1
|
Sarac ME, Boga Z, Kara Ü, Akbıyık T, Çınkı AH, Olguner SK. Potential Biomarkers for IDH-Mutant and IDH-Wild-Type Glioblastomas: A Single-Center Retrospective Study. J Clin Med 2025; 14:2518. [PMID: 40217970 PMCID: PMC11989654 DOI: 10.3390/jcm14072518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Glioblastoma ranks among the most aggressive brain tumors, with poor prognosis. Currently, there are insufficient data regarding the prognostic value of isocitrate dehydrogenase (IDH) mutation status and inflammatory markers. This study demonstrates the prognostic value of IDH mutation status and preoperative inflammatory markers in glioblastoma. Methods: This single-center retrospective study encompassed 66 glioblastoma patients who had surgical treatment in our institution from January 2020 to March 2022. The patients were categorized into two groups: IDH-mutant (n = 30) and IDH-wild-type (n = 36). We made a comparative assessment of demographic characteristics, clinical parameters, preoperative blood parameters, and survival outcome across the two groups. Statistical analyses included Kaplan-Meier survival curves, ROC analysis, and multivariate Cox regression. Results: The IDH-mutant group demonstrated a significantly lower mean age (53.93 ± 12.00) compared to the wild-type group (62.39 ± 10.12) (p = 0.003). Median overall survival was notably longer in the IDH-mutant group, at 16.0 months, versus 6.5 months in the wild-type group (p = 0.030). An elevated neutrophil/lymphocyte ratio above 3.39 (sensitivity 95.12%, specificity 52.0%) and a platelet/lymphocyte ratio exceeding 136.25 (sensitivity 80.49%, specificity 64.0%) were associated with poor prognosis. Cox regression analysis identified IDH-wild-type status (HR = 2.84, 95% CI: 1.56-5.18) and elevated NLR (HR = 1.84, 95% CI: 1.16-2.92) as independent poor prognostic factors. Conclusions: We show that IDH-wild-type glioblastomal patients have a significantly poorer overall prognosis. In this case, the metrics of preoperative neutrophil/lymphocyte ratio and platelet/lymphocyte ratio seem to be supplied with some value as biomarkers for the expansion of the disease and predicting likely outcomes.
Collapse
Affiliation(s)
- Mustafa Emre Sarac
- Department of Neurosurgery, Adana City Traininig and Research Hospital, Adana 01230, Turkey; (Z.B.); (T.A.); (A.H.Ç.); (S.K.O.)
| | - Zeki Boga
- Department of Neurosurgery, Adana City Traininig and Research Hospital, Adana 01230, Turkey; (Z.B.); (T.A.); (A.H.Ç.); (S.K.O.)
| | - Ümit Kara
- Department of Anesthesiology, Adana City Traininig and Research Hospital, Adana 01230, Turkey;
| | - Tolga Akbıyık
- Department of Neurosurgery, Adana City Traininig and Research Hospital, Adana 01230, Turkey; (Z.B.); (T.A.); (A.H.Ç.); (S.K.O.)
| | - Ahmet Hamit Çınkı
- Department of Neurosurgery, Adana City Traininig and Research Hospital, Adana 01230, Turkey; (Z.B.); (T.A.); (A.H.Ç.); (S.K.O.)
| | - Semih Kivanc Olguner
- Department of Neurosurgery, Adana City Traininig and Research Hospital, Adana 01230, Turkey; (Z.B.); (T.A.); (A.H.Ç.); (S.K.O.)
| |
Collapse
|
2
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part I-Essential Information on Preoperative and Immediate Postoperative Imaging. Korean J Radiol 2025; 26:246-268. [PMID: 39999966 PMCID: PMC11865903 DOI: 10.3348/kjr.2024.0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 02/27/2025] Open
Abstract
The paradigm of isocitrate dehydrogenase (IDH)-wildtype glioblastoma is rapidly evolving, reflecting clinical, pathological, and imaging advancements. Thus, it remains challenging for radiologists, even those who are dedicated to neuro-oncology imaging, to keep pace with this rapidly progressing field and provide useful and updated information to clinicians. Based on current knowledge, radiologists can play a significant role in managing patients with IDH-wildtype glioblastoma by providing accurate preoperative diagnosis as well as preoperative and postoperative treatment planning including accurate delineation of the residual tumor. Through active communication with clinicians, extending far beyond the confines of the radiology reading room, radiologists can impact clinical decision making. This Part 1 review provides an overview about the neuropathological diagnosis of glioblastoma to understand the past, present, and upcoming revisions of the World Health Organization classification. The imaging findings that are noteworthy for radiologists while communicating with clinicians on preoperative and immediate postoperative imaging of IDH-wildtype glioblastomas will be summarized.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
3
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Bartoszewska-Kubiak A, Serafin Z. Diffusion imaging in gliomas: how ADC values forecast glioma genetics. Pol J Radiol 2025; 90:e103-e113. [PMID: 40196311 PMCID: PMC11973703 DOI: 10.5114/pjr/200967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose This study investigates the relationship between diffusion-weighted imaging (DWI) and mean apparent diffusion coefficient (ADC) values in predicting the genetic and molecular features of gliomas. The goal is to enhance non-invasive diagnostic methods and support personalised treatment strategies by clarifying the association between imaging biomarkers and tumour genotypes. Material and methods A total of 91 glioma patients treated between August 2023 and March 2024 were included in the analysis. All patients underwent preoperative magnetic resonance imaging (MRI), including DWI, and had available histopathological and genetic test results. Clinical data, tumour characteristics, and genetic markers such as IDH1 mutation, MGMT promoter methylation, EGFR amplification, TERT pathogenic variant, and CDKN2A deletion were collected. Statistical analysis was performed to identify correlations between ADC values, MRI perfusion parameters, and genetic characteristics. Results Significant associations were found between lower ADC values and aggressive tumour features, including IDH1-wildtype, MGMT unmethylated status, TERT pathogenic variant, and EGFR amplification. Additionally, distinct ADC patterns were observed in gliomas with CDKN2A, TP53, and PTEN gene deletions. These findings were further supported by contrast enhancement and other MRI parameters, indicating their role in tumour characterisation. Conclusions DWI and ADC measurements demonstrate strong potential as non-invasive tools for predicting glioma genetics. These imaging biomarkers can aid in tumour characterisation and provide valuable insights for guiding personalised treatment strategies.
Collapse
Affiliation(s)
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland
- Department of Neurosurgery, 10 Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10 Military Clinical Hospital and Polyclinic, Bydgoszcz, Poland
| | - Alicja Bartoszewska-Kubiak
- Laboratory of Clinical Genetics and Molecular Pathology, Department of Medical Analytics, 10 Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| | - Zbigniew Serafin
- Faculty of Medicine, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
4
|
Fleming JL, Chakravarti A. Recent Advancements and Future Perspectives on Molecular Biomarkers in Adult Lower-Grade Gliomas. Cancer J 2025; 31:e0758. [PMID: 39841423 DOI: 10.1097/ppo.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.
Collapse
Affiliation(s)
- Jessica L Fleming
- From the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | |
Collapse
|
5
|
Xu H, Liu B, Wang Y, Zhu R, Jiang S, Soliman LAFA, Chai H, Sun M, Chen J, Li KKW, Ng HK, Zhang Z, Wei J, Shi Z, Mao Y. Multi-center real-world data-driven web calculator for predicting outcomes in IDH-mutant gliomas: Integrating molecular subtypes and treatment modalities. Neurooncol Adv 2025; 7:vdae221. [PMID: 39844832 PMCID: PMC11751580 DOI: 10.1093/noajnl/vdae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Background Isocitrate dehydrogenase (IDH)-mutant gliomas generally have a better prognosis than IDH-wild-type glioblastomas, and the extent of resection significantly impacts prognosis. However, there is a lack of integrated tools for predicting outcomes based on molecular subtypes and treatment modalities. This study aimed to identify factors influencing gross total resection (GTR) rates and to develop a clinical prognostic tool for IDH-mutant gliomas. Methods We analyzed 650 patients with IDH-mutant gliomas from 3 Chinese medical centers (Shanghai, Hong Kong, and Zhengzhou). Data included age, sex, extent of resection, radiotherapy status, tumor grade, histology, and molecular markers (1p19q, TERT promoter, BRAF, EGFR, 10q). Patients were categorized based on GTR status, and a nomogram predicting 3-, 5-, and 10-year overall survival (OS) was developed using Cox proportional hazards regression and validated with time-dependent ROC and calibration plot analyses. Results Non-GTR was associated with diffuse astrocytoma (73.0% vs. 53.5%), 1p19q non-codeletion (67.9% vs. 48.7%), and wildtype TERT promoter (63.6% vs. 52.4%). The nomogram, incorporating age, TERT promoter status, extent of resection, grade, and radiotherapy status, demonstrated strong discriminatory ability (AUC > 0.75) and good calibration. Decision curve analysis indicated that it outperformed WHO grade-based classification in identifying high-risk patients. An online calculator was developed for clinical use (http://www.szflab.site/nomogram/). Conclusion We developed and validated a nomogram and online tool that integrates molecular and clinical factors for predicting outcomes in IDH-mutant gliomas, enhancing clinical decision-making.
Collapse
Affiliation(s)
- Houshi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Beining Liu
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| | - Yue Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ruize Zhu
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| | - Shan Jiang
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| | | | - Huihui Chai
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| | - Maoyuan Sun
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| | - Jiawen Chen
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junji Wei
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Zhifeng Shi
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| | - Ying Mao
- Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit of New Technologies of Micro-Endoscopy Combination in Skull Base Surgery (2018RU008), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Shanghai, China
| |
Collapse
|
6
|
Wu W, Zhang H. Prediction of isocitrate dehydrogenase mutation status in WHO grade II glioma by diffusion kurtosis imaging. Pol J Radiol 2024; 89:e566-e572. [PMID: 39850400 PMCID: PMC11756366 DOI: 10.5114/pjr/195521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/03/2024] [Indexed: 01/25/2025] Open
Abstract
Purpose Isocitrate dehydrogenase (IDH) mutation status serves as a crucial prognostic indicator for glioma, typically assessed via immunohistochemical analysis post-surgery. Given the invasiveness of this approach, perhaps we can utilise convenient and noninvasive magnetic resonance imaging (MRI) methods to predict IDH mutation status. However, the current landscape lacks a standardised MRI technique for accurately predicting IDH mutations. In this study, we explore the potential of MRI diffusion kurtosis imaging (DKI) in forecasting the IDH mutation status of WHO grade II brain gliomas. Material and methods Twenty-five patients with WHO grade II gliomas were retrospectively included. Patients underwent routine MRI and DKI scanning before surgery, measuring tumoural solid portion, peritumoral oedema, and normal-appearing white matter (NAWM) DKI parameters, including fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), axial kurtosis (Ka), and axial radial kurtosis (Kr). The DKI parameter corrections were made (tumour or oedema parameters values divided by the NAWM value) to obtain the rFA (ratio of FA), rMD (ratio of MD), rMK (ratio of MK), rKA (ratio of KA), and rKr (ratio of Kr) values. Postoperative specimens were made of wax blocks and analysed by Sanger gene sequencing. DKI parameters between the 2 groups were compared by independent sample t-tests. The ROC curve was used to analyse the diagnostic value of each parameter. Results Twenty-five patients were diagnosed with IDH-mutant (16 cases) and IDH-wild type (9 cases). The rFA and rMK values in the parenchymal region of IDH wild-type tumour were higher than those of IDH mutant, while the rMD values were lower than those of IDH mutant, and the difference between them was statistically significant (p < 0.05). The values of DKI parameters of peritumoral oedema in the 2 groups were not statistically significant. Conclusions DKI can provide microstructural changes of diseased tissues and provide more imaging information for preoperative non-invasive judgment of IDH mutation status of WHO grade II gliomas. The values of rMK, rFA, and rMD are helpful in the assessment IDH mutation status, benefiting accurate diagnoses and treatment decisions.
Collapse
Affiliation(s)
- Wenjie Wu
- Shanxi Traditional Chinese Medical Hospital, Shanxi, China
| | - Hui Zhang
- First Hospital of Shanxi Medical University, Shanxi, China
| |
Collapse
|
7
|
Bruzzaniti P, Pennisi G, Lapolla P, Familiari P, Maiola V, Quintiliani C, Alò P, Relucenti M, La Pira B, D’Andrea G. Cerebellopontine angle pilocytic astrocytoma in adults: A systematic review. Surg Neurol Int 2024; 15:363. [PMID: 39524593 PMCID: PMC11544465 DOI: 10.25259/sni_539_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Background In adults, the cerebellopontine angle (CPA) pilocytic astrocytoma (PA) is very rare. This tumor has radiological features similar to those of a vestibular schwannoma in the few cases reported in the literature. Methods In this study, we conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol and scrutinized all original studies pertaining to pontocerebellar angle PA in adult patients. We conducted an analysis of the clinical, radiological, and molecular components of all eligible articles. We have also reported a case involving a 67-year-old male individual in whom the PA exhibited radiological characteristics similar to an epidermoid cyst. Results After the screening phase, we found four cases of PA of the pontocerebellar angle. Three cases were identified that resembled vestibular schwannoma; however, in our case, the tumor resembled an epidermoid cyst. These uncommon tumors exhibit distinctive histological patterns and molecular characteristics (adenosine triphosphate dependent helicase (ATP- dependent helicase)+, Isocitrate dehydrogenase 1-), rendering them a potential differential diagnosis for glioblastoma (GBM). Conclusion The CPA PA has rarely been found in adult patients and should be considered in the differential diagnosis of vestibular schwannoma and epidermoid cysts. In these rare cases, the histological characteristics of PA are significant for the differential diagnosis of GBM.
