1
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
2
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
3
|
Pedone M, Argiento R, Stingo FC. Personalized treatment selection via product partition models with covariates. Biometrics 2024; 80:ujad003. [PMID: 38364806 DOI: 10.1093/biomtc/ujad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/27/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Precision medicine is an approach for disease treatment that defines treatment strategies based on the individual characteristics of the patients. Motivated by an open problem in cancer genomics, we develop a novel model that flexibly clusters patients with similar predictive characteristics and similar treatment responses; this approach identifies, via predictive inference, which one among a set of treatments is better suited for a new patient. The proposed method is fully model based, avoiding uncertainty underestimation attained when treatment assignment is performed by adopting heuristic clustering procedures, and belongs to the class of product partition models with covariates, here extended to include the cohesion induced by the normalized generalized gamma process. The method performs particularly well in scenarios characterized by considerable heterogeneity of the predictive covariates in simulation studies. A cancer genomics case study illustrates the potential benefits in terms of treatment response yielded by the proposed approach. Finally, being model based, the approach allows estimating clusters' specific response probabilities and then identifying patients more likely to benefit from personalized treatment.
Collapse
Affiliation(s)
- Matteo Pedone
- Department of Statistics, Computer Science and Applications, University of Florence, Florence, Italy, 50134
| | - Raffaele Argiento
- Department of Economics, University of Bergamo, Bergamo, Italy, 24121
| | - Francesco C Stingo
- Department of Statistics, Computer Science and Applications, University of Florence, Florence, Italy, 50134
| |
Collapse
|
4
|
Ramalho MJ, Torres ID, Loureiro JA, Lima J, Pereira MC. Transferrin-Conjugated PLGA Nanoparticles for Co-Delivery of Temozolomide and Bortezomib to Glioblastoma Cells. ACS APPLIED NANO MATERIALS 2023; 6:14191-14203. [PMID: 37588263 PMCID: PMC10426337 DOI: 10.1021/acsanm.3c02122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Glioblastoma (GBM) represents almost half of primary brain tumors, and its standard treatment with the alkylating agent temozolomide (TMZ) is not curative. Treatment failure is partially related to intrinsic resistance mechanisms mediated by the O6-methylguanine-DNA methyltransferase (MGMT) protein, frequently overexpressed in GBM patients. Clinical trials have shown that the anticancer agent bortezomib (BTZ) can increase TMZ's therapeutic efficacy in GBM patients by downregulating MGMT expression. However, the clinical application of this therapeutic strategy has been stalled due to the high toxicity of the combined therapy. The co-delivery of TMZ and BTZ through nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) is proposed in this work, aiming to explore their synergistic effect while decreasing the drug's toxicity. The developed NPs were optimized by central composite design (CCD), then further conjugated with transferrin (Tf) to enhance their GBM targeting ability by targeting the blood-brain barrier (BBB) and the cancer cells. The obtained NPs exhibited suitable GBM cell delivery features (sizes lower than 200 nm, low polydispersity, and negative surface charge) and a controlled and sustained release for 20 days. The uptake and antiproliferative effect of the developed NPs were evaluated in in vitro human GBM models. The obtained results disclosed that the NPs are rapidly taken up by the GBM cells, promoting synergistic drug effects in inhibiting tumor cell survival and proliferation. This cytotoxicity was associated with significant cellular morphological changes. Additionally, the biocompatibility of unloaded NPs was evaluated in healthy brain cells, demonstrating the safety of the nanocarrier. These findings prove that co-delivery of BTZ and TMZ in Tf-conjugated PLGA NPs is a promising approach to treat GBM, overcoming the limitations of current therapeutic strategies, such as drug resistance and increased side effects.
Collapse
Affiliation(s)
- Maria João Ramalho
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês David Torres
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jorge Lima
- i3S—Instituto
de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-10 135 Porto, Portugal
- Ipatimup—Instituto
de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho
45, 4200-135, Porto, Portugal
- Faculty
of Medicine of Porto University, Alameda
Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Luo Z, Liu L, Li X, Chen W, Lu Z. Tat-NTS Suppresses the Proliferation, Migration and Invasion of Glioblastoma Cells by Inhibiting Annexin-A1 Nuclear Translocation. Cell Mol Neurobiol 2022; 42:2715-2725. [PMID: 34345995 PMCID: PMC11421625 DOI: 10.1007/s10571-021-01134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Prevention of the nuclear translocation of ANXA1 with Tat-NTS was recently reported to alleviate neuronal injury and protect against cerebral stroke. However, the role that Tat-NTS plays in the occurrence and development of gliomas still needs to be elucidated. Therefore, human glioblastoma (GB) cells were treated with various concentrations of Tat-NTS for 24 h, and cell proliferation, migration and invasion were assessed with CCK-8 and Transwell assays. The nuclear translocation of ANXA1 was evaluated by subcellular extraction and immunofluorescence, and protein expression levels were detected by Western blot analysis. In addition, the activity of MMP-2/9 was measured by gelatin zymography. The results revealed that Tat-NTS significantly inhibited the nuclear translocation of ANXA1 in U87 cells and inhibited the proliferation, migration and invasion of GB cells. Tat-NTS also suppressed cell cycle regulatory proteins and MMP-2/-9 activity and expression. Moreover, Tat-NTS reduced the level of p-p65 NF-κB in U87 cells. These results suggest that the Tat-NTS-induced inhibition of GB cell proliferation, migration and invasion is closely associated with the induction of cell cycle arrest, downregulation of MMP-2/-9 expression and activity and suppression of the NF-κB signaling pathway. Thus, Tat-NTS may be a potential chemotherapeutic agent for the treatment of GB.
Collapse
Affiliation(s)
- Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Li Liu
- Department of Respiration, The Children's Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China
| | - Xing Li
- Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
| |
Collapse
|
6
|
Torres ID, Loureiro JA, Coelho MAN, Carmo Pereira M, Ramalho MJ. Drug delivery in glioblastoma therapy: a review on nanoparticles targeting MGMT-mediated resistance. Expert Opin Drug Deliv 2022; 19:1397-1415. [DOI: 10.1080/17425247.2022.2124967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Inês David Torres
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A N Coelho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Identification of a Prognostic Microenvironment-Related Gene Signature in Glioblastoma Patients Treated with Carmustine Wafers. Cancers (Basel) 2022; 14:cancers14143413. [PMID: 35884475 PMCID: PMC9320240 DOI: 10.3390/cancers14143413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the state-of-the-art treatment, patients diagnosed with glioblastoma (GBM) have a median overall survival (OS) of 14 months. The insertion of carmustine wafers (CWs) into the resection cavity as adjuvant treatment represents a promising option, although its use has been limited due to contrasting clinical results. Our retrospective evaluation of CW efficacy showed a significant improvement in terms of OS in a subgroup of patients. Given the crucial role of the tumor microenvironment (TME) in GBM progression and response to therapy, we hypothesized that the TME of patients who benefited from CW could have different properties compared to that of patients who did not show any advantage. Using an in vitro model of the glioma microenvironment, represented by glioma-associated-stem cells (GASC), we performed a transcriptomic analysis of GASC isolated from tumors of patients responsive and not responsive to CW to identify differentially expressed genes. We found different transcriptomic profiles, and we identified four genes, specifically down-regulated in GASC isolated from long-term survivors, correlated with clinical data deposited in the TCGA–GBM dataset. Our results highlight that studying the in vitro properties of patient-specific glioma microenvironments can help to identify molecular determinants potentially prognostic for patients treated with CW.
