risk of glioma in men (HR per category 0.84; 95% CI 0.74-0.96), but not in women. Conclusion This is the first comprehensive prospective cohort study to evaluate potentially modifiable risk factors for glioma. Our findings do not support previously suggested associations between smoking, alcohol consumption, or metabolic syndrome and glioma risk.
Collapse
Affiliation(s)
- Anamaria Gheorghiu
- Department of Neurosurgery, Bagdasar-Arseni University Hospital, Bucharest, Romania
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | | | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - John-Anker Zwart
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
Howell AE, Relton C, Martin RM, Zheng J, Kurian KM. Role of DNA methylation in the relationship between glioma risk factors and glioma incidence: a two-step Mendelian randomization study. Sci Rep 2023; 13:6590. [PMID: 37085538 PMCID: PMC10121678 DOI: 10.1038/s41598-023-33621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic evidence suggests glioma risk is altered by leukocyte telomere length, allergic disease (asthma, hay fever or eczema), alcohol consumption, childhood obesity, low-density lipoprotein cholesterol (LDLc) and triglyceride levels. DNA methylation (DNAm) variation influences many of these glioma-related traits and is an established feature of glioma. Yet the causal relationship between DNAm variation with both glioma incidence and glioma risk factors is unknown. We applied a two-step Mendelian randomization (MR) approach and several sensitivity analyses (including colocalization and Steiger filtering) to assess the association of DNAm with glioma risk factors and glioma incidence. We used data from a recently published catalogue of germline genetic variants robustly associated with DNAm variation in blood (32,851 participants) and data from a genome-wide association study of glioma risk (12,488 cases and 18,169 controls, sub-divided into 6191 glioblastoma cases and 6305 non-glioblastoma cases). MR evidence indicated that DNAm at 3 CpG sites (cg01561092, cg05926943, cg01584448) in one genomic region (HEATR3) had a putative association with glioma and glioblastoma risk (False discovery rate [FDR] < 0.05). Steiger filtering provided evidence against reverse causation. Colocalization presented evidence against genetic confounding and suggested that differential DNAm at the 3 CpG sites and glioma were driven by the same genetic variant. MR provided little evidence to suggest that DNAm acts as a mediator on the causal pathway between risk factors previously examined and glioma onset. To our knowledge, this is the first study to use MR to appraise the causal link of DNAm with glioma risk factors and glioma onset. Subsequent analyses are required to improve the robustness of our results and rule out horizontal pleiotropy.
Collapse
Affiliation(s)
- Amy E Howell
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Shan DD, Zheng QX, Chen Z. Go-Ichi-Ni-San 2: A potential biomarker and therapeutic target in human cancers. World J Gastrointest Oncol 2022; 14:1892-1902. [PMID: 36310704 PMCID: PMC9611433 DOI: 10.4251/wjgo.v14.i10.1892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer incidence and mortality are increasing globally, leading to its rising status as a leading cause of death. The Go-Ichi-Ni-San (GINS) complex plays a crucial role in DNA replication and the cell cycle. The GINS complex consists of four subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. Recent findings have shown that GINS2 expression is upregulated in many diseases, particularly tumors. For example, increased GINS2 expression has been found in cervical cancer, gastric adenocarcinoma, glioma, non-small cell lung cancer, and pancreatic cancer. It correlates with the clinicopathological characteristics of the tumors. In addition, high GINS2 expression plays a pro-carcinogenic role in tumor development by promoting tumor cell proliferation and migration, inhibiting tumor cell apoptosis, and blocking the cell cycle. This review describes the upregulation of GINS2 expression in most human tumors and the pathway of GINS2 in tumor development. GINS2 may serve as a new marker for tumor diagnosis and a new biological target for therapy.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
4
|
Sagberg LM, Fyllingen EH, Hansen TI, Strand PS, Håvik AL, Sundstrøm T, Corell A, Jakola AS, Salvesen Ø, Solheim O. Is intracranial volume a risk factor for IDH-mutant low-grade glioma? A case-control study. J Neurooncol 2022; 160:101-106. [PMID: 36029398 PMCID: PMC9622551 DOI: 10.1007/s11060-022-04120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Purpose Risk of cancer has been associated with body or organ size in several studies. We sought to investigate the relationship between intracranial volume (ICV) (as a proxy for lifetime maximum brain size) and risk of IDH-mutant low-grade glioma. Methods In a multicenter case–control study based on population-based data, we included 154 patients with IDH-mutant WHO grade 2 glioma and 995 healthy controls. ICV in both groups was calculated from 3D MRI brain scans using an automated reverse brain mask method, and then compared using a binomial logistic regression model. Results We found a non-linear association between ICV and risk of glioma with increasing risk above and below a threshold of 1394 ml (p < 0.001). After adjusting for ICV, sex was not a risk factor for glioma. Conclusion Intracranial volume may be a risk factor for IDH-mutant low-grade glioma, but the relationship seems to be non-linear with increased risk both above and below a threshold in intracranial volume.
Collapse
Affiliation(s)
- Lisa Millgård Sagberg
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. .,Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Even Hovig Fyllingen
- Department of Radiology and Nuclear Medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Ivar Hansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Per Sveino Strand
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Aril Løge Håvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Molde Hospital, Molde, Norway
| | - Terje Sundstrøm
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Alba Corell
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Øyvind Salvesen
- Clinical Research Unit, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel) 2022; 14:2412. [PMID: 35626018 PMCID: PMC9139611 DOI: 10.3390/cancers14102412] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive malignancies, with a median overall survival of approximately 15 months. In this review, we analyze the pathogenesis of GBM, as well as epidemiological data, by age, gender, and tumor location. The data indicate that GBM is the higher-grade primary brain tumor and is significantly more common in men. The risk of being diagnosed with glioma increases with age, and median survival remains low, despite medical advances. In addition, it is difficult to determine clearly how GBM is influenced by stimulants, certain medications (e.g., NSAIDs), cell phone use, and exposure to heavy metals.