Collapse
Affiliation(s)
- Placido Bruzzaniti
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, Rome, Italy
| | - Giovanni Pennisi
- Department of Neurosurgery, Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Policlinico Umberto I University Hospital, Sapienza University of Rome, Rome, Italy
| | - Vincenza Maiola
- Department of Neurosurgery, Fabrizio Spaziani Hospital, Frosinone, Italy
| | - Claudia Quintiliani
- Department of DAFR, Pathological Anatomy, Fabrizio Spaziani Hospital, Frosinone, Italy
| | - Pierluigi Alò
- Department of DAFR, Pathological Anatomy, Fabrizio Spaziani Hospital, Frosinone, Italy
| | - Michela Relucenti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Policlinico Umberto I Sapienza University of Rome, Rome, Lazio, Italy
| | - Biagia La Pira
- Department of Neurosurgery, Fabrizio Spaziani Hospital, Frosinone, Italy
| | - Giancarlo D’Andrea
- Department of Neurosurgery, Fabrizio Spaziani Hospital, Frosinone, Italy
| |
Collapse
|
8
|
Lee M, Karschnia P, Park YW, Choi K, Han K, Choi SH, Yoon HI, Shin NY, Ahn SS, Tonn JC, Chang JH, Kim SH, Lee SK. Comparative analysis of molecular and histological glioblastomas: insights into prognostic variance. J Neurooncol 2024; 169:531-541. [PMID: 39115615 DOI: 10.1007/s11060-024-04737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Whether molecular glioblastomas (GBMs) identify with a similar dismal prognosis as a "classical" histological GBM is controversial. This study aimed to compare the clinical, molecular, imaging, surgical factors, and prognosis between molecular GBMs and histological GBMs. METHODS Retrospective chart and imaging review was performed in 983 IDH-wildtype GBM patients (52 molecular GBMs and 931 histological GBMs) from a single institution between 2005 and 2023. Propensity score-matched analysis was additionally performed to adjust for differences in baseline variables between molecular GBMs and histological GBMs. RESULTS Molecular GBM patients were substantially younger (58.1 vs. 62.4, P = 0.014) with higher rate of TERTp mutation (84.6% vs. 50.3%, P < 0.001) compared with histological GBM patients. Imaging showed higher incidence of gliomatosis cerebri pattern (32.7% vs. 9.2%, P < 0.001) in molecular GBM compared with histological GBM, which resulted in lesser extent of resection (P < 0.001) in these patients. The survival was significantly better in molecular GBM compared to histological GBM (median OS 30.2 vs. 18.4 months, P = 0.001). The superior outcome was confirmed in propensity score analyses by matching histological GBM to molecular GBM (P < 0.001). CONCLUSION There are distinct clinical, molecular, and imaging differences between molecular GBMs and histological GBMs. Our results suggest that molecular GBMs have a more favorable prognosis than histological GBMs.
Collapse
Affiliation(s)
- Myunghwan Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| | - Kaeum Choi
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Na-Young Shin
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| |
Collapse
|
9
|
Shin I, Park YW, Sim Y, Choi SH, Ahn SS, Chang JH, Kim SH, Lee SK, Jain R. Revisiting gliomatosis cerebri in adult-type diffuse gliomas: a comprehensive imaging, genomic and clinical analysis. Acta Neuropathol Commun 2024; 12:128. [PMID: 39127694 PMCID: PMC11316408 DOI: 10.1186/s40478-024-01832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although gliomatosis cerebri (GC) has been removed as an independent tumor type from the WHO classification, its extensive infiltrative pattern may harbor a unique biological behavior. However, the clinical implication of GC in the context of the 2021 WHO classification is yet to be unveiled. This study investigated the incidence, clinicopathologic and imaging correlations, and prognostic implications of GC in adult-type diffuse glioma patients. Retrospective chart and imaging review of 1,211 adult-type diffuse glioma patients from a single institution between 2005 and 2021 was performed. Among 1,211 adult-type diffuse glioma patients, there were 99 (8.2%) patients with GC. The proportion of molecular types significantly differed between patients with and without GC (P = 0.017); IDH-wildtype glioblastoma was more common (77.8% vs. 66.5%), while IDH-mutant astrocytoma (16.2% vs. 16.9%) and oligodendroglioma (6.1% vs. 16.5%) were less common in patients with GC than in those without GC. The presence of contrast enhancement, necrosis, cystic change, hemorrhage, and GC type 2 were independent risk factors for predicting IDH mutation status in GC patients. GC remained as an independent prognostic factor (HR = 1.25, P = 0.031) in IDH-wildtype glioblastoma patients on multivariable analysis, along with clinical, molecular, and surgical factors. Overall, our data suggests that although no longer included as a distinct pathological entity in the WHO classification, recognition of GC may be crucial considering its clinical significance. There is a relatively high incidence of GC in adult-type diffuse gliomas, with different proportion according to molecular types between patients with and without GC. Imaging may preoperatively predict the molecular type in GC patients and may assist clinical decision-making. The prognostic role of GC promotes its recognition in clinical settings.
Collapse
Affiliation(s)
- Ilah Shin
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yongsik Sim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Sedaemun- gu, Seoul, 03722, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, 50 Yonsei-ro, Sedaemun-gu, Seoul, 03722, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, 550 1st Ave, New York, NY States, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, 550 1st Ave, New York, NY States, USA
| |
Collapse
|
10
|
Li J, Han Z, Ma C, Chi H, Jia D, Zhang K, Feng Z, Han B, Qi M, Li G, Li X, Xue H. Intraoperative rapid molecular diagnosis aids glioma subtyping and guides precise surgical resection. Ann Clin Transl Neurol 2024; 11:2176-2187. [PMID: 38924338 PMCID: PMC11330232 DOI: 10.1002/acn3.52138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The molecular era of glioma diagnosis and treatment has arrived, and a single rapid histopathology is no longer sufficient for surgery. This study sought to present an automatic integrated gene detection system (AIGS), which enables rapid intraoperative detection of IDH/TERTp mutations. METHODS A total of 78 patients with gliomas were included in this study. IDH/TERTp mutations were detected intraoperatively using AIGS in 41 of these patients, and they were guided to surgical resection (AIGS detection group). The remaining 37 underwent histopathology-guided conventional surgical resection (non-AIGS detection group). The clinical utility of this technique was evaluated by comparing the accuracy of glioma subtype diagnosis before and after TERTp mutation results were obtained by pathologists and the extent of resection (EOR) and patient prognosis for molecular pathology-guided glioma surgery. RESULTS With NGS/Sanger sequencing and chromosome detection as the gold standard, the accuracy of AIGS results was 100%. And the timing was well matched to the intraoperative rapid pathology report. After obtaining the TERTp mutation detection results, the accuracy of the glioma subtype diagnosis made by the pathologists increased by 19.51%. Molecular pathology-guided surgical resection of gliomas significantly increased EOR (99.06% vs. 93.73%, p < 0.0001) and also improved median OS (26.77 vs. 13.47 months, p = 0.0289) and median PFS (15.90 vs. 10.57 months, p = 0.0181) in patients with glioblastoma. INTERPRETATION Using AIGS intraoperatively to detect IDH/TERTp mutations to accurately diagnose glioma subtypes can help achieve maximum safe resection of gliomas, which in turn improves the survival prognosis of patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Zhe Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Caizhi Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Deze Jia
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Kailiang Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Bo Han
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Mei Qi
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Xueen Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| |
Collapse
|
11
|
Rich K, Tosefsky K, Martin KC, Bashashati A, Yip S. Practical Application of Deep Learning in Diagnostic Neuropathology-Reimagining a Histological Asset in the Era of Precision Medicine. Cancers (Basel) 2024; 16:1976. [PMID: 38893099 PMCID: PMC11171052 DOI: 10.3390/cancers16111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In the past few decades, neuropathology has experienced several paradigm shifts with the introduction of new technologies. Deep learning, a rapidly progressing subfield of machine learning, seems to be the next innovation to alter the diagnostic workflow. In this review, we will explore the recent changes in the field of neuropathology and how this has led to an increased focus on molecular features in diagnosis and prognosis. Then, we will examine the work carried out to train deep learning models for various diagnostic tasks in neuropathology, as well as the machine learning frameworks they used. Focus will be given to both the challenges and successes highlighted therein, as well as what these trends may tell us about future roadblocks in the widespread adoption of this new technology. Finally, we will touch on recent trends in deep learning, as applied to digital pathology more generally, and what this may tell us about the future of deep learning applications in neuropathology.
Collapse
Affiliation(s)
- Katherine Rich
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Kira Tosefsky
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.T.); (K.C.M.)
| | - Karina C. Martin
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.T.); (K.C.M.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ali Bashashati
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Stephen Yip
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.T.); (K.C.M.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Park CJ, Kim S, Han K, Ahn SS, Kim D, Park YW, Chang JH, Kim SH, Lee SK. Diffusion- and Perfusion-Weighted MRI Radiomics for Survival Prediction in Patients with Lower-Grade Gliomas. Yonsei Med J 2024; 65:283-292. [PMID: 38653567 PMCID: PMC11045349 DOI: 10.3349/ymj.2023.0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Lower-grade gliomas of histologic grades 2 and 3 follow heterogenous clinical outcomes, which necessitates risk stratification. This study aimed to evaluate whether diffusion-weighted and perfusion-weighted MRI radiomics allow overall survival (OS) prediction in patients with lower-grade gliomas and investigate its prognostic value. MATERIALS AND METHODS In this retrospective study, radiomic features were extracted from apparent diffusion coefficient, relative cerebral blood volume map, and Ktrans map in patients with pathologically confirmed lower-grade gliomas (January 2012-February 2019). The radiomics risk score (RRS) calculated from selected features constituted a radiomics model. Multivariable Cox regression analysis, including clinical features and RRS, was performed. The models' integrated area under the receiver operating characteristic curves (iAUCs) were compared. The radiomics model combined with clinical features was presented as a nomogram. RESULTS The study included 129 patients (median age, 44 years; interquartile range, 37-57 years; 63 female): 90 patients for training set and 39 patients for test set. The RRS was an independent risk factor for OS with a hazard ratio of 6.01. The combined clinical and radiomics model achieved superior performance for OS prediction compared to the clinical model in both training (iAUC, 0.82 vs. 0.72, p=0.002) and test sets (0.88 vs. 0.76, p=0.04). The radiomics nomogram combined with clinical features exhibited good agreement between the actual and predicted OS with C-index of 0.83 and 0.87 in the training and test sets, respectively. CONCLUSION Adding diffusion- and perfusion-weighted MRI radiomics to clinical features improved survival prediction in lower-grade glioma.
Collapse
Affiliation(s)
- Chae Jung Park
- Department of Radiology, Research Institute of Radiological Science, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sooyon Kim
- Department of Applied Statistics, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Dain Kim
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology, Pohang, Korea
| | - Yae Won Park
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Center for Clinical Imaging Data Science, Research Institute of Radiological Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Huang R, Han B, Zhang Y, Yang J, Wang K, Liu X, Wang Z. Pathway-based stratification of gliomas uncovers four subtypes with different TME characteristics and prognosis. J Cell Mol Med 2024; 28:e18208. [PMID: 38613347 PMCID: PMC11015396 DOI: 10.1111/jcmm.18208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 04/14/2024] Open
Abstract
Increasing evidences have found that the interactions between hypoxia, immune response and metabolism status in tumour microenvironment (TME) have clinical importance of predicting clinical outcomes and therapeutic efficacy. This study aimed to develop a reliable molecular stratification based on these key components of TME. The TCGA data set (training cohort) and two independent cohorts from CGGA database (validation cohort) were enrolled in this study. First, the enrichment score of 277 TME-related signalling pathways was calculated by gene set variation analysis (GSVA). Then, consensus clustering identified four stable and reproducible subtypes (AFM, CSS, HIS and GLU) based on TME-related signalling pathways, which were characterized by differences in hypoxia and immune responses, metabolism status, somatic alterations and clinical outcomes. Among the four subtypes, HIS subtype had features of immunosuppression, oxygen deprivation and active energy metabolism, resulting in a worst prognosis. Thus, for better clinical application of this acquired stratification, we constructed a risk signature by using the LASSO regression model to identify patients in HIS subtype accurately. We found that the risk signature could accurately screen out the patients in HIS subtype and had important reference value for individualized treatment of glioma patients. In brief, the definition of the TME-related subtypes was a valuable tool for risk stratification in gliomas. It might serve as a reliable prognostic classifier and provide rational design of individualized treatment, and follow-up scheduling for patients with gliomas.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Ying Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Kuanyu Wang
- Department of Gamma Knife CenterBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Xing Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Molecular NeuropathologyBeijing Neurosurgical Institute, Capital Medical UniversityBeijingChina
| |
Collapse
|
14
|
Fares J, Wan Y, Mair R, Price SJ. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun 2024; 6:fcae108. [PMID: 38646145 PMCID: PMC11032202 DOI: 10.1093/braincomms/fcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.