Collapse
|
8
|
Zhang P, Liu G, Hu J, Chen S, Wang B, Peng P, Yu X, Guo D. Tenascin-C can Serve as an Indicator for the Immunosuppressive Microenvironment of Diffuse Low-Grade Gliomas. Front Immunol 2022; 13:824586. [PMID: 35371015 PMCID: PMC8966496 DOI: 10.3389/fimmu.2022.824586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose The development and progression of glioma are associated with the tumor immune microenvironment. Diffuse low-grade gliomas (LGGs) with higher immunosuppressive microenvironment tend to have a poorer prognosis. The study aimed to find a biological marker that can reflect the tumor immune microenvironment status and predict prognosis of LGGs. Methods The target gene tenascin-C (TNC) was obtained by screening the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) databases. Then samples of LGGs were collected for experimental verification with immunohistochemistry, immunofluorescence, immunoblotting, quantitative real-time PCR. ELISA was employed to determine the content of TNC in serum and examine its relationship with the tumor immune microenvironment. Eventually, the sensitivity of immunotherapy was predicted on the basis of the content of TNC in LGGs. Results In the high-TNC subgroup, the infiltration of immunosuppressive cells was increased (MDSC: r=0.4721, Treg: r=0.3154, etc.), and immune effector cells were decreased [NKT, γδT, etc. (p<0.05)], immunosuppressive factors were elevated [TGF-β, IL10, etc. (p<0.05)], immunostimulatory factors, such as NKG2D, dropped (p<0.05), hypoxia scores increased (p<0.001), and less benefit from immunotherapy (p<0.05). Serum TNC level could be used to assess the status of tumor immune microenvironment in patients with grade II (AUC=0.8571; 95% CI: 0.6541-1.06) and grade III (AUC=0.8333; 95% CI: 0.6334-1.033) glioma. Conclusions Our data suggested that TNC could serve as an indicator for the immunosuppressive microenvironment status and the prognosis of LGGs. Moreover, it could also act as a predictor for the effect of immunotherapy on LGG patients.
Collapse
Affiliation(s)
- Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyang Hu
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, China
| | - Sui Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Peng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Guo W, Ma S, Zhang Y, Liu H, Li Y, Xu JT, Yang B, Guan F. Genome-wide methylomic analyses identify prognostic epigenetic signature in lower grade glioma. J Cell Mol Med 2021; 26:449-461. [PMID: 34894053 PMCID: PMC8743658 DOI: 10.1111/jcmm.17101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most malignant and aggressive type of brain tumour with high heterogeneity and mortality. Although some clinicopathological factors have been identified as prognostic biomarkers, the individual variants and risk stratification in patients with lower grade glioma (LGG) have not been fully elucidated. The primary aim of this study was to identify an efficient DNA methylation combination biomarker for risk stratification and prognosis in LGG. We conducted a retrospective cohort study by analysing whole genome DNA methylation data of 646 patients with LGG from the TCGA and GEO database. Cox proportional hazard analysis was carried out to screen and construct biomarker model that predicted overall survival (OS). The Kaplan‐Meier survival curves and time‐dependent ROC were constructed to prove the efficiency of the signature. Then, another independent cohort was used to further validate the finding. A two‐CpG site DNA methylation signature was identified by multivariate Cox proportional hazard analysis. Further analysis indicated that the signature was an independent survival predictor from other clinical factors and exhibited higher predictive accuracy compared with known biomarkers. This signature was significantly correlated with immune‐checkpoint blockade, immunotherapy‐related signatures and ferroptosis regulator genes. The expression pattern and functional analysis showed that these two genes corresponding with two methylation sites contained in the model were correlated with immune infiltration level, and involved in MAPK and Rap1 signalling pathway. The signature may contribute to improve the risk stratification of patients and provide a more accurate assessment for precision medicine in the clinic.
Collapse
Affiliation(s)
- Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji-Tian Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Xu Q, Chen X, Chen B. MicroRNA-3148 inhibits glioma by decreasing DCUN1D1 and inhibiting the NF-kB pathway. Exp Ther Med 2021; 23:28. [PMID: 34824636 PMCID: PMC8611494 DOI: 10.3892/etm.2021.10950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 09/27/2021] [Indexed: 11/06/2022] Open
Abstract
Glioma, which originates in the brain, is the most aggressive tumor of the central nervous system. It has been shown that microRNA (miRNA) controls the proliferation, migration and apoptosis of glioma cells. The objective of the present study was to measure microRNA-3148 (miR-3148) expression and investigate its impact on the pathogenetic mechanism of glioma. In the present study, reverse transcription-quantitative real-time PCR was employed to detect miR-3148 expression levels in glioma tissues and cell lines. Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, and Transwell migration assay were performed to assess the influence of miR-3148 on the malignant biological behavior of glioma cells. The biological functions of miR-3148 in glioma were examined via a xenograft tumor growth assay. Furthermore, the association between miR-3148 and DCUN1D1 was investigated via immunohistochemistry, dual-luciferase reporter assay and western blotting. It was observed that miR-3148 was expressed at low levels in glioma cells, and this represented a poor survival rate. In addition, an increased level of miR-3148 in cells and animal models inhibited glioma cell migration and proliferation. Moreover, miR-3148 decreased DCUN1D1 and curbed the nuclear factor κ enhancer binding protein (NF-κB) signaling pathway, thus decreasing the growth of glioma. Thus, miR-3148 is expressed within glioma tissues at low levels where it suppresses glioma by curbing the NF-κB pathway and lowering DCUN1D1.
Collapse
Affiliation(s)
- Qianghua Xu
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Xiao Chen
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Bin Chen
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
11
|
Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol 2021; 14:176. [PMID: 34715891 PMCID: PMC8555307 DOI: 10.1186/s13045-021-01191-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Glioma represents a fast proliferating and highly invasive brain tumor which is resistant to current therapies and invariably recurs. Despite some advancements in anti-glioma therapies, patients’ prognosis remains poor. Toll-like receptors (TLRs) act as the first line of defense in the immune system being the detectors of those associated with bacteria, viruses, and danger signals. In the glioma microenvironment, TLRs are expressed on both immune and tumor cells, playing dual roles eliciting antitumoral (innate and adaptive immunity) and protumoral (cell proliferation, migration, invasion, and glioma stem cell maintenance) responses. Up to date, several TLR-targeting therapies have been developed aiming at glioma bulk and stem cells, infiltrating immune cells, the immune checkpoint axis, among others. While some TLR agonists exhibited survival benefit in clinical trials, it attracts more attention when they are involved in combinatorial treatment with radiation, chemotherapy, immune vaccination, and immune checkpoint inhibition in glioma treatment. TLR agonists can be used as immune modulators to enhance the efficacy of other treatment, to avoid dose accumulation, and what brings more interests is that they can potentiate immune checkpoint delayed resistance to PD-1/PD-L1 blockade by upregulating PD-1/PD-L1 overexpression, thus unleash powerful antitumor responses when combined with immune checkpoint inhibitors. Herein, we focus on recent developments and clinical trials exploring TLR-based treatment to provide a picture of the relationship between TLR and glioma and their implications for immunotherapy.
