1
|
Fangusaro J, Onar-Thomas A, Young Poussaint T, Lensing S, Ligon AH, Lindeman N, Banerjee A, Kilburn LB, Lenzen A, Pillay-Smiley N, Pollack IF, Robison NJ, Partap S, Qaddoumi I, Landi D, Jones DTW, Stewart CF, Fouladi M, Dunkel IJ. A Phase 2 PBTC Study of Selumetinib for Recurrent/Progressive Pediatric Low-Grade Glioma: Strata 2, 5, and 6 with Long-term Outcomes on Strata 1, 3, and 4. Neuro Oncol 2025:noaf065. [PMID: 40241281 DOI: 10.1093/neuonc/noaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND PBTC-029B was a phase 2 trial evaluating efficacy of selumetinib in children with recurrent/progressive low-grade glioma. We report results of strata 2, 5, and 6 with updated survivals for strata 1, 3, and 4. METHODS Stratum 2 included recurrent/progressive pilocytic astrocytoma (PA) not associated with neurofibromatosis type-1 (NF1) that screened negative for the BRAF-KIAA1549 fusion and BRAFV600E mutation. Stratum 5 enrolled non-PA that screened positive for one of the BRAF aberrations. Stratum 6 enrolled children who consented to tissue screening, but there was an assay failure. For long-term survivals, stratum 1 included non-NF1 PA positive for one of the BRAF aberrations; stratum 3 included NF1-associated pLGG; and stratum 4 included non-NF1 optic pathway/hypothalamic tumors. RESULTS Stratum 2: among 14 evaluable patients, there was 1 partial response (PR), 7 stable disease (SD) and 6 progressive disease (PD); overall response rate (ORR) was 7.1%. Two-year progression-free survival (PFS)/overall survival (OS) were 57.1%/100%, respectively. Stratum 5: among 23 evaluable patients, there was 1 complete response (CR), 4 PR, 12 SD, and 6 PD; ORR was 21.7%. Two-year PFS/OS were 74.8%/100%, respectively. Stratum 6: among 26 evaluable patients, there were 7 PR, 14 SD, and 5 PD; ORR was 26.9%. Two-year PFS/OS were 72.0%/100%, respectively. The median follow-up for patients on strata 1, 3, and 4 without events are 60.4, 60.4, and 58.1 months, and 5-year PFS/OS were 30.8%/88.9%, 54.2%/100%, and 51.0%/100%, respectively. CONCLUSIONS Selumetinib provided stability and responses across many pLGG subgroups, and some patients achieved prolonged disease control without additional therapy.
Collapse
Affiliation(s)
- Jason Fangusaro
- Children's Healthcare of Atlanta, Emory University, and the Aflac Cancer Center. Atlanta, GA, USA
| | | | | | | | - Azra H Ligon
- Brigham & Women's Hospital, Harvard Medical School. Boston, MA, USA
| | | | | | - Lindsay B Kilburn
- Center For Cancer & Blood Disorders, Children's National Hospital. Washington, DC, USA
| | - Alicia Lenzen
- Ann and Robert H. Lurie Children's Hospital of Chicago. Chicago, IL, USA
| | | | - Ian F Pollack
- University of Pittsburgh and UPMC Children's Hospital of Pittsburgh. Pittsburgh, PA, USA
| | | | - Sonia Partap
- Stanford University Medicine. Palo Alto, CA, USA
| | | | - Daniel Landi
- Duke and the Preston Robert Tisch Brain Tumor Center. Durham, NC, USA
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center. Heidelberg, Germany
| | | | | | - Ira J Dunkel
- Memorial Sloan Kettering Cancer Center. NY, NY, USA
| |
Collapse
|
2
|
Du Y, Xiao X, Liu F, Zhu W, Mo J, Liu Z. Causal effects of metabolites on malignant neoplasm of bone and articular cartilage: a mendelian randomization study. Front Genet 2025; 16:1366743. [PMID: 40098980 PMCID: PMC11911353 DOI: 10.3389/fgene.2025.1366743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Objective Previous research has demonstrated that metabolites play a significant role in modulating disease phenotypes; nevertheless, the causal association between metabolites and malignant malignancies of bones and joint cartilage (MNBAC)has not been fully elucidated. Methods This study used two-sample Mendelian randomization (MR) to explore the causal correlation between 1,400 metabolites and MNBAC. Data from recent genome-wide association studies (GWAS) involving 8,299 individuals were summarized. The GWAS summary data for metabolites were acquired from the IEU Open GWAS database, while those for MNBAC were contributed by the Finnish Consortium. We employed eight distinct MR methodologies: simple mode, maximum likelihood estimator, MR robust adjusted profile score, MR-Egger, weighted mode, weighted median, MR-PRESSO and inverse variance weighted to scrutinize the causal association between metabolites engendered by each gene and MNBAC. Consequently, we evaluated outliers, horizontal pleiotropy, heterogeneity, the impact of single nucleotide polymorphisms (SNPs), and adherence to the normal distribution assumption in the MR analysis. Results Our findings suggested a plausible causative relationship between N-Formylmethionine (FMet) levels, lignoceroylcarnitine (C24) levels, and MNBAC. We observed a nearly significant causal association between FMet levels and MNBAC within the cohort of 1,400 metabolites (P = 0.024, odds ratio (OR) = 3.22; 95% CI [1.16-8.92]). Moreover, we ascertained a significant causal link between levels of C24 and MNBAC (P = 0.0009; OR = 0.420; 95%CI [0.25-0.70]). These results indicate a potential causative relationship between FMet, C24 level and MNBAC. Conclusion The occurrence of MNBAC may be causally related to metabolites. This might unveil new possibilities for investigating early detection and treatment of MNBAC.
Collapse
Affiliation(s)
- Yongwei Du
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiqiu Xiao
- Department of Orthopedics, 8th People Hospital of Nankang, Ganzhou, China
| | - Fuping Liu
- Department of Emergency, Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Wenqing Zhu
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianwen Mo
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhen Liu
- Department of Rehabilitation, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Crotty EE, Sato AA, Abdelbaki MS. Integrating MAPK pathway inhibition into standard-of-care therapy for pediatric low-grade glioma. Front Oncol 2025; 15:1520316. [PMID: 40007996 PMCID: PMC11850343 DOI: 10.3389/fonc.2025.1520316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Pediatric low-grade gliomas (pLGG) are a group of tumors largely driven by alterations in a single genetic pathway, known as the RAS-RAF-mitogen-activated protein kinase (MAPK) pathway. Recent biologic insights and therapeutic targeting of MAPK-alterations have dramatically shifted the treatment approach in pLGG. While chemotherapy remains front-line therapy for unresectable pLGG in most scenarios (with the notable exception of BRAF V600E-altered tumors), many patients recur following cytotoxic agents and require further treatment. Inhibitors of the MAPK pathway, primarily MEK and RAF kinase inhibitors, have emerged as effective and tolerable second-line or later therapy for pLGG. As familiarity with these targeted agents increases, their indications for use continue to expand and Phase 3 clinical trials investigating their utility in the front-line setting are ongoing. We have adopted mitigation strategies for their associated toxicities; skin toxicity, in particular, is now managed by prevention strategies and early dermatologic intervention. This review highlights current approaches for the clinical implementation of MEK and RAF kinase inhibitors for pLGG, focusing on the practical aspects of drug administration, toxicity management, response monitoring, and distribution to patients experiencing geographic or financial barriers to care. Additionally, we review important considerations for the off-label use of these agents while contemporaneous clinical trials assessing front-line efficacy are ongoing. We discuss the potential for more expansive or histology-agnostic tumor targeting using MEK inhibitors, harnessing their biologic relevance for other RAS-altered conditions.
Collapse
Affiliation(s)
- Erin E. Crotty
- Ben Towne Center for Childhood Cancer and Blood Disorders Research and the Department of Pediatrics, Seattle Children’s Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Aimee A. Sato
- Ben Towne Center for Childhood Cancer and Blood Disorders Research and the Department of Pediatrics, Seattle Children’s Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Mohamed S. Abdelbaki
- Division of Hematology, Oncology and Bone Marrow Transplant, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Lim-Fat MJ, Bennett J, Ostrom Q, Touat M, Franceschi E, Schulte J, Bindra RS, Fangusaro J, Dhall G, Nicholson J, Jackson S, Davidson TB, Calaminus G, Robinson G, Whittle JR, Hau P, Ramaswamy V, Pajtler KW, Rudà R, Foreman NK, Hervey-Jumper SL, Das S, Dirks P, Bi WL, Huang A, Merchant TE, Fouladi M, Aldape K, Van den Bent MJ, Packer RJ, Miller JJ, Reardon DA, Chang SM, Haas-Kogan D, Tabori U, Hawkins C, Monje M, Wen PY, Bouffet E, Yeo KK. Central nervous system tumors in adolescents and young adults: A Society for Neuro-Oncology Consensus Review on diagnosis, management, and future directions. Neuro Oncol 2025; 27:13-32. [PMID: 39441704 PMCID: PMC11726256 DOI: 10.1093/neuonc/noae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Adolescents and young adults (AYAs; ages 15-39 years) are a vulnerable population facing challenges in oncological care, including access to specialized care, transition of care, unique tumor biology, and poor representation in clinical trials. Brain tumors are the second most common tumor type in AYA, with malignant brain tumors being the most common cause of cancer-related death. The 2021 WHO Classification for central nervous system (CNS) Tumors highlights the importance of integrated molecular characterization with histologic diagnosis in several tumors relevant to the AYA population. In this position paper from the Society for Neuro-Oncology (SNO), the diagnosis and management of CNS tumors in AYA is reviewed, focusing on the most common tumor types in this population, namely glioma, medulloblastoma, ependymoma, and CNS germ cell tumor. Current challenges and future directions specific to AYA are also highlighted. Finally, possible solutions to address barriers in the care of AYA patients are discussed, emphasizing the need for multidisciplinary and collaborative approaches that span the pediatric and adult paradigms of care, and incorporating advanced molecular testing, targeted therapy, and AYA-centered care.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Quinn Ostrom
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-oncologie, Paris, France
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna / AUSL di Bologna, Bologna, Italy
| | - Jessica Schulte
- Neurosciences Department, University of California San Diego, La Jolla, California, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jason Fangusaro
- Children’s Healthcare of Atlanta, Emory University, and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Girish Dhall
- Department of Hematology and Oncology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - James Nicholson
- Paediatric Oncology, Cambridge University Hospitals and Department of Paediatrics, Cambridge University, UK
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Tom Belle Davidson
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gabriele Calaminus
- Paediatric Haematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Giles Robinson
- Department of Oncology, Neurobiology and Brain Tumor Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James R Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, WEHI, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristian W Pajtler
- Hopp Children’s Cancer Center Heidelberg (KiTZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department Neuroscience Rita Levi Montalcini, University of Turin and City of Health and Science University Hospital, Turin, Italy
| | - Nicholas K Foreman
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Sunit Das
- Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dirks
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Annie Huang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Roger J Packer
- Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, District of Columbia, USA
| | - Julie J Miller
- Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Daphne Haas-Kogan
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Bouffet
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kee Kiat Yeo
- Department of Pediatric Oncology, Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Fathi Kazerooni A, Kraya A, Rathi KS, Kim MC, Vossough A, Khalili N, Familiar AM, Gandhi D, Khalili N, Kesherwani V, Haldar D, Anderson H, Jin R, Mahtabfar A, Bagheri S, Guo Y, Li Q, Huang X, Zhu Y, Sickler A, Lueder MR, Phul S, Koptyra M, Storm PB, Ware JB, Song Y, Davatzikos C, Foster JB, Mueller S, Fisher MJ, Resnick AC, Nabavizadeh A. Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma. Nat Commun 2025; 16:340. [PMID: 39747214 PMCID: PMC11697432 DOI: 10.1038/s41467-024-55659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Pediatric low-grade gliomas (pLGGs) exhibit heterogeneous prognoses and variable responses to treatment, leading to tumor progression and adverse outcomes in cases where complete resection is unachievable. Early prediction of treatment responsiveness and suitability for immunotherapy has the potential to improve clinical management and outcomes. Here, we present a radiogenomic analysis of pLGGs, integrating MRI and RNA sequencing data. We identify three immunologically distinct clusters, with one group characterized by increased immune activity and poorer prognosis, indicating potential benefit from immunotherapies. We develop a radiomic signature that predicts these immune profiles with over 80% accuracy. Furthermore, our clinicoradiomic model predicts progression-free survival and correlates with treatment response. We also identify genetic variants and transcriptomic pathways associated with progression risk, highlighting links to tumor growth and immune response. This radiogenomic study in pLGGs provides a framework for the identification of high-risk patients who may benefit from targeted therapies.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Adam Kraya
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Meen Chul Kim
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nastaran Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariana M Familiar
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deep Gandhi
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neda Khalili
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Varun Kesherwani
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Debanjan Haldar
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hannah Anderson
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aria Mahtabfar
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sina Bagheri
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Qi Li
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alex Sickler
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Saksham Phul
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuanquan Song
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sabine Mueller
- Department of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali Nabavizadeh
- Center for Data-Driven Discovery in Biomedicine (D3b), The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Lim-Fat MJ, Cotter JA, Touat M, Vogelzang J, Sousa C, Pisano W, Geduldig J, Bhave V, Driver J, Kao PC, McGovern A, Ma C, Margol AS, Cole K, Smith A, Goldman S, Kaneva K, Truong A, Nazemi KJ, Wood MD, Wright KD, London WB, Warren KE, Wen PY, Bi WL, Alexandrescu S, Reardon DA, Ligon KL, Yeo KK. A comparative analysis of IDH-mutant glioma in pediatric, young adult, and older adult patients. Neuro Oncol 2024; 26:2364-2376. [PMID: 39082676 PMCID: PMC11630535 DOI: 10.1093/neuonc/noae142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The frequency and significance of IDH mutations in glioma across age groups are incompletely understood. We performed a multi-center retrospective age-stratified comparison of patients with IDH-mutant gliomas to identify age-specific differences in clinico-genomic features, treatments, and outcomes. METHODS Clinical, histologic, and sequencing data from patients with IDH-mutant, grades 2-4 gliomas, were collected from collaborating institutions between 2013 and 2019. Patients were categorized as pediatric (<19 years), young adult (YA; 19-39 years), or older adult (≥40 years). Clinical presentation, treatment, histologic, and molecular features were compared across age categories using Fisher's exact test or analysis-of-variance. Cox proportional-hazards regression was used to determine the association of age and other covariates with overall (OS) and progression-free survival (PFS). RESULTS We identified a cohort of 379 patients (204 YA) with IDH-mutant glioma with clinical data. There were 155 (41%) oligodendrogliomas and 224 (59%) astrocytomas. YA showed significantly shorter PFS and shorter median time-to-malignant transformation (MT) compared to pediatric and adult groups, but no significant OS difference. Adjusting for pathology type, extent of resection, and upfront therapy in multivariable analysis, the YA group was independently prognostic of shorter PFS than pediatric and adult groups. Among astrocytomas, CDK4/6 copy number amplifications were associated with both shorter PFS and shorter OS. Among oligodendrogliomas, PIK3CA and CDKN2A/2B alterations were associated with shorter OS. CONCLUSIONS IDH-mutant glioma YA patients had significantly shorter PFS and time to MT but did not differ in OS compared to pediatric and adult groups. Treatment approaches varied significantly by patient age and warrant further study as addressable age-associated outcome drivers.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada (M.J.L.-F.)