Collapse
Affiliation(s)
- Jawad Fares
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yizhou Wan
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard Mair
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
15
|
Keric N, Krenzlin H, Kalasauskas D, Freyschlag CF, Schnell O, Misch M, von der Brelie C, Gempt J, Krigers A, Wagner A, Lange F, Mielke D, Sommer C, Brockmann MA, Meyer B, Rohde V, Vajkoczy P, Beck J, Thomé C, Ringel F. Treatment outcome of IDH1/2 wildtype CNS WHO grade 4 glioma histologically diagnosed as WHO grade II or III astrocytomas. J Neurooncol 2024; 167:133-144. [PMID: 38326661 PMCID: PMC10978634 DOI: 10.1007/s11060-024-04585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH)1/2 wildtype (wt) astrocytomas formerly classified as WHO grade II or III have significantly shorter PFS and OS than IDH mutated WHO grade 2 and 3 gliomas leading to a classification as CNS WHO grade 4. It is the aim of this study to evaluate differences in the treatment-related clinical course of these tumors as they are largely unknown. METHODS Patients undergoing surgery (between 2016-2019 in six neurosurgical departments) for a histologically diagnosed WHO grade 2-3 IDH1/2-wt astrocytoma were retrospectively reviewed to assess progression free survival (PFS), overall survival (OS), and prognostic factors. RESULTS This multi-center study included 157 patients (mean age 58 years (20-87 years); with 36.9% females). The predominant histology was anaplastic astrocytoma WHO grade 3 (78.3%), followed by diffuse astrocytoma WHO grade 2 (21.7%). Gross total resection (GTR) was achieved in 37.6%, subtotal resection (STR) in 28.7%, and biopsy was performed in 33.8%. The median PFS (12.5 months) and OS (27.0 months) did not differ between WHO grades. Both, GTR and STR significantly increased PFS (P < 0.01) and OS (P < 0.001) compared to biopsy. Treatment according to Stupp protocol was not associated with longer OS or PFS compared to chemotherapy or radiotherapy alone. EGFR amplification (P = 0.014) and TERT-promotor mutation (P = 0.042) were associated with shortened OS. MGMT-promoter methylation had no influence on treatment response. CONCLUSIONS WHO grade 2 and 3 IDH1/2 wt astrocytomas, treated according to the same treatment protocols, have a similar OS. Age, extent of resection, and strong EGFR expression were the most important treatment related prognostic factors.
Collapse
Affiliation(s)
- Naureen Keric
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Harald Krenzlin
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Darius Kalasauskas
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | | | - Oliver Schnell
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Martin Misch
- Department of Neurosurgery, Charité University Berlin, Berlin, Germany
| | | | - Jens Gempt
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Arthur Wagner
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Felipa Lange
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center Mainz, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Mainz, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Berlin, Berlin, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Johannes Gutenberg University of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
16
|
Satgunaseelan L, Sy J, Shivalingam B, Sim HW, Alexander KL, Buckland ME. Prognostic and predictive biomarkers in central nervous system tumours: the molecular state of play. Pathology 2024; 56:158-169. [PMID: 38233331 DOI: 10.1016/j.pathol.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Central nervous system (CNS) tumours were one of the first cancer types to adopt and integrate molecular profiling into routine clinical diagnosis in 2016. The vast majority of these biomarkers, used to discriminate between tumour types, also offered prognostic information. With the advent of The Cancer Genome Atlas (TCGA) and other large genomic datasets, further prognostic sub-stratification was possible within tumour types, leading to increased precision in CNS tumour grading. This review outlines the evolution of the molecular landscape of adult CNS tumours, through the prism of World Health Organization (WHO) Classifications. We begin our journey in the pre-molecular era, where high-grade gliomas were divided into 'primary' and 'secondary' glioblastomas. Molecular alterations explaining these clinicopathological observations were the first branching points of glioma diagnostics, with the discovery of IDH1/2 mutations and 1p/19q codeletion. Subsequently, the rigorous characterisation of paediatric gliomas led to the unearthing of histone H3 alterations as a key event in gliomagenesis, which also had implications for young adult patients. Simultaneously, studies investigating prognostic biomarkers within tumour types were undertaken. Certain genomic phenotypes were found to portend unfavourable outcomes, for example, MYCN amplification in spinal ependymoma. The arrival of methylation profiling, having revolutionised the diagnosis of CNS tumours, now promises to bring increased prognostic accuracy, as has been shown in meningiomas. While MGMT promoter hypermethylation has remained a reliable biomarker of response to cytotoxic chemotherapy, targeted therapy in CNS tumours has unfortunately not had the success of other cancers. Therefore, predictive biomarkers have lagged behind the identification of prognostic biomarkers in CNS tumours. Emerging research from new clinical trials is cause for guarded optimism and may shift our conceptualisation of predictive biomarker testing in CNS tumours.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Brindha Shivalingam
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Hao-Wen Sim
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Kimberley L Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Wang H, Zhang X, Liu J, Chen W, Guo X, Wang Y, Wang Y, Xing H, Liang T, Shi Y, Liu D, Yang T, Xia Y, Li J, Wu J, Liu Q, Qu T, Guo S, Li H, Zhang K, Li Y, Jin S, Zhao D, Wang Y, Ma W. Clinical roles of EGFR amplification in diffuse gliomas: a real-world study using the 2021 WHO classification of CNS tumors. Front Neurosci 2024; 18:1308627. [PMID: 38595969 PMCID: PMC11002900 DOI: 10.3389/fnins.2024.1308627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/12/2024] [Indexed: 04/11/2024] Open
Abstract
Background The 2021 World Health Organization Classification of Central Nervous System Tumors updates glioma subtyping and grading system, and incorporates EGFR amplification (Amp) as one of diagnostic markers for glioblastoma (GBM). Purpose This study aimed to describe the frequency, clinical value and molecular correlation of EGFR Amp in diffuse gliomas based on the latest classification. Methods We reviewed glioma patients between 2011 and 2022 at our hospital, and included 187 adult glioma patients with available tumor tissue for detection of EGFR Amp and other 59 molecular markers of interest. Clinical, radiological and pathological data was analyzed based on the status of EGFR Amp in different glioma subtypes. Results 163 gliomas were classified as adult-type diffuse gliomas, and the number of astrocytoma, oligodendroglioma and GBM was 41, 46, and 76. EGFR Amp was more common in IDH-wildtype diffuse gliomas (66.0%) and GBM (85.5%) than IDH-mutant diffuse gliomas (32.2%) and its subtypes (astrocytoma, 29.3%; oligodendroglioma, 34.8%). EGFR Amp did not stratify overall survival (OS) in IDH-mutant diffuse gliomas and astrocytoma, while was significantly associated with poorer OS in IDH-wildtype diffuse gliomas, histologic grade 2 and 3 IDH-wildtype diffuse astrocytic gliomas and GBM. Conclusion Our study validated EGFR Amp as a diagnostic marker for GBM and still a useful predictor for shortened OS in this group.
Collapse
Affiliation(s)
- Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- "4+4" Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- "4+4" Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| |
Collapse
|
18
|
Shi ZF, Li KKW, Liu APY, Chung NYF, Chow C, Chen H, Kan NCA, Zhu XL, Chan DTM, Mao Y, Ng HK. Rare Pediatric Cerebellar High-Grade Gliomas Mimic Medulloblastomas Histologically and Transcriptomically and Show p53 Mutations. Cancers (Basel) 2024; 16:232. [PMID: 38201659 PMCID: PMC10778382 DOI: 10.3390/cancers16010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Pediatric high-grade gliomas (HGG) of the cerebellum are rare, and only a few cases have been documented in detail in the literature. A major differential diagnosis for poorly differentiated tumors in the cerebellum in children is medulloblastoma. In this study, we described the histological and molecular features of a series of five pediatric high-grade gliomas of the cerebellum. They actually showed histological and immunohistochemical features that overlapped with those of medulloblastomas and achieved high scores in NanoString-based medulloblastoma diagnostic assay. Methylation profiling demonstrated these tumors were heterogeneous epigenetically, clustering to GBM_MID, DMG_K27, and GBM_RTKIII methylation classes. MYCN amplification was present in one case, and PDGFRA amplification in another two cases. Interestingly, target sequencing showed that all tumors carried TP53 mutations. Our results highlight that pediatric high-grade gliomas of the cerebellum can mimic medulloblastomas at histological and transcriptomic levels. Our report adds to the rare number of cases in the literature of cerebellar HGGs in children. We recommend the use of both methylation array and TP53 screening in the differential diagnoses of poorly differentiated embryonal-like tumors of the cerebellum.
Collapse
Affiliation(s)
- Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (C.C.)
| | - Anthony Pak-Yin Liu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China;
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (C.C.)
| | - Chit Chow
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (C.C.)
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Nim-Chi Amanda Kan
- Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, China;
| | - Xian-Lun Zhu
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (X.-L.Z.); (D.T.-M.C.)
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (X.-L.Z.); (D.T.-M.C.)
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Ho-Keung Ng
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China; (K.K.-W.L.); (N.Y.-F.C.); (C.C.)
| |
Collapse
|
19
|
Huo X, Wang Y, Ma S, Zhu S, Wang K, Ji Q, Chen F, Wang L, Wu Z, Li W. Multimodal MRI-based radiomic nomogram for predicting telomerase reverse transcriptase promoter mutation in IDH-wildtype histological lower-grade gliomas. Medicine (Baltimore) 2023; 102:e36581. [PMID: 38134061 PMCID: PMC10735121 DOI: 10.1097/md.0000000000036581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
The presence of TERTp mutation in isocitrate dehydrogenase-wildtype (IDHwt) histologically lower-grade glioma (LGA) has been linked to a poor prognosis. In this study, we aimed to develop and validate a radiomic nomogram based on multimodal MRI for predicting TERTp mutations in IDHwt LGA. One hundred and nine IDH wildtype glioma patients (TERTp-mutant, 78; TERTp-wildtype, 31) with clinical, radiomic, and molecular information were collected and randomly divided into training and validation set. Clinical model, fusion radiomic model, and combined radiomic nomogram were constructed for the discrimination. Radiomic features were screened with 3 algorithms (Wilcoxon rank sum test, elastic net, and the recursive feature elimination) and the clinical characteristics of combined radiomic nomogram were screened by the Akaike information criterion. Finally, receiver operating characteristic curve, calibration curve, Hosmer-Lemeshow test, and decision curve analysis were utilized to assess these models. Fusion radiomic model with 4 radiomic features achieved an area under the curve value of 0.876 and 0.845 in the training and validation set. And, the combined radiomic nomogram achieved area under the curve value of 0.897 (training set) and 0.882 (validation set). Above that, calibration curve and Hosmer-Lemeshow test showed that the radiomic model and combined radiomic nomogram had good agreement between observations and predictions in the training set and the validation set. Finally, the decision curve analysis revealed that the 2 models had good clinical usefulness for the prediction of TERTp mutation status in IDHwt LGA. The combined radiomics nomogram performed great performance and high sensitivity in prediction of TERTp mutation status in IDHwt LGA, and has good clinical application.
