1
|
Leighow SM, Reynolds JA, Sokirniy I, Yao S, Yang Z, Inam H, Wodarz D, Archetti M, Pritchard JR. Programming tumor evolution with selection gene drives to proactively combat drug resistance. Nat Biotechnol 2025; 43:737-751. [PMID: 38965430 DOI: 10.1038/s41587-024-02271-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/06/2024] [Indexed: 07/06/2024]
Abstract
Most targeted anticancer therapies fail due to drug resistance evolution. Here we show that tumor evolution can be reproducibly redirected to engineer therapeutic opportunity, regardless of the exact ensemble of pre-existing genetic heterogeneity. We develop a selection gene drive system that is stably introduced into cancer cells and is composed of two genes, or switches, that couple an inducible fitness advantage with a shared fitness cost. Using stochastic models of evolutionary dynamics, we identify the design criteria for selection gene drives. We then build prototypes that harness the selective pressure of multiple approved tyrosine kinase inhibitors and employ therapeutic mechanisms as diverse as prodrug catalysis and immune activity induction. We show that selection gene drives can eradicate diverse forms of genetic resistance in vitro. Finally, we demonstrate that model-informed switch engagement effectively targets pre-existing resistance in mouse models of solid tumors. These results establish selection gene drives as a powerful framework for evolution-guided anticancer therapy.
Collapse
Affiliation(s)
- Scott M Leighow
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Joshua A Reynolds
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ivan Sokirniy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Shun Yao
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zeyu Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Haider Inam
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dominik Wodarz
- Department of Biology, University of California San Diego, San Diego, CA, USA
| | - Marco Archetti
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Justin R Pritchard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Huck Institute For The Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Amanzadeh Jajin E, Oraee-Yazdani S, Zali A, Tavanaei R. Efficacy and safety of gene therapy approaches for malignant gliomas: A systematic review and meta-analysis: ConNRNRNRNR22.5NRNR1011.413.511.9NRNRNR. Curr Probl Cancer 2025; 55:101183. [PMID: 39854884 DOI: 10.1016/j.currproblcancer.2025.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/17/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Malignant gliomas are the most aggressive brain tumors with no certain therapeutic methods. Nowadays, novel treatment methods are introduced for gliomas among which gene therapy is known as a promising and robust method. In this method, genes with key roles in the prevention of cell cycle or induction of cell suicide are transferred to the tumor site using vectors. Viral vectors are the most popular transfer methods, while the liposomes are also used for gene therapy. METHODS This meta-analysis and systematic review was performed based on PRISMA guidelines. We performed a comprehensive search in databases including PubMed, Embase, and clinicaltrial.gov. After processing and filtering the articles, phase 1 clinical trials were chosen for the evaluation of the efficacy and safety of gene therapy for malignant gliomas. RESULTS The obtained results showed that gene therapy increases overall survival (OS) and progression-free survival (PFS) in two years of follow-up. Subgroup analysis also showed that cytokines exhibit the highest effectiveness compared to suicide genes and oncolytic genes. It was found that gene therapy is more efficient for recurrent gliomas than primary gliomas. The subgroup analysis for vectors revealed that Adenovirus is the most effective for increasing the OS in malignant glioma patients. CONCLUSION Gene therapy is an immunotherapy method for malignant gliomas following the standard treatment approach. Considering the effectiveness of gene therapy on the survival of patients, it is hoped that solving related issues with gene therapy will help to increase the OS rate in this malignant disease.