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Mehdi Touat
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Jayne Vogelzang
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Cecilia Sousa
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Will Pisano
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jack Geduldig
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Joseph Driver
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Pei-Chi Kao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Alana McGovern
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Clement Ma
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Ontario, Canada
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Ashley S Margol
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Kristina Cole
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amy Smith
- Department of Pediatrics, Orlando Health Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Stewart Goldman
- Department of Child Health Phoenix Children’s & University of Arizona Medical School-Phoenix AZ, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago (S.G.*, K.K.*)
| | - Kristiyana Kaneva
- Tempus Labs, Inc., Chicago, Illinois, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago
| | - AiLien Truong
- Department of Pediatrics, OHSU Doernbecher Children’s Hospital, Portland, Oregon, USA
| | - Kellie J Nazemi
- Department of Pediatrics, OHSU Doernbecher Children’s Hospital, Portland, Oregon, USA
| | - Matthew D Wood
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karen D Wright
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Wendy B London
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Katherine E Warren
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Sanda Alexandrescu
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
| | - David A Reardon
- Adolescent and Young Adult Neuro-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kee Kiat Yeo
- Adolescent and Young Adult Neuro-Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute/Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Baticulon RE, Wittayanakorn N, Maixner W. Low-grade glioma of the temporal lobe and tumor-related epilepsy in children. Childs Nerv Syst 2024; 40:3085-3098. [PMID: 38789690 DOI: 10.1007/s00381-024-06468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE Low-grade glioma is the most common brain tumor among children and adolescents. When these tumors arise in the temporal lobe, patients frequently present with seizures that are poorly controlled with antiepileptic drugs. Here we summarize the clinical features, pathophysiology, preoperative evaluation, surgical treatment, and outcomes of pediatric patients with low-grade gliomas in the temporal lobe. METHODS We reviewed the literature on pediatric low-grade gliomas in the temporal lobe, focusing on cohort studies and systematic reviews that described surgical treatment strategies and reported both oncologic and epilepsy outcomes. RESULTS The differential diagnoses of pediatric low-grade gliomas in the temporal lobe include ganglioglioma, dysembryoplastic neuroepithelial tumor, desmoplastic infantile ganglioglioma, papillary glioneuronal tumor, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, angiocentric glioma, and polymorphous low-grade neuroepithelial tumor of the young. There is no consensus on the optimal surgical approach for these tumors: lesionectomy alone, or extended lesionectomy with anterior temporal lobectomy, with or without removal of mesial temporal structures. Gross total resection and shorter preoperative duration of epilepsy are strongly associated with favorable seizure outcomes, defined as Engel Class I or Class II, approaching 90% in most series. The risk of surgical complications ranges from 4 to 17%, outweighing the lifetime risks of medically refractory epilepsy. CONCLUSION Pediatric patients with temporal low-grade glioma and tumor-related epilepsy are best managed by a multidisciplinary epilepsy surgery team. Early and appropriate surgery leads to prolonged survival and a greater likelihood of seizure freedom, improving their overall quality of life.
Collapse
Affiliation(s)
- Ronnie E Baticulon
- Division of Neurosurgery, Department of Neurosciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
- Department of Anatomy, College of Medicine, University of the Philippines Manila, Manila, Philippines.
| | - Nunthasiri Wittayanakorn
- Division of Neurosurgery, Department of Surgery, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Wirginia Maixner
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
8
|
Siegel BI, Duke ES, Kilburn LB, Packer RJ. Molecular-targeted therapy for childhood low-grade glial and glioneuronal tumors. Childs Nerv Syst 2024; 40:3251-3262. [PMID: 38877124 DOI: 10.1007/s00381-024-06486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
Since the discovery of the association between BRAF mutations and fusions in the development of childhood low-grade gliomas and the subsequent recognition that most childhood low-grade glial and glioneuronal tumors have aberrant signaling through the RAS/RAF/MAP kinase pathway, there has been a dramatic change in how these tumors are conceptualized. Many of the fusions and mutations present in these tumors are associated with molecular targets, which have agents in development or already in clinical use. Various agents, including MEK inhibitors, BRAF inhibitors, MTOR inhibitors and, in small subsets of patients NTRK inhibitors, have been used successfully to treat children with recurrent disease, after failure of conventional approaches such as surgery or chemotherapy. The relative benefits of chemotherapy as compared to molecular-targeted therapy for children with newly diagnosed gliomas and neuroglial tumors are under study. Already the combination of an MEK inhibitor and a BRAF inhibitor has been shown superior to conventional chemotherapy (carboplatin and vincristine) in newly diagnosed children with BRAF-V600E mutated low-grade gliomas and neuroglial tumors. However, the long-term effects of such molecular-targeted treatment are unknown. The potential use of molecular-targeted therapy in early treatment has made it mandatory that the molecular make-up of the majority of low-grade glial and glioneuronal tumors is known before initiation of therapy. The primary exception to this rule is in children with neurofibromatosis type 1 who, by definition, have NF1 loss; however, even in this population, gliomas arising in late childhood and adolescence or those not responding to conventional treatment may be candidates for biopsy, especially before entry on molecular-targeted therapy trials.
Collapse
Affiliation(s)
- Benjamin I Siegel
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA.
- Division of Neurology, Children's National Hospital, Washington, DC, USA.
- Division of Oncology, Children's National Hospital, Washington, DC, USA.
| | - Elizabeth S Duke
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| | - Lindsay B Kilburn
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Division of Oncology, Children's National Hospital, Washington, DC, USA
| | - Roger J Packer
- Brain Tumor Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA
- Division of Neurology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
9
|
Karbe AG, Gorodezki D, Schulz M, Tietze A, Gruen A, Driever PH, Schuhmann MU, Thomale UW. Surgical options of chiasmatic hypothalamic glioma-a relevant part of therapy in an interdisciplinary approach for tumor control. Childs Nerv Syst 2024; 40:3065-3074. [PMID: 38918262 PMCID: PMC11511755 DOI: 10.1007/s00381-024-06498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE The extent of resection of pediatric low-grade glioma mostly improves progression-free survival. In chiasmatic hypothalamic glioma (CHG), complete resections are limited due to the relevantly high risk of associated neurological and endocrinological deficits. Still, surgery might have its role in the framework of a multidisciplinary team (MDT) approach. We report our retrospective experience from two centers on surgical options and their impact on long-term outcomes. METHODS Medical records of surgically treated pediatric CHG patients between 2004 and 2022 were analyzed. Patient characteristics, surgical interventions, histology, and non-surgical therapy were retrieved together with outcome measures such as visual acuity, endocrine function, and survival. RESULTS A total of 63 patients (33 female, NF-1, n = 8) were included. Age at first diagnosis was 4.6 years (range 0.2-16.9) and cohort follow-up was 108 ± 72 months. Twenty patients were surgically treated with a biopsy and 43 patients with debulking at a median age of 6.5 years (range 0.16-16.9). Patients received a median of 2 tumor surgeries (range 1-5). Cyst drainage was accomplished in 15 patients, and 27 patients had ventriculoperitoneal shunt implantation. Non-surgical therapy was given in 69.8%. At the end of follow-up, 74.6% of patients had stable disease. The cohort had a median Karnofsky score of 90 (range 0-100). Four patients died. Hormone substitution was necessary in 30.2%, and visual acuity was impaired in 66% of patients. CONCLUSION Pediatric CHG is a chronic disease due to overall high survival with multiple progressions. Surgical therapy remains a key treatment option offering biopsy, limited tumor-debulking, cyst fenestration, and hydrocephalus management in the framework of MDT decision-making. Team experience contributes to reducing possible deficits in this challenging cohort.
Collapse
Affiliation(s)
- Anna-Gila Karbe
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - David Gorodezki
- Department of Pediatric Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Matthias Schulz
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Gruen
- Department for Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pablo Hernáiz Driever
- Department of Pediatric Oncology and Hematology; German HIT-LOGGIC-Registry for Low Grade Glioma in Children and Adolescents, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin U Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tübingen, Tübingen, Germany
| | - Ulrich-Wilhelm Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
10
|
Smith ER, Cotache-Condor C, Leraas H, Truche P, Ward ZJ, Stefan C, Force L, Bhakta N, Rice HE. Towards attainment of the 2030 goal for childhood cancer survival for the World Health Organization Global Initiative for Childhood Cancer: An ecological, cross-sectional study. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002530. [PMID: 39159192 PMCID: PMC11332931 DOI: 10.1371/journal.pgph.0002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
The World Health Organization (WHO) recently launched the Global Initiative for Childhood Cancer (GICC), with the goal of attaining at least 60% cancer survival for children worldwide by the year 2030. This study aims to describe the global patterns of childhood cancer survival in 2019 to help guide progress in attaining the GICC target goal. In this ecological, cross-sectional study, we used 5-year net childhood cancer survival (2015-2019) data from a prior micro-modeling study from 197 countries and territories. Descriptive statistics were used to analyze the patterns of overall childhood cancer survival and survival for each of the six cancer tracer diagnoses as proposed by the GICC. We used hot spot analysis to identify geographic clusters of high and low cancer survival. Most high-income countries reached at least 60% (92%, n = 59/64), net childhood cancer survival at baseline. No lower-middle-income or low-income country reached at least 60% overall cancer survival at baseline. The South-East Asia region had the highest proportion of countries that did not achieve at least 60% survival at baseline (100%, n = 10/10), followed by the African region (98%, n = 49/50). For each cancer tracer diagnosis, we found the highest number of countries that have achieved at least 60% survival was for Burkitt lymphoma (44%, n = 87/197) followed by acute lymphocytic leukemia (41%, n = 80/197).Hot spot analysis showed the highest overall survival was concentrated in North America and Europe, while the lowest survival was concentrated in Sub-Saharan Africa and South-East Asia.A majority of LMICs had not reached the WHO target goal of at least 60% survival from childhood cancer at baseline in 2019, with variable success for the six childhood cancer tracer diagnoses of the GICC. These findings provide baseline assessment of individual country performance to help achieve the GICC goal of 60% overall cancer survival globally by 2030.