Collapse
Affiliation(s)
- Szymon Grochans
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Anna Maria Cybulska
- Department of Nursing, Pomeranian Medical University in Szczecin, Żołnierska 48 St., 71-210 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich. 72 St., 70-111 Szczecin, Poland; (S.G.); (D.S.); (J.K.); (D.C.); (I.B.-B.)
| |
Collapse
|
6
|
Ahn S, Han K, Lee JE, Jeun SS, Park YM, Joo W, Yang SH. Association between height and the risk of primary brain malignancy in adults: a nationwide population-based cohort study. Neurooncol Adv 2021; 3:vdab098. [PMID: 34738083 PMCID: PMC8562729 DOI: 10.1093/noajnl/vdab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background The association between height and the risk of developing primary brain malignancy remains unclear. We evaluated the association between height and risk of primary brain malignancy based on a nationwide population-based database of Koreans. Methods Using data from the Korean National Health Insurance System cohort, 6 833 744 people over 20 years of age that underwent regular national health examination were followed from January 2009 until the end of 2017. We documented 4771 cases of primary brain malignancy based on an ICD-10 code of C71 during the median follow-up period of 7.30 years and 49 877 983 person-years. Results When dividing the population into quartiles of height for each age group and sex, people within the highest height quartile had a significantly higher risk of brain malignancy, compared to those within the lowest height quartile (HR 1.21 CI 1.18–1.32) after adjusting for potential confounders. We also found that the risk of primary brain malignancy increased in proportion with the quartile increase in height. After analyzing subgroups based on older age (≥ 65) and sex, we found positive relationships between height and primary brain malignancy in all subgroups. Conclusions This study is the first to suggest that height is associated with an increased risk of primary brain malignancy in the East-Asian population. Further prospective and larger studies with precise designs are needed to validate our findings.
Collapse
Affiliation(s)
- Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Jung Eun Lee
- Department of Epidemiology, Branch, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Moon Park
- Department of Epidemiology, Branch, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Wonil Joo
- Department of Neurosurgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Tschernichovsky R, Katz LH, Derazne E, Berliner MBZ, Simchoni M, Levine H, Keinan-Boker L, Benouaich-Amiel A, Kanner AA, Laviv Y, Honig A, Dudnik E, Siegal T, Mandel J, Twig G, Yust-Katz S. Height in adolescence as a risk factor for glioma subtypes: a nationwide retrospective cohort study of 2.2 million subjects. Neuro Oncol 2021; 23:1383-1392. [PMID: 33631004 DOI: 10.1093/neuonc/noab049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gliomas manifest in a variety of histological phenotypes with varying aggressiveness. The etiology of glioma remains largely unknown. Taller stature in adulthood has been linked with glioma risk. The aim of this study was to discern whether this association can be detected in adolescence. METHODS The cohort included 2 223 168 adolescents between the ages of 16 and 19 years. Anthropometric measurements were collected at baseline. Incident cases of glioma were extracted from the Israel National Cancer Registry over a follow-up period spanning 47 635 745 person-years. Cox proportional hazard models were used to estimate the hazard ratio (HR) for glioma and glioma subtypes according to height, body mass index (BMI), and sex. RESULTS A total of 1195 patients were diagnosed with glioma during the study period. Mean (SD) age at diagnosis was 38.1 (11.7) years. Taller adolescent height (per 10-cm increase) was positively associated with the risk for glioma of any type (HR: 1.15; P = .002). The association was retained in subgroup analyses for low-grade glioma (HR: 1.17; P = .031), high-grade glioma (HR: 1.15; P = .025), oligodendroglioma (HR: 1.31; P = .015), astrocytoma (HR: 1.12; P = .049), and a category of presumed IDH-mutated glioma (HR: 1.17; P = .013). There was a trend toward a positive association between height and glioblastoma, however this had borderline statistical significance (HR: 1.15; P = .07). After stratification of the cohort by sex, height remained a risk factor for men but not for women. CONCLUSIONS The previously established association between taller stature in adulthood and glioma risk can be traced back to adolescence. The magnitude of association differs by glioma subtype.
Collapse
Affiliation(s)
- Roi Tschernichovsky
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior H Katz
- Department of Gastroenterology and Hepatology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Estela Derazne
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matan Ben-Zion Berliner
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Simchoni
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Levine
- Braun School of Public Health and Community Medicine, Hadassah University Hospital - Ein Kerem, Jerusalem, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Israel Ministry of Health, Ramat Gan, Israel.,School of Public Health, University of Haifa, Haifa, Israel
| | - Alexandra Benouaich-Amiel
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Andrew A Kanner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Yosef Laviv
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Asaf Honig
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | - Elizabeth Dudnik
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Siegal
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Jacob Mandel
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Ramat Gan, Israel
| | - Gilad Twig
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Endocrinology, Sheba Medical Center, Tel HaShomer, Israel
| | - Shlomit Yust-Katz
- Neuro-Oncology Unit, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Chae Y, Roh J, Kim W. The Roles Played by Long Non-Coding RNAs in Glioma Resistance. Int J Mol Sci 2021; 22:ijms22136834. [PMID: 34202078 PMCID: PMC8268860 DOI: 10.3390/ijms22136834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma originates in the central nervous system and is classified based on both histological features and molecular genetic characteristics. Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and are known to regulate tumorigenesis and tumor progression, and even confer therapeutic resistance to glioma cells. Since oncogenic lncRNAs have been frequently upregulated to promote cell proliferation, migration, and invasion in glioma cells, while tumor-suppressive lncRNAs responsible for the inhibition of apoptosis and decrease in therapeutic sensitivity in glioma cells have been generally downregulated, the dysregulation of lncRNAs affects many features of glioma patients, and the expression profiles associated with these lncRNAs are needed to diagnose the disease stage and to determine suitable therapeutic strategies. Accumulating studies show that the orchestrations of oncogenic lncRNAs and tumor-suppressive lncRNAs in glioma cells result in signaling pathways that influence the pathogenesis and progression of glioma. Furthermore, several lncRNAs are related to the regulation of therapeutic sensitivity in existing anticancer therapies, including radiotherapy, chemotherapy and immunotherapy. Consequently, we undertook this review to improve the understanding of signaling pathways influenced by lncRNAs in glioma and how lncRNAs affect therapeutic resistance.