Collapse
Affiliation(s)
- Elnaz Amanzadeh Jajin
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Tavanaei
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
4
|
Niwa H, Nakamura T, Kushiya H, Kuraya T, Inoko K, Inagaki A, Suzuki T, Sasaki K, Tsuchikawa T, Hiraoka K, Shichinohe T, Hatanaka Y, Jolly DJ, Kasahara N, Hirano S. Therapeutic activity of retroviral replicating vector-mediated gene therapy in combination with anti-PD-1 antibody in a murine pancreatic cancer model. Cancer Gene Ther 2024; 31:1390-1401. [PMID: 39039195 DOI: 10.1038/s41417-024-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Toca 511, a tumor-selective retroviral replicating vector encoding the yeast cytosine deaminase (yCD) gene, exerts direct antitumor effects through intratumoral prodrug 5-fluorocytosine (5-FC) conversion to active drug 5-fluorouracil by yCD, and has demonstrated therapeutic efficacy in preclinical and clinical trials of various cancers. Toca 511/5-FC treatment may also induce antitumor immunity. Here, we first examined antitumor immune responses activated by Toca 511/5-FC treatment in an immunocompetent murine pancreatic cancer model. We then evaluated the therapeutic effects achieved in combination with anti-programmed cell death protein 1 antibody. In the bilateral subcutaneous tumor model, as compared with the control group, enhanced CD8+ T-cell-mediated cytotoxicity and increased T-cell infiltration in Toca 511-untransduced contralateral tumors were observed. Furthermore, the expression levels of T-cell co-inhibitory receptors on CD8+ T-cells increased during treatment. In the bilateral subcutaneous tumor model, combination therapy showed significantly stronger tumor growth inhibition than that achieved with either monotherapy. In an orthotopic tumor and peritoneal dissemination model, the combination therapy resulted in complete regression in both transduced orthotopic tumors and untransduced peritoneal dissemination. Thus, Toca 511/5-FC treatment induced a systemic antitumor immune response, and the combination therapy could be a promising clinical strategy for treating metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Hiroki Niwa
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan.
| | - Hiroki Kushiya
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Tomotaka Kuraya
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Kazuho Inoko
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Akihito Inagaki
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Tomohiro Suzuki
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Katsunori Sasaki
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Kei Hiraoka
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
- Department of Clinical Research, NHO Hakodate National Hospital, Hakodate, Hokkaido, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics (C-DAD), Hokkaido University Hospital, Sapporo, Japan
| | - Douglas J Jolly
- Tocagen Inc., San Diego, CA, USA
- Abintus Bio Inc., San Diego, CA, USA
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- Department of Radiation Oncology, University of California, San Francisco, CA, USA.
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC REPORTS 2024; 2:33. [PMID: 39516641 PMCID: PMC11524015 DOI: 10.1038/s44276-024-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 02/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer. Nevertheless, the role of viruses in GB remains controversial. METHODS This review delves into the current body of knowledge surrounding the presence of viruses in GB as well as provide updates on clinical trials examining the potential inclusion of antiviral therapies as part of the standard of care protocol. CONCLUSIONS The review summarises current evidences and important gaps in our knowledge related to the presence of viruses in GB.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Caroline L Ashley
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Felix Marsh-Wakefield
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centenary Institute, Camperdown, NSW, Australia
| | | | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Salvato I, Marchini A. Immunotherapeutic Strategies for the Treatment of Glioblastoma: Current Challenges and Future Perspectives. Cancers (Basel) 2024; 16:1276. [PMID: 38610954 PMCID: PMC11010873 DOI: 10.3390/cancers16071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Despite decades of research and the best up-to-date treatments, grade 4 Glioblastoma (GBM) remains uniformly fatal with a patient median overall survival of less than 2 years. Recent advances in immunotherapy have reignited interest in utilizing immunological approaches to fight cancer. However, current immunotherapies have so far not met the anticipated expectations, achieving modest results in their journey from bench to bedside for the treatment of GBM. Understanding the intrinsic features of GBM is of crucial importance for the development of effective antitumoral strategies to improve patient life expectancy and conditions. In this review, we provide a comprehensive overview of the distinctive characteristics of GBM that significantly influence current conventional therapies and immune-based approaches. Moreover, we present an overview of the immunotherapeutic strategies currently undergoing clinical evaluation for GBM treatment, with a specific emphasis on those advancing to phase 3 clinical studies. These encompass immune checkpoint inhibitors, adoptive T cell therapies, vaccination strategies (i.e., RNA-, DNA-, and peptide-based vaccines), and virus-based approaches. Finally, we explore novel innovative strategies and future prospects in the field of immunotherapy for GBM.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg;
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Sonoda-Fukuda E, Takeuchi Y, Ogawa N, Noguchi S, Takarada T, Kasahara N, Kubo S. Targeted Suicide Gene Therapy with Retroviral Replicating Vectors for Experimental Canine Cancers. Int J Mol Sci 2024; 25:2657. [PMID: 38473904 DOI: 10.3390/ijms25052657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer in dogs has increased in recent years and is a leading cause of death. We have developed a retroviral replicating vector (RRV) that specifically targets cancer cells for infection and replication. RRV carrying a suicide gene induced synchronized killing of cancer cells when administered with a prodrug after infection. In this study, we evaluated two distinct RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV) in canine tumor models both in vitro and in vivo. Despite low infection rates in normal canine cells, both RRVs efficiently infected and replicated within all the canine tumor cells tested. The efficient intratumoral spread of the RRVs after their intratumoral injection was also demonstrated in nude mouse models of subcutaneous canine tumor xenografts. When both RRVs encoded a yeast cytosine deaminase suicide gene, which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil, they caused tumor-cell-specific 5-FC-induced killing of the canine tumor cells in vitro. Furthermore, in the AZACF- and AZACH-cell subcutaneous tumor xenograft models, both RRVs exerted significant antitumor effects. These results suggest that RRV-mediated suicide gene therapy is a novel therapeutic approach to canine cancers.