Collapse
Affiliation(s)
- Emily R. Smith
- Duke Global Health Institute, Durham, North Carolina, United States of America
- Duke Center for Global Surgery and Health Equity, Duke University, Durham, North Carolina, United States of America
- Department of Emergency Medicine, Duke University, Durham, North Carolina, United States of America
| | - Cesia Cotache-Condor
- Duke Global Health Institute, Durham, North Carolina, United States of America
- Duke Center for Global Surgery and Health Equity, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Harold Leraas
- Department of Surgery, Duke School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Paul Truche
- Department of Surgery, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Zachary J. Ward
- Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Cristina Stefan
- Singhealth Duke-National University of Singapore, Singapore, Singapore
| | - Lisa Force
- Department of Health Metrics Sciences and Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Washington, Seattle, Washington, United States of America
| | - Nickhill Bhakta
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Henry E. Rice
- Duke Global Health Institute, Durham, North Carolina, United States of America
- Duke Center for Global Surgery and Health Equity, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke School of Medicine, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
11
|
O’Hare P, Cooney T, de Blank P, Gutmann DH, Kieran M, Milde T, Fangusaro J, Fisher M, Avula S, Packer R, Fukuoka K, Mankad K, Mueller S, Waanders AJ, Opocher E, Bouffet E, Raabe E, Werle NE, Azizi AA, Robison NJ, Hernáiz Driever P, Russo M, Schouten N, van Tilburg CM, Sehested A, Grill J, Bandopadhayay P, Kilday JP, Witt O, Ashley DM, Ertl-Wagner BB, Tabori U, Hargrave DR. Resistance, rebound, and recurrence regrowth patterns in pediatric low-grade glioma treated by MAPK inhibition: A modified Delphi approach to build international consensus-based definitions-International Pediatric Low-Grade Glioma Coalition. Neuro Oncol 2024; 26:1357-1366. [PMID: 38743009 PMCID: PMC11300023 DOI: 10.1093/neuonc/noae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor group. The natural history, when curative resection is not possible, is one of a chronic disease with periods of tumor stability and episodes of tumor progression. While there is a high overall survival rate, many patients experience significant and potentially lifelong morbidities. The majority of pLGGs have an underlying activation of the RAS/MAPK pathway due to mutational events, leading to the use of molecularly targeted therapies in clinical trials, with recent regulatory approval for the combination of BRAF and MEK inhibition for BRAFV600E mutated pLGG. Despite encouraging activity, tumor regrowth can occur during therapy due to drug resistance, off treatment as tumor recurrence, or as reported in some patients as a rapid rebound growth within 3 months of discontinuing targeted therapy. Definitions of these patterns of regrowth have not been well described in pLGG. For this reason, the International Pediatric Low-Grade Glioma Coalition, a global group of physicians and scientists, formed the Resistance, Rebound, and Recurrence (R3) working group to study resistance, rebound, and recurrence. A modified Delphi approach was undertaken to produce consensus-based definitions and recommendations for regrowth patterns in pLGG with specific reference to targeted therapies.
Collapse
Affiliation(s)
- Patricia O’Hare
- Department of Paediatric Oncology, Royal Belfast Hospital for Sick Children, Northern Ireland, UK
| | - Tabitha Cooney
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Broad Institute, Cambridge, Massachusetts, USA
- Day One Biopharmaceuticals, Boston, Massachusetts, USA
| | - Peter de Blank
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Broad Institute, Cambridge, Massachusetts, USA
- University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark Kieran
- Day One Biopharmaceuticals, Boston, Massachusetts, USA
| | - Till Milde
- Clinical Pediatric Oncology, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Fisher
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Roger Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, District of Columbia, USA
| | - Kohei Fukuoka
- Department of Hematology/Oncology, Saitama Children’s Medical Center, Saitama, Japan
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London, UK
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Angela J Waanders
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Enrico Opocher
- Paediatric Haematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Eric Bouffet
- The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Eric Raabe
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natacha Entz Werle
- Pediatric Onco-Hematology Department, University Hospital of Strasbourg. UMR CNRS 7021, University of Strasbourg, Strasbourg, France
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine and Comprehensive Centre of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nathan J Robison
- Division of Hematology & Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for LGG in children and adolescents, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - Mark Russo
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Netteke Schouten
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Cornelis M van Tilburg
- Clinical Pediatric Oncology, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Broad Institute, Cambridge, Massachusetts, USA
| | - John-Paul Kilday
- The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, and Royal Manchester Children’s Hospital, Manchester, UK
| | - Olaf Witt
- Clinical Pediatric Oncology, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David M Ashley
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center. Pediatric Neuro-Oncology, Preuss Laboratory for Brain Tumor Research, Durham, North Carolina, USA
| | | | - Uri Tabori
- The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Darren R Hargrave
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
12
|
Dhillon S. Tovorafenib: First Approval. Drugs 2024; 84:985-993. [PMID: 38967715 DOI: 10.1007/s40265-024-02069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Tovorafenib (OJEMDA™) is a once-weekly oral, selective, brain-penetrant, type II RAF kinase inhibitor being developed by Day One Biopharmaceuticals, Inc., under a license from Takeda Oncology, for the treatment of paediatric low-grade glioma (pLGG) and solid tumours. Most pLGGs harbour alterations in the MAPK pathway, such as a BRAF mutation or BRAF fusion, which result in aberrant intracellular signalling. Tovorafenib is an inhibitor of mutant BRAF V600E, wild-type BRAF and wild-type CRAF kinases and BRAF fusions. In April 2024, tovorafenib received its first approval in the USA for the treatment of patients aged ≥ 6 months with relapsed or refractory pLGGs harbouring a BRAF fusion or rearrangement, or BRAF V600 mutation. It received accelerated approval for this indication based on the response rate and duration of response achieved in this population in the ongoing, pivotal, phase 2 FIREFLY-1 study. Clinical development of tovorafenib is underway in numerous countries worldwide. This article summarizes the milestones in the development of tovorafenib leading to this first approval for relapsed or refractory pLGG with an activating BRAF alteration.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
13
|
Packer RJ. Optic pathway gliomas: Long-term outcomes and challenges. Neuro Oncol 2024; 26:1325-1326. [PMID: 38628133 PMCID: PMC11226861 DOI: 10.1093/neuonc/noae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Affiliation(s)
- Roger J Packer
- Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, USA
| |
Collapse
|
14
|
Sathyakumar S, Martinez M, Perreault S, Legault G, Bouffet E, Jabado N, Larouche V, Renzi S. Advances in pediatric gliomas: from molecular characterization to personalized treatments. Eur J Pediatr 2024; 183:2549-2562. [PMID: 38558313 DOI: 10.1007/s00431-024-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Pediatric gliomas, consisting of both pediatric low-grade (pLGG) and high-grade gliomas (pHGG), are the most frequently occurring brain tumors in children. Over the last decade, several milestone advancements in treatments have been achieved as a result of stronger understanding of the molecular biology behind these tumors. This review provides an overview of pLGG and pHGG highlighting their clinical presentation, molecular characteristics, and latest advancements in therapeutic treatments. Conclusion: The increasing understanding of the molecular biology characterizing pediatric low and high grade gliomas has revolutionized treatment options for these patients, especially in pLGG. The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments. What is Known: • Pediatric Gliomas are the most common brain tumour in children. They are responsible for significant morbidity and mortality in this population. What is New: • Over the last two decades, there has been a significant increase in our global understanding of the molecular background of pediatric low and high grade gliomas. • The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments, with the ultimate goal of improving both the survival and the quality of life of these patients.
Collapse
Affiliation(s)
| | - Matthew Martinez
- Department of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Sébastien Perreault
- Division of Pediatric Neurology, Department of Neurosciences, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Geneviève Legault
- Department of Pediatrics, Division of Neurology, Montreal Children's Hospital - McGill University Health Center, Montreal, Québec, Canada
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nada Jabado
- Division of Experimental Medicine, Montreal Children's Hospital, McGill University and McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Valérie Larouche
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada
| | - Samuele Renzi
- Division of Hemato-Oncology, Department of Pediatrics, CHU de Québec-Université Laval, 2705 Boulevard, Laurier, G1V 4G2, Québec, Canada.
| |
Collapse
|
15
|
Castellano-Damaso S, Vazquez-Gomez F, Moreno-Carrasco JL, Arce B, Borrego P, Lassaletta A. Continuous response despite reduced dose of trametinib as single agent in an adolescent with a relapsed disseminated pediatric low-grade glioma KIAA1549-BRAF fusion positive: a case report and review of the literature. Front Oncol 2024; 14:1381354. [PMID: 38846974 PMCID: PMC11153656 DOI: 10.3389/fonc.2024.1381354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Dissemination in pediatric low-grade glioma may occur in about 4%-10% of patients according to retrospective cohort studies. Due to its low incidence, there is no consensus on treatment for these patients. According to the constitutional activation of the MAPK/ERK pathway in these tumors, MEK inhibitors such as trametinib have been used successfully in the relapsed setting. Skin toxicity is frequent in patients receiving trametinib, normally mild to moderate, but sometimes severe, needing to discontinue the drug, limiting the efficacy in the tumor. There is not much information in the literature regarding whether reducing the dose of trametinib is able to maintain efficacy while, at the same time, decreasing toxicity. Here, we present an adolescent, with severe skin toxicity, whose trametinib dose was reduced by 50% and efficacy on the tumor continued while skin toxicity significantly decreased.
Collapse
Affiliation(s)
| | - Felisa Vazquez-Gomez
- Pediatric Neuro-Oncology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Begoña Arce
- Pharmacy Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Pedro Borrego
- Radiology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Alvaro Lassaletta
- Pediatric Neuro-Oncology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
16
|
Zahedi S, Riemondy K, Griesinger AM, Donson AM, Fu R, Crespo M, DeSisto J, Groat MM, Bratbak E, Green A, Hankinson TC, Handler M, Vibhakar R, Willard N, Foreman NK, Levy JM. Multi-pronged analysis of pediatric low-grade glioma reveals a unique tumor microenvironment associated with BRAF alterations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588294. [PMID: 38645202 PMCID: PMC11030246 DOI: 10.1101/2024.04.05.588294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pediatric low-grade gliomas (pLGG) comprise 35% of all brain tumors. Despite favorable survival, patients experience significant morbidity from disease and treatments. A deeper understanding of pLGG biology is essential to identify novel, more effective, and less toxic therapies. We utilized single cell RNA sequencing (scRNA-seq), spatial transcriptomics, and cytokine analyses to characterize and understand tumor and immune cell heterogeneity across pLGG. scRNA-seq revealed tumor and immune cells within the tumor microenvironment (TME). Tumor cell subsets revealed a developmental hierarchy with progenitor and mature cell populations. Immune cells included myeloid and lymphocytic cells. There was a significant difference between the prevalence of two major myeloid subclusters between pilocytic astrocytoma (PA) and ganglioglioma (GG). Bulk and single-cell cytokine analyses evaluated the immune cell signaling cascade with distinct immune phenotypes among tumor samples. KIAA1549-BRAF tumors appeared more immunogenic, secreting higher levels of immune cell activators and chemokines, compared to BRAF V600E tumors. Spatial transcriptomics revealed the differential gene expression of these chemokines and their location within the TME. A multi-pronged analysis of pLGG demonstrated the complexity of the pLGG TME and differences between genetic drivers that may influence their response to immunotherapy. Further investigation of immune cell infiltration and tumor-immune interactions is warranted. Key points There is a developmental hierarchy in neoplastic population comprising of both progenitor-like and mature cell types in both PA and GG.A more immunogenic, immune activating myeloid population is present in PA compared to GG. Functional analysis and spatial transcriptomics show higher levels of immune mobilizing chemokines in KIAA1549-BRAF fusion PA tumor samples compared to BRAF V600E GG samples. Importance of the Study While scRNA seq provides information on cellular heterogeneity within the tumor microenvironment (TME), it does not provide a complete picture of how these cells are interacting or where they are located. To expand on this, we used a three-pronged approach to better understand the biology of pediatric low-grade glioma (pLGG). By analyzing scRNA-seq, secreted cytokines and spatial orientation of cells within the TME, we strove to gain a more complete picture of the complex interplay between tumor and immune cells within pLGG. Our data revealed a complex heterogeneity in tumor and immune populations and identified an interesting difference in the immune phenotype among different subtypes.