Collapse
Affiliation(s)
- Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Bozena Kaminska
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.,Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.
| |
Collapse
|
12
|
Mazzucchi E, Vollono C, Pauletto G, Lettieri C, Budai R, Gigli GL, Sabatino G, La Rocca G, Skrap M, Ius T. The persistence of seizures after tumor resection negatively affects survival in low-grade glioma patients: a clinical retrospective study. J Neurol 2021; 269:2627-2633. [PMID: 34693462 DOI: 10.1007/s00415-021-10845-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Seizures are the most common clinical manifestation of low-grade glioma (LGG). Many papers hypothesized an influence of epilepsy on glioma progression. To our knowledge, no clinical study demonstrated a direct relationship between persistence of epileptic seizures after surgery and overall survival (OS) in LGG patients. The present study aims at investigating the correlation between post-operative seizure outcome and survival in tumor-related epilepsy (TRE) patients. METHODS We performed a retrospective analysis of adult patients affected by TRE who underwent surgery for resection of LGG in a single high-volume neurosurgical center. Seizure outcome was assessed 1 year after surgery and categorized according to Engel classification. Clinical, molecular and radiological features were evaluated in univariate and multivariate analyses to investigate the correlation with OS. RESULTS A total of 146 patients met the inclusion criteria. Histopathological diagnosis was Diffuse Astrocytoma isocitrate dehydrogenase (IDH) wild type in 16 patients (11%), Diffuse astrocytoma IDH mutated in 89 patients (61%) and oligodendroglioma IDH mutated, 1p 19q codeleted in 41 patients (28%). 1 year after surgery, 103 (70.6%) patients were in Engel class 1. Median duration of follow-up period was 69.5 months. Median OS was 79.3 (72.2-86.4) months in the whole population, while it was 86.8 (78.4-95.2), 63.9 (45.7-82), 63.7 (45.2-82.2) and 47.5 (18.3-76.6) months for patients in Engel class 1, 2, 3 and 4, respectively. In a univariate analysis, Engel class evaluated 1 year after surgery significantly influenced OS (p < 0.01). Multivariate analysis showed that OS was independently associated with extent of resection (p = 0.02), molecular class (p < 0.01) and Engel class (p = 0.04). CONCLUSIONS Seizure control 1 year after surgery significantly predicted survival of patients affected by LGG-related epilepsy in a large monocentric retrospective series. Future studies are needed to confirm these results and to assess if an epilepsy-surgical therapeutic approach may improve OS.
Collapse
Affiliation(s)
- Edoardo Mazzucchi
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy.,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Catello Vollono
- Institute of Neurology, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Christian Lettieri
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Riccardo Budai
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.,Clinical Neurology, Department of Medicine, University of Udine, Udine, Italy
| | - Giovanni Sabatino
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy. .,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy.
| | - Giuseppe La Rocca
- Unit of Neurosurgery, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026, Olbia, Italy.,Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
13
|
Gilard V, Ferey J, Marguet F, Fontanilles M, Ducatez F, Pilon C, Lesueur C, Pereira T, Basset C, Schmitz-Afonso I, Di Fioré F, Laquerrière A, Afonso C, Derrey S, Marret S, Bekri S, Tebani A. Integrative Metabolomics Reveals Deep Tissue and Systemic Metabolic Remodeling in Glioblastoma. Cancers (Basel) 2021; 13:5157. [PMID: 34680306 PMCID: PMC8534284 DOI: 10.3390/cancers13205157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Glioblastoma is the most common malignant brain tumor in adults. Its etiology remains unknown in most cases. Glioblastoma pathogenesis consists of a progressive infiltration of the white matter by tumoral cells leading to progressive neurological deficit, epilepsy, and/or intracranial hypertension. The mean survival is between 15 to 17 months. Given this aggressive prognosis, there is an urgent need for a better understanding of the underlying mechanisms of glioblastoma to unveil new diagnostic strategies and therapeutic targets through a deeper understanding of its biology. (2) Methods: To systematically address this issue, we performed targeted and untargeted metabolomics-based investigations on both tissue and plasma samples from patients with glioblastoma. (3) Results: This study revealed 176 differentially expressed lipids and metabolites, 148 in plasma and 28 in tissue samples. Main biochemical classes include phospholipids, acylcarnitines, sphingomyelins, and triacylglycerols. Functional analyses revealed deep metabolic remodeling in glioblastoma lipids and energy substrates, which unveils the major role of lipids in tumor progression by modulating its own environment. (4) Conclusions: Overall, our study demonstrates in situ and systemic metabolic rewiring in glioblastoma that could shed light on its underlying biological plasticity and progression to inform diagnosis and/or therapeutic strategies.
Collapse
Affiliation(s)
- Vianney Gilard
- Department of Neurosurgery, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France;
| | - Justine Ferey
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Florent Marguet
- Department of Pathology, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (F.M.); (C.B.); (A.L.)
| | - Maxime Fontanilles
- Institut de Biologie Clinique, CHU Rouen, 76000 Rouen, France; (M.F.); (T.P.)
- INSA Rouen, CNRS IRCOF, 1 Rue TesnieÌre, COBRA UMR 6014 Et FR 3038 University Rouen, Normandie University, CEDEX, 76821 Mont-Saint-Aignan, France; (I.S.-A.); (C.A.)
| | - Franklin Ducatez
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
- Intensive Care and Neuropediatrics, Department of Neonatal Pediatrics, INSERM U1245, CHU Rouen, UNIROUEN, Normandie University, 76000 Rouen, France;
| | - Carine Pilon
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Céline Lesueur
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Tony Pereira
- Institut de Biologie Clinique, CHU Rouen, 76000 Rouen, France; (M.F.); (T.P.)
| | - Carole Basset
- Department of Pathology, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (F.M.); (C.B.); (A.L.)
| | - Isabelle Schmitz-Afonso
- INSA Rouen, CNRS IRCOF, 1 Rue TesnieÌre, COBRA UMR 6014 Et FR 3038 University Rouen, Normandie University, CEDEX, 76821 Mont-Saint-Aignan, France; (I.S.-A.); (C.A.)
| | - Frédéric Di Fioré
- Normandy Centre for Genomic and Personalized Medicine, IRON Group, INSERM U1245, UNIROUEN, Normandie University, 76000 Rouen, France;
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d’Amiens, 76000 Rouen, France
| | - Annie Laquerrière
- Department of Pathology, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (F.M.); (C.B.); (A.L.)
| | - Carlos Afonso
- INSA Rouen, CNRS IRCOF, 1 Rue TesnieÌre, COBRA UMR 6014 Et FR 3038 University Rouen, Normandie University, CEDEX, 76821 Mont-Saint-Aignan, France; (I.S.-A.); (C.A.)
| | - Stéphane Derrey
- Department of Neurosurgery, CHU Rouen, INSERM U1073, UNIROUEN, Normandie University, 76000 Rouen, France;
| | - Stéphane Marret
- Intensive Care and Neuropediatrics, Department of Neonatal Pediatrics, INSERM U1245, CHU Rouen, UNIROUEN, Normandie University, 76000 Rouen, France;
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, UNIROUEN, CHU Rouen, INSERM U1245, Normandie University, 76000 Rouen, France; (J.F.); (F.D.); (C.P.); (C.L.); (A.T.)