Collapse
Affiliation(s)
- Yeonsoo Chae
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Jungwook Roh
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea; (Y.C.); (J.R.)
- Department of Biology Education, Korea National University of Education, Cheongju-si 28173, Chungbuk, Korea
- Correspondence: ; Tel.: +82-43-230-3750
| |
Collapse
|
9
|
Associations of General and Abdominal Obesity with the Risk of Glioma Development. Cancers (Basel) 2021; 13:cancers13122859. [PMID: 34201103 PMCID: PMC8228893 DOI: 10.3390/cancers13122859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary While obesity is a well-known risk factor for the development of various types of cancer, conflicting results have been reported concerning the relationship between obesity and the risk of glioma. To date, no studies have evaluated the association between obesity and risk of glioma development in Eastern Asian populations, who usually have greater fat mass and less muscle and are more likely to develop several metabolic diseases than Western populations of the same body mass index (BMI) category. In this nationwide population-based study, we suggest, for the first time, positive associations of general and central obesity with the risk of glioma development. In addition, we demonstrate a stronger association between abdominal obesity and the risk of glioma development than BMI and the risk of glioma development. Abstract The association between obesity and the risk of glioma remains unclear. We sought to evaluate the potential association between general and abdominal obesity and the risk of glioma based on a nationwide population-based cohort study of Koreans. Using data from the Korean National Health Insurance System cohort, 6,833,744 people older than 20 years who underwent regular national health examination in both 2009 and 2011 were followed until the end of 2017. We documented 4771 glioma cases based on an ICD-10 code of C71 during the median follow-up period of 7.30 years. Individuals with a body mass index (BMI) ≥ 25.0 kg/m2 were at significantly higher risk of developing glioma than those with a BMI < 25.0 kg/m2 (HR 1.08 CI 1.02–1.15). Individuals with a waist circumference (WC) ≥ 90 cm (males)/85 cm (females) also had a significantly higher risk of glioma than those with a WC < 90 cm (males)/85 cm (females) (HR 1.16 CI 1.09–1.24). In the group with a BMI ≥ 25.0 kg/m2, individuals with abdominal obesity were at significantly higher risk of developing glioma (HR 1.18 CI 1.09–1.27) than those without abdominal obesity. The role of abdominal obesity in this association was stronger in women than in men. To the best of our knowledge, this is the first demonstration that obese people may be at higher risk of glioma, especially centrally obese people from an Asian population with a BMI ≥ 25.0 kg/m2. Loss of visceral fat in people with abdominal obesity may reduce their risk of developing glioma.
Collapse
|
10
|
Foss-Skiftesvik J, Hagen CM, Mathiasen R, Adamsen D, Bækvad-Hansen M, Børglum AD, Nordentoft M, Werge T, Christiansen M, Schmiegelow K, Juhler M, Mortensen PB, Hougaard DM, Bybjerg-Grauholm J. Genome-wide association study across pediatric central nervous system tumors implicates shared predisposition and points to 1q25.2 (PAPPA2) and 11p12 (LRRC4C) as novel candidate susceptibility loci. Childs Nerv Syst 2021; 37:819-830. [PMID: 33226468 DOI: 10.1007/s00381-020-04946-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Central nervous system (CNS) tumors constitute the most common form of solid neoplasms in children, but knowledge on genetic predisposition is sparse. In particular, whether susceptibility attributable to common variants is shared across CNS tumor types in children has not been investigated. The purpose of this study was to explore potential common genetic risk variants exhibiting pleiotropic effects across pediatric CNS tumors. We also investigated whether such susceptibility differs between early and late onset of disease. METHOD A Danish nationwide genome-wide association study (GWAS) of 1,097 consecutive patients (< 15 years of age) with CNS tumors and a cohort of 4,745 population-based controls. RESULTS For both the overall cohort and patients diagnosed after the age of four, the strongest association was rs12064625 which maps to PAPPA2 at 1q25.2 (p = 3.400 × 10-7 and 9.668 × 10-8, respectively). PAPPA2 regulates local bioavailability of insulin-like growth factor I (IGF-I). IGF-I is fundamental to CNS development and is involved in tumorigenesis across a wide range of different cancers. For the younger children, the strongest association was provided by rs11036373 mapping to LRRC4C at 11p12 (p = 7.620 × 10-7), which encoded protein acts as an axon guidance molecule during CNS development and has not formerly been associated with brain tumors. DISCUSSION This GWAS indicates shared susceptibility attributable to common variants across pediatric CNS tumor types. Variations in genetic loci with roles in CNS development appear to be involved, possibly via altered IGF-I related pathways.
Collapse
Affiliation(s)
- Jon Foss-Skiftesvik
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark.
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.
| | - Christian Munch Hagen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Dea Adamsen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Marie Bækvad-Hansen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- Department of Biomedicine, Aarhus University and Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus Genome Center, Aarhus, Denmark
| | - Merete Nordentoft
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Michael Christiansen
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - David Michael Hougaard
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Danish Center for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| |
Collapse
|
11
|
Simińska D, Korbecki J, Kojder K, Kapczuk P, Fabiańska M, Gutowska I, Machoy-Mokrzyńska A, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Anthropometric Factors in Glioblastoma Multiforme-Literature Review. Brain Sci 2021; 11:116. [PMID: 33467126 PMCID: PMC7829953 DOI: 10.3390/brainsci11010116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Although glioblastoma multiforme (GBM) is a widely researched cancer of the central nervous system, we still do not know its full pathophysiological mechanism and we still lack effective treatment methods as the current combination of surgery, radiotherapy, and chemotherapy does not bring about satisfactory results. The median survival time for GBM patients is only about 15 months. In this paper, we present the epidemiology of central nervous system (CNS) tumors and review the epidemiological data on GBM regarding gender, age, weight, height, and tumor location. The data indicate the possible influence of some anthropometric factors on the occurrence of GBM, especially in those who are male, elderly, overweight, and/or are taller. However, this review of single and small-size epidemiological studies should not be treated as definitive due to differences in the survey methods used. Detailed epidemiological registers could help identify the main at-risk groups which could then be used as homogenous study groups in research worldwide. Such research, with less distortion from various factors, could help identify the pathomechanisms that lead to the development of GBM.