Collapse
Affiliation(s)
- Xulei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yali Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sihan Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sipeng Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Ji
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Xie X, Shen C, Zhang X, Wu G, Yang B, Qi Z, Tang Q, Wang Y, Ding H, Shi Z, Yu J. Rapid intraoperative multi-molecular diagnosis of glioma with ultrasound radio frequency signals and deep learning. EBioMedicine 2023; 98:104899. [PMID: 38041959 PMCID: PMC10711390 DOI: 10.1016/j.ebiom.2023.104899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Molecular diagnosis is crucial for biomarker-assisted glioma resection and management. However, some limitations of current molecular diagnostic techniques prevent their widespread use intraoperatively. With the unique advantages of ultrasound, this study developed a rapid intraoperative molecular diagnostic method based on ultrasound radio-frequency signals. METHODS We built a brain tumor ultrasound bank with 169 cases enrolled since July 2020, of which 43483 RF signal patches from 67 cases with a pathological diagnosis of glioma were a retrospective cohort for model training and validation. IDH1 and TERT promoter (TERTp) mutations and 1p/19q co-deletion were detected by next-generation sequencing. We designed a spatial-temporal integration model (STIM) to diagnose the three molecular biomarkers, thus establishing a rapid intraoperative molecular diagnostic system for glioma, and further analysed its consistency with the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5). We tested STIM in 16-case prospective cohorts, which contained a total of 10384 RF signal patches. Two other RF-based classical models were used for comparison. Further, we included 20 cases additional prospective data for robustness test (ClinicalTrials.govNCT05656053). FINDINGS In the retrospective cohort, STIM achieved a mean accuracy and AUC of 0.9190 and 0.9650 (95% CI, 0.94-0.99) respectively for the three molecular biomarkers, with a total time of 3 s and a 96% match to WHO CNS5. In the prospective cohort, the diagnostic accuracy of STIM is 0.85 ± 0.04 (mean ± SD) for IDH1, 0.84 ± 0.05 for TERTp, and 0.88 ± 0.04 for 1p/19q. The AUC is 0.89 ± 0.02 (95% CI, 0.84-0.94) for IDH1, 0.80 ± 0.04 (95% CI, 0.71-0.89) for TERTp, and 0.85 ± 0.06 (95% CI, 0.73-0.98) for 1p/19q. Compared to the second best available method based on RF signal, the diagnostic accuracy of STIM is improved by 16.70% and the AUC is improved by 19.23% on average. INTERPRETATION STIM is a rapid, cost-effective, and easy-to-manipulate AI method to perform real-time intraoperative molecular diagnosis. In the future, it may help neurosurgeons designate personalized surgical plans and predict survival outcomes. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Xuan Xie
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chao Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Bojie Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Long C, Song Y, Pan Y, Wu C. Identification of molecular subtypes and a risk model based on inflammation-related genes in patients with low grade glioma. Heliyon 2023; 9:e22429. [PMID: 38046156 PMCID: PMC10686866 DOI: 10.1016/j.heliyon.2023.e22429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Lower grade gliomas (LGGs) exhibit invasiveness and heterogeneity as distinguishing features. The outcome of patients with LGG differs greatly. Recently, more and more studies have suggested that infiltrating inflammation cells and inflammation-related genes (IRGs) play an essential role in tumorigenesis, prognosis, and treatment responses. Nevertheless, the role of IRGs in LGG remains unclear. In The Cancer Genome Atlas (TCGA) cohort, we conducted a thorough examination of the predictive significance of IRGs and identified 245 IRGs that correlated with the clinical prognosis of individuals diagnosed with LGG. Based on unsupervised cluster analysis, we identified two inflammation-associated molecular clusters, which presented different tumor immune microenvironments, tumorigenesis scores, and tumor stemness indices. Furthermore, a prognostic risk model including ten prognostic IRGs (ADRB2, CD274, CXCL12, IL12B, NFE2L2, PRF1, SFTPC, TBX21, TNFRSF11B, and TTR) was constructed. The survival analysis indicated that the IRGs risk model independently predicted the prognosis of patients with LGG, which was validated in an independent LGG cohort. Moreover, the risk model significantly correlated with the infiltrative level of immune cells, tumor mutation burden, expression of HLA and immune checkpoint genes, tumorigenesis scores, and tumor stemness indices in LGG. Additionally, we found that our risk model could predict the chemotherapy response of some drugs in patients with LGG. This study may enhance the advancement of personalized therapy and improve outcomes of LGG.
Collapse
Affiliation(s)
- Cheng Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ya Song
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
22
|
Pratt D, Penas-Prado M, Gilbert MR. Clinical impact of molecular profiling in rare brain tumors. Curr Opin Neurol 2023; 36:579-586. [PMID: 37973025 DOI: 10.1097/wco.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the commonly used molecular diagnostics and illustrate the prognostic importance to the more accurate diagnosis that also may uncover therapeutic targets. RECENT FINDINGS The most recent WHO Classification of Central Nervous System Tumours (2021) lists over 100 distinct tumor types. While traditional histology continues to be an important component, molecular testing is increasingly being incorporated as requisite diagnostic criteria. Specific molecular findings such as co-deletion of the short arm of chromosome 1 (1p) and long arm of chromosome 19 (19q) now define IDH-mutant gliomas as oligodendroglioma. In recent years, DNA methylation profiling has emerged as a dynamic tool with high diagnostic accuracy. The integration of specific genetic (mutations, fusions) and epigenetic (CpG methylation) alterations has led to diagnostic refinement and the discovery of rare brain tumor types with distinct clinical outcomes. Molecular profiling is anticipated to play an increasing role in routine surgical neuropathology, although costs, access, and logistical concerns remain challenging. SUMMARY This review summarizes the current state of molecular testing in neuro-oncology highlighting commonly used and developing technologies, while also providing examples of new tumor types/subtypes that have emerged as a result of improved diagnostic precision.
Collapse
Affiliation(s)
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Ninatti G, Pini C, Bono BC, Gelardi F, Antunovic L, Fernandes B, Sollini M, Landoni C, Chiti A, Pessina F. The prognostic power of [ 11C]methionine PET in IDH-wildtype diffuse gliomas with lower-grade histological features: venturing beyond WHO classification. J Neurooncol 2023; 164:473-481. [PMID: 37695488 DOI: 10.1007/s11060-023-04438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE IDH-wildtype (IDH-wt) diffuse gliomas with histological features of lower-grade gliomas (LGGs) are rare and heterogeneous primary brain tumours. [11C]Methionine (MET) positron emission tomography (PET) is commonly used to evaluate glial neoplasms at diagnosis. The present study aimed to assess the prognostic value of MET PET in newly diagnosed, treatment naïve IDH-wt gliomas with histological features of LGGs. METHODS Patients with a histological diagnosis of IDH-wt LGG who underwent preoperative (< 100 days) MET PET/CT and surgery were retrospectively included. Qualitative and semi-quantitative analyses of MET PET images were performed. Progression-free survival (PFS) and overall survival (OS) were analysed by Kaplan-Meier curves. Cox proportional-hazards regression was used to test the association of imaging and clinical data to PFS and OS. RESULTS We included 48 patients (M:F = 25:23; median age 55). 39 lesions were positive and 9 negative at MET PET. Positive MET PET was significantly associated with shorter median PFS (15.7 months vs. not reached, p = 0.0146) and OS time (32.6 months vs. not reached, p = 0.0253). Incomplete surgical resection and higher TBRmean values were independent predictors of shorter PFS on multivariate analysis (p < 0.001 for both). Higher tumour grade and incomplete surgical resection were independent predictors of OS at multivariate analysis (p = 0.027 and p = 0.01, respectively). CONCLUSION MET PET is useful for the prognostic stratification of patients with IDH-wt glial neoplasms with histological LGGs features. Considering their huge biological heterogeneity, the combination of MET PET and molecular analyses may help to improve the prognostic accuracy in these diffuse gliomas subset and influence therapeutic choices accordingly.
Collapse
Affiliation(s)
- Gaia Ninatti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristiano Pini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Beatrice Claudia Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Lidija Antunovic
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bethania Fernandes
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Claudio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Nuclear Medicine Department, IRCCS Monza, San Gerardo Hospital, Monza, Italy
| | - Arturo Chiti
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
24
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
25
|
Nakasu S, Deguchi S, Nakasu Y. IDH wild-type lower-grade gliomas with glioblastoma molecular features: a systematic review and meta-analysis. Brain Tumor Pathol 2023:10.1007/s10014-023-00463-8. [PMID: 37212969 DOI: 10.1007/s10014-023-00463-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The WHO 2021 classification defines IDH wild type (IDHw) histologically lower-grade glioma (hLGG) as molecular glioblastoma (mGBM) if TERT promoter mutation (pTERTm), EGFR amplification or chromosome seven gain and ten loss aberrations are indicated. We systematically reviewed articles of IDHw hLGGs studies (49 studies, N = 3748) and meta-analyzed mGBM prevalence and overall survival (OS) according to the PRISMA statement. mGBM rates in IDHw hLGG were significantly lower in Asian regions (43.7%, 95% confidence interval [CI: 35.8-52.0]) when compared to non-Asian regions (65.0%, [CI: 52.9-75.4]) (P = 0.005) and were significantly lower in fresh-frozen specimen when compared to formalin-fixed paraffin-embedded samples (P = 0.015). IDHw hLGGs without pTERTm rarely expressed other molecular markers in Asian studies when compared to non-Asian studies. Patients with mGBM had significantly longer OS times when compared to histological GBM (hGBM) (pooled hazard ratio (pHR) 0.824, [CI: 0.694-0.98], P = 0.03)). In patients with mGBM, histological grade was a significant prognostic factor (pHR 1.633, [CI: 1.09-2.447], P = 0.018), as was age (P = 0.001) and surgical extent (P = 0.018). Although bias risk across studies was moderate, mGBM with grade II histology showed better OS rates when compared to hGBM.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Division of Neurosurgery, Omi Medical Center, Yabase-cho 1660, Kusatsu, Shiga, 525-8585, Japan.
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan.
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan
- Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
26
|
Martin KC, Ma C, Yip S. From Theory to Practice: Implementing the WHO 2021 Classification of Adult Diffuse Gliomas in Neuropathology Diagnosis. Brain Sci 2023; 13:brainsci13050817. [PMID: 37239289 DOI: 10.3390/brainsci13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse gliomas are the most common type of primary central nervous system (CNS) neoplasm to affect the adult population. The diagnosis of adult diffuse gliomas is dependent upon the integration of morphological features of the tumour with its underlying molecular alterations, and the integrative diagnosis has become of increased importance in the fifth edition of the WHO classification of CNS neoplasms (WHO CNS5). The three major diagnostic entities of adult diffuse gliomas are as follows: (1) astrocytoma, IDH-mutant; (2) oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and (3) glioblastoma, IDH-wildtype. The aim of this review is to summarize the pathophysiology, pathology, molecular characteristics, and major diagnostic updates encountered in WHO CNS5 of adult diffuse gliomas. Finally, the application of implementing the necessary molecular tests for diagnostic workup of these entities in the pathology laboratory setting is discussed.
Collapse
Affiliation(s)
- Karina Chornenka Martin
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Crystal Ma
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
27
|
Tejada Solís S, González Sánchez J, Iglesias Lozano I, Plans Ahicart G, Pérez Núñez A, Meana Carballo L, Gil Salú JL, Fernández Coello A, García Romero JC, Rodríguez de Lope Llorca A, García Duque S, Díez Valle R, Narros Giménez JL, Prat Acín R. Low grade gliomas guide-lines elaborated by the tumor section of Spanish Society of Neurosurgery. NEUROCIRUGIA (ENGLISH EDITION) 2023; 34:139-152. [PMID: 36446721 DOI: 10.1016/j.neucie.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 05/06/2023]
Abstract
Adult low-grade gliomas (Low Grade Gliomas, LGG) are tumors that originate from the glial cells of the brain and whose management involves great controversy, starting from the diagnosis, to the treatment and subsequent follow-up. For this reason, the Tumor Group of the Spanish Society of Neurosurgery (GT-SENEC) has held a consensus meeting, in which the most relevant neurosurgical issues have been discussed, reaching recommendations based on the best scientific evidence. In order to obtain the maximum benefit from these treatments, an individualised assessment of each patient should be made by a multidisciplinary team. Experts in each LGG treatment field have briefly described it based in their experience and the reviewed of the literature. Each area has been summarized and focused on the best published evidence. LGG have been surrounded by treatment controversy, although during the last years more accurate data has been published in order to reach treatment consensus. Neurosurgeons must know treatment options, indications and risks to participate actively in the decision making and to offer the best surgical treatment in every case.
Collapse
Affiliation(s)
- Sonia Tejada Solís
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain.
| | - Josep González Sánchez
- Departamento de Neurocirugía, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Irene Iglesias Lozano
- Departamento de Neurocirugía, Hospital Universitario Puerta del Mar, Cádiz, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Gerard Plans Ahicart
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Angel Pérez Núñez
- Departamento de Neurocirugía, Hospital Universitario 12 de Octubre, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Leonor Meana Carballo
- Departamento de Neurocirugía, Centro Médico de Asturias, Oviedo, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Jose Luis Gil Salú
- Departamento de Neurocirugía, Hospital Universitario Puerta del Mar, Cádiz, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Alejandro Fernández Coello
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Juan Carlos García Romero
- Departamento de Neurocirugía, Hospital Virgen del Rocío, Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Angel Rodríguez de Lope Llorca
- Departamento de Neurocirugía, Hospital Virgen de la Salud, Toledo, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Sara García Duque
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Ricardo Díez Valle
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Jose Luis Narros Giménez
- Departamento de Neurocirugía, Hospital Virgen del Rocío, Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Ricardo Prat Acín
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| |
Collapse
|
28
|
Motomura K, Kibe Y, Ohka F, Aoki K, Yamaguchi J, Saito R. Clinical characteristics and radiological features of glioblastoma, IDH-wildtype, grade 4 with histologically lower-grade gliomas. Brain Tumor Pathol 2023; 40:48-55. [PMID: 36988764 DOI: 10.1007/s10014-023-00458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
The 2021 World Health Organization (WHO) classification of central nervous system tumors applied molecular criteria and further integrated histological and molecular diagnosis of gliomas. This classification allows for the diagnosis of isocitrate dehydrogenase wild-type (IDHwt) glioblastoma (GBM), and WHO grade 4 with histologically lower-grade gliomas (LrGGs), even in the absence of high-grade histopathologic features, such as necrosis and/or microvascular proliferation. They contain at least one of the following molecular features: epidermal growth factor receptor amplification, chromosome 7 gain/10 loss, or telomerase reverse transcriptase promoter mutation. In the imaging features at the time of histological diagnosis, a gliomatosis cerebri growth pattern was frequently observed in these tumors. Furthermore, this growth pattern was significantly higher in IDHwt GBM, WHO grade 4, with histological grade II gliomas. Although the exact prognosis of IDHwt GBM, WHO grade 4, with histologically LGGs remains unknown, its OS was approximately 1-2 years similar to that of histologically IDHwt GBM, WHO grade 4, despite histopathological features similar to IDHmut LrGGs. These findings reinforce the need for the analysis of molecular features, regardless of presenting similar clinical characteristics and imaging features to IDHmut LrGGs.