| |
Collapse
|
14
|
Ius T, Ng S, Young JS, Tomasino B, Polano M, Ben-Israel D, Kelly JJP, Skrap M, Duffau H, Berger MS. The benefit of early surgery on overall survival in incidental low grade glioma patients: a multicenter study. Neuro Oncol 2021; 24:624-638. [PMID: 34498069 DOI: 10.1093/neuonc/noab210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The role of surgery for incidentally discovered diffuse low-grade gliomas (iLGGs) is debatable and poorly documented in current literature. OBJECTIVE The aim was to identify factors that influence survival for patients that underwent surgical resection of iLGGs in a large multicenter population. METHODS Clinical, radiological, and surgical data were retrospectively analyzed in 267 patients operated for iLGG from 4 neurosurgical Centers. Univariate and multivariate analyses were performed to identify predictors of overall survival (OS) and tumor recurrence (TR). RESULTS The OS rate was 92.41%. The 5- and 10-year estimated OS rates were 98.09% and 93.2% respectively. OS was significantly longer for patients with a lower preoperative tumor volume (p=0.001) and higher extent of resection (EOR) (p=0.037), regardless the WHO defined molecular class (p=0.2). In the final model, OS was influenced only by the preoperative tumor volume (p=0.006), while TR by early surgery (p=0.028). A negative association was found between preoperative tumor volumes and EOR (rs = -0.44, p<0.001).The median preoperative tumor volume was 15 cm 3. The median EOR was 95%. Total or supratotal resection of FLAIR abnormality was achieved in 61.62% of cases.Second surgery was performed in 26.22%. The median time between surgeries was 5.5 years. Histological evolution to high grade glioma was detected in 22.85% of cases (16/70). Permanent mild deficits were observed in 3.08% of cases. CONCLUSIONS This multicenter study confirms the results of previous studies investigating surgical management of iLGGs and thereby strengthens the evidence in favour of early surgery for these lesions.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, France.,INSERM U1191, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors", Institute of Functional Genomics, Montpellier, France
| | - Jacob S Young
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California
| | - Barbara Tomasino
- Scientific Institute IRCCS ''Eugenio Medea", Polo FVG, San Vito al Tagliamento, PN, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, PN, Italy
| | - David Ben-Israel
- Division of Neurosurgery, University of Calgary, Calgary, Alberta, Canada; Arne Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta
| | - John J P Kelly
- Division of Neurosurgery, University of Calgary, Calgary, Alberta, Canada; Arne Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, France.,INSERM U1191, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors", Institute of Functional Genomics, Montpellier, France
| | - Mitchel S Berger
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California
| |
Collapse
|
15
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
16
|
Porčnik A, Novak M, Breznik B, Majc B, Hrastar B, Šamec N, Zottel A, Jovčevska I, Vittori M, Rotter A, Komel R, Lah Turnšek T. TRIM28 Selective Nanobody Reduces Glioblastoma Stem Cell Invasion. Molecules 2021; 26:molecules26175141. [PMID: 34500575 PMCID: PMC8434287 DOI: 10.3390/molecules26175141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GB), is the most common and aggressive malignant primary brain tumour in adults. Intra- and inter-tumour heterogeneity, infiltrative GB cell invasion and presence of therapy-resistant GB stem cells (GSCs) represent major obstacles to favourable prognosis and poor therapy response. Identifying the biomarkers of the most aggressive tumour cells and their more efficient targeting strategies are; therefore, crucial. Recently, transcription factor TRIM28 has been identified as a GB biomarker and, in this study, we have shown high expression of TRIM28 in GB and in low grade gliomas as well as higher expression in GSCs vs. differentiated GB cells, although in both cases not significant. We demonstrated significant in vitro inhibition of GB cells and GSCs invasiveness and spread in zebrafish brains in vivo by anti-TRIM28 selective nanobody NB237. TRIM28 was also enriched in GB (tumour) core and associated with the expression of stem cell genes, but was not prognostic for overall survival. However, based on the above results, we conclude that TRIM28 nanobody NB237 offers a new opportunity as a GB therapeutic tool.
Collapse
Affiliation(s)
- Andrej Porčnik
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Barbara Hrastar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Neja Šamec
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Alja Zottel
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
| | - Miloš Vittori
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute for Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.); (I.J.)
- Correspondence: (R.K.); (T.L.T.)
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.B.); (B.M.); (B.H.); (A.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (R.K.); (T.L.T.)
| |
Collapse
|
17
|
Ius T, Mazzucchi E, Tomasino B, Pauletto G, Sabatino G, Della Pepa GM, La Rocca G, Battistella C, Olivi A, Skrap M. Multimodal integrated approaches in low grade glioma surgery. Sci Rep 2021; 11:9964. [PMID: 33976246 PMCID: PMC8113473 DOI: 10.1038/s41598-021-87924-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
Surgical management of Diffuse Low-Grade Gliomas (DLGGs) has radically changed in the last 20 years. Awake surgery (AS) in combination with Direct Electrical Stimulation (DES) and real-time neuropsychological testing (RTNT) permits continuous intraoperative feedback, thus allowing to increase the extent of resection (EOR). The aim of this study was to evaluate the impact of the technological advancements and integration of multidisciplinary techniques on EOR. Two hundred and eighty-eight patients affected by DLGG were enrolled. Cases were stratified according to the surgical protocol that changed over time: 1. DES; 2. DES plus functional MRI/DTI images fused on a NeuroNavigation system; 3. Protocol 2 plus RTNT. Patients belonging to Protocol 1 had a median EOR of 83% (28–100), while those belonging to Protocol 2 and 3 had a median EOR of 88% (34–100) and 98% (50–100) respectively (p = 0.0001). New transient deficits with Protocol 1, 2 and 3 were noted in 38.96%, 34.31% and 31,08% of cases, and permanent deficits in 6.49%, 3.65% and 2.7% respectively. The average follow-up period was 6.8 years. OS was influenced by molecular class (p = 0.028), EOR (p = 0.018) and preoperative tumor growing pattern (p = 0.004). Multimodal surgical approach can provide a safer and wider removal of DLGG with potential subsequent benefits on OS. Further studies are necessary to corroborate our findings.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Piazzale Santa Maria della Misericordia, 15, 33100, Udine, Italy.
| | - Edoardo Mazzucchi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Barbara Tomasino
- IRCCS "E. Medea," Polo Regionale del FVG, San Vito al Tagliamento, Pordenone, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | | | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | | | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Piazzale Santa Maria della Misericordia, 15, 33100, Udine, Italy
| |
Collapse
|
18
|
Huang Y, Ling A, Pareek S, Huang RS. Oncogene or tumor suppressor? Long noncoding RNAs role in patient's prognosis varies depending on disease type. Transl Res 2021; 230:98-110. [PMID: 33152534 PMCID: PMC7936950 DOI: 10.1016/j.trsl.2020.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Functional studies of long noncoding RNAs (lncRNAs) are often performed in the context of only a single cancer type. However, the tissue-specific expression patterns of lncRNAs raise the question of whether lncRNA associations identified in one cancer type are relevant to other cancer types. Here, we examine the relationships between the expression levels of 50 cancer-related lncRNAs and survival data from 24 types of cancer in The Cancer Genome Atlas (TCGA) with the goal of identifying prognosis related lncRNAs. Our results suggest that high expression levels of certain lncRNAs are consistently associated with worse/better survival in a number of cancers, while other lncRNAs have different prognostic roles in different types of cancer. Our analysis also identifies 20 novel unadjusted associations that have not been reported before. In addition, in low-grade glioma (LGG), prognostic-related lncRNAs are identified after conditioning on known clinical biomarker and common therapy, revealing that 2 lncRNAs, FOXP4-AS1, and NEAT1, are associated with temozolomide response-a standard-of-care in LGG. Pathway analysis suggests NF-kB/STAT3 signaling pathway enrichment in LGG patients with high NEAT1 expression and DNA repair/myc gene set enrichment in LGG patients with high expression of FOXP4-AS1. Our work demonstrates the context dependency of lncRNAs across cancer types and highlights a number of lncRNAs as potential novel cancer prognosis markers.