Collapse
|
17
|
Gorodezki D, Zipfel J, Bevot A, Nägele T, Ebinger M, Schuhmann MU, Schittenhelm J. Prognostic utility and characteristics of MIB-1 labeling index as a proliferative activity marker in childhood low-grade glioma: a retrospective observational study. J Cancer Res Clin Oncol 2024; 150:178. [PMID: 38580878 PMCID: PMC10997709 DOI: 10.1007/s00432-024-05701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
PURPOSE The prognostic utility of MIB-1 labeling index (LI) in pediatric low-grade glioma (PLGG) has not yet conclusively been described. We assess the correlation of MIB-1 LI and tumor growth velocity (TGV), aiming to contribute to the understanding of clinical implications and the predictive value of MIB-1 LI as an indicator of proliferative activity and progression-free survival (PFS) in PLGG. METHODS MIB-1 LI of a cohort of 172 nonependymal PLGGs were comprehensively characterized. Correlation to TGV, assessed by sequential MRI-based three-dimensional volumetry, and PFS was analyzed. RESULTS Mean MIB-1 LI accounted for 2.7% (range: < 1-10) and showed a significant decrease to 1.5% at secondary surgery (p = .0013). A significant difference of MIB-1 LI in different histopathological types and a correlation to tumor volume at diagnosis could be shown. Linear regression analysis showed a correlation between MIB-1 LI and preoperative TGV (R2 = .55, p < .0001), while correlation to TGV remarkably decreased after incomplete resection (R2 = .08, p = .013). Log-rank test showed no association of MIB-1 LI and 5-year PFS after incomplete (MIB-1 LI > 1 vs ≤ 1%: 48 vs 46%, p = .73) and gross-total resection (MIB-1 LI > 1 vs ≤ 1%: 89 vs 95%, p = .75). CONCLUSION These data confirm a correlation of MIB-1 LI and radiologically detectable TGV in PLGG for the first time. Compared with preoperative TGV, a crucially decreasing correlation of MIB-1 LI and TGV after surgery may result in limited prognostic capability of MIB-1 LI in PLGG.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany.
| | - Julian Zipfel
- Department of Neurosurgery, Section of Pediatric Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Neuropediatrics and Developmental Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Nägele
- Department of Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, Section of Pediatric Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Jens Schittenhelm
- Institute of Pathology, Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Lu X, Zhang D. Expression of lncRNAs in glioma: A lighthouse for patients with glioma. Heliyon 2024; 10:e24799. [PMID: 38322836 PMCID: PMC10844031 DOI: 10.1016/j.heliyon.2024.e24799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Glioma is the most common malignant tumour in the central nervous system, accounting for approximately 30 % of the primary tumours of this system. The World Health Organization grades for glioma include: Grade I (pilocytic astrocytoma), Grade II (astrocytoma, oligodastoma, etc.), Grade III (anaplastic astrocytoma, anaplastic oligodastoma, etc.) and Grade IV (glioblastoma). With grade increases, the proliferation, invasion and other malignant biological properties of the glioma are enhanced, and the treatment results are less satisfactory. The overall survival of patients with glioblastoma is less than 15 months. Recent research has focused on the roles of long non-coding RNAs, previously regarded as "transcriptional noise", in diseases, leading to a new understanding of these roles. Therefore, we conducted this review to explore the progress of research regarding the expression and mechanism of long non-coding RNAs in glioma.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongzhi Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
19
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Fangusaro J, Jones DT, Packer RJ, Gutmann DH, Milde T, Witt O, Mueller S, Fisher MJ, Hansford JR, Tabori U, Hargrave D, Bandopadhayay P. Pediatric low-grade glioma: State-of-the-art and ongoing challenges. Neuro Oncol 2024; 26:25-37. [PMID: 37944912 PMCID: PMC10768984 DOI: 10.1093/neuonc/noad195] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
The most common childhood central nervous system (CNS) tumor is pediatric low-grade glioma (pLGG), representing 30%-40% of all CNS tumors in children. Although there is high associated morbidity, tumor-related mortality is relatively rare. pLGG is now conceptualized as a chronic disease, underscoring the importance of functional outcomes and quality-of-life measures. A wealth of data has emerged about these tumors, including a better understanding of their natural history and their molecular drivers, paving the way for the use of targeted inhibitors. While these treatments have heralded tremendous promise, challenges remain about how to best optimize their use, and the long-term toxicities associated with these inhibitors remain unknown. The International Pediatric Low-Grade Glioma Coalition (iPLGGc) is a global group of physicians and scientists with expertise in pLGG focused on addressing key pLGG issues. Here, the iPLGGc provides an overview of the current state-of-the-art in pLGG, including epidemiology, histology, molecular landscape, treatment paradigms, survival outcomes, functional outcomes, imaging response, and ongoing challenges. This paper also serves as an introduction to 3 other pLGG manuscripts on (1) pLGG preclinical models, (2) consensus framework for conducting early-phase clinical trials in pLGG, and (3) pLGG resistance, rebound, and recurrence.
Collapse
Affiliation(s)
- Jason Fangusaro
- Department of Hematology and Oncology, Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - David T Jones
- Translational Program, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
| | - Roger J Packer
- Brain Tumor Institute, Daniel and Jennifer Gilbert Neurofibromatosis Institute, Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, District of Columbia, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Till Milde
- Translational Program, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Olaf Witt
- Translational Program, Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sabine Mueller
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
- Department of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Michael J Fisher
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Uri Tabori
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Gonzalez-Vega M, M. Lebert B, Campion S, Wagner A, Aguilar-Bonilla A, A. Smith A. Fibroblast growth factor receptor 1 gene mutation as a potential risk factor for spontaneous intracranial hemorrhage in pediatric low-grade glioma patients. Neurooncol Adv 2024; 6:vdae074. [PMID: 38903142 PMCID: PMC11187772 DOI: 10.1093/noajnl/vdae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Background Fibroblast growth factor receptor 1 (FGFR1) mutations have been associated with poorer prognoses in pediatric central nervous system tumor patients. A recent study highlighted a link between FGFR1 mutations and spontaneous intracranial hemorrhage (ICH), demonstrating that all patients with an FGFR1 alteration experienced hemorrhage at some point during their course of treatment. Methods The current study examined 50 out of 67 pediatric patients with low-grade gliomas (LGGs) who had genomic testing between 2011 and 2022 at our institution to determine whether a correlation exists between FGFR1 mutations and spontaneous ICH. Results We found that of the 50 patients with genomic data, 7 (14%) experienced ICH, and an additional spontaneous hemorrhage was recorded; however, no genomic testing was performed for this case. Five of the seven patients (71.4%) had an FGFR1 modification. In our patient population, 6 expressed a detectable FGFR1 mutation (66.7% [4/6] had N546K alteration, 16.7% [1/6] FGFR1 exons duplication, and 16.7% [1/6] had a variant of unknown significance [VUS]). The patient with the FGFR1 VUS had no reported spontaneous hemorrhage. Statistical analysis found a significant association between FGFR1 and spontaneous intracranial hemorrhage (P-value = < .0001). In the patient population, all cases of PTPN11 alterations (n = 3) co-occurred with FGFR1 mutations. Conclusions Our case series highlights this link between the FGFR1 mutation and spontaneous intracranial hemorrhage in pediatric LGGs.
Collapse
Affiliation(s)
- Maxine Gonzalez-Vega
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| | - Brittany M. Lebert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| | - Stephani Campion
- Department of Administration and Quality, Orlando Health - Orlando Health Advanced Rehabilitation Institute, Ocoee, Florida, USA
| | - Aaron Wagner
- Department of Pathology, Orlando Health - Orlando Regional Medical Center, Orlando, Florida, USA
| | - Ana Aguilar-Bonilla
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
- Department of Pediatric Hematology Oncology, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| | - Amy A. Smith
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Neuro-Oncology Translational Lab, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
- Department of Pediatric Hematology Oncology, Orlando Health – Arnold Palmer Hospital, Orlando, Florida, USA
| |
Collapse
|
22
|
Kilburn LB, Khuong-Quang DA, Hansford JR, Landi D, van der Lugt J, Leary SES, Driever PH, Bailey S, Perreault S, McCowage G, Waanders AJ, Ziegler DS, Witt O, Baxter PA, Kang HJ, Hassall TE, Han JW, Hargrave D, Franson AT, Yalon Oren M, Toledano H, Larouche V, Kline C, Abdelbaki MS, Jabado N, Gottardo NG, Gerber NU, Whipple NS, Segal D, Chi SN, Oren L, Tan EEK, Mueller S, Cornelio I, McLeod L, Zhao X, Walter A, Da Costa D, Manley P, Blackman SC, Packer RJ, Nysom K. The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial. Nat Med 2024; 30:207-217. [PMID: 37978284 PMCID: PMC10803270 DOI: 10.1038/s41591-023-02668-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .
Collapse
Affiliation(s)
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, Australia; South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Sarah E S Leary
- Cancer and Blood Disorders Center, Seattle Children's, Seattle, WA, USA
| | - Pablo Hernáiz Driever
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, German HIT-LOGGIC-Registry for LGG in Children and Adolescents, Berlin, Germany
| | - Simon Bailey
- Great North Children's Hospital and Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | | | - Geoffrey McCowage
- Sydney Children's Hospitals Network, Westmead, New South Wales, Australia
| | | | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit, Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Patricia A Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Timothy E Hassall
- Children's Health Queensland Hospital and Health Service, South Brisbane, QLD, Australia
| | - Jung Woo Han
- Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Andrea T Franson
- C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center, Petach Tikva, and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valérie Larouche
- Department of Pediatrics, Centre Mère-Enfant Soleil du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mohamed S Abdelbaki
- Division of Hematology and Oncology, Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Nada Jabado
- McGill University Health Centre (MUHC), Montreal Children's Hospital (MCH), Montreal, Quebec, Canada
| | - Nicholas G Gottardo
- Department of Pediatric and Adolescent Oncology and Hematology, Perth Children's Hospital, Perth, Australia, and Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - Nicholas S Whipple
- Primary Children's Hospital and University of Utah, Salt Lake City, UT, USA
| | | | - Susan N Chi
- Pediatric Neuro-Oncology, Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Liat Oren
- Department of Hematology & Oncology, Rambam Healthcare Campus, Haifa, Israel
| | - Enrica E K Tan
- Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Lisa McLeod
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | - Xin Zhao
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | | | | | | | | | - Roger J Packer
- Division of Neurology, Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC, USA
| | - Karsten Nysom
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
23
|
Modrzejewska M, Olejnik-Wojciechowska J, Roszyk A, Szychot E, Konczak TD, Szemitko M, Peregud-Pogorzelski JW. Optic Pathway Gliomas in Pediatric Population-Current Approach in Diagnosis and Management: Literature Review. J Clin Med 2023; 12:6709. [PMID: 37959175 PMCID: PMC10649937 DOI: 10.3390/jcm12216709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
In this paper, the authors present a clinical picture of the diagnosis and current treatment regimens of optic pathway glioma in the pediatric population, with an emphasis on the role of an ophthalmic diagnosis in the differentiation and monitoring of lesions. Glioma is the most common optic nerve tumor in children. MATERIAL Articles in PubMed, Scholar and Website were reviewed, taking into account current standards of management related to sporadic or NF1-related optic glioma, epidemiology, location, course of the disease, clinical manifestations, histological types of the tumor, genetic predisposition, diagnostic ophthalmic tests currently applicable in therapeutic monitoring of the tumor, neurological diagnosis, therapeutic management and prognosis. The importance of current screening recommendations, in line with standards, was emphasized. RESULTS Glioma occurs in children most often in the first decade of life. Initially, they may be asymptomatic, and clinically ophthalmic changes are associated with the organ of vision or with systemic changes. Gliomas associated with the NF1 mutation have a better prognosis for sporadic gliomas. Diagnosis includes radiological imaging methods/MRI/ophthalmology/OCT and visual acuity log MAR assessment. The basis of treatment is clinical observation. In the case of disease progression, surgical treatment, chemotherapy and targeted therapy are used. CONCLUSION Further research into novel techniques for detecting gliomas would allow for early monitoring of the disease.