Collapse
Affiliation(s)
- Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 St., 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Krakowska 71–79, 71-017 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Anna Machoy-Mokrzyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (D.S.); (J.K.); (P.K.); (D.C.)
| |
Collapse
|
12
|
Body mass index as an independent prognostic factor in glioblastoma. Cancer Causes Control 2021; 32:327-336. [PMID: 33447892 DOI: 10.1007/s10552-020-01388-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Glioblastoma prognosis remains dismal despite gross total removal (GTR) followed by chemoradiotherapy. Other known prognostic factors include functional status, age and IDH mutation status. However, to improve patient outcome, a search for other features with impact on survival is needed. We aimed to analyse the impact of body mass index (BMI) on overall survival (OS) and progression-free survival (PFS) of surgically resected primary glioblastoma and evaluate if BMI constitutes an independent prognostic factor. METHODS We analysed all adult glioblastoma patients who underwent surgery and chemoradiotherapy between 2011 and 2017 at our institution. Overall survival was the study-primary endpoint, and progression-free survival-the secondary endpoint. We assayed age, gender, histology, extent of resection, IDH, functional and smoking status, cardiovascular risk factors, BMI, OS and PFS. Univariate analysis was conducted followed by multivariate analysis to establish independent prognostic factors. In accordance with the World Health Organization (WHO) BMI stratification, survival curves were obtained for normal-weight (18.5-24.9 kg/m2), overweight (25-29.9 kg/m2) and obese (≥ 30 kg/m2) patient subgroups in addition to the non-obese (18.5-29.9 kg/m2) population. RESULTS 193 patients were evaluated, with a median follow-up time of 17.3 months. Median OS was 21.3 months in obese patients vs 16.2 months in the non-obese (p = 0.017) and 16 months in the normal weight (p = 0.007). Higher median OS was also observed in patients under 60 and those in which GTR was obtained. Median PFS in obese individuals was 9 months in comparison to 6 months in the normal-weight subgroup (p = 0.04) and 7 months in the non-obese (p = 0.050). Multivariate analysis identified age < 60 (p = 0.044), GTR (p = 0.004) and BMI ≥ 30 (p = 0.009) as independent prognostic factors for increased overall survival. CONCLUSION Higher BMI was associated with longer OS and PFS. Prospective studies are needed to validate these findings.
Collapse
|
13
|
Integrative bioinformatic analyses of genome-wide association studies for understanding the genetic bases of human height. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00550-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Rogers LR, Ostrom QT, Schroer J, Vengoechea J, Li L, Gerson S, Nock CJ, Machtay M, Selman W, Lo S, Sloan AE, Barnholtz-Sloan JS. Association of metabolic syndrome with glioblastoma: a retrospective cohort study and review. Neurooncol Pract 2020; 7:541-548. [PMID: 33014395 DOI: 10.1093/nop/npaa011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Metabolic syndrome is identified as a risk factor for the development of several systemic cancers, but its frequency among patients with glioblastoma and its association with clinical outcomes have yet to be determined. The aim of this study was to investigate metabolic syndrome as a risk factor for and affecting survival in glioblastoma patients. Methods A retrospective cohort study, consisting of patients with diagnoses at a single institution between 2007 and 2013, was conducted. Clinical records were reviewed, and clinical and laboratory data pertaining to 5 metabolic criteria were extrapolated. Overall survival was determined by time from initial surgical diagnosis to date of death or last follow-up. Results The frequency of metabolic syndrome among patients diagnosed with glioblastoma was slightly greater than the frequency of metabolic syndrome among the general population. Within a subset of patients (n = 91) receiving the full schedule of concurrent radiation and temozolomide and adjuvant temozolomide, median overall survival was significantly shorter for patients with metabolic syndrome compared with those without. In addition, the presence of all 5 elements of the metabolic syndrome resulted in significantly decreased median survival in these patients. Conclusions We identified the metabolic syndrome at a slightly higher frequency in patients with diagnosed glioblastoma compared with the general population. In addition, metabolic syndrome with each of its individual components is associated with an overall worse prognosis in patients receiving the standard schedule of radiation and temozolomide after adjustment for age.
Collapse
Affiliation(s)
- Lisa R Rogers
- Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas
| | - Julia Schroer
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jaime Vengoechea
- Division of Medical Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Li Li
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Stanton Gerson
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Charles J Nock
- Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Hematology and Oncology, University Hospitals, Cleveland, Ohio
| | - Mitchell Machtay
- Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Radiation Oncology, University Hospitals, Cleveland, Ohio
| | - Warren Selman
- Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Simon Lo
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington
| | - Andrew E Sloan
- Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
15
|
Zheng T, Chen K, Zhang X, Feng H, Shi Y, Liu L, Zhang J, Chen Y. Knockdown of TXNDC9 induces apoptosis and autophagy in glioma and mediates cell differentiation by p53 activation. Aging (Albany NY) 2020; 12:18649-18659. [PMID: 32897242 PMCID: PMC7585124 DOI: 10.18632/aging.103915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
Abstract
Glioma is the most common malignant brain tumor. Because of its high degree of malignancy, the effect of surgical treatment, radiotherapy, chemotherapy, or immunotherapy is not ideal. TXNDC9 belongs to thioredoxin domain-containing proteins, which is involved in tumor progression. However, no research associated with TXNDC9 has been reported in glioma. In this study, we found that TXNDC9 was upregulated in glioma. Knockdown of TXNDC9 would prevent proliferation and metastasis, induce the apoptosis rate of glioma cells, and promote the expression Cleaved-caspase3, Cleaved-caspase8, Cleaved-caspase9. Meanwhile, knockdown of TXNDC9 induced autophagy by increasing the level of LC3 and Beclin-1. Cell morphology and expression analysis of GFAP, Vimentin, verified that TXNDC9 could regulate glioma cell differentiation. During this program, the expression of p53 changes dramatically. The apoptosis, autophagy, and cell differentiation program were blocked by p53 inhibitor treatment. In conclusion, the silencing of TXNDC9 induces apoptosis and autophagy in glioma and promotes cell differentiation by controlling p53 and may function as a new mechanism in glioma.