Collapse
Affiliation(s)
- Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Yuji Kibe
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
29
|
Park YW, Park KS, Park JE, Ahn SS, Park I, Kim HS, Chang JH, Lee SK, Kim SH. Qualitative and Quantitative Magnetic Resonance Imaging Phenotypes May Predict CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytomas: A Multicenter Study. Korean J Radiol 2023; 24:133-144. [PMID: 36725354 PMCID: PMC9892217 DOI: 10.3348/kjr.2022.0732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Cyclin-dependent kinase inhibitor (CDKN)2A/B homozygous deletion is a key molecular marker of isocitrate dehydrogenase (IDH)-mutant astrocytomas in the 2021 World Health Organization. We aimed to investigate whether qualitative and quantitative MRI parameters can predict CDKN2A/B homozygous deletion status in IDH-mutant astrocytomas. MATERIALS AND METHODS Preoperative MRI data of 88 patients (mean age ± standard deviation, 42.0 ± 11.9 years; 40 females and 48 males) with IDH-mutant astrocytomas (76 without and 12 with CDKN2A/B homozygous deletion) from two institutions were included. A qualitative imaging assessment was performed. Mean apparent diffusion coefficient (ADC), 5th percentile of ADC, mean normalized cerebral blood volume (nCBV), and 95th percentile of nCBV were assessed via automatic tumor segmentation. Logistic regression was performed to determine the factors associated with CDKN2A/B homozygous deletion in all 88 patients and a subgroup of 47 patients with histological grades 3 and 4. The discrimination performance of the logistic regression models was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS In multivariable analysis of all patients, infiltrative pattern (odds ratio [OR] = 4.25, p = 0.034), maximal diameter (OR = 1.07, p = 0.013), and 95th percentile of nCBV (OR = 1.34, p = 0.049) were independent predictors of CDKN2A/B homozygous deletion. The AUC, accuracy, sensitivity, and specificity of the corresponding model were 0.83 (95% confidence interval [CI], 0.72-0.91), 90.4%, 83.3%, and 75.0%, respectively. On multivariable analysis of the subgroup with histological grades 3 and 4, infiltrative pattern (OR = 10.39, p = 0.012) and 95th percentile of nCBV (OR = 1.24, p = 0.047) were independent predictors of CDKN2A/B homozygous deletion, with an AUC accuracy, sensitivity, and specificity of the corresponding model of 0.76 (95% CI, 0.60-0.88), 87.8%, 80.0%, and 58.1%, respectively. CONCLUSION The presence of an infiltrative pattern, larger maximal diameter, and higher 95th percentile of the nCBV may be useful MRI biomarkers for CDKN2A/B homozygous deletion in IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Sung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea
| | - Ji Eun Park
- Department of Radiology, Ulsan University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Inho Park
- Center for Precision Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology, Ulsan University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
30
|
Kibe Y, Motomura K, Ohka F, Aoki K, Shimizu H, Yamaguchi J, Nishikawa T, Saito R. Imaging features of localized IDH wild-type histologically diffuse astrocytomas: a single-institution case series. Sci Rep 2023; 13:23. [PMID: 36646712 PMCID: PMC9842655 DOI: 10.1038/s41598-022-25928-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Isocitrate dehydrogenase wild-type (IDHwt) diffuse astrocytomas feature highly infiltrative patterns, such as a gliomatosis cerebri growth pattern with widespread involvement. Among these tumors, localized IDHwt histologically diffuse astrocytomas are rarer than the infiltrative type. The aim of this study was to assess and describe the clinical, radiographic, histopathological, and molecular characteristics of this rare type of IDHwt histologically diffuse astrocytomas and thereby provide more information on how its features affect clinical prognoses and outcomes. We retrospectively analyzed the records of five patients with localized IDHwt histologically diffuse astrocytomas between July 2017 and January 2020. All patients were female, and their mean age at the time of the initial treatment was 55.0 years. All patients had focal disease that did not include gliomatosis cerebri or multifocal disease. All patients received a histopathological diagnosis of diffuse astrocytomas at the time of the initial treatment. For recurrent tumors, second surgeries were performed at a mean of 12.4 months after the initial surgery. A histopathological diagnosis of glioblastoma was made in four patients and one of gliosarcoma in one patient. The initial status of IDH1, IDH2, H3F3A, HIST1H3B, and BRAF was "wild-type" in all patients. TERT promoter mutations (C250T or C228T) were detected in four patients. No tumors harbored a 1p/19q codeletion, EGFR amplification, or chromosome 7 gain/10 loss (+ 7/ - 10). We assessed clinical cases of localized IDHwt histologically diffuse astrocytomas that resulted in malignant recurrence and a poor clinical prognosis similar to that of glioblastomas. Our case series suggests that even in patients with histologically diffuse astrocytomas and those who present with radiographic imaging findings suggestive of a localized tumor mass, physicians should consider the possibility of IDHwt histologically diffuse astrocytomas.
Collapse
Affiliation(s)
- Yuji Kibe
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Kazuya Motomura
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Fumiharu Ohka
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Kosuke Aoki
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Hiroyuki Shimizu
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Junya Yamaguchi
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Tomohide Nishikawa
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| | - Ryuta Saito
- grid.27476.300000 0001 0943 978XDepartment of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550 Japan
| |
Collapse
|
31
|
Long S, Wu B, Yang L, Wang L, Wang B, Yan Y, Jiang J, Yang B, Zhou Q, Shi M, Liang W, Wei W, Li X. Novel tumor necrosis factor-related long non-coding RNAs signature for risk stratification and prognosis in glioblastoma. Front Neurol 2023; 14:1054686. [PMID: 37153654 PMCID: PMC10156969 DOI: 10.3389/fneur.2023.1054686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Tumor necrosis factor (TNF) is an inflammatory cytokine that can coordinate tissue homeostasis by co-regulating the production of cytokines, cell survival, or death. It widely expresses in various tumor tissues and correlates with the malignant clinical features of patients. As an important inflammatory factor, the role of TNFα is involved in all steps of tumorigenesis and development, including cell transformation, survival, proliferation, invasion and metastasis. Recent research has showed that long non-coding RNAs (lncRNAs), defined as RNA transcripts >200 nucleotides that do not encode a protein, influence numerous cellular processes. However, little is known about the genomic profile of TNF pathway related-lncRNAs in GBM. This study investigated the molecular mechanism of TNF related-lncRNAs and their immune characteristics in glioblastoma multiforme (GBM) patients. Methods To identify TNF associations in GBM patients, we performed bioinformatics analysis of public databases - The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). The ConsensusClusterPlus, CIBERSORT, Estimate, GSVA and TIDE and first-order bias correlation and so on approaches were conducted to comprehensively characterize and compare differences among TNF-related subtypes. Results Based on the comprehensive analysis of TNF-related lncRNAs expression profiles, we constructed six TNF-related lncRNAs (C1RL-AS1, LINC00968, MIR155HG, CPB2-AS1, LINC00906, and WDR11-AS1) risk signature to determine the role of TNF-related lncRNAs in GBM. This signature could divide GBM patients into subtypes with distinct clinical and immune characteristics and prognoses. We identified three molecular subtypes (C1, C2, and C3), with C2 showing the best prognosis; otherwise, C3 showing the worst prognosis. Moreover, we assessed the prognostic value, immune infiltration, immune checkpoints, chemokines cytokines and enrichment analysis of this signature in GBM. The TNF-related lncRNA signature was tightly associated with the regulation of tumor immune therapy and could serve as an independent prognostic biomarker in GBM. Conclusion This analysis provides a comprehensive understanding of the role of TNF-related characters, which may improve the clinical outcome of GBM patients.
Collapse
Affiliation(s)
- Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bingbing Wu
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Yang
- Department of Neurosurgery, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Lesheng Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiangqiang Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Shi
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wu Liang
- Department of Neurosurgery, The Affiliated Minda Hospital of Hubei University for Nationalities, Enshi, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Wei Wei,
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- Xiang Li,
| |
Collapse
|
32
|
Li M, Wang J, Chen X, Dong G, Zhang W, Shen S, Jiang H, Yang C, Zhang X, Zhao X, Zhu Q, Li M, Cui Y, Ren X, Lin S. The sinuous, wave-like intratumoral-wall sign is a sensitive and specific radiological biomarker for oligodendrogliomas. Eur Radiol 2022; 33:4440-4452. [PMID: 36520179 DOI: 10.1007/s00330-022-09314-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the clinical utility of the sinuous, wave-like intratumoral-wall (SWITW) sign on T2WI in diagnosing isocitrate dehydrogenase (IDH) mutant and 1p/19q codeleted (IDHmut-Codel) oligodendrogliomas, for which a relatively conservative resection strategy might be sufficient due to a better response to chemoradiotherapy and favorable prognosis. METHODS Imaging data from consecutive adult patients with diffuse lower-grade gliomas (LGGs, histological grades 2-3) in Beijing Tiantan Hospital (December 1, 2013, to October 31, 2021, BTH set, n = 711) and the Cancer Imaging Archive (TCIA) LGGs set (n = 117) were used to develop and validate our findings. Two independent observers assessed the SWITW sign and some well-reported discriminative radiological features to establish a practical diagnostic strategy. RESULTS The SWITW sign showed satisfying sensitivity (0.684 and 0.722 for BTH and TCIA sets) and specificity (0.938 and 0.914 for BTH and TCIA sets) in defining IDHmut-Codels, and the interobserver agreement was substantial (κ 0.718 and 0.756 for BTH and TCIA sets). Compared to calcification, the SWITW sign improved the sensitivity by 0.28 (0.404 to 0.684) in the BTH set, and 81.0% (277/342) of IDHmut-Codel cases demonstrated SWITW and/ or calcification positivity. Combining the SWITW sign, calcification, low ADC values, and other discriminative features, we established a concise and reliable diagnostic protocol for IDHmut-Codels. CONCLUSIONS The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codels. The integrated protocol provided an explicable, efficient, and reproducible method for precise preoperative diagnosis, which was essential to guide individualized surgical plan-making. KEY POINTS • The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codel oligodendrogliomas. • The SWITW sign was more sensitive than calcification and an integrated strategy could improve diagnostic sensitivity for IDHmut-Codel oligodendrogliomas. • Combining SWITW, calcification, low ADC values, and other discriminative features could make a precise preoperative diagnosis for IDHmut-Codel oligodendrogliomas.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jincheng Wang
- Department of Radiology, Peking University Cancer Hospital, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiwei Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Center of Brain Tumor, Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Brain Tumor, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
| |
Collapse
|
33
|
Slocum CC, Park HJ, Baek I, Catalano J, Wells MT, Liechty B, Mathew S, Song W, Solomon JP, Pisapia DJ. Towards a single-assay approach: a combined DNA/RNA sequencing panel eliminates diagnostic redundancy and detects clinically-relevant fusions in neuropathology. Acta Neuropathol Commun 2022; 10:167. [PMCID: PMC9670552 DOI: 10.1186/s40478-022-01466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractSince the introduction of integrated histological and molecular diagnoses by the 2016 World Health Organization (WHO) Classification of Tumors of the Nervous System, an increasing number of molecular markers have been found to have prognostic significance in infiltrating gliomas, many of which have now become incorporated as diagnostic criteria in the 2021 WHO Classification. This has increased the applicability of targeted-next generation sequencing in the diagnostic work-up of neuropathology specimens and in addition, raises the question of whether targeted sequencing can, in practice, reliably replace older, more traditional diagnostic methods such as immunohistochemistry and fluorescence in-situ hybridization. Here, we demonstrate that the Oncomine Cancer Gene Mutation Panel v2 assay targeted-next generation sequencing panel for solid tumors is not only superior to IHC in detecting mutation in IDH1/2 and TP53 but can also predict 1p/19q co-deletion with high sensitivity and specificity relative to fluorescence in-situ hybridization by looking at average copy number of genes sequenced on 1p, 1q, 19p, and 19q. Along with detecting the same molecular data obtained from older methods, targeted-next generation sequencing with an RNA sequencing component provides additional information regarding the presence of RNA based alterations that have diagnostic significance and possible therapeutic implications. From this work, we advocate for expanded use of targeted-next generation sequencing over more traditional methods for the detection of important molecular alterations as a part of the standard diagnostic work up for CNS neoplasms.