Collapse
Affiliation(s)
- Monika Modrzejewska
- II Department of Ophthalmology, Pomeranian Medical University, Al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Joanna Olejnik-Wojciechowska
- Scientific Students Association of Ophtalmology, II Department of Ophthalmology, Pomeranian Medical University, Szczecin Unia Lubelska 1 Street, 71-252 Szczecin, Poland
| | - Agnieszka Roszyk
- Scientific Students Association of Ophtalmology, II Department of Ophthalmology, Pomeranian Medical University, Szczecin Unia Lubelska 1 Street, 71-252 Szczecin, Poland
| | - Elwira Szychot
- Department of Paediatrics, Oncology and Paediatric Immunology, Pomeranian Medical University, 71-252 Szczecin, Poland
- Department of Paediatric Onclogy, Great Ormond Street Hospital for Children, London WC1N 1LE, UK
| | - Tomasz Dariusz Konczak
- Department of Paediatrics, Oncology and Paediatric Immunology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Marcin Szemitko
- Department of Intervantional Radiology, Pomerian Medical University, 70-111 Szczecin, Poland
| | | |
Collapse
|
24
|
Leary SES, Onar-Thomas A, Fangusaro J, Gottardo NG, Cohen K, Smith A, Huang A, Haas-Kogan D, Fouladi M. Children's Oncology Group's 2023 blueprint for research: Central nervous system tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30600. [PMID: 37534382 PMCID: PMC10569820 DOI: 10.1002/pbc.30600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Tumors of the central nervous system (CNS) are a leading cause of morbidity and mortality in the pediatric population. Molecular characterization in the last decade has redefined CNS tumor diagnoses and risk stratification; confirmed the unique biology of pediatric tumors as distinct entities from tumors that occur in adulthood; and led to the first novel targeted therapies receiving Food and Drug Administration (FDA) approval for children with CNS tumors. There remain significant challenges to overcome: children with unresectable low-grade glioma may require multiple prolonged courses of therapy affecting quality of life; children with high-grade glioma have a dismal long-term prognosis; children with medulloblastoma may suffer significant short- and long-term morbidity from multimodal cytotoxic therapy, and approaches to improve survival in ependymoma remain elusive. The Children's Oncology Group (COG) is uniquely positioned to conduct the next generation of practice-changing clinical trials through rapid prospective molecular characterization and therapy evaluation in well-defined clinical and molecular groups.
Collapse
Affiliation(s)
- Sarah E. S. Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s, Seattle, WA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jason Fangusaro
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA
| | | | - Kenneth Cohen
- The Sidney Kimmel Comprehensive Cancer Center, John’s Hopkins, Baltimore, MD
| | - Amy Smith
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, Orlando Health-Arnold Palmer Hospital, Orlando, FL
| | - Annie Huang
- Department of Hematology/Oncology, Hospital for Sick Children, Toronto, Canada
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Maryam Fouladi
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus OH
| |
Collapse
|
25
|
Al-Jilaihawi S, Lowis S. A Molecular Update and Review of Current Trials in Paediatric Low-Grade Gliomas. Pediatr Neurosurg 2023; 58:290-298. [PMID: 37604126 DOI: 10.1159/000533703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Paediatric low-grade gliomas (pLGGs) are the most common primary brain tumour in children. Though considered benign, slow-growing lesions with excellent overall survival, their long-term morbidity can be significant, both from the tumour and secondary to treatment. Vast progress has been made in recent years to better understand the molecular biology underlying pLGGs, with promising implications for new targeted therapeutic strategies. SUMMARY A multi-layered classification system of biologic subgroups, integrating distinct molecular and histological features has evolved to further our clinical understanding of these heterogeneous tumours. Though surgery and chemotherapy are the mainstays of treatment for pLGGs, many tumours are not amenable to surgery and/or progress after conventional chemotherapy. Therapies targeting common genetic aberrations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway have been the focus of many recent studies and offer new therapeutic possibilities. Here, we summarise the updated molecular classification of pLGGs and provide a review of current treatment strategies, novel agents, and open trials. KEY MESSAGES (1) There is a need for treatment strategies in pLGG that provide lasting tumour control and better quality of survival through minimising toxicity and protecting against neurological, cognitive, and endocrine deficits. (2) The latest World Health Organisation classification of pLGG incorporates a growing wealth of molecular genetic information by grouping tumours into more biologically and molecularly defined entities that may enable better risk stratification of patients, and consideration for targeted therapies in the future. (3) Novel agents and molecular-targeted therapies offer new therapeutic possibilities in pLGG and have been the subject of many recent and currently open clinical studies. (4) Adequate molecular characterisation of pLGG is therefore imperative in today's clinical trials, and treatment responses should not only be evaluated radiologically but also using neurological, visual, and quality of life outcomes to truly understand treatment benefits.
Collapse
Affiliation(s)
- Sarah Al-Jilaihawi
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol, UK
| | - Stephen Lowis
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
26
|
Taddei M, Esposito S, Marucci G, Erbetta A, Ferroli P, Valentini LG, Pantaleoni C, D'Arrigo S, Saletti V, Pollo B, Paterra R, Riva D, Bulgheroni S. Cognitive and Behavioral Outcome of Pediatric Low-Grade Central Nervous System Tumors Treated Only with Surgery: A Single Center Experience. Diagnostics (Basel) 2023; 13:diagnostics13091568. [PMID: 37174959 PMCID: PMC10178267 DOI: 10.3390/diagnostics13091568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The present mono-institutional report aimed to describe the cognitive and behavioral outcomes of low-grade central nervous system (CNS) tumors in a cohort of children treated exclusively with surgical intervention. METHODS Medical records from 2000-2020 were retrospectively analyzed. We included 38 children (mean age at first evaluation 8 years and 3 months, 16 females) who had undergone presurgical cognitive-behavioral evaluation and/or at least 6 months follow-up. Exclusion criteria were a history of traumatic brain injury, stroke, cerebral palsy or cancer-predisposing syndromes. RESULTS The sample presented cognitive abilities and behavioral functioning in the normal range, with weaknesses in verbal working memory and processing speed. The obtained results suggest that cognitive and behavioral functioning is related to pre-treatment variables (younger age at symptoms' onset, glioneuronal histological type, cortical location with preoperative seizures), timing of surgery and seizure control after surgery, and is stable when controlling for a preoperative cognitive and behavioral baseline. Younger age at onset is confirmed as a particular vulnerability in determining cognitive sequelae, and children at older ages or at longer postsurgical follow-up are at higher risk for developing behavioral disturbances. CONCLUSIONS Timely treatment is an important factor influencing the global outcome and daily functioning of the patients. Preoperative and regular postsurgical cognitive and behavioral assessment, also several years after surgery, should be included in standard clinical practices.
Collapse
Affiliation(s)
- Matilde Taddei
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Silvia Esposito
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alessandra Erbetta
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Laura Grazia Valentini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pantaleoni
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefano D'Arrigo
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Veronica Saletti
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Rosina Paterra
- Molecular Neuroncology Unit, IRCCS Carlo Besta, 20133 Milan, Italy
| | - Daria Riva
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Sara Bulgheroni
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
27
|
Sait SF, Giantini-Larsen AM, Tringale KR, Souweidane MM, Karajannis MA. Treatment of Pediatric Low-Grade Gliomas. Curr Neurol Neurosci Rep 2023; 23:185-199. [PMID: 36881254 PMCID: PMC10121885 DOI: 10.1007/s11910-023-01257-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Pediatric low-grade gliomas and glioneuronal tumors (pLGG) account for approximately 30% of pediatric CNS neoplasms, encompassing a heterogeneous group of tumors of primarily glial or mixed neuronal-glial histology. This article reviews the treatment of pLGG with emphasis on an individualized approach incorporating multidisciplinary input from surgery, radiation oncology, neuroradiology, neuropathology, and pediatric oncology to carefully weigh the risks and benefits of specific interventions against tumor-related morbidity. Complete surgical resection can be curative for cerebellar and hemispheric lesions, while use of radiotherapy is restricted to older patients or those refractory to medical therapy. Chemotherapy remains the preferred first-line therapy for adjuvant treatment of the majority of recurrent or progressive pLGG. RECENT FINDINGS Technologic advances offer the potential to limit volume of normal brain exposed to low doses of radiation when treating pLGG with either conformal photon or proton RT. Recent neurosurgical techniques such as laser interstitial thermal therapy offer a "dual" diagnostic and therapeutic treatment modality for pLGG in specific surgically inaccessible anatomical locations. The emergence of novel molecular diagnostic tools has enabled scientific discoveries elucidating driver alterations in mitogen-activated protein kinase (MAPK) pathway components and enhanced our understanding of the natural history (oncogenic senescence). Molecular characterization strongly supplements the clinical risk stratification (age, extent of resection, histological grade) to improve diagnostic precision and accuracy, prognostication, and can lead to the identification of patients who stand to benefit from precision medicine treatment approaches. The success of molecular targeted therapy (BRAF inhibitors and/or MEK inhibitors) in the recurrent setting has led to a gradual and yet significant paradigm shift in the treatment of pLGG. Ongoing randomized trials comparing targeted therapy to standard of care chemotherapy are anticipated to further inform the approach to upfront management of pLGG patients.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Alexandra M Giantini-Larsen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mark M Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Moreira DC, Lam CG, Bhakta N, Boop FA, Chiang J, Merchant TE, Rodriguez-Galindo C, Gajjar A, Qaddoumi I. Tackling Pediatric Low-Grade Gliomas: A Global Perspective. JCO Glob Oncol 2023; 9:e2300017. [PMID: 37043711 DOI: 10.1200/go.23.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Affiliation(s)
- Daniel C Moreira
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Catherine G Lam
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Nickhill Bhakta
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Frederick A Boop
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Jason Chiang
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Carlos Rodriguez-Galindo
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| | - Ibrahim Qaddoumi
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
29
|
Pillay-Smiley N, Leach J, Lane A, Hummel T, Fangusaro J, de Blank P. Evaluating Focal Areas of Signal Intensity (FASI) in Children with Neurofibromatosis Type-1 (NF1) Treated with Selumetinib on Pediatric Brain Tumor Consortium (PBTC)-029B. Cancers (Basel) 2023; 15:cancers15072109. [PMID: 37046770 PMCID: PMC10092996 DOI: 10.3390/cancers15072109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Understanding the effect of selumetinib on FASI may help elucidate the biology, proliferative potential, and role in neurocognitive changes for these NF1-associated lesions. Methods: Patients with NF1-associated LGG and FASI treated with selumetinib on PBTC-029B were age-matched to untreated patients with NF1-associated FASI at Cincinnati Children’s Hospital Medical Center. Paired bidirectional measurements were compared over time using nonparametric tests. Results: Sixteen age-matched pairs were assessed (age range: 2.8–16.9 years, 60% male). Initial FASI burden was not different between groups (median range 138.7 cm2 [88.4–182.0] for the treated subjects vs. 121.6 cm2 [79.6—181.9] for the untreated subjects; p = 0.98). Over a mean follow-up of 18.9 (±5.9) months, the LGG size consistently decreased with treatment while no consistent change among the treated or untreated FASI size was seen. At the paired time points, the median treated LGG decreased significantly more than the treated FASI (−41.3% (LGG) versus −10.7% (FASI), p = 0.006). However, there was no difference in the median size change in the treated versus untreated FASI (−10.7% (treated FASI) versus −17.9% (untreated FASI), p = 0.08). Among the treated subjects, there was no correlation between the change in LGG and FASI (r = −0.04, p = 0.88). Conclusions: Treatment with selumetinib did not affect the overall FASI size in children with NF1 treated for progressive low-grade glioma.
Collapse
Affiliation(s)
- Natasha Pillay-Smiley
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - James Leach
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adam Lane
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Trent Hummel
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jason Fangusaro
- Children’s Healthcare of Atlanta and Aflac Cancer Center, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta and Emory, University School of Medicine, Atlanta GA 30322, USA
| | - Peter de Blank
- Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
30
|
O’Donohue T, Sait SF, Bender JG. Progress in precision therapy in pediatric oncology. Curr Opin Pediatr 2023; 35:41-47. [PMID: 36377257 PMCID: PMC9812924 DOI: 10.1097/mop.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE OF REVIEW The fields of precision medicine and cancer genomics in pediatric oncology are rapidly evolving. Novel diagnostic tools are critical in refining cancer diagnoses, stratifying patient risk, and informing treatment decisions. This review is timely and relevant as it discusses advantages and drawbacks of common molecular profiling techniques and highlights novel platforms, which may address select limitations. We discuss recent publications demonstrating utility of large-scale molecular profiling and feasibility and logistics of matching targeted therapies to patients. RECENT FINDINGS We describe the increased accessibility of next-generation sequencing, complementary profiling methods, and strategies to guide treatment decisions. We describe curation and sharing of large genomic datasets and novel mechanisms to obtain matched targeted therapies. Importantly, we discuss relevant publications in distinct disease domains that support indications for evidence-based precision therapy. Lastly, we introduce the incremental analyses that can be obtained via whole-genome and transcriptome sequencing. SUMMARY Here we highlight high-yield clinical scenarios of precision medicine approaches and identify the ongoing challenges including universally defining clinical actionability, optimizing trial design to account for molecular heterogeneity while acknowledging limitations in patient accrual, expanding access to molecularly targeted therapies, and validating new tools and technology to aid in precision medicine therapeutic approaches.