Collapse
Affiliation(s)
- Emiko Sonoda-Fukuda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Yuya Takeuchi
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Nao Ogawa
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Japan
| | - Toru Takarada
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Noriyuki Kasahara
- Departments of Neurological Surgery and Radiation Oncology, University of California, San Francisco, CA 94143, USA
| | - Shuji Kubo
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| |
Collapse
|
8
|
Varela ML, Comba A, Faisal SM, Argento A, Peña Aguelo JA, Candolfi M, Castro MG, Lowenstein PR. Cell and gene therapy in neuro-oncology. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:297-315. [PMID: 39341660 PMCID: PMC11441620 DOI: 10.1016/b978-0-323-90120-8.00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The majority of primary brain tumors are gliomas, among which glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. GBM has a median survival of 18-24 months, and despite extensive research it remains incurable, thus novel therapies are urgently needed. The current standard of care is a combination of surgery, radiation, and chemotherapy, but still remains ineffective due to the invasive nature and high recurrence of gliomas. Gene therapy is a versatile treatment strategy investigated for multiple tumor types including GBM. In gene therapy, a variety of vectors are employed to deliver genes designed for different antitumoral effects. Also, over the past decades, stem cell biology has provided a new approach to cancer therapies. Stem cells can be used as regenerative medicine, therapeutic carriers, drug targeting, and generation of immune cells. Stem cell-based therapy allows targeted therapy that spares healthy brain tissue as well as establishes a long-term antitumor response by stimulating the immune system and delivering prodrug, metabolizing genes, or even oncolytic viruses. This chapter describes the latest developments and the current trends in gene and cell-based therapy against GBM from both preclinical and clinical perspectives, including different gene therapy delivery systems, molecular targets, and stem cell therapies.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jorge A Peña Aguelo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
9
|
Kang W, Mo Z, Li W, Ma H, Zhang Q. Heterogeneity and individualized treatment of microenvironment in glioblastoma (Review). Oncol Rep 2023; 50:217. [PMID: 37888767 PMCID: PMC10636722 DOI: 10.3892/or.2023.8654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of glioblastoma can suppress immune cell function and lead to immune evasion, which presents a challenge in developing effective molecular therapies for tumor cells. However, the study of tumor immune heterogeneity holds great potential for clinical immunotherapy. Liquid biopsy is a useful tool for accurately monitoring dynamic changes in tumor immune heterogeneity and the tumor microenvironment. This paper explores the heterogeneity of glioblastoma and the immune microenvironment, providing a therapeutic basis for individualized treatment. Using liquid biopsy technology as a new diagnostic method, innovative treatment strategies may be implemented for patients with glioblastoma to improve their outcomes.
Collapse
Affiliation(s)
- Wei Kang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Zhixiao Mo
- Department of Neurosurgery, Qinghai Cardio-Cerebrovascular Hospital, Xining, Qinghai 810099, P.R. China
| | - Wenshan Li
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
- Key Laboratory of Neurology of Gansu Province, Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