Collapse
|
34
|
McKinney AM, Mathur R, Stevers NO, Molinaro AM, Chang SM, Phillips JJ, Costello JF. GABP couples oncogene signaling to telomere regulation in TERT promoter mutant cancer. Cell Rep 2022; 40:111344. [PMID: 36130485 PMCID: PMC9534059 DOI: 10.1016/j.celrep.2022.111344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/17/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Abstract
Telomerase activation counteracts senescence and telomere erosion caused by uncontrolled proliferation. Epidermal growth factor receptor (EGFR) amplification drives proliferation while telomerase reverse transcriptase promoter (TERTp) mutations underlie telomerase reactivation through recruitment of GA-binding protein (GABP). EGFR amplification and TERTp mutations typically co-occur in glioblastoma, the most common and aggressive primary brain tumor. To determine if these two frequent alterations driving proliferation and immortality are functionally connected, we combine analyses of copy number, mRNA, and protein data from tumor tissue with pharmacologic and genetic perturbations. We demonstrate that proliferation arrest decreases TERT expression in a GABP-dependent manner and elucidate a critical proliferation-to-immortality pathway from EGFR to TERT expression selectively from the mutant TERTp through activation of AMP-mediated kinase (AMPK) and GABP upregulation. EGFR-AMPK signaling promotes telomerase activity and maintains telomere length. These results define how the tumor cell immortality mechanism keeps pace with persistent oncogene signaling and cell cycling. TERT promoter mutations are common in human cancer and confer cellular immortality. McKinney et al. describe the interaction between TERT promoter mutations, EGFR amplification, and the cell cycle in glioblastoma. The results demonstrate how proliferation drivers cooperate with telomere maintenance mechanisms to counteract telomere shortening caused by unlimited cell division.
Collapse
Affiliation(s)
- Andrew M McKinney
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Radhika Mathur
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Sex as a prognostic factor in adult-type diffuse gliomas: an integrated clinical and molecular analysis according to the 2021 WHO classification. J Neurooncol 2022; 159:695-703. [PMID: 35988090 DOI: 10.1007/s11060-022-04114-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate whether type-specific sex differences in survival exist independently of clinical and molecular factors in adult-type diffuse gliomas according to the 2021 World Health Organization (WHO) classification. METHODS A retrospective chart and imaging review of 1325 patients (mean age, 54 ± 15 years; 569 females) with adult-type diffuse gliomas (oligodendroglioma, IDH-mutant, and 1p/19q-codeleted, n = 183; astrocytoma, IDH-mutant, n = 211; glioblastoma, IDH-wildtype, n = 800; IDH-wildtype diffuse glioma, NOS, n = 131) was performed. The demographic information, extent of resection, imaging data, and molecular data including O6-methylguanine-methyltransferase promoter methylation (MGMT) promotor methylation were collected. Sex differences in survival were analyzed using Cox analysis. RESULTS In patients with glioblastoma, IDH-wildtype, female sex remained as an independent predictor of better overall survival (hazard ratio = 0.91, P = 0.031), along with age, histological grade 4, MGMT promoter methylation status, and gross total resection. Female sex showed a higher prevalence of MGMT promoter methylation (40.2% vs 32.0%, P = 0.017) but there was no interaction effect between female sex and MGMT promoter methylation status (P-interaction = 0.194), indicating independent role of female sex. The median OS for females were 19.2 months (12.3-35.0) and 16.2 months (10.5-30.6) for males. No sex difference in survival was seen in other types of adult-type diffuse gliomas. CONCLUSION There was a female survival advantage in glioblastoma, IDH-wildtype, independently of clinical data or MGMT promoter methylation status. There was no sex difference in survival in other types of adult-type diffuse gliomas, suggesting type-specific sex effects solely in glioblastoma, IDH-wildtype.
Collapse
|
36
|
Chen SN, Wang Z, Zhou DS, Liu XQ, Mai TY, Dong ZX, Li M, Zhang XD, Qi L. Case report: ISL2 is involved in malignant transformation in a patient with multiple relapsed oligodendroglioma. Front Oncol 2022; 12:969191. [PMID: 35965581 PMCID: PMC9366390 DOI: 10.3389/fonc.2022.969191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The majority of oligodendrogliomas exhibit an intrinsic tendency to develop into malignant high-grade tumors. Angiogenesis is a major factor contributing to the malignant transformation of oligodendroglioma, and its molecular regulatory mechanism needs further study. We provide a case report of an oligodendroglioma patient with two recurrences whose disease progressed from WHO grade II to grade III. We showed that the expression of insulin gene enhancer protein (ISL2) and its angiogenic ability were positively correlated with the progression of oligodendroglioma. In Low-grade glioma (LGG) patients, including oligodendroglioma patients, overexpression of ISL2 was correlated with poor prognosis, and this correlation was not affected by gender or isocitrate dehydrogenase 1(IDH1) mutation status. ISL2 expression and ISL2-mediated angiogenic pathway activity are ideal biomarkers for the malignant transformation of oligodendroglioma. Anti-ISL2 therapy is also a potential treatment option for malignantly transformed oligodendroglioma.
Collapse
Affiliation(s)
- Shu-Na Chen
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongyong Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Di-Sheng Zhou
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xue-Qi Liu
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tao-Yi Mai
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhao-Xia Dong
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Miao Li
- Department of Hematology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xing-Ding Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Lin Qi, ; Xing-Ding Zhang,
| | - Lin Qi
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Lin Qi, ; Xing-Ding Zhang,
| |
Collapse
|
37
|
Liu EM, Shi ZF, Li KKW, Malta TM, Chung NYF, Chen H, Chan JYT, Poon MFM, Kwan JSH, Chan DTM, Noushmehr H, Mao Y, Ng HK. Molecular landscape of IDH-wild type, pTERT-wild type adult glioblastomas. Brain Pathol 2022; 32:e13107. [PMID: 35815721 PMCID: PMC9616088 DOI: 10.1111/bpa.13107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter (pTERT) mutation has often been described as a late event in gliomagenesis and it has been suggested as a prognostic biomarker in gliomas other than 1p19q codeleted tumors. However, the characteristics of isocitrate dehydrogenase (IDH) wild type (wt) (IDHwt), pTERTwt glioblastomas are not well known. We recruited 72 adult IDHwt, pTERTwt glioblastomas and performed methylation profiling, targeted sequencing, and fluorescence in situ hybridization (FISH) for TERT structural rearrangement and ALT (alternative lengthening of telomeres). There was no significant difference in overall survival (OS) between our cohort and a the Cancer Genome Atlas (TCGA) cohort of IDHwt, pTERT mutant (mut) glioblastomas, suggesting that pTERT mutation on its own is not a prognostic factor among IDHwt glioblastomas. Epigenetically, the tumors clustered into classic‐like (11%), mesenchymal‐like (32%), and LGm6‐glioblastoma (GBM) (57%), the latter far exceeding the corresponding proportion seen in the TCGA cohort of IDHwt, pTERTmut glioblastomas. LGm6‐GBM‐clustered tumors were enriched for platelet derived growth factor receptor alpha (PDGFRA) amplification or mutation (p = 0.008), and contained far fewer epidermal growth factor receptor (EGFR) amplification (p < 0.01), 10p loss (p = 0.001) and 10q loss (p < 0.001) compared with cases not clustered to this group. LGm6‐GBM cases predominantly showed ALT (p = 0.038). In the whole cohort, only 35% cases showed EGFR amplification and no case showed combined chromosome +7/−10. Since the cases were already pTERTwt, so the three molecular properties of EGFR amplification, +7/−10, and pTERT mutation may not cover all IDHwt glioblastomas. Instead, EGFR and PDGFRA amplifications covered 67% and together with their mutations covered 71% of cases of this cohort. Homozygous deletion of cyclin dependent kinase inhibitor 2A (CDKN2A)/B was associated with a worse OS (p = 0.031) and was an independent prognosticator in multivariate analysis (p = 0.032). In conclusion, adult IDHwt, pTERTwt glioblastomas show epigenetic clustering different from IDHwt, pTERTmut glioblastomas, and IDHwt glioblastomas which are pTERTwt may however not show EGFR amplification or +7/−10 in a significant proportion of cases. CDKN2A/B deletion is a poor prognostic biomarker in this group.
Collapse
Affiliation(s)
- Emma Munan Liu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhi-Feng Shi
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Tathiane M Malta
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Janice Yuen-Tung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Manix Fung-Man Poon
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan, USA
| | - Ying Mao
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| |
Collapse
|
38
|
Beltrán-Navarro YM, Reyes-Cruz G, Vázquez-Prado J. P-Rex1 Signaling Hub in Lower Grade Glioma Patients, Found by In Silico Data Mining, Correlates With Reduced Survival and Augmented Immune Tumor Microenvironment. Front Oncol 2022; 12:922025. [PMID: 35875157 PMCID: PMC9300953 DOI: 10.3389/fonc.2022.922025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Systematic analysis of tumor transcriptomes, combined with deep genome sequencing and detailed clinical assessment of hundreds of patients, constitutes a powerful strategy aimed to identify potential biomarkers and therapeutic targets to guide personalized treatments. Oncogenic signaling cascades are integrated by multidomain effector proteins such as P-Rex1, a guanine nucleotide exchange factor for the Rac GTPase (RacGEF), known to promote metastatic dissemination of cancer cells. We hypothesized that patients with high P-Rex1 expression and reduced survival might be characterized by a particular set of signaling proteins co-expressed with this effector of cell migration as a central component of a putative signaling hub indicative of poor prognosis. High P-Rex1 expression correlated with reduced survival of TCGA Lower Grade Glioma (LGG) patients. Thus, guided by PREX1 expression, we searched for signaling partners of this RacGEF by applying a systematic unbiased in silico data mining strategy. We identified 30 putative signaling partners that also correlated with reduced patient survival. These included GPCRs such as CXCR3, GPR82, FZD6, as well as MAP3K1, MAP2K3, NEK8, DYRK3 and RPS6KA3 kinases, and PTPN2 and PTPN22 phosphatases, among other transcripts of signaling proteins and phospho-substrates. This PREX1 signaling hub signature correlated with increased risk of shorter survival of LGG patients from independent datasets and coincided with immune and endothelial transcriptomic signatures, indicating that myeloid infiltration and tumor angiogenesis might contribute to worsen brain tumor pathology. In conclusion, P-Rex1 and its putative signaling partners in LGG are indicative of a signaling landscape of the tumor microenvironment that correlates with poor prognosis and might guide the characterization of signaling targets leading the eventual development of immunotherapeutic strategies.