Collapse
Affiliation(s)
- Tara O’Donohue
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julia Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
31
|
Association of RNA m 7G Modification Gene Polymorphisms with Pediatric Glioma Risk. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3678327. [PMID: 36733406 PMCID: PMC9889142 DOI: 10.1155/2023/3678327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Glioma stemming from glial cells of the central nervous system (CNS) is one of the leading causes of cancer death in childhood. The genetic predisposition of glioma is not fully understood. METTL1-WDR4 methyltransferase complex is implicated in tumorigenesis by catalyzing N7-methylguanosine (m7G) modification of RNA. This study is aimed at determining the association of glioma risk with three polymorphisms (rs2291617, rs10877013, and rs10877012) in METTL1 and five polymorphisms (rs2156315 rs2156316, rs6586250, rs15736, and rs2248490) in WDR4 gene in children of Chinese Han. We enrolled 314 cases and 380 controls from three independent hospitals. Genotypes of these polymorphisms were determined using the TaqMan assay. We found the WDR4 gene rs15736 was significantly associated with reduced glioma risk (GA/AA vs. GG: adjusted odds ratio = 0.63, 95%confidence interval = 0.42 - 0.94, P = 0.023) out of the eight studied polymorphisms. Stratified analyses showed that the association of rs15736 with the risk of glioma remained significant in children aged 60 months or older, girls, the subgroups with astrocytic tumors, or grade I + II glioma. We also found the combined effects of five WDR4 gene polymorphisms on glioma risk. Finally, expression quantitative trait locus (eQTL) analyses elucidated that the rs15736 polymorphism was related to the expression level of WDR4 and neighboring gene cystathionine-beta-synthase (CBS). Our finding provided evidence of a causal association between WDR4 gene polymorphisms and glioma susceptibility in Chinese Han children.
Collapse
|
32
|
Xie M, Wang X, Duan Z, Luan G. Low-grade epilepsy-associated neuroepithelial tumors: Tumor spectrum and diagnosis based on genetic alterations. Front Neurosci 2023; 16:1071314. [PMID: 36699536 PMCID: PMC9868944 DOI: 10.3389/fnins.2022.1071314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Brain tumors can always result in seizures when involving the cortical neurons or their circuits, and they were found to be one of the most common etiologies of intractable focal seizures. The low-grade epilepsy-associated neuroepithelial tumors (LEAT), as a special group of brain tumors associated with seizures, share common clinicopathological features, such as seizure onsets at a young age, a predilection for involving the temporal lobe, and an almost benign course, including a rather slow growth pattern and thus a long-term history of seizures. Ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) are the typical representatives of LEATs. Surgical treatments with complete resection of tumors and related epileptogenic zones are deemed the optimal way to achieve postoperative seizure control and lifetime recurrence-free survival in patients with LEATs. Although the term LEAT was originally introduced in 2003, debates on the tumor spectrum and the diagnosis or classification of LEAT entities are still confusing among epileptologists and neuropathologists. In this review, we would further discuss these questions, especially based on the updated classification of central nervous system tumors in the WHO fifth edition and the latest molecular genetic findings of tumor entities in LEAT entities.
Collapse
Affiliation(s)
- Mingguo Xie
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zejun Duan
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,Chinese Institute for Brain Research, Beijing, China,*Correspondence: Guoming Luan,
| |
Collapse
|
33
|
Martinoni M, Fabbri VP, La Corte E, Zucchelli M, Toni F, Asioli S, Giannini C. Glioneuronal and Neuronal Tumors of the Central Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:253-280. [PMID: 37452941 DOI: 10.1007/978-3-031-23705-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Glioneuronal and neuronal tumors (GNTs) are rare neoplasms composed of neural and glial elements frequently located in the temporal lobe. Epilepsy is the main symptom and diagnosis mostly occurs before adulthood. The great majority of GNTs are WHO grade I tumors, but anaplastic transformations and forms exist. Their common association with focal cortical dysplasia is well recognized and should be taken into consideration during neurophysiological presurgical and surgical planning since the aim of surgery should be the removal of the tumor and of the entire epileptogenic zone according to anatomo-electrophysiological findings. Surgery still remains the cornerstone of symptomatic GNT, while radiotherapy, chemotherapy, and new target therapies are generally reserved for anaplastic, unresectable, or evolving tumors. Furthermore, since many GNTs show overlapping clinical and neuroradiological features, the definition of specific histopathological, genetic, and molecular characteristics is crucial. Epileptological, oncological, neurosurgical, and pathological issues of these tumors make a multidisciplinary management mandatory.
Collapse
Affiliation(s)
- Matteo Martinoni
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| | - Viscardo Paolo Fabbri
- Surgical Pathology Section, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Emanuele La Corte
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Mino Zucchelli
- Pediatric Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Toni
- Division of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Programma di neuroradiologia con tecniche ad elevata complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna ETC, Bologna, Italy
| | - Sofia Asioli
- Surgical Pathology Section, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM) - Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Caterina Giannini
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Division of Anatomic Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
34
|
Walker DA, Aquilina K, Spoudeas H, Pilotto C, Gan HW, Meijer L. A new era for optic pathway glioma: A developmental brain tumor with life-long health consequences. Front Pediatr 2023; 11:1038937. [PMID: 37033188 PMCID: PMC10080591 DOI: 10.3389/fped.2023.1038937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/13/2023] [Indexed: 04/11/2023] Open
Abstract
Optic pathway and hypothalamic glioma (OPHG) are low-grade brain tumors that arise from any part of the visual pathways frequently involving the hypothalamus. The tumors grow slowly and present with features driven by their precise anatomical site, their age at presentation and the stage of growth and development of the host neural and orbital bony tissues. Up to 50% of optic pathway glioma arise in association with Neurofibromatosis type 1 (NF1), which affects 1 in 3,000 births and is a cancer predisposition syndrome. As low-grade tumors, they almost never transform to malignant glioma yet they can threaten life when they present under two years of age. The main risks are to threaten vision loss by progressive tumor damage to optic pathways; furthermore, invasion of the hypothalamus can lead to diencephalic syndrome in infancy and hypopituitarism later in life. Progressive cognitive and behavioural dysfunction can occur, as part of NF1 syndromic features and in sporadic cases where large bulky tumors compress adjacent structures and disrupt neuro-hypothalamic pathways. Persistently progressive tumors require repeated treatments to attempt to control vision loss, other focal brain injury or endocrine dysfunction. In contrast tumors presenting later in childhood can be seen to spontaneously arrest in growth and subsequently progress after periods of stability. These patterns are influenced by NF status as well as stages of growth and development of host tissues. The past two decades has seen an expansion in our understanding and knowledge of the clinical and scientific features of these tumors, their modes of presentation, the need for careful visual and endocrine assessment. This influences the decision-making surrounding clinical management with surgery, radiotherapy, chemotherapy and most recently, the potential benefit of molecularly targeted drug therapy. This article, based upon the authors' clinical and research experience and the published literature will highlight advances in approach to diagnosis, the established role of vision loss as justification of treatments and the emerging evidence of endocrine and neurological consequences that need to be incorporated into judgements for case selection for therapy or observation. Consideration is given to the current state of biological evidence justifying current trials of new therapies, the genetic studies of the NF1 gene and the potential for new approaches to OPHG detection and treatment. The outstanding health system priorities from the perspective of children, their parents and health system commissioners or insurers are discussed.
Collapse
Affiliation(s)
- David A. Walker
- Emeritus Professor Paediatric Oncology, University of Nottingham, Nottingham, United Kingdom
- Correspondence: David A. Walker
| | - Kristian Aquilina
- Department of NeuroEndocrinology, Great Ormond Street Hospital, London, United Kingdom
| | - Helen Spoudeas
- Department of NeuroEndocrinology, Great Ormond Street Hospital, London, United Kingdom
| | - Chiara Pilotto
- Pediatric Clinic, ASUFC Santa Maria Della Misericordia, Udine, Italy
| | - Hoong-Wei Gan
- Department of NeuroEndocrinology, Great Ormond Street Hospital, London, United Kingdom
| | - Lisethe Meijer
- Kinderoncologie, Prinses Máxima Centrum Voor Kinderoncologie BV, Utrecht, Netherlands
| |
Collapse
|
35
|
Advances in the Treatment of Pediatric Brain Tumors. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010062. [PMID: 36670613 PMCID: PMC9856380 DOI: 10.3390/children10010062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Pediatric brain tumors are the most common solid malignancies in children. Advances in the treatment of pediatric brain tumors have come in the form of imaging, biopsy, surgical techniques, and molecular profiling. This has led the way for targeted therapies and immunotherapy to be assessed in clinical trials for the most common types of pediatric brain tumors. Here we review the latest efforts and challenges in targeted molecular therapy, immunotherapy, and newer modalities such as laser interstitial thermal therapy.
Collapse
|
36
|
Pearson AD, Allen C, Fangusaro J, Hutter C, Witt O, Weiner S, Reaman G, Russo M, Bandopadhayay P, Ahsan S, Barone A, Barry E, de Rojas T, Fisher M, Fox E, Bender JG, Gore L, Hargrave D, Hawkins D, Kreider B, Langseth AJ, Lesa G, Ligas F, Marotti M, Marshall LV, Nasri K, Norga K, Nysom K, Pappo A, Rossato G, Scobie N, Smith M, Stieglitz E, Weigel B, Weinstein A, Viana R, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development in mitogen-activated protein kinase pathway inhibitors: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 177:120-142. [PMID: 36335782 DOI: 10.1016/j.ejca.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
As the mitogen-activated protein kinase (MAPK) signalling pathway is activated in many paediatric cancers, it is an important therapeutic target. Currently, a range of targeted MAPK pathway inhibitors are being developed in adults. However, MAPK signals through many cascades and feedback loops and perturbing the MAPK pathway may have substantial influence on other pathways as well as normal development. In view of these issues, the ninth Paediatric Strategy Forum focused on MAPK inhibitors. Development of MAPK pathway inhibitors to date has been predominantly driven by adult indications such as malignant melanoma. However, these inhibitors may also target unmet needs in paediatric low-grade gliomas, high-grade gliomas, Langerhans cell histiocytosis, juvenile myelomonocytic leukaemia and several other paediatric conditions. Although MAPK inhibitors have demonstrated activity in paediatric cancer, the response rates and duration of responses needs improvement and better documentation. The rapid development and evaluation of combination approaches, based on a deep understanding of biology, is required to optimise responses and to avoid paradoxical tumour growth and other unintended consequences including severe toxicity. Better inhibitors with higher central nervous systempenetration for primary brain tumours and cancers with a propensity for central nervous system metastases need to be studied to determine if they are more effective than agents currently being used, and the optimum duration of therapy with MAPK inhibition needs to be determined. Systematic and coordinated clinical investigations to inform future treatment strategies with MAPK inhibitors, rather than use outside of clinical trials, are needed to fully assess the risks and benefits of these single agents and combination strategies in both front-line and in the refractory/relapse settings. Platform trials could address the investigation of multiple similar products and combinations. Accelerating the introduction of MAPK inhibitors into front-line paediatric studies is a priority, as is ensuring that these studies generate data appropriate for scientific and regulatory purposes. Early discussions with regulators are crucial, particularly if external controls are considered as randomised control trials in small patient populations can be challenging. Functional end-points specific to the populations in which they are studied, such as visual acuity, motor and neuro psychological function are important, as these outcomes are often more reflective of benefit for lower grade tumours (such as paediatric low-grade glioma and plexiform neurofibroma) and should be included in initial study designs for paediatric low-grade glioma. Early prospective discussions and agreements with regulators are necessary. Long-term follow-up of patients receiving MAPK inhibitors is crucial in view of their prolonged administration and the important involvement of this pathway in normal development. Further rational development, with a detailed understanding of biology of this class of products, is crucial to ensure they provide optimal benefit while minimising toxicity to children and adolescents with cancer.