Collapse
Affiliation(s)
- Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Alexander Ling
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Siddhika Pareek
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota; Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
19
|
Chen J, Li Y, Han X, Pan Y, Qian X. An autophagic gene-based signature to predict the survival of patients with low-grade gliomas. Cancer Med 2021; 10:1848-1859. [PMID: 33591634 PMCID: PMC7940225 DOI: 10.1002/cam4.3748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/12/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Since autophagy remains an important topic of investigation, the RNA‐sequence profiles of autophagy‐related genes (ARGs) can provide insights into predicting low‐grade gliomas (LGG) prognosis. Methods The RNA‐seq profiles of autophagic genes and prognosis data of LGG were integrated from the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression model were carried out to identify the differentially expressed prognostic autophagy‐related genes. Then, the autophagic‐gene signature was formed and verified in TCGA test set and external CGGA cohorts. Time‐dependent receiver operating characteristic (ROC) was examined to test the accuracy of this signature feature. A nomogram was conducted to meet the needs of clinicians. Sankey diagrams were performed to visualize the relationship between the multigene signatures and clinic‐pathological features. Results Twenty‐four ARGs were finally identified most relevant to LGG prognosis. According to the specific prediction index formula, the patients were classified into low‐risk or high‐risk groups. Prognostic accuracy was proved by time‐dependent ROC analysis, with AUC 0.9, 0.93, and 0.876 at the survival time of 2‐, 3‐, and 5‐year, respectively, which was superior to the AUC of the isocitrate dehydrogenase (IDH) mutation. The result was confirmed while validated in the TCGA test set and external validation CGGA cohort. A nomogram was constructed to meet individual needs. With a visualization approach, Sankey diagrams show the relationship of the histological type, IDH status, and predict index. In TCGA and CGGA cohorts, both low‐risk groups displayed better survival rate in LGG while histological type and IDH status did not show consistency results. Conclusions 24‐ARGs may play crucial roles in the progression of LGG, and LGG patients were effectively divided into low‐risk and high‐risk groups according to prognostic prediction. Overall, our study will provide novel strategies for clinical applications.
Collapse
Affiliation(s)
- Jian Chen
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Yuntian Li
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xinghua Han
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Yueyin Pan
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaojun Qian
- Oncology department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
20
|
Caponnetto F, Manini I, Bulfoni M, Zingaretti N, Miotti G, Di Loreto C, Cesselli D, Mariuzzi L, Parodi PC. Human Adipose-Derived Stem Cells in Madelung's Disease: Morphological and Functional Characterization. Cells 2020; 10:cells10010044. [PMID: 33396896 PMCID: PMC7824042 DOI: 10.3390/cells10010044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Madelung Disease (MD) is a syndrome characterized by the accumulation of aberrant symmetric adipose tissue deposits. The etiology of this disease is yet to be elucidated, even though the presence of comorbidities, either genetic or environmental, has been reported. For this reason, establishing an in vitro model for MD is considered crucial to get insights into its physiopathology. We previously established a protocol for isolation and culture of stem cells from diseased tissues. Therefore, we isolated human adipose-derived stem cells (ASC) from MD patients and compared these cells with those isolated from healthy subjects in terms of surface phenotype, growth kinetic, adipogenic differentiation potential, and molecular alterations. Moreover, we evaluated the ability of the MD-ASC secretome to affect healthy ASC. The results reported a difference in the growth kinetic and surface markers of MD-ASC compared to healthy ASC but not in adipogenic differentiation. The most commonly described mitochondrial mutations were not observed. Still, MD-ASC secretome was able to shift the healthy ASC phenotype to an MD phenotype. This work provides evidence of the possibility of exploiting a patient-based in vitro model for better understanding MD pathophysiology, possibly favoring the development of novel target therapies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Correspondence: ; Tel.: +39-04-3255-9412
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Michela Bulfoni
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
| | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| | - Giovanni Miotti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy;
| | - Pier Camillo Parodi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.B.); (C.D.L.); (D.C.); (L.M.); (P.C.P.)
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, 33100 Udine, Italy; (N.Z.); (G.M.)
| |
Collapse
|
21
|
Caponnetto F, Dalla E, Mangoni D, Piazza S, Radovic S, Ius T, Skrap M, Di Loreto C, Beltrami AP, Manini I, Cesselli D. The miRNA Content of Exosomes Released from the Glioma Microenvironment Can Affect Malignant Progression. Biomedicines 2020; 8:biomedicines8120564. [PMID: 33287106 PMCID: PMC7761654 DOI: 10.3390/biomedicines8120564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Low-grade gliomas (LGG) are infiltrative primary brain tumors that in 70% of the cases undergo anaplastic transformation, deeply affecting prognosis. However, the timing of progression is heterogeneous. Recently, the tumor microenvironment (TME) has gained much attention either as prognostic factor or therapeutic target. Through the release of extracellular vesicles, the TME contributes to tumor progression by transferring bioactive molecules such as microRNA. The aim of the study was to take advantage of glioma-associated stem cells (GASC), an in vitro model of the glioma microenvironment endowed with a prognostic significance, and their released exosomes, to investigate the possible role of exosome miRNAs in favoring the anaplastic transformation of LGG. Therefore, by deep sequencing, we analyzed and compared the miRNA profile of GASC and exosomes obtained from LGG patients characterized by different prognosis. Results showed that exosomes presented a different signature, when compared to their cellular counterpart and that, although sharing several miRNAs, exosomes of patients with a bad prognosis, selectively expressed some miRNAs possibly responsible for the more aggressive phenotype. These findings get insights into the value of TME and exosomes as potential biomarkers for precision medicine approaches aimed at improving LGG prognostic stratification and therapeutic strategies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Silvano Piazza
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | | | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
22
|
Antagonism of Protease-Activated Receptor 4 Protects Against Traumatic Brain Injury by Suppressing Neuroinflammation via Inhibition of Tab2/NF-κB Signaling. Neurosci Bull 2020; 37:242-254. [PMID: 33111257 DOI: 10.1007/s12264-020-00601-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) triggers the activation of the endogenous coagulation mechanism, and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors, also known as protease-activated receptors (PARs). However, thrombin is one of the most critical factors in secondary brain injury. Thus, the PARs may be effective targets against hemorrhagic brain injury. Since the PAR1 antagonist has an increased bleeding risk in clinical practice, PAR4 blockade has been suggested as a more promising treatment. Here, we explored the expression pattern of PAR4 in the brain of mice after TBI, and explored the effect and possible mechanism of BMS-986120 (BMS), a novel selective and reversible PAR4 antagonist on secondary brain injury. Treatment with BMS protected against TBI in mice. mRNA-seq analysis, Western blot, and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes, and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process. Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI, and suggest that BMS has a potential clinical application in the management of TBI.