Collapse
Affiliation(s)
- Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Keke Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
- Clinical College of Shenzhen Hospital, Peking University, Anhui Medical University, Shenzhen, Guangdong Province, China
| | - Xue Zhang
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
- Clinical College of Shenzhen Hospital, Peking University, Anhui Medical University, Shenzhen, Guangdong Province, China
| | - Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, Guangdong Province, China
| | - Yu Shi
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Li Liu
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Australia
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
- Clinical College of Shenzhen Hospital, Peking University, Anhui Medical University, Shenzhen, Guangdong Province, China
| |
Collapse
|
16
|
Bielecka J, Markiewicz-Żukowska R. The Influence of Nutritional and Lifestyle Factors on Glioma Incidence. Nutrients 2020; 12:nu12061812. [PMID: 32560519 PMCID: PMC7353193 DOI: 10.3390/nu12061812] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers are the first main cause of premature death in developed countries. Since brain tumors, especially gliomas, are the most lethal type of cancers, risk factors for their prevalence are still being discussed. Nearly 30–50% of all cancers could be prevented by proper nutritional habits and other lifestyle factors, but their influence on the tumors of the central nervous system has not been explained completely and still requires further studies. That is why we attempted to review the available research in this field, with a special focus on the factors with the proven protective activity observed in other cancers. Adequate vegetables and antioxidants (such as vitamins C and A) provided with a diet could have a protective effect, while other factors have shown no correlation with the incidence of glioma. However, further studies are necessary to determine whether fish, coffee, and tea consumption may prevent glioma. Maintaining proper body weight and undertaking a sufficient level of daily physical activity also seem to be important. Excessive body mass index (BMI) and higher attained height have increased the risk of glioma. In order to link more accurately the chosen factors to the prevalence of gliomas, it seems necessary to conduct large cohort, prospective, controlled studies in different world regions.
Collapse
|
17
|
Deng Y, Zhou L, Yao J, Liu Y, Zheng Y, Yang S, Wu Y, Li N, Xu P, Lyu L, Zhang D, Lyu J, Dai Z. Associations of lncRNA H19 Polymorphisms at MicroRNA Binding Sites with Glioma Susceptibility and Prognosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:86-96. [PMID: 32155588 PMCID: PMC7062941 DOI: 10.1016/j.omtn.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Glioma is the most common tumor of the central nervous system; variation in susceptibility and prognosis worldwide suggests that there are molecular and genetic differences among individuals. The H19 gene plays a dual role in carcinogenesis. In this study, associations between H19 polymorphisms and susceptibility as well as prognosis in glioma were evaluated. In total, 605 patients with glioma and 1,300 cancer-free subjects were enrolled in the study. Individuals with the rs3741219 A>G allele were less likely to develop glioma (relative risk [RR] = 0.54, 95% confidence interval [95% CI] = 0.45-0.63, p < 0.001), whereas rs217727 G>A and rs2839698 G>A genotypes were not associated with glioma risk. The associations between H19 polymorphisms and prognosis were assessed, including overall survival and progression-free survival. Three focused H19 polymorphisms did not show a significant effect on survival. Further analysis based on false-positive report probability validated these significant results. In the haplotype analysis, individuals with the Grs217727Ars2839698Grs3741219 haplotype were less likely to develop glioma (odds ratio [OR] = 0.33, 95% CI = 0.23-0.46, p = 0.02). Overall, carriers of the rs3741219 AG or GG genotype of H19 have a decreased susceptibility to glioma, but polymorphisms in this gene are not related to prognosis.
Collapse
Affiliation(s)
- Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Linghui Zhou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yu Liu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Lijuan Lyu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dai Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangzhou Province, China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
18
|
Howell AE, Robinson JW, Wootton RE, McAleenan A, Tsavachidis S, Ostrom QT, Bondy M, Armstrong G, Relton C, Haycock P, Martin RM, Zheng J, Kurian KM. Testing for causality between systematically identified risk factors and glioma: a Mendelian randomization study. BMC Cancer 2020; 20:508. [PMID: 32493226 PMCID: PMC7268455 DOI: 10.1186/s12885-020-06967-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Whilst epidemiological studies have provided evidence of associations between certain risk factors and glioma onset, inferring causality has proven challenging. Using Mendelian randomization (MR), we assessed whether associations of 36 reported glioma risk factors showed evidence of a causal relationship. METHODS We performed a systematic search of MEDLINE from inception to October 2018 to identify candidate risk factors and conducted a meta-analysis of two glioma genome-wide association studies (5739 cases and 5501 controls) to form our exposure and outcome datasets. MR analyses were performed using genetic variants to proxy for candidate risk factors. We investigated whether risk factors differed by subtype diagnosis (either glioblastoma (n = 3112) or non-glioblastoma (n = 2411)). MR estimates for each risk factor were determined using multiplicative random effects inverse-variance weighting (IVW). Sensitivity analyses investigated potential pleiotropy using MR-Egger regression, the weighted median estimator, and the mode-based estimator. To increase power, trait-specific polygenic risk scores were used to test the association of a genetically predicated increase in each risk factor with glioma onset. RESULTS Our systematic search identified 36 risk factors that could be proxied using genetic variants. Using MR, we found evidence that four genetically predicted traits increased risk of glioma, glioblastoma or non-glioblastoma: longer leukocyte telomere length, liability to allergic disease, increased alcohol consumption and liability to childhood extreme obesity (> 3 standard deviations from the mean). Two traits decreased risk of non-glioblastoma cancers: increased low-density lipoprotein cholesterol (LDLc) and triglyceride levels. Our findings were similar across sensitivity analyses that made allowance for pleiotropy (genetic confounding). CONCLUSIONS Our comprehensive investigation provides evidence of a causal link between both genetically predicted leukocyte telomere length, allergic disease, alcohol consumption, childhood extreme obesity, and LDLc and triglyceride levels, and glioma. The findings from our study warrant further research to uncover mechanisms that implicate these traits in glioma onset.