Collapse
Affiliation(s)
| | - Carl Allen
- Texas Children Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, USA; Emory University School of Medicine, Atlanta, USA
| | - Caroline Hutter
- St. Anna Children's Hospital, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany; German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Pratiti Bandopadhayay
- Department of Pediatrics, Harvard Medical School, Broad Institute, USA; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, USA
| | | | - Amy Barone
- US Food and Drug Administration, Silver Springs, USA
| | - Elly Barry
- Day One Biopharmaceuticals, San Francisco, USA
| | | | - Michael Fisher
- The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elizabeth Fox
- St Jude Children's Research Hospital, Tennessee, USA
| | | | - Lia Gore
- Children's Hospital Colorado, USA; University of Colorado, USA
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health, London UK
| | - Doug Hawkins
- Seattle Children's Hospital, USA; Children's Oncology Group, Seattle, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | | | - Lynley V Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, (EMA), Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Tennessee, USA
| | | | | | | | | | | | | | - Ruth Viana
- Alexion Pharmaceuticals, Zurich, Switzerland
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
37
|
Use of Trametinib in Children and Young Adults With Progressive Low-Grade Glioma and Glioneuronal Tumors. J Pediatr Hematol Oncol 2022; 45:e464-e470. [PMID: 36730221 DOI: 10.1097/mph.0000000000002598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/26/2022] [Indexed: 02/03/2023]
Abstract
Low-grade gliomas/glioneuronal tumors comprise one-third of all pediatric-type CNS tumors. These tumors are generally caused by activating mutations in the mitogen-activated protein kinase (MAPK) pathway. Targeted drugs, such as trametinib, have shown promise in other cancers and are being utilized in low-grade gliomas. A retrospective chart review was conducted to evaluate radiographic response, visual outcomes, tolerability, and durability of response in progressive circumscribed low-grade gliomas treated with trametinib. Eleven patients were treated with trametinib. The best radiographic response was 2/11 partial response, 3/11 minor response, 3/11 stable disease, and 3/13 progressive disease. In the patients with partial or minor response, the best response was seen after longer durations of therapy; 4 of 5 best responses occurred after at least 9 months of therapy with a median of 21 months. Patients with optic pathway tumors showed at least stable vision throughout treatment, with 3 having improved vision on treatment. Trametinib is effective and well-tolerated in patients with progressive low-grade glioma. Best responses were seen after a longer duration of therapy in those with a positive response. Patients with optic pathway lesions showed stable to improved vision while on treatment.
Collapse
|
38
|
Rudà R, Capper D, Waldman AD, Pallud J, Minniti G, Kaley TJ, Bouffet E, Tabatabai G, Aronica E, Jakola AS, Pfister SM, Schiff D, Lassman AB, Solomon DA, Soffietti R, Weller M, Preusser M, Idbaih A, Wen PY, van den Bent MJ. EANO - EURACAN - SNO Guidelines on circumscribed astrocytic gliomas, glioneuronal, and neuronal tumors. Neuro Oncol 2022; 24:2015-2034. [PMID: 35908833 PMCID: PMC9713532 DOI: 10.1093/neuonc/noac188] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the new WHO 2021 Classification of CNS Tumors the chapter "Circumscribed astrocytic gliomas, glioneuronal and neuronal tumors" encompasses several different rare tumor entities, which occur more frequently in children, adolescents, and young adults. The Task Force has reviewed the evidence of diagnostic and therapeutic interventions, which is low particularly for adult patients, and draw recommendations accordingly. Tumor diagnosis, based on WHO 2021, is primarily performed using conventional histological techniques; however, a molecular workup is important for differential diagnosis, in particular, DNA methylation profiling for the definitive classification of histologically unresolved cases. Molecular factors are increasing of prognostic and predictive importance. MRI finding are non-specific, but for some tumors are characteristic and suggestive. Gross total resection, when feasible, is the most important treatment in terms of prolonging survival and achieving long-term seizure control. Conformal radiotherapy should be considered in grade 3 and incompletely resected grade 2 tumors. In recurrent tumors reoperation and radiotherapy, including stereotactic radiotherapy, can be useful. Targeted therapies may be used in selected patients: BRAF and MEK inhibitors in pilocytic astrocytomas, pleomorphic xanthoastrocytomas, and gangliogliomas when BRAF altered, and mTOR inhibitor everolimus in subependymal giant cells astrocytomas. Sequencing to identify molecular targets is advocated for diagnostic clarification and to direct potential targeted therapies.
Collapse
Affiliation(s)
- Roberta Rudà
- Corresponding Author: Roberta Rudà, Department of Neurology, Castelfranco Veneto/Treviso Hospital and Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy ()
| | - David Capper
- Department of Neuropathology, Charité Universitätsmedizin Berlin, Berlin and German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adam D Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh and Department of Brain Science, Imperial College London, United Kingdom
| | - Johan Pallud
- Department of Neurosurgery, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy and IRCCS Neuromed (IS), Italy
| | - Thomas J Kaley
- Department of Neurology, Brain Tumor Service, Memorial Sloan Kettering Cancer Center, New York, US
| | - Eric Bouffet
- Division of Paediatric Oncology, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ghazaleh Tabatabai
- Department of Neurology & Neurooncology, University of Tübingen, German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam and Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Asgeir S Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden. Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden
| | - Stefan M Pfister
- Hopp Children´s Cancer Center Heidelberg (KiTZ), Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), and Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia, Charlottesville, US
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, US
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, US
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University and City of Health and Science Hospital, Turin, Italy
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | |
Collapse
|
39
|
Kurdi M, Moshref RH, Katib Y, Faizo E, Najjar AA, Bahakeem B, Bamaga AK. Simple approach for the histomolecular diagnosis of central nervous system gliomas based on 2021 World Health Organization Classification. World J Clin Oncol 2022; 13:567-576. [PMID: 36157161 PMCID: PMC9346424 DOI: 10.5306/wjco.v13.i7.567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The classification of central nervous system (CNS) glioma went through a sequence of developments, between 2006 and 2021, started with only histological approach then has been aided with a major emphasis on molecular signatures in the 4th and 5th editions of the World Health Organization (WHO). The recent reformation in the 5th edition of the WHO classification has focused more on the molecularly defined entities with better characterized natural histories as well as new tumor types and subtypes in the adult and pediatric populations. These new subclassified entities have been incorporated in the 5th edition after the continuous exploration of new genomic, epigenomic and transcriptomic discovery. Indeed, the current guidelines of 2021 WHO classification of CNS tumors and European Association of Neuro-Oncology (EANO) exploited the molecular signatures in the diagnostic approach of CNS gliomas. Our current review presents a practical diagnostic approach for diffuse CNS gliomas and circumscribed astrocytomas using histomolecular criteria adopted by the recent WHO classification. We also describe the treatment strategies for these tumors based on EANO guidelines.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Rana H Moshref
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Jeddah 213733, Saudi Arabia
| | - Yousef Katib
- Department of Radiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Ahmed A Najjar
- College of Medicine, Taibah University, Almadinah Almunawwarah 213733, Saudi Arabia
| | - Basem Bahakeem
- Faculty of Medicine, Umm-Alqura University, Makkah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Pediatric, Neuromuscular Medicine Unit, Faculty of Medicine and King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| |
Collapse
|
40
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
41
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Horbinski C, Berger T, Packer RJ, Wen PY. Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nat Rev Neurol 2022; 18:515-529. [PMID: 35729337 DOI: 10.1038/s41582-022-00679-w] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/19/2022]
Abstract
A new edition of the WHO classification of tumours of the CNS was published in 2021. Although the previous edition of this classification was published just 5 years earlier, in 2016, rapid advances in our understanding of the molecular underpinnings of CNS tumours, including the diversity of clinically relevant molecular types and subtypes, necessitated a new classification system. Compared with the 2016 scheme, the new classification incorporates even more molecular alterations into the diagnosis of many tumours and reorganizes gliomas into adult-type diffuse gliomas, paediatric-type diffuse low-grade and high-grade gliomas, circumscribed astrocytic gliomas, and ependymal tumours. A number of new entities are incorporated into the 2021 classification, especially tumours that preferentially or exclusively arise in the paediatric population. Such a substantial revision of the WHO scheme will have major implications for the diagnosis and treatment of patients with CNS tumours. In this Perspective, we summarize the main changes in the classification of diffuse and circumscribed gliomas, ependymomas, embryonal tumours and meningiomas, and discuss how each change will influence post-surgical treatment, clinical trial enrolment and cooperative studies. Although the 2021 WHO classification of CNS tumours is a major conceptual advance, its implementation on a routine clinical basis presents some challenges that will require innovative solutions.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Tamar Berger
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Brain Tumour Institute, Gilbert Family Neurofibromatosis Type 1 Institute, Children's National Hospital, Washington, DC, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Catanzaro G, Besharat ZM, Carai A, Jäger N, Splendiani E, Colin C, Po A, Chiacchiarini M, Citarella A, Gianno F, Cacchione A, Miele E, Diomedi Camassei F, Gessi M, Massimi L, Locatelli F, Jones DTW, Figarella-Branger D, Pfister SM, Mastronuzzi A, Giangaspero F, Ferretti E. MiR-1248: a new prognostic biomarker able to identify supratentorial hemispheric pediatric low-grade gliomas patients associated with progression. Biomark Res 2022; 10:44. [PMID: 35715818 PMCID: PMC9205050 DOI: 10.1186/s40364-022-00389-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background Pediatric low-grade gliomas (pLGGs), particularly incompletely resected supratentorial tumours, can undergo progression after surgery. However to date, there are no predictive biomarkers for progression. Here, we aimed to identify pLGG-specific microRNA signatures and evaluate their value as a prognostic tool. Methods We identified and validated supratentorial incompletey resected pLGG-specific microRNAs in independent cohorts from four European Pediatric Neuro-Oncology Centres. Results These microRNAs demonstrated high accuracy in differentiating patients with or without progression. Specifically, incompletely resected supratentorial pLGGs with disease progression showed significantly higher miR-1248 combined with lower miR-376a-3p and miR-888-5p levels than tumours without progression. A significant (p < 0.001) prognostic performance for miR-1248 was reported with an area under the curve (AUC) of 1.00. We also highlighted a critical oncogenic role for miR-1248 in gliomas tumours. Indeed, high miR-1248 levels maintain low its validated target genes (CDKN1A (p21)/FRK/SPOP/VHL/MTAP) and consequently sustain the activation of oncogenic pathways. Conclusions Altogether, we provide a novel molecular biomarker able to successfully identify pLGG patients associated with disease progression that could support the clinicians in the decision-making strategy, advancing personalized medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00389-x.