Collapse
|
23
|
Lombardi G, Barresi V, Castellano A, Tabouret E, Pasqualetti F, Salvalaggio A, Cerretti G, Caccese M, Padovan M, Zagonel V, Ius T. Clinical Management of Diffuse Low-Grade Gliomas. Cancers (Basel) 2020; 12:E3008. [PMID: 33081358 PMCID: PMC7603014 DOI: 10.3390/cancers12103008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Diffuse low-grade gliomas (LGG) represent a heterogeneous group of primary brain tumors arising from supporting glial cells and usually affecting young adults. Advances in the knowledge of molecular profile of these tumors, including mutations in the isocitrate dehydrogenase genes, or 1p/19q codeletion, and in neuroradiological techniques have contributed to the diagnosis, prognostic stratification, and follow-up of these tumors. Optimal post-operative management of LGG is still controversial, though radiation therapy and chemotherapy remain the optimal treatments after surgical resection in selected patients. In this review, we report the most important and recent research on clinical and molecular features, new neuroradiological techniques, the different therapeutic modalities, and new opportunities for personalized targeted therapy and supportive care.
Collapse
Affiliation(s)
- Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy;
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Emeline Tabouret
- Team 8 GlioMe, CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, 13005 Marseille, France;
| | | | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| |
Collapse
|
24
|
Manini I, Caponnetto F, Dalla E, Ius T, Pepa GMD, Pegolo E, Bartolini A, Rocca GL, Menna G, Loreto CD, Olivi A, Skrap M, Sabatino G, Cesselli D. Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways. Cancers (Basel) 2020; 12:cancers12102960. [PMID: 33066172 PMCID: PMC7601979 DOI: 10.3390/cancers12102960] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary 5-ALA Fluorescence Guided Surgery aims at extending the boundaries of glioblastoma (GBM) resection. It is based on the use of a fluorescent dye, 5-aminolevulinic acid (5-ALA). Depending on the fluorescence levels, it is possible to distinguish the core of the tumor, the infiltrating borders and the healthy tissue. Since GBM progression is supported by tumor cells and their interaction with the surrounding microenvironment, we hypothesized that 5-ALA intensity could identify microenvironments with different tumor supporting properties. Taking advantage of glioma-associated stem cells; a human in vitro model of the glioma microenvironment, we demonstrate that all regions of the tumor support the tumor growth, but through different pathways. This study highlights the importance of understanding the TME to obtain key information on GBM biology and develop new therapeutic approaches. Abstract The glioblastoma microenvironment plays a substantial role in glioma biology. However, few studies have investigated its spatial heterogeneity. Exploiting 5-ALA Fluorescence Guided Surgery (FGS), we were able to distinguish between the tumor core (ALA+), infiltrating area (ALA-PALE) and healthy tissue (ALA−) of the glioblastoma, based on the level of accumulated fluorescence. The aim of this study was to investigate the properties of the microenvironments associated with these regions. For this purpose, we isolated glioma-associated stem cells (GASC), resident in the glioma microenvironment, from ALA+, ALA-PALE and ALA− samples and compared them in terms of growth kinetic, phenotype and for the expression of 84 genes associated with cancer inflammation and immunity. Differentially expressed genes were correlated with transcriptomic datasets from TCGA/GTEX. Our results show that GASC derived from the three distinct regions, despite a similar phenotype, were characterized by different transcriptomic profiles. Moreover, we identified a GASC-based genetic signature predictive of overall survival and disease-free survival. This signature, highly expressed in ALA+ GASC, was also well represented in ALA PALE GASC. 5-ALA FGS allowed to underline the heterogeneity of the glioma microenvironments. Deepening knowledge of these differences can contribute to develop new adjuvant therapies targeting the crosstalk between tumor and its supporting microenvironment.
Collapse
Affiliation(s)
- Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Correspondence:
| | - Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Enrico Pegolo
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Anna Bartolini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Grazia Menna
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Carla Di Loreto
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, 00168 Rome, Italy; (G.M.D.P.); (G.L.R.); (G.M.); (A.O.); (G.S.)
- Department of Neurosurgery, Mater Olbia Hospital, 07026 Olbia, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (A.B.); (C.D.L.); (D.C.)
- Department of Medicine, University of Udine, 33100 Udine, Italy; (F.C.); (E.D.)
| |
Collapse
|
25
|
Clavreul A, Menei P. Mesenchymal Stromal-Like Cells in the Glioma Microenvironment: What Are These Cells? Cancers (Basel) 2020; 12:E2628. [PMID: 32942567 PMCID: PMC7565954 DOI: 10.3390/cancers12092628] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
The glioma microenvironment is a critical regulator of tumor progression. It contains different cellular components such as blood vessels, immune cells, and neuroglial cells. It also contains non-cellular components, such as the extracellular matrix, extracellular vesicles, and cytokines, and has certain physicochemical properties, such as low pH, hypoxia, elevated interstitial pressure, and impaired perfusion. This review focuses on a particular type of cells recently identified in the glioma microenvironment: glioma-associated stromal cells (GASCs). This is just one of a number of names given to these mesenchymal stromal-like cells, which have phenotypic and functional properties similar to those of mesenchymal stem cells and cancer-associated fibroblasts. Their close proximity to blood vessels may provide a permissive environment, facilitating angiogenesis, invasion, and tumor growth. Additional studies are required to characterize these cells further and to analyze their role in tumor resistance and recurrence.
Collapse
Affiliation(s)
- Anne Clavreul
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| | - Philippe Menei
- Département de Neurochirurgie, CHU, 49933 Angers, France;
- Université d’Angers, CHU d’Angers, CRCINA, F-49000 Angers, France
| |
Collapse
|
26
|
Somma T, Baiano C, Santi L, Sabatino G, Della Pepa GM, La Rocca G, Cappabianca P, Olivi A, Skrap M, Ius T. Diffuse low grade glioma and pregnancy: Practical considerations and clinical tips. Clin Neurol Neurosurg 2020; 198:106110. [PMID: 32818754 DOI: 10.1016/j.clineuro.2020.106110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The interaction between pregnancy and diffuse low-grade glioma (DLGG) is poorly investigated. The goal of this study was to provide further insights into the relationship between pregnancy and DLGG. METHODS A total of 12 patients were selected from a shared database of DLGGs, according to the following inclusion criteria: DLGG diagnosis in post-partum, DLGG recurrence after pregnancy in patients previously operated for DLGG. The extent of surgical resection (EOR) at first surgery were evaluated. All cases were assessed based on the 2016 WHO classification. The tumor growing patter, expresses by preoperative ΔT2T1 MRI index was evaluated. RESULTS In four cases newly diagnosed DLGG were detected patients in post-partum. Seven women, previously operated for DLGG, experienced pregnancy during the natural history of glioma, and were affected by tumor recurrence after pregnancy. One singular had an incidental LGG not surgically treated, who presented an important tumor growth after pregnancy. Radiological and surgical data were discussed according to literature. CONCLUSIONS Pregnancy does not seem to have an impact on the survival of women with DLGG. The potential role of pregnancy as risk factor in tumor recurrence is described, however, not proven. In this regard, the association between pregnancy and Tumor recurrence is extremely doubtful, and currently attributable to the simple coincidence. Further multicenter molecular investigations are required to better understand the mechanisms by which the pregnancy, in patients with a pervious surgery for DLGG, may influence tumor regrowth in comparison with the natural history of the disease.