Collapse
Affiliation(s)
- A E Howell
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - J W Robinson
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - R E Wootton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- School of Psychological Science, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, BS8 2BN, UK
| | - A McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - S Tsavachidis
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - Q T Ostrom
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - M Bondy
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - G Armstrong
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, UK
| | - C Relton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - P Haycock
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - R M Martin
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
- The National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - J Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - K M Kurian
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK.
| |
Collapse
|
19
|
Ostrom QT, Fahmideh MA, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, Bondy ML. Risk factors for childhood and adult primary brain tumors. Neuro Oncol 2019; 21:1357-1375. [PMID: 31301133 PMCID: PMC6827837 DOI: 10.1093/neuonc/noz123] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary brain tumors account for ~1% of new cancer cases and ~2% of cancer deaths in the United States; however, they are the most commonly occurring solid tumors in children. These tumors are very heterogeneous and can be broadly classified into malignant and benign (or non-malignant), and specific histologies vary in frequency by age, sex, and race/ethnicity. Epidemiological studies have explored numerous potential risk factors, and thus far the only validated associations for brain tumors are ionizing radiation (which increases risk in both adults and children) and history of allergies (which decreases risk in adults). Studies of genetic risk factors have identified 32 germline variants associated with increased risk for these tumors in adults (25 in glioma, 2 in meningioma, 3 in pituitary adenoma, and 2 in primary CNS lymphoma), and further studies are currently under way for other histologic subtypes, as well as for various childhood brain tumors. While identifying risk factors for these tumors is difficult due to their rarity, many existing datasets can be leveraged for future discoveries in multi-institutional collaborations. Many institutions are continuing to develop large clinical databases including pre-diagnostic risk factor data, and developments in molecular characterization of tumor subtypes continue to allow for investigation of more refined phenotypes. Key Point 1. Brain tumors are a heterogeneous group of tumors that vary significantly in incidence by age, sex, and race/ethnicity.2. The only well-validated risk factors for brain tumors are ionizing radiation (which increases risk in adults and children) and history of allergies (which decreases risk).3. Genome-wide association studies have identified 32 histology-specific inherited genetic variants associated with increased risk of these tumors.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Maral Adel Fahmideh
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David J Cote
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ivo S Muskens
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy M Schraw
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
The long non-coding RNA, urothelial carcinoma associated 1, promotes cell growth, invasion, migration, and chemo-resistance in glioma through Wnt/β-catenin signaling pathway. Aging (Albany NY) 2019; 11:8239-8253. [PMID: 31596734 PMCID: PMC6814589 DOI: 10.18632/aging.102317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
The long non-coding RNA, urothelial carcinoma associated 1 (UCA1) has been demonstrated to play important roles in various types of cancers. This study investigated the functional role of UCA1 in glioma and explored the underlying molecular mechanisms. UCA1 was found to be highly up-regulated in glioma cells, and knock-down of UCA1 inhibited cell growth, invasion and migration, and also induced apoptosis in glioma cells. On the other hand, overexpression of UCA1 promoted cell proliferation, cell invasion and migration in glioma cells. Knock-down of UCA1 suppressed the activity of Wnt/β-catenin signaling, and treatment with lithium chloride restored the inhibitory effect of UCA1 knock-down on cell invasion and migration. More importantly, the aberrant expression of UCA1 was associated with chemo-resistance to cisplatin and temozolomide in glioma cells via interacting with Wnt/β-catenin signaling. In vivo studies showed that overexpression of UCA1 promoted the in vivo tumor growth of U87 cells in the nude mice. Clinically, UCA1 was found to be up-regulated in glioma tissues and higher expression level of UCA1 was correlated with poor survival in patients with glioma. Taken together, our results showed that UCA1 had a functional role in the regulation of glioma cell growth, invasion and migration, and chemo-resistance possibly via Wnt/β-catenin signaling pathway.
Collapse
|
21
|
Muskens IS, Zhou M, Mccoy L, Bracci PM, Hansen HM, Gauderman WJ, Wiencke JK, Wrensch MR, Wiemels JL. Immune factors preceding diagnosis of glioma: a Prostate Lung Colorectal Ovarian Cancer Screening Trial nested case-control study. Neurooncol Adv 2019; 1:vdz031. [PMID: 31807733 PMCID: PMC6881819 DOI: 10.1093/noajnl/vdz031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Epidemiological studies of adult glioma have identified genetic and environmental risk factors, but much remains unclear. The aim of the current study was to evaluate anthropometric, disease-related, and prediagnostic immune-related factors for relationship with glioma risk. Methods We conducted a nested case–control study among the intervention arm of the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial. One hundred and twenty-four glioma cases were identified and each matched to four controls. Baseline characteristics were collected at enrollment and were evaluated for association with glioma status. Serum specimens were collected at yearly intervals and were analyzed for immune-related