Collapse
Affiliation(s)
- Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Natalie Jäger
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Splendiani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carole Colin
- Institut de Neurophysiopathologie, Aix-Marseille Université, CNRS, Marseille, France
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Anna Citarella
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Marco Gessi
- Department of Women, Children and Public Health Sciences, Policlinico Universitario A. Gemelli, Catholic University Sacro Cuore, Rome, Italy
| | - Luca Massimi
- Pediatric Neurosurgery, Policlinico Universitario A. Gemelli, Catholic University Sacro Cuore, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Department of Gynecology/Obstetrics & Pediatrics, Sapienza University of Rome, Rome, Italy
| | - David T W Jones
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Dominique Figarella-Branger
- Service d'Anatomie Pathologique Et de Neuropathologie, Hôpital de La Timone, Institut de Neurophysiopathologie, Aix-Marseille Université, AP-HM, CNRS, Marseille, France
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), and Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Mastronuzzi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, IRCCS Neuromed, Pozzilli, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
44
|
Del Baldo G, Cacchione A, Dell'Anna VA, Merli P, Colafati GS, Marrazzo A, Rossi S, Giovannoni I, Barresi S, Deodati A, Valente P, Ferretti E, Capece M, Mastronuzzi A, Carai A. Rethinking the Management of Optic Pathway Gliomas: A Single Center Experience. Front Surg 2022; 9:890875. [PMID: 35784925 PMCID: PMC9243477 DOI: 10.3389/fsurg.2022.890875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Optic pathway gliomas (OPGs) are rare neoplasms in children with an unpredictable clinical course. Approximately 15% of OPGs occur in patients affected by neurofibromatosis type 1 (NF1): the clinical course of these cases is more indolently than sporadic ones, and NF1 patients less frequently require treatment including surgery. Instead, over 90% of sporadic OPGs require one or more therapeutic approaches. The management of OPG is controversial. They are also characterized by a high risk of morbidity including hypothalamic damage, endocrine deficits, visual deficit and/or neurological impairment. Materials and Methods In this paper, we evaluated visual and endocrinological outcomes of a population of OPG followed at our center from 2013 to 2021, with a particular emphasis on the role of surgery. Results Twenty-six patients were included in this study (mean age of 40.7 months). Tumor location on imaging was described by the Dodge classification. Five cases had NF 1. Thirteen cases received biopsy and 13 were partially resected. Histopathology revealed 19 cases of pilocytic astrocytomas, 2 pilomyxoid astrocytoma and 5 ganglioglioma. All the patients required a post-surgical adjuvant treatment according to current indications for low-grade gliomas. Molecular studies (BRAF status and mTOR/pmTOR pathway) have been performed in 24/26 patients, following for the use of target therapy in 11 of these patients. In our study we found that patients underwent biopsy have a better visual and endocrinological outcomes rather than patients with a tumor debulking. The five-year overall survival rate is 98% with a mean follow-up of 60 months. Conclusions Many children with OPGs survive with a residual tumor. They suffer from chronic diseases such as endocrine dysfunction, visual disturbance, motor deficits and poor quality of life. All patients need comprehensive diagnostic work-up including neuroimaging, clinical evaluations and neuropathology approach; at the same time, they need therapeutic decisions and concepts for the choice of timing and type of neurosurgical intervention, chemotherapy and target therapy as well as surveillance and rehabilitation to maximize survival and overall functional outcomes. Our study showed that minimal invasive surgery with the purpose of molecular characterization of the tumor is desirable to reduce morbidity correlate to surgery.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Andrea Dell'Anna
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Marrazzo
- Radiology and Neuro-radiology Unit, Ospedale Santissima Annunziata, Taranto, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annalisa Deodati
- University Pediatric Hospital Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Valente
- Ophthalmology Department, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | | | - Mara Capece
- Department of Neurosurgery, Università Politecnica delle Marche, Ancona, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
45
|
Yeo KK, Alexandrescu S, Cotter JA, Vogelzang J, Bhave V, Li MM, Ji J, Benhamida JK, Rosenblum MK, Bale TA, Bouvier N, Kaneva K, Rosenberg T, Lim-Fat MJ, Ghosh H, Martinez M, Aguilera D, Smith A, Goldman S, Diamond EL, Gavrilovic I, MacDonald TJ, Wood MD, Nazemi KJ, Truong A, Cluster A, Ligon KL, Cole K, Bi WL, Margol AS, Karajannis MA, Wright KD. Multi-institutional study of the frequency, genomic landscape, and outcome of IDH-mutant glioma in pediatrics. Neuro Oncol 2022; 25:199-210. [PMID: 35604410 PMCID: PMC9825351 DOI: 10.1093/neuonc/noac132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The incidence and biology of IDH1/2 mutations in pediatric gliomas are unclear. Notably, current treatment approaches by pediatric and adult providers vary significantly. We describe the frequency and clinical outcomes of IDH1/2-mutant gliomas in pediatrics. METHODS We performed a multi-institutional analysis of the frequency of pediatric IDH1/2-mutant gliomas, identified by next-generation sequencing (NGS). In parallel, we retrospectively reviewed pediatric IDH1/2-mutant gliomas, analyzing clinico-genomic features, treatment approaches, and outcomes. RESULTS Incidence: Among 851 patients with pediatric glioma who underwent NGS, we identified 78 with IDH1/2 mutations. Among patients 0-9 and 10-21 years old, 2/378 (0.5%) and 76/473 (16.1%) had IDH1/2-mutant tumors, respectively. Frequency of IDH mutations was similar between low-grade glioma (52/570, 9.1%) and high-grade glioma (25/277, 9.0%). Four tumors were graded as intermediate histologically, with one IDH1 mutation. Outcome: Seventy-six patients with IDH1/2-mutant glioma had outcome data available. Eighty-four percent of patients with low-grade glioma (LGG) were managed observantly without additional therapy. For low-grade astrocytoma, 5-year progression-free survival (PFS) was 42.9% (95%CI:20.3-63.8) and, despite excellent short-term overall survival (OS), numerous disease-related deaths after year 10 were reported. Patients with high-grade astrocytoma had a 5-year PFS/OS of 36.8% (95%CI:8.8-66.4) and 84% (95%CI:50.1-95.6), respectively. Patients with oligodendroglioma had excellent OS. CONCLUSIONS A subset of pediatric gliomas is driven by IDH1/2 mutations, with a higher rate among adolescents. The majority of patients underwent upfront observant management without adjuvant therapy. Findings suggest that the natural history of pediatric IDH1/2-mutant glioma may be similar to that of adults, though additional studies are needed.
Collapse
Affiliation(s)
- Kee Kiat Yeo
- Corresponding Author: Kee Kiat Yeo, MD, Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, 450 Brookline Ave, Boston, MA 02215, USA ()
| | | | | | - Jayne Vogelzang
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, MA, USA
| | | | - Marilyn M Li
- Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA,USA
| | - Jamal K Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Bouvier
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kristiyana Kaneva
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, USA,Tempus Labs, Inc., Chicago, IL, USA
| | - Tom Rosenberg
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mary Jane Lim-Fat
- Department of Medical Oncology, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA, USA
| | - Hia Ghosh
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Migdalia Martinez
- Department of Pediatrics, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Dolly Aguilera
- Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Smith
- Department of Pediatrics, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Stewart Goldman
- Department of Child Health, Phoenix Children’s Hospital, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Igor Gavrilovic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew D Wood
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kellie J Nazemi
- Department of Pediatrics, Doernbecher Children’s Hospital, Portland, OR, USA
| | - AiLien Truong
- Department of Pediatrics, Doernbecher Children’s Hospital, Portland, OR, USA
| | - Andrew Cluster
- Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber/Brigham and Women’s Hospital Cancer Center, Boston, MA, USA
| | - Kristina Cole
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Ashley S Margol
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Karen D Wright
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Affiliation(s)
- Alan R Cohen
- From the Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
47
|
Chan AKY, Shi ZF, Li KKW, Wang WW, Chen H, Chung NYF, Chan DTM, Poon WS, Loong HHF, Liu XZ, Zhang ZY, Mao Y, Ng HK. Combinations of Single-Gene Biomarkers Can Precisely Stratify 1,028 Adult Gliomas for Prognostication. Front Oncol 2022; 12:839302. [PMID: 35558510 PMCID: PMC9090434 DOI: 10.3389/fonc.2022.839302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Advanced genomic techniques have now been incorporated into diagnostic practice in neuro-oncology in the literature. However, these assays are expensive and time-consuming and demand bioinformatics expertise for data interpretation. In contrast, single-gene tests can be run much more cheaply, with a short turnaround time, and are available in general pathology laboratories. The objective of this study was to establish a molecular grading scheme for adult gliomas using combinations of commonly available single-gene tests. We retrospectively evaluated molecular diagnostic data of 1,275 cases of adult diffuse gliomas from three institutions where we were testing for IDH1/2 mutation, TERTp mutation, 1p19q codeletion, EGFR amplification, 10q deletion, BRAF V600E, and H3 mutations liberally in our regular diagnostic workup. We found that a molecular grading scheme of Group 1 (1p19q codeleted, IDH mutant), Group 2 (IDH mutant, 1p19q non-deleted, TERT mutant), Group 3 (IDH mutant, 1p19q non-deleted, TERT wild type), Group 4 (IDH wild type, BRAF mutant), Group 5 (IDH wild type, BRAF wild type and not possessing the criteria of Group 6), and Group 6 (IDH wild type, and any one of TERT mutant, EGFR amplification, 10q deletion, or H3 mutant) could significantly stratify this large cohort of gliomas for risk. A total of 1,028 (80.6%) cases were thus classifiable with sufficient molecular data. There were 270 cases of molecular Group 1, 59 cases of molecular Group 2, 248 cases of molecular Group 3, 27 cases of molecular Group 4, 117 cases of molecular Group 5, and 307 cases of molecular Group 6. The molecular groups were independent prognosticators by multivariate analyses and in specific instances, superseded conventional histological grades. We were also able to validate the usefulness of the Groups with a cohort retrieved from The Cancer Genome Atlas (TCGA) where similar molecular tests were liberally available. We conclude that a single-gene molecular stratification system, useful for fine prognostication, is feasible and can be adopted by a general pathology laboratory.
Collapse
Affiliation(s)
- Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China
| | - Zhi-Feng Shi
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China
| | - Wei-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen-Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Mao
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, Hong Kong SAR, China
| |
Collapse
|
48
|
Park M. Recent Update in Pharmacological Agents for Optic Pathway Glioma. Brain Tumor Res Treat 2022; 10:101-107. [PMID: 35545829 PMCID: PMC9098979 DOI: 10.14791/btrt.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Optic pathway gliomas (OPGs) are insidious, debilitating low-grade tumors. They can affect the optic nerve, optic chiasm, and optic tracts and can be sporadic or associated with neurofibromatosis type 1 (NF1). The location of OPGs within the optic pathway typically precludes complete resection or optimal radiation dose. Treatment is unnecessary for sporadic and NF1-related OPGs that do not cause visual impairments. Chemotherapy is the mainstay of treatment for patients with progressive disease. However, outcomes following standard treatments have been mixed, and standardized outcome measurements are lacking. In recent years, newer molecularly targeted therapies such as anti-vascular endothelial growth factor (VEGF) monoclonal antibody, mitogen-activated protein kinase (MAPK) inhibitor, and mammalian target of rapamycin (mTOR) inhibitor, represent a promising treatment modality.
Collapse
Affiliation(s)
- Meerim Park
- Department of Pediatrics, Center for Pediatric Cancer, National Cancer Center, Goyang, Korea.
| |
Collapse
|
49
|
Barinfeld O, Zahavi A, Weiss S, Toledano H, Michowiz S, Goldenberg-Cohen N. Genetic Alteration Analysis of IDH1, IDH2, CDKN2A, MYB and MYBL1 in Pediatric Low-Grade Gliomas. Front Surg 2022; 9:880048. [PMID: 35574540 PMCID: PMC9096721 DOI: 10.3389/fsurg.2022.880048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Objective To investigate pediatric low-grade gliomas for alterations in IDH1, IDH2, CDKN2A, MYB, and MYBL1. Materials and Methods DNA and RNA were extracted from 62 pediatric gliomas. Molecular methods included PCR, RT-PCR, and RNA sequencing; Sanger sequencing was used for validation. Results Analysis for hotspot genetic alterations in IDH1 R132 and IDH2 R172 (45 and 33 samples) was negative in all cases. CDKN2A deletions were detected in exons 1 and 2 in 1 (pleomorphic xanthoastrocytoma) sample of 9 samples analyzed. Of 10 samples analyzed for MYB translocation, 4 each were positive for translocations with exon 2 and exon 3 of PCDHGA1. Six samples showed MYBL rearrangement. The lack of IDH1/2 genetic alterations is in accordance with the literature in pediatric tumors. Alterations in MYB, MYBL were recently reported to characterize diffuse grade II, but not grade I, gliomas. Conclusion We optimized methods for analyzing gene variations and correlated the findings to pathological grade. The high incidence of MYB and MYBL need further evaluation. We also compared DNA, RNA, and RNA sequencing results for fusion, translocation, and genetic alterations. More accurate identification of the underlying biology of pediatric gliomas has implications for the development of targeted treatment.
Collapse
Affiliation(s)
- Orit Barinfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alon Zahavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Ophthalmology Department, Rabin Medical Center – Beilinson Hospital, Petach Tikva, Israel
| | - Shirel Weiss
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Helen Toledano
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatric Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Shalom Michowiz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Bruce and Ruth Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Ophthalmology, Bnai-Zion Medical Center of Israel, Haifa, Israel
- Correspondence: Nitza Goldenberg-Cohen
| |
Collapse
|
50
|
Nguyen T, Mueller S, Malbari F. Review: Neurological Complications From Therapies for Pediatric Brain Tumors. Front Oncol 2022; 12:853034. [PMID: 35480100 PMCID: PMC9035987 DOI: 10.3389/fonc.2022.853034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Surgery, chemotherapy and radiation have been the mainstay of pediatric brain tumor treatment over the past decades. Recently, new treatment modalities have emerged for the management of pediatric brain tumors. These therapies range from novel radiotherapy techniques and targeted immunotherapies to checkpoint inhibitors and T cell transfer therapies. These treatments are currently investigated with the goal of improving survival and decreasing morbidity. However, compared to traditional therapies, these novel modalities are not as well elucidated and similarly has the potential to cause significant short and long-term sequelae, impacting quality of life. Treatment complications are commonly mediated through direct drug toxicity or vascular, infectious, or autoimmune mechanisms, ranging from immune effector cell associated neurotoxicity syndrome with CART-cells to neuropathy with checkpoint inhibitors. Addressing treatment-induced complications is the focus of new trials, specifically improving neurocognitive outcomes. The aim of this review is to explore the pathophysiology underlying treatment related neurologic side effects, highlight associated complications, and describe the future direction of brain tumor protocols. Increasing awareness of these neurologic complications from novel therapies underscores the need for quality-of-life metrics and considerations in clinical trials to decrease associated treatment-induced morbidity.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Pediatrics, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Thien Nguyen,
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of San Francisco, San Francisco, CA, United States
| | - Fatema Malbari
- Division of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|