Collapse
Affiliation(s)
- Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cinzia Baiano
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Laura Santi
- Neurosurgical Unit of Sondrio ASST - Valtellina e alto Lario, Sondrio, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Catholic University, Rome, Italy; Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | | | - Giuseppe La Rocca
- Institute of Neurosurgery, Catholic University, Rome, Italy; Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Paolo Cappabianca
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Miran Skrap
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neuroscience, Santa Maria della Misericordia University Hospital, Udine, Italy.
| |
Collapse
|
27
|
Rudà R, Angileri FF, Ius T, Silvani A, Sarubbo S, Solari A, Castellano A, Falini A, Pollo B, Del Basso De Caro M, Papagno C, Minniti G, De Paula U, Navarria P, Nicolato A, Salmaggi A, Pace A, Fabi A, Caffo M, Lombardi G, Carapella CM, Spena G, Iacoangeli M, Fontanella M, Germanò AF, Olivi A, Bello L, Esposito V, Skrap M, Soffietti R. Italian consensus and recommendations on diagnosis and treatment of low-grade gliomas. An intersociety (SINch/AINO/SIN) document. J Neurosurg Sci 2020; 64:313-334. [PMID: 32347684 DOI: 10.23736/s0390-5616.20.04982-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2018, the SINch (Italian Society of Neurosurgery) Neuro-Oncology Section, AINO (Italian Association of Neuro-Oncology) and SIN (Italian Association of Neurology) Neuro-Oncology Section formed a collaborative Task Force to look at the diagnosis and treatment of low-grade gliomas (LGGs). The Task Force included neurologists, neurosurgeons, neuro-oncologists, pathologists, radiologists, radiation oncologists, medical oncologists, a neuropsychologist and a methodologist. For operational purposes, the Task Force was divided into five Working Groups: diagnosis, surgical treatment, adjuvant treatments, supportive therapies, and follow-up. The resulting guidance document is based on the available evidence and provides recommendations on diagnosis and treatment of LGG patients, considering all aspects of patient care along their disease trajectory.
Collapse
Affiliation(s)
- Roberta Rudà
- Department of Neuro-Oncology, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Filippo F Angileri
- Section of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy -
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Antonio Silvani
- Department of Neuro-Oncology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Trento, Italy
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Bianca Pollo
- Section of Oncologic Neuropathology, Division of Neurology V - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Costanza Papagno
- Center of Neurocognitive Rehabilitation (CeRiN), Interdepartmental Center of Mind/Brain, University of Trento, Trento, Italy.,Department of Psychology, University of Milan-Bicocca, Milan, Italy
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Ugo De Paula
- Unit of Radiotherapy, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, Humanitas Cancer Center and Research Hospital, Rozzano, Milan, Italy
| | - Antonio Nicolato
- Unit of Stereotaxic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, Verona, Italy
| | - Andrea Salmaggi
- Neurology Unit, Department of Neurosciences, A. Manzoni Hospital, Lecco, Italy
| | - Andrea Pace
- IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Fabi
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Caffo
- Section of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppe Lombardi
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology-IRCCS, Padua, Italy
| | | | - Giannantonio Spena
- Neurosurgery Unit, Department of Neurosciences, A. Manzoni Hospital, Lecco, Italy
| | - Maurizio Iacoangeli
- Department of Neurosurgery, Marche Polytechnic University, Umberto I General University Hospital, Ancona, Italy
| | - Marco Fontanella
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Antonino F Germanò
- Section of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessandro Olivi
- Neurosurgery Unit, Department of Neurosciences, Università Cattolica del Sacro Cuore, Fondazione Policlinico "A. Gemelli", Rome, Italy
| | - Lorenzo Bello
- Unit of Oncologic Neurosurgery, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Vincenzo Esposito
- Sapienza University, Rome, Italy.,Giampaolo Cantore Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | | |
Collapse
|
28
|
Cesselli D, Ius T, Isola M, Del Ben F, Da Col G, Bulfoni M, Turetta M, Pegolo E, Marzinotto S, Scott CA, Mariuzzi L, Di Loreto C, Beltrami AP, Skrap M. Application of an Artificial Intelligence Algorithm to Prognostically Stratify Grade II Gliomas. Cancers (Basel) 2019; 12:cancers12010050. [PMID: 31877896 PMCID: PMC7016715 DOI: 10.3390/cancers12010050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Recently, it has been shown that the extent of resection (EOR) and molecular classification of low-grade gliomas (LGGs) are endowed with prognostic significance. However, a prognostic stratification of patients able to give specific weight to the single parameters able to predict prognosis is still missing. Here, we adopt classic statistics and an artificial intelligence algorithm to define a multiparametric prognostic stratification of grade II glioma patients. (2) Methods: 241 adults who underwent surgery for a supratentorial LGG were included. Clinical, neuroradiological, surgical, histopathological and molecular data were assessed for their ability to predict overall survival (OS), progression-free survival (PFS), and malignant progression-free survival (MPFS). Finally, a decision-tree algorithm was employed to stratify patients. (3) Results: Classic statistics confirmed EOR, pre-operative- and post-operative tumor volumes, Ki67, and the molecular classification as independent predictors of OS, PFS, and MPFS. The decision tree approach provided an algorithm capable of identifying prognostic factors and defining both the cut-off levels and the hierarchy to be used in order to delineate specific prognostic classes with high positive predictive value. Key results were the superior role of EOR on that of molecular class, the importance of second surgery, and the role of different prognostic factors within the three molecular classes. (4) Conclusions: This study proposes a stratification of LGG patients based on the different combinations of clinical, molecular, and imaging data, adopting a supervised non-parametric learning method. If validated in independent case studies, the clinical utility of this innovative stratification approach might be proved.
Collapse
Affiliation(s)
- Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.I.); (F.D.B.); (C.A.S.); (L.M.); (C.D.L.)
- Department of Pathology, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (E.P.); (S.M.)
- Correspondence: (D.C.); (A.P.B.)
| | - Tamara Ius
- Department of Neurosurgery, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Miriam Isola
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.I.); (F.D.B.); (C.A.S.); (L.M.); (C.D.L.)
| | - Fabio Del Ben
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.I.); (F.D.B.); (C.A.S.); (L.M.); (C.D.L.)
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy;
| | - Giacomo Da Col
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), 34136 Trieste, Italy;
| | - Michela Bulfoni
- Department of Pathology, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (E.P.); (S.M.)
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano (PN), Italy;
| | - Enrico Pegolo
- Department of Pathology, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (E.P.); (S.M.)
| | - Stefania Marzinotto
- Department of Pathology, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (E.P.); (S.M.)
| | - Cathryn Anne Scott
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.I.); (F.D.B.); (C.A.S.); (L.M.); (C.D.L.)
- Department of Pathology, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (E.P.); (S.M.)
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.I.); (F.D.B.); (C.A.S.); (L.M.); (C.D.L.)