Collapse
Affiliation(s)
| | | | - José Vázquez-Prado
- Department of Pharmacology, Cinvestav-IPN, Mexico City, Mexico
- *Correspondence: José Vázquez-Prado,
| |
Collapse
|
39
|
Kumari K, Dandapath I, Singh J, Rai HIS, Kaur K, Jha P, Malik N, Chosdol K, Mallick S, Garg A, Suri A, Sharma MC, Sarkar C, Suri V. Molecular Characterization of IDH Wild-type Diffuse Astrocytomas: The Potential of cIMPACT-NOW Guidelines. Appl Immunohistochem Mol Morphol 2022; 30:410-417. [PMID: 35708480 DOI: 10.1097/pai.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
IDH wild-type (wt) grade 2/3 astrocytomas are a heterogenous group of tumors with disparate clinical and molecular profiles. cIMPACT-NOW recommendations incorporated in the new 2021 World Health Organization (WHO) Classification of Central Nervous System (CNS) Tumors urge minimal molecular criteria to identify a subset that has an aggressive clinical course similar to IDH -wt glioblastomas (GBMs). This paper describes the use of a panel of molecular markers to reclassify IDH -wt grade 2/3 diffuse astrocytic gliomas (DAGs) and study median overall survival concerning for to IDH -wt GBMs in the Indian cohort. IDH -wt astrocytic gliomas (grades 2, 3, and 4) confirmed by IDHR132H immunohistochemistry and IDH1/2 gene sequencing, 1p/19q non-codeleted with no H3F3A mutations were included. TERT promoter mutation by Sanger sequencing, epidermal growth factor receptor amplification, and whole chromosome 7 gain and chromosome 10 loss by fluorescence in situ hybridization was assessed and findings correlated with clinical and demographic profiles. The molecular profile of 53 IDH -wt DAGs (grade 2: 31, grade 3: 22) was analyzed. Eleven cases (grade 2: 8, grade 3: 3) (20.75%) were reclassified as IDH -wt GBMs, WHO grade 4 ( TERT promoter mutation in 17%, epidermal growth factor receptor amplification in 5.5%, and whole chromosome 7 gain and chromosome 10 loss in 2%). Molecular GBMs were predominantly frontal (54.5%) with a mean age of 36 years and median overall survival equivalent to IDH -wt GBMs (18 vs. 19 mo; P =0.235). Among grade 2/3 DAGs not harboring these alterations, significantly better survival was observed for grade 2 versus grade 3 DAGs (25 vs. 16 mo; P =0.002). Through the incorporation of a panel of molecular markers, a subset of IDH -wt grade 2 DAGs can be stratified into molecular grade 4 tumors with prognostic and therapeutic implications. However, IDH -wt grade 3 DAGs behave like GBMs irrespective of molecular profile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ajay Garg
- Neuroradiology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | | | | | | | | |
Collapse
|
40
|
Molecular landscape of pediatric type IDH wildtype, H3 wildtype hemispheric glioblastomas. J Transl Med 2022; 102:731-740. [PMID: 35332262 DOI: 10.1038/s41374-022-00769-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
The WHO (2021) Classification classified a group of pediatric-type high-grade gliomas as IDH wildtype, H3 wildtype but as of currently, they are characterized only by negative molecular features of IDH and H3. We recruited 35 cases of pediatric IDH wildtype and H3 wildtype hemispheric glioblastomas. We evaluated them with genome-wide methylation profiling, targeted sequencing, RNAseq, TERT promoter sequencing, and FISH. The median survival of the cohort was 27.6 months. With Capper et al.'s36 methylation groups as a map, the cases were found to be epigenetically heterogeneous and were clustered in proximity or overlay of methylation groups PXA-like (n = 8), LGG-like (n = 10), GBM_MYCN (n = 9), GBM_midline (n = 5), and GBM_RTKIII (n = 3). Histology of the tumors in these groups was not different from regular glioblastomas. Methylation groups were not associated with OS. We were unable to identify groups specifically characterized by EGFR or PDGFRA amplification as proposed by other authors. EGFR, PDGFRA, and MYCN amplifications were not correlated with OS. 4/9 cases of the GBM_MYCN cluster did not show MYCN amplification; the group was also enriched for EGFR amplification (4/9 cases) and the two biomarkers overlapped in two cases. Overall, PDGFRA amplification was found in only four cases and they were not restricted to any groups. Cases in proximity to GBM_midline were all hemispheric and showed loss of H3K27me3 staining. Fusion genes ALK/NTRK/ROS1/MET characteristic of infantile glioblastomas were not identified in 17 cases successfully sequenced. BRAF V600E was only found in the PXA group but CDKN2A deletion could be found in other methylation groups. PXA-like cases did not show PXA histological features similar to findings by other authors. No case showed TERT promoter mutation. Mutations of mismatch repair (MMR) genes were poor prognosticators in single (p ≤ 0.001) but not in multivariate analyses (p = 0.229). MGMT had no survival significance in this cohort. Of the other common biomarkers, only TP53 and ATRX mutations were significant poor prognosticators and only TP53 mutation was significant after multivariate analyses (p = 0.024). We conclude that IDH wildtype, H3 wildtype pediatric hemispheric glioblastomas are molecularly heterogeneous and in routine practice, TP53, ATRX, and MMR status could profitably be screened for risk stratification in laboratories without ready access to methylation profiling.
Collapse
|
41
|
Internò V, Triggiano G, De Santis P, Stucci LS, Tucci M, Porta C. Molecular Aberrations Stratify Grade 2 Astrocytomas Into Several Rare Entities: Prognostic and Therapeutic Implications. Front Oncol 2022; 12:866623. [PMID: 35756624 PMCID: PMC9226400 DOI: 10.3389/fonc.2022.866623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The identification of specific molecular aberrations guides the prognostic stratification and management of grade 2 astrocytomas. Mutations in isocitrate dehydrogenase (IDH) 1 and 2, found in the majority of adult diffuse low-grade glioma (DLGG), seem to relate to a favorable prognosis compared to IDH wild-type (IDH-wt) counterparts. Moreover, the IDH-wt group can develop additional molecular alterations worsening the prognosis, such as epidermal growth factor receptor amplification (EGFR-amp) and mutation of the promoter of telomerase reverse transcriptase (pTERT-mut). This review analyzes the prognostic impact and therapeutic implications of genetic alterations in adult LGG.
Collapse
Affiliation(s)
- Valeria Internò
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Giacomo Triggiano
- Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | | | | | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| |
Collapse
|
42
|
Adding radiomics to the 2021 WHO updates may improve prognostic prediction for current IDH-wildtype histological lower-grade gliomas with known EGFR amplification and TERT promoter mutation status. Eur Radiol 2022; 32:8089-8098. [PMID: 35763095 DOI: 10.1007/s00330-022-08941-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To assess whether radiomic features could improve the accuracy of survival predictions of IDH-wildtype (IDHwt) histological lower-grade gliomas (LGGs) over clinicopathological features. METHODS Preoperative MRI data of 61 patients with IDHwt histological LGGs were included as the institutional training set. The test set consisted of 32 patients from The Cancer Genome Atlas. Radiomic features (n = 186) were extracted using conventional MRIs. The radiomics risk score (RRS) for overall survival (OS) was derived from the elastic net. Multivariable Cox regression analyses with clinicopathological features (including epidermal growth factor receptor [EGFR] amplification and telomerase reverse transcriptase promoter [TERTp] mutation status) and the RRS were performed. The integrated area under the receiver operating curves (iAUCs) from the models with and without the RRS were compared. The net reclassification index (NRI) for 1-year OS was also calculated. The prognostic value of the RRS was evaluated using the external validation set. RESULTS The RRS independently predicted OS (hazard ratio = 48.08; p = 0.001). Compared with the clinicopathological model alone, adding the RRS had a better OS prediction performance (iAUCs 0.775 vs. 0.910), which was internally validated (iAUCs 0.726 vs. 0.884, 1-year OS NRI = 0.497), and a similar trend was found on external validation (iAUCs 0.683 vs. 0.705, 1-year OS NRI = 0.733). The prognostic significance of the RRS was confirmed in the external validation set (p = 0.001). CONCLUSIONS Integrating radiomics with clinicopathological features (including EGFR amplification and TERTp mutation status) can improve survival prediction in patients with IDHwt LGGs. KEY POINTS • Radiomics risk score has the potential to improve survival prediction when added to clinicopathological features (iAUCs increased from 0.775 to 0.910). • NRIs for 1-year OS showed that the radiomics risk score had incremental value over the clinicopathological model. • The prognostic significance of the radiomics risk score was confirmed in the external validation set (p = 0.001).
Collapse
|
43
|
Chan AKY, Shi ZF, Li KKW, Wang WW, Chen H, Chung NYF, Chan DTM, Poon WS, Loong HHF, Liu XZ, Zhang ZY, Mao Y, Ng HK. Combinations of Single-Gene Biomarkers Can Precisely Stratify 1,028 Adult Gliomas for Prognostication. Front Oncol 2022; 12:839302. [PMID: 35558510 PMCID: PMC9090434 DOI: 10.3389/fonc.2022.839302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Advanced genomic techniques have now been incorporated into diagnostic practice in neuro-oncology in the literature. However, these assays are expensive and time-consuming and demand bioinformatics expertise for data interpretation. In contrast, single-gene tests can be run much more cheaply, with a short turnaround time, and are available in general pathology laboratories. The objective of this study was to establish a molecular grading scheme for adult gliomas using combinations of commonly available single-gene tests. We retrospectively evaluated molecular diagnostic data of 1,275 cases of adult diffuse gliomas from three institutions where we were testing for IDH1/2 mutation, TERTp mutation, 1p19q codeletion, EGFR amplification, 10q deletion, BRAF V600E, and H3 mutations liberally in our regular diagnostic workup. We found that a molecular grading scheme of Group 1 (1p19q codeleted, IDH mutant), Group 2 (IDH mutant, 1p19q non-deleted, TERT mutant), Group 3 (IDH mutant, 1p19q non-deleted, TERT wild type), Group 4 (IDH wild type, BRAF mutant), Group 5 (IDH wild type, BRAF wild type and not possessing the criteria of Group 6), and Group 6 (IDH wild type, and any one of TERT mutant, EGFR amplification, 10q deletion, or H3 mutant) could significantly stratify this large cohort of gliomas for risk. A total of 1,028 (80.6%) cases were thus classifiable with sufficient molecular data. There were 270 cases of molecular Group 1, 59 cases of molecular Group 2, 248 cases of molecular Group 3, 27 cases of molecular Group 4, 117 cases of molecular Group 5, and 307 cases of molecular Group 6. The molecular groups were independent prognosticators by multivariate analyses and in specific instances, superseded conventional histological grades. We were also able to validate the usefulness of the Groups with a cohort retrieved from The Cancer Genome Atlas (TCGA) where similar molecular tests were liberally available. We conclude that a single-gene molecular stratification system, useful for fine prognostication, is feasible and can be adopted by a general pathology laboratory.
Collapse
Affiliation(s)
- Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China
| | - Zhi-Feng Shi
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China
| | - Wei-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen-Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Mao
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China
| |
Collapse
|
44
|
Brat DJ, Aldape K, Bridge JA, Canoll P, Colman H, Hameed MR, Harris BT, Hattab EM, Huse JT, Jenkins RB, Lopez-Terrada DH, McDonald WC, Rodriguez FJ, Souter LH, Colasacco C, Thomas NE, Yount MH, van den Bent MJ, Perry A. Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Arch Pathol Lab Med 2022; 146:547-574. [PMID: 35175291 PMCID: PMC9311267 DOI: 10.5858/arpa.2021-0295-cp] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The diagnosis and clinical management of patients with diffuse gliomas (DGs) have evolved rapidly over the past decade with the emergence of molecular biomarkers that are used to classify, stratify risk, and predict treatment response for optimal clinical care. OBJECTIVE.— To develop evidence-based recommendations for informing molecular biomarker testing for pediatric and adult patients with DGs and provide guidance for appropriate laboratory test and biomarker selection for optimal diagnosis, risk stratification, and prediction. DESIGN.— The College of American Pathologists convened an expert panel to perform a systematic review of the literature and develop recommendations. A systematic review of literature was conducted to address the overarching question, "What ancillary tests are needed to classify DGs and sufficiently inform the clinical management of patients?" Recommendations were derived from quality of evidence, open comment feedback, and expert panel consensus. RESULTS.— Thirteen recommendations and 3 good practice statements were established to guide pathologists and treating physicians on the most appropriate methods and molecular biomarkers to include in laboratory testing to inform clinical management of patients with DGs. CONCLUSIONS.— Evidence-based incorporation of laboratory results from molecular biomarker testing into integrated diagnoses of DGs provides reproducible and clinically meaningful information for patient management.
Collapse
Affiliation(s)
- Daniel J Brat
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (Brat)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland (Aldape)
| | - Julia A Bridge
- The Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska (Bridge)
- Cytogenetics, ProPath, Dallas, Texas (Bridge)
| | - Peter Canoll
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (Canoll)
| | - Howard Colman
- The Department of Neurosurgery and Huntsman Cancer Institute, University of Utah, Salt Lake City (Colman)
| | - Meera R Hameed
- The Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (Hameed)
| | - Brent T Harris
- The Department of Neurology and Pathology, MedStar Georgetown University Hospital, Washington, DC (Harris)
| | - Eyas M Hattab
- The Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky (Hattab)
| | - Jason T Huse
- The Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston (Huse)
| | - Robert B Jenkins
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Jenkins)
| | - Dolores H Lopez-Terrada
- The Departments of Pathology and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas (Lopez-Terrada)
| | - William C McDonald
- The Department of Pathology, Abbott Northwestern Hospital, Minneapolis, Minnesota (McDonald)
| | - Fausto J Rodriguez
- The Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland (Rodriguez)
| | | | - Carol Colasacco
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | - Nicole E Thomas
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | | | - Martin J van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute University Medical Center Rotterdam, Rotterdam, the Netherlands (van den Bent)
| | - Arie Perry
- The Departments of Pathology and Neurological Surgery, University of California San Francisco School of Medicine, San Francisco (Perry)
| |
Collapse
|
45
|
Kumar M, Nanga RPR, Verma G, Wilson N, Brisset JC, Nath K, Chawla S. Emerging MR Imaging and Spectroscopic Methods to Study Brain Tumor Metabolism. Front Neurol 2022; 13:789355. [PMID: 35370872 PMCID: PMC8967433 DOI: 10.3389/fneur.2022.789355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive biochemical profile of brain tumors. The conventional 1H-MRS methods present a few challenges mainly related to limited spatial coverage and low spatial and spectral resolutions. In the recent past, the advent and development of more sophisticated metabolic imaging and spectroscopic sequences have revolutionized the field of neuro-oncologic metabolomics. In this review article, we will briefly describe the scientific premises of three-dimensional echoplanar spectroscopic imaging (3D-EPSI), two-dimensional correlation spectroscopy (2D-COSY), and chemical exchange saturation technique (CEST) MRI techniques. Several published studies have shown how these emerging techniques can significantly impact the management of patients with glioma by determining histologic grades, molecular profiles, planning treatment strategies, and assessing the therapeutic responses. The purpose of this review article is to summarize the potential clinical applications of these techniques in studying brain tumor metabolism.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neil Wilson
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Sanjeev Chawla
| |
Collapse
|
46
|
Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol 2022; 32:e13062. [PMID: 35289001 PMCID: PMC9245936 DOI: 10.1111/bpa.13062] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, developments in molecular profiling have radically altered the diagnosis, classification, and management of numerous cancer types, with primary brain tumors being no exception. Although historically brain tumors have been classified based on their morphological characteristics, recent advances have allowed refinement of tumor classification based on molecular alterations. This shift toward molecular classification of primary brain tumors is reflected in the 2021 5th edition of the WHO classification of central nervous system tumors (WHO 2021). In this review, we will discuss the most recent updates to the classification of adult‐type diffuse gliomas, a group of highly infiltrative and largely incurable CNS malignancies. It is our hope continued that refinement of molecular criteria will improve diagnosis, prognostication, and eventually treatment of these devastating tumors.