factors including TGF-β1, TNF-α, total IgE, and allergen-specific IgE. Immune factors were evaluated at baseline in a multivariate conditional logistic regression model, along with one additional model that incorporated the latest available measurement. Results A family history of glioma among first-degree relatives was associated with increased glioma risk (OR = 4.41, P = .002). In multivariate modeling of immune factors at baseline, increased respiratory allergen-specific IgE was inversely associated with glioma risk (OR for allergen-specific IgE > 0.35 PAU/L: 0.59, P = .03). A logistic regression model that incorporated the latest available measurements found a similar association for allergen-specific IgE (P = .005) and showed that elevated TGF-β1 was associated with increased glioma risk (P-value for trend <.0001). Conclusion The results from this prospective prediagnostic study suggest that several immune-related factors are associated with glioma risk. The association observed for TGF-β1 when sampling closer to the time of diagnosis may reflect the nascent brain tumor’s feedback on immune function.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Mi Zhou
- Department of Epidemiology and Biostatistics
| | - Lucie Mccoy
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Helen M Hansen
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - W James Gauderman
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John K Wiencke
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - Margaret R Wrensch
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Department of Epidemiology and Biostatistics
| |
Collapse
|
22
|
Howell AE, Zheng J, Haycock PC, McAleenan A, Relton C, Martin RM, Kurian KM. Use of Mendelian Randomization for Identifying Risk Factors for Brain Tumors. Front Genet 2018; 9:525. [PMID: 30483309 PMCID: PMC6240585 DOI: 10.3389/fgene.2018.00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Gliomas are a group of primary brain tumors, the most common and aggressive subtype of which is glioblastoma. Glioblastoma has a median survival of just 15 months after diagnosis. Only previous exposure to ionizing radiation and particular inherited genetic syndromes are accepted risk factors for glioma; the vast majority of cases are thought to occur spontaneously. Previous observational studies have described associations between several risk factors and glioma, but studies are often conflicting and whether these associations reflect true casual relationships is unclear because observational studies may be susceptible to confounding, measurement error and reverse causation. Mendelian randomization (MR) is a form of instrumental variable analysis that can be used to provide supporting evidence for causal relationships between exposures (e.g., risk factors) and outcomes (e.g., disease onset). MR utilizes genetic variants, such as single nucleotide polymorphisms (SNPs), that are robustly associated with an exposure to determine whether there is a causal effect of the exposure on the outcome. MR is less susceptible to confounding, reverse causation and measurement errors as it is based on the random inheritance during conception of genetic variants that can be relatively accurately measured. In previous studies, MR has implicated a genetically predicted increase in telomere length with an increased risk of glioma, and found little evidence that obesity related factors, vitamin D or atopy are causal in glioma risk. In this review, we describe MR and its potential use to discover and validate novel risk factors, mechanistic factors, and therapeutic targets in glioma.
Collapse
Affiliation(s)
- Amy Elizabeth Howell
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Philip C. Haycock
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Centre, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
Cote DJ, Downer MK, Smith TR, Smith-Warner SA, Egan KM, Stampfer MJ. Height, waist circumference, body mass index, and body somatotype across the life course and risk of glioma. Cancer Causes Control 2018; 29:707-719. [PMID: 29943102 DOI: 10.1007/s10552-018-1052-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Recent studies have suggested height as a risk factor for glioma, but less is known regarding body mass index (BMI) or other anthropomorphic measures. We evaluated the association between body habitus and risk of glioma. METHODS We evaluated the association of measures of height, BMI, waist circumference, and somatotypes with risk of glioma in two prospective cohorts, the Nurses' Health Study and the Health Professionals Follow-Up Study. RESULTS We documented 508 incident cases of glioma (321 glioblastoma [GBM]). In both cohorts, we found no significant association between adult BMI or waist circumference and risk of glioma, with pooled HR for BMI of 1.08 (95% CI 0.85-1.38 comparing ≥ 30 to < 25 kg/m2) and for waist circumference of 1.05 (95% CI 0.80-1.37 highest vs. lowest quintile). Higher young adult BMI (at age 18 in NHS and 21 in HPFS) was associated with modestly increased risk of glioma in the pooled cohorts (pooled HR 1.35, 95% CI 1.06-1.72 comparing ≥ 25 kg/m2 vs. less; HR 1.34 for women and 1.37 for men). Analysis of body somatotypes suggested reduced risk of glioma among women with heavier body types at all ages this measure was assessed (HRs ranging from 0.52 to 0.65 comparing highest tertile to lowest tertile), but no significant association among men. Height was associated with increased risk of glioma among women (HR 1.09, 95% CI 1.04-1.14 per inch), but not significantly among men. Within the 8 years prior to diagnosis, cases had no material weight loss compared to non-cases. All results were similar when limited to GBM. CONCLUSION Adult BMI and waist circumference were not associated with glioma. Higher BMI at age 21 for men and at age 18 for women was modestly associated with risk in the pooled cohort. Based on body somatotypes, however, women with heavier body types during childhood and young adulthood may be at lower risk of glioma, although this association was not observed later in life with measurements of BMI. Greater height was associated with increased risk, and the trend was more pronounced in women.
Collapse
Affiliation(s)
- David J Cote
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA.