- Department of Pathology, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (E.P.); (S.M.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.I.); (F.D.B.); (C.A.S.); (L.M.); (C.D.L.)
- Department of Pathology, University Hospital of Udine, 33100 Udine, Italy; (M.B.); (E.P.); (S.M.)
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (M.I.); (F.D.B.); (C.A.S.); (L.M.); (C.D.L.)
- Correspondence: (D.C.); (A.P.B.)
| | - Miran Skrap
- Department of Neurosurgery, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| |
Collapse
|
29
|
Deng X, Lin D, Chen B, Zhang X, Xu X, Yang Z, Shen X, Yang L, Lu X, Sheng H, Yin B, Zhang N, Lin J. Development and Validation of an IDH1-Associated Immune Prognostic Signature for Diffuse Lower-Grade Glioma. Front Oncol 2019; 9:1310. [PMID: 31824866 PMCID: PMC6883600 DOI: 10.3389/fonc.2019.01310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023] Open
Abstract
A mutation in the isocitrate dehydrogenase 1 (IDH1) gene is the most common mutation in diffuse lower-grade gliomas (LGGs), and it is significantly related to the prognosis of LGGs. We aimed to explore the influence of the IDH1 mutation on the immune microenvironment and develop an IDH1-associated immune prognostic signature (IPS) for predicting prognosis in LGGs. IDH1 mutation status and RNA expression were investigated in two different public cohorts. To develop an IPS, LASSO Cox analysis was conducted for immune-related genes that were differentially expressed between IDH1wt and IDH1mut LGG patients. Then, we systematically analyzed the influence of the IPS on the immune microenvironment. A total of 41 immune prognostic genes were identified based on the IDH1 mutation status. A four-gene IPS was established and LGG patients were effectively stratified into low- and high-risk groups in both the training and validation sets. Stratification analysis and multivariate Cox analysis revealed that the IPS was an independent prognostic factor. We also found that high-risk LGG patients had higher levels of infiltrating B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells, and expressed higher levels of CTLA-4, PD-1 and TIM-3. Moreover, a novel nomogram model was established to estimate the overall survival in LGG patients. The current study provides novel insights into the LGG immune microenvironment and potential immunotherapies. The proposed IPS is a clinically promising biomarker that can be used to classify LGG patients into subgroups with distinct outcomes and immunophenotypes, with the potential to facilitate individualized management and improve prognosis.
Collapse
Affiliation(s)
- Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongdong Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuchao Shen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangqi Lu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Chai RC, Li YM, Zhang KN, Chang YZ, Liu YQ, Zhao Z, Wang ZL, Chang YH, Li GZ, Wang KY, Wu F, Wang YZ. RNA processing genes characterize RNA splicing and further stratify lower-grade glioma. JCI Insight 2019; 5:130591. [PMID: 31408440 DOI: 10.1172/jci.insight.130591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Aberrant expression of RNA processing genes may drive the alterative RNA profile in lower-grade gliomas (LGGs). Thus, we aimed to further stratify LGGs based on the expression of RNA processing genes. METHODS This study included 446 LGGs from The Cancer Genome Atlas (TCGA, training set) and 171 LGGs from the Chinese Glioma Genome Atlas (CGGA, validation set). The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was conducted to develop a risk-signature. The receiver operating characteristic (ROC) curves and Kaplan-Meier curves were used to study the prognosis value of the risk-signature. RESULTS Among the tested 784 RNA processing genes, 276 were significantly correlated with the OS of LGGs. Further LASSO Cox regression identified a 19-gene risk-signature, whose risk score was also an independently prognosis factor (P<0.0001, multiplex Cox regression) in the validation dataset. The signature had better prognostic value than the traditional factors "age", "grade" and "WHO 2016 classification" for 3- and 5-year survival both two datasets (AUCs > 85%). Importantly, the risk-signature could further stratify the survival of LGGs in specific subgroups of WHO 2016 classification. Furthermore, alternative splicing events for genes such as EGFR and FGFR were found to be associated with the risk score. mRNA expression levels for genes, which participated in cell proliferation and other processes, were significantly correlated to the risk score. CONCLUSIONS Our results highlight the role of RNA processing genes for further stratifying the survival of patients with LGGs and provide insight into the alternative splicing events underlying this role.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China.,China National Clinical Research Center for Neurological Diseases and
| | - Yi-Ming Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ke-Nan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Yu-Zhou Chang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Zhi-Liang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Yuan-Hao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Guan-Zhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Kuan-Yu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas, Beijing, China.,China National Clinical Research Center for Neurological Diseases and.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Ius T, Cesselli D, Isola M, Pauletto G, Tomasino B, D’Auria S, Bagatto D, Pegolo E, Beltrami AP, Loreto CD, Skrap M. Incidental Low-Grade Gliomas: Single-Institution Management Based on Clinical, Surgical, and Molecular Data. Neurosurgery 2019; 86:391-399. [DOI: 10.1093/neuros/nyz114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
Abstract
BACKGROUND
Incidentally discovered diffuse low-grade gliomas (iLGG) are poorly documented in the literature. They are diagnosed by chance during radiological examinations.
OBJECTIVE
To review a cohort of patients with iLGG surgically treated in our institution, analyzing clinical, molecular, and surgical aspects.
METHODS
Clinical, radiological, and treatment data of iLGG were retrieved and compared with those of symptomatic diffuse LGGs (sLGG). Histological and molecular review was carried out as well. The extent of resection was evaluated on preoperative and postoperative T2-weighted magnetic resonance imaging.
RESULTS
Thirty-four iLGG cases were identified within a monoinstitutional cohort of 332 patients operated for low-grade gliomas from 2000 to 2017. Clinically, patients with iLGG had higher preoperative karnofsky performance scale (KPS) (P = .003), smaller tumor volume (P = .0001), lower frequency of eloquent areas involvement (P = .0001), and higher rate of complete resection (P = .0001) compared to those with sLGG. No differences in the molecular profile and O6-methylguanine-DNA-methyltransferase promoter methylation were detected between iLGG and sLGG. Importantly, patients with iLGG had longer overall survival than those with sLGG (P = .0001), even when a complete surgical resection was achieved (P = .001).
CONCLUSION
Although the therapeutic strategy of iLGG is still a matter of debate, our data support the safety and the effectiveness of early surgical resection. The favorable prognosis of iLGG may be due to the higher practicability of extensive resection, noneloquent tumor location, and smaller tumor volume.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Miriam Isola
- Department of Medicine, University of Udine, Udine, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Barbara Tomasino
- IRCCS E. Medea, Polo Regionale del FVG, San Vito al Tagliamento, Pordenone, Italy
| | - Stanislao D’Auria
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Daniele Bagatto
- Department of Neuroradiology University of Udine, Udine, Italy
| | - Enrico Pegolo
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Carla di Loreto
- Department of Medicine, University of Udine, Udine, Italy
- Institute of Pathology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
32
|
Yang CA, Huang HY, Lin CL, Chang JG. G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity. J Neurooncol 2018; 139:661-670. [DOI: 10.1007/s11060-018-2911-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
|
33
|
Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models. Int J Mol Sci 2018; 19:ijms19010147. [PMID: 29300332 PMCID: PMC5796096 DOI: 10.3390/ijms19010147] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/30/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used.
Collapse
|