Collapse
Affiliation(s)
- Benjamin T Whitfield
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
47
|
Tesileanu CMS, Sanson M, Wick W, Brandes AA, Clement PM, Erridge SC, Vogelbaum MA, Nowak AK, Baurain JF, Mason WP, Wheeler H, Chinot OL, Gill S, Griffin M, Rogers L, Taal W, Rudà R, Weller M, McBain C, van Linde ME, Aldape K, Jenkins RB, Kros JM, Wesseling P, von Deimling A, Hoogstrate Y, de Heer I, Atmodimedjo PN, Dubbink HJ, Brouwer RWW, van IJcken WFJ, Cheung KJ, Golfinopoulos V, Baumert BG, Gorlia T, French PJ, van den Bent MJ. Temozolomide and radiotherapy versus radiotherapy alone in patients with glioblastoma, IDH-wildtype: post-hoc analysis of the EORTC randomized phase 3 CATNON trial. Clin Cancer Res 2022; 28:2527-2535. [PMID: 35275197 DOI: 10.1158/1078-0432.ccr-21-4283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE In a post-hoc analysis of the CATNON trial (NCT00626990), we explored whether adding temozolomide to radiotherapy improves outcome in patients with IDH1/2wt anaplastic astrocytomas with molecular features of glioblastoma (redesignated as glioblastoma, IDH-wildtype in the 2021 WHO classification of CNS tumors). EXPERIMENTAL DESIGN From the randomized phase 3 CATNON study examining the addition of adjuvant and concurrent temozolomide to radiotherapy in anaplastic astrocytomas, we selected a subgroup of IDH1/2wt and H3F3Awt tumors with presence of TERT promoter mutations and/or EGFR amplifications and/or combined gain of chromosome 7 and loss of chromosome 10. Molecular abnormalities including MGMT promoter methylation status were determined by next-generation sequencing, DNA methylation profiling, and SNaPshot analysis. RESULTS Of the 751 patients entered in the CATNON study, 670 had fully molecularly characterized tumors. 159 of these tumors met the WHO 2021 molecular criteria for glioblastoma, IDH-wildtype. Of these patients, 47 received radiotherapy only and 112 received a combination of radiotherapy and temozolomide. There was no added effect of temozolomide on either overall survival (HR 1.19, 95%CI 0.82-1.71) or progression-free survival (HR 0.87, 95%CI 0.61-1.24). MGMT promoter methylation was prognostic for overall survival, but was not predictive for outcome to temozolomide treatment either with respect to overall survival or progression-free survival. CONCLUSIONS In this cohort of patients with glioblastoma, IDH-wildtype temozolomide treatment did not add benefit beyond that observed from radiotherapy, regardless of MGMT promoter status. These findings require a new well-powered prospective clinical study to explore the efficacy of temozolomide treatment in this patient population.
Collapse
Affiliation(s)
- C Mircea S Tesileanu
- Neurology Department, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute - Institut du Cerveau (ICM), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Wolfgang Wick
- Neurology Department, University of Heidelberg, and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alba A Brandes
- Medical Oncology Department, AUSL-IRCCS Scienze Neurologiche, Bologna, Italy
| | - Paul M Clement
- Oncology Department, KU Leuven and General Medical Oncology Department, UZ Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Sara C Erridge
- Edinburgh Centre for Neuro-Oncology, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Anna K Nowak
- Medical School, University of Western Australia, Crawley, Western Australia
- Medical Oncology Department, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia
- CoOperative Group for NeuroOncology, University of Sydney, New South Wales, Australia
| | - Jean-Francois Baurain
- Medical Oncology Department, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Warren P Mason
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Helen Wheeler
- Northern Sydney Cancer Centre, University of Sydney, St Leonards, New South Wales, Australia
| | - Olivier L Chinot
- Aix-Marseille University, AP-HM, Neuro-Oncology division, Marseille, France
| | - Sanjeev Gill
- Medical Oncology Department, Alfred Hospital, Melbourne, Australia
| | - Matthew Griffin
- Clinical Oncology Department, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Leland Rogers
- Radiation Oncology Department, Gammawest Cancer Services, Salt Lake City, Utah
| | - Walter Taal
- Neurology Department, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Roberta Rudà
- Neuro-Oncology Department, City of Health and Science Hospital and University of Turin, Turin, Italy
| | - Michael Weller
- Neurology Department, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Catherine McBain
- Clinical Oncology Department, The Christie NHS FT, Manchester, United Kingdom
| | - Myra E van Linde
- Medical Oncology Department, Brain Tumor Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Kenneth Aldape
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Johan M Kros
- Pathology Department, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Pieter Wesseling
- Pathology Department, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Andreas von Deimling
- Neuropathology Department, Ruprecht-Karls-University, and CCU Neuropathology German Cancer Institute and Consortium, DKFZ, and DKTK, Heidelberg, Germany
| | - Youri Hoogstrate
- Neurology Department, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Iris de Heer
- Neurology Department, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Peggy N Atmodimedjo
- Pathology Department, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hendrikus J Dubbink
- Pathology Department, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | | | | | - Brigitta G Baumert
- Radiation-Oncology Department (MAASTRO), Maastricht University Medical Center (MUMC) and GROW (School for Oncology), Maastricht, the Netherlands
- Institute of Radiation-Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| | | | - Pim J French
- Neurology Department, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Neurology Department, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
48
|
Ramos-Fresnedo A, Pullen MW, Perez-Vega C, Domingo RA, Akinduro OO, Almeida JP, Suarez-Meade P, Marenco-Hillembrand L, Jentoft ME, Bendok BR, Trifiletti DM, Chaichana KL, Porter AB, Quiñones-Hinojosa A, Burns TC, Kizilbash SH, Middlebrooks EH, Sherman WJ. The survival outcomes of molecular glioblastoma IDH-wildtype: a multicenter study. J Neurooncol 2022; 157:177-185. [PMID: 35175545 DOI: 10.1007/s11060-022-03960-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Histological diagnosis of glioblastoma (GBM) was determined by the presence of necrosis or microvascular proliferation (histGBM). The 2021 WHO classification now considers IDH-wildtype diffuse astrocytic tumors without the histological features of glioblastoma (that would have otherwise been classified as grade 2 or 3) as molecular GBM (molGBM, WHO grade 4) if they harbor any of the following molecular abnormalities: TERT promoter mutation, EGFR amplification, or chromosomal + 7/- 10 copy changes. The objective of this study was to explore and compare the survival outcomes between histGBM and molGBM. METHODS Medical records for patients diagnosed with GBM at the three tertiary care academic centers of our institution from November 2017 to October 2021. Only patients who underwent adjuvant chemoradiation were included. Patients without molecular feature testing or with an IDH mutation were excluded. Univariable and multivariable analyses were performed to evaluate progression-free (PFS) and overall- survival (OS). RESULTS 708 consecutive patients were included; 643 with histGBM and 65 with molGBM. Median PFS was 8 months (histGBM) and 13 months (molGBM) (p = 0.0237) and median OS was 21 months (histGBM) versus 26 months (molGBM) (p = 0.435). Multivariable analysis on the molGBM sub-group showed a worse PFS if there was contrast enhancement on MRI (HR 6.224 [CI 95% 2.187-17.714], p < 0.001) and a superior PFS on patients with MGMT methylation (HR 0.026 [CI 95% 0.065-0.655], p = 0.007). CONCLUSIONS molGBM has a similar OS but significantly longer PFS when compared to histGBM. The presence of contrast enhancement and MGMT methylation seem to affect the clinical behavior of this subset of tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Joao P Almeida
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Mark E Jentoft
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Alyx B Porter
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | | | | | - Wendy J Sherman
- Division Chair, Neuro-Oncology, Department of Neurology, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
49
|
Li T, Yang Z, Li H, Zhu J, Wang Y, Tang Q, Shi Z. Phospholipase Cγ1 (PLCG1) overexpression is associated with tumor growth and poor survival in IDH wild-type lower-grade gliomas in adult patients. J Transl Med 2022; 102:143-153. [PMID: 34697421 PMCID: PMC8784314 DOI: 10.1038/s41374-021-00682-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most common and recalcitrant intracranial tumors, approximately a quarter of which are classified as lower-grade gliomas (WHO II-III). Although the prognosis of lower-grade gliomas (LGGs) is significantly better than that of higher-grade gliomas, as a highly heterogeneous tumor type, the prognosis of LGGs varies greatly based on the molecular diagnosis. IDH wild-type used to be regarded as a dismal prognostic biomarker in LGGs; however, several studies revealed that IDH wild-type LGGs might not always be equivalent to glioblastoma (WHO IV). Hence, we hypothesize that underlying biological events in LGGs can result in different prognosis. In our study, transcriptome profiling was performed in 24 samples of LGG, and the results showed that the expression of phospholipase Cγ1 (PLCG1) was significantly correlated with IDH1/2 status and patients' clinical outcome. Furthermore, the cancer genome atlas (TCGA) and the Chinese glioma genome atlas (CGGA) databases verified that elevated PLCG1 expression was associated with tumor progression and poor survival in LGG patients. Moreover, PLCG1-targeted siRNA dramatically affected the growth, migration and invasiveness of IDH wild-type LGG cell lines. In in vitro and in vivo experiments, the PLC-targeted drug significantly suppressed the tumor growth of IDH wild-type LGG cell lines in vitro and tumors in mouse models. Taken together, our results demonstrated that higher PLCG1 expression was associated with tumor growth and worse prognosis in IDH wild-type LGGs and PLCG1 could serve as a potential therapeutic target for IDH wild-type LGG patients.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
| | - Zhipeng Yang
- National Center for Neurological Disorders, Shanghai, China
- Institute of Engineering, Fudan University, Shanghai, China
| | - Haoyuan Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jingjing Zhu
- National Center for Neurological Disorders, Shanghai, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Wang
- National Center for Neurological Disorders, Shanghai, China
- Institute of Neurosurgery, Fudan University, Shanghai, China
| | - Qisheng Tang
- National Center for Neurological Disorders, Shanghai, China.
- Institute of Neurosurgery, Fudan University, Shanghai, China.
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Institute of Neurosurgery, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Neural Regeneration and Brain Function Restoration, Shanghai, China.
| |
Collapse
|
50
|
Belyaev AY, Kobyakov GL, Shmakov PN, Telysheva EN, Strunina YV, Usachev DY. Role of TERT mutation for treatment prognosis in patients with IDH-negative anaplastic astrocytoma. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:21-27. [PMID: 36252190 DOI: 10.17116/neiro20228605121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To study the effect of TERT mutation on overall and relapse-free survival in patients with IDH-negative diffuse astrocytomas grade III (anaplastic gliomas). MATERIAL AND METHODS The study included 45 patients aged 45.5 years. Forty-two patients underwent resection of tumor, other 3 ones - stereotactic biopsy. TERT mutation was identified in 21 patients. External beam radiation therapy was performed in 35 patients (60 Gy), chemotherapy - in 34 patients (mainly temozolomide). Follow-up data were available in 44 patients. RESULTS Median of overall survival in patients with TERT mutation was 15.3 months, in patients with TERT-negative tumors - 65.1 months. Median of relapse-free survival in patients with TERT-positive anaplastic astrocytoma (AA) was 13.3 months, in patients with TERT-negative glioma - 57.7 months. These differences were not significant. Relapse-free survival was higher in patients with AA and no TERT mutation at all intervals, but especially at early stages (12 and 24 months). CONCLUSION Inclusion of TERT mutation in mandatory examination panel for gliomas in general and, in particular, gliomas grade II/III without IDH mutation can lead to sub-classification of these tumors in the near future. Routine analysis of TERT mutation in these patients will be valuable for correct medical consultation regarding prognosis and adequate adjuvant treatment.
Collapse
Affiliation(s)
| | | | - P N Shmakov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | |
Collapse
|