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mary K Downer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Timothy R Smith
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie A Smith-Warner
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kathleen M Egan
- Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Meir J Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
24
|
Yu X, Sun NR, Jang HT, Guo SW, Lian MX. Associations between EGFR gene polymorphisms and susceptibility to glioma: a systematic review and meta-analysis from GWAS and case-control studies. Oncotarget 2017; 8:86877-86885. [PMID: 29156842 PMCID: PMC5689732 DOI: 10.18632/oncotarget.21011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
The results of genome-wide association studies (GWAS) and case-control studies performed to investigate the associations between epidermal growth factor receptor (EGFR) gene polymorphisms and glioma risk are controversial. The aim of this systematic review and meta-analysis is to determine whether EGFR gene polymorphisms are associated with glioma risk by searching 'PubMed', 'EMBASE', 'Web of Science', 'Cochrane Library' and 'China WeiPu Library' to retrieve studies that investigated associations between EGFR gene polymorphisms and glioma risk. Four GWAS containing 35 studies and 7 case-control studies meeting the inclusion criteria were finally recruited, and 11 single-nucleotide polymorphisms (SNPs) were analyzed. The results showed a significant positive association between rs730437/rs845552 and glioma risk in Asians, and a significant negative association between them in Caucasians. In addition, rs11506105 was significantly associated with an increased risk of glioma in both Asians and Caucasians, and rs11979158 decreased the risk of glioma in Caucasians. However, no significant association was observed between rs12718945/rs17172432/rs4947492 and glioma risk in Asians, between rs2252586 and glioma risk in Caucasians, and between rs3752651 and glioma risk in either Asians or Caucasians. In conclusion, different SNPs in EGFR gene might have different impacts on the risk of glioma in various ethnicities, which offers new insights into the treatment with a target-oriented approach.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| | - Nian Rong Sun
- Department of Neurosurgery of Luonan County People's Hospital, Luonan County, Shaanxi Province, China
| | - Hai Tao Jang
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| | - Shi Wen Guo
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| | - Min Xue Lian
- Department of Neurosurgery of The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi Province, China
| |
Collapse
|
25
|
Wiedmann MKH, Brunborg C, Di Ieva A, Lindemann K, Johannesen TB, Vatten L, Helseth E, Zwart JA. Overweight, obesity and height as risk factors for meningioma, glioma, pituitary adenoma and nerve sheath tumor: a large population-based prospective cohort study. Acta Oncol 2017; 56:1302-1309. [PMID: 28548875 DOI: 10.1080/0284186x.2017.1330554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In 2016, the International Agency for Research on Cancer (IARC) has announced that avoiding body fatness (i.e. overweight and obesity) contributes to prevent meningioma occurrence, but considered the available evidence for glioma inadequate. The association of body fatness with other CNS tumor subgroups is largely unknown. OBJECTIVES To assess whether body fatness or body height are associated with risk for meningioma, glioma, pituitary adenoma (PA) or nerve sheath tumor (NST) in a large population-based Norwegian cohort. METHODS In this prospective cohort study of 1.8 million Norwegian residents, weight and height were measured at baseline and incident intracranial tumors were subsequently identified by linkage to the Cancer Registry of Norway. Cox regression analyses were performed to estimate risk for each tumor subgroup in relation to anthropometric measures, stratified by sex and in different age groups. RESULTS During 54 million person-years of follow-up 3335 meningiomas, 4382 gliomas, 1071 PAs and 759 NSTs were diagnosed. Obesity (BMI ≥30 kg/m2) was not associated with risk for meningioma or glioma, but was significantly associated with risk for PA (HR 1.43; 95% CI 1.09-1.88) compared with the reference group (BMI 20-24.9 kg/m2). For intracranial NSTs, obesity was associated with reduced tumor risk (HR 0.68; 95% CI 0.46-0.99). Body height was associated with increased risk for all four tumor subgroups. CONCLUSIONS This study does not confirm overweight or obesity as risk factors for meningioma. Additionally, overweight and obesity can be quite confidently excluded as risk factors for glioma. However, this study indicates that body fatness increases the risk for PA, while it reduces the risk for NST.
Collapse
Affiliation(s)
- Markus K. H. Wiedmann
- Department of Neurosurgery, Oslo University Hospital, Ulleval, Oslo, Norway
- Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Antonio Di Ieva
- Neurosurgery Unit, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kristina Lindemann
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Lars Vatten
- Department of Public Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eirik Helseth
- Department of Neurosurgery, Oslo University Hospital, Ulleval, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John A. Zwart
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- FORMI and Department of Neurology, Oslo University Hospital, Ulleval, Oslo, Norway
| |
Collapse
|
26
|
miR-137 acts as a tumor suppressor via inhibiting CXCL12 in human glioblastoma. Oncotarget 2017; 8:101262-101270. [PMID: 29254162 PMCID: PMC5731872 DOI: 10.18632/oncotarget.20589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
Up to date, miR-137 has been demonstrated as a tumor suppressor in many kinds of human malignancies. In the present study, we conducted transfection, western blot and RT-PCR to explore the role of miR-137 in the development of human glioblastoma (GBM). Here, we found that miR-137 expression was obviously down-regulated in GBM tissues and cells rather than matched non-tumor tissues and NHA cells. However, the expression of C-X-C motif ligand 12 (CXCL12) mRNA and protein were up-regulated in GBM tissues and cells. In vitro, miR-137 mimics inhibited GBM cell proliferation, migration and invasion, and the 3′-untranslated regions (3′-UTR) of CXCL12 were a direct target of miR-137. In addition, miR-137 mimics also inhibited the expression of EGFR, Bcl-2 and MMP2/9 proteins, but increased the expression of Bax protein. Notably, CXCL12 over-expression attenuated miR-137-inhibited cell proliferation and invasion, while CXCL12 siRNAs promoted miR-137 inhibition effects. In vivo, miR-137 mimics also suppressed tumor growth in nude mice xenograft model. In conclusion, miR-137 serves as a tumor suppressor by inhibition of CXCL12 in human GBM. Thus, miR-137-CXCL12 can be recommended as a useful and effective target for treatment of GBM.
Collapse
|
27
|
Kwon NS, Kim DS, Yun HY. Leucine-rich glioma inactivated 3: integrative analyses support its prognostic role in glioma. Onco Targets Ther 2017; 10:2721-2728. [PMID: 28579810 PMCID: PMC5449096 DOI: 10.2147/ott.s138912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Leucine-rich glioma inactivated 3 (LGI3) is a secreted protein member of LGI family. We previously reported that LGI3 was expressed in brain, adipose tissues and skin, where it played roles as a multifunctional cytokine. We postulated that LGI3 may be involved in cytokine network in cancers. Aim This study aimed to analyze differentially expressed genes in glioma tissues and glioma cohort data to investigate the prognostic role of LGI3 and its receptors. Materials and methods Expression microarray data from Gene Expression Omnibus and glioma cohort data were analyzed using bioinformatic tools for statistical analysis, protein–protein interactions, functional enrichment and pathway analyses and prognostic association analysis. Results We found that LGI3 and its receptors, ADAM22 and ADAM23, were significantly downregulated in glioma tissues. Eleven upregulated genes and two downregulated genes in glioma tissues were found to be the previously reported LGI3-regulated genes. Protein–protein interaction network analysis showed that 85% of the LGI3-regulated and glioma-altered genes formed a cluster of interaction network. Functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed the association of these genes with hypoxia responses, p53 and Akt signaling and various cancer-related pathways including glioma. Analysis of expression microarray data of glioma cohorts demonstrated that low expression levels of LGI3, ADAM22 and ADAM23 were significantly associated with poor prognosis of glioma. Conclusion These results propose that LGI3 and its receptors may play a prognostic role in glioma.
Collapse
Affiliation(s)
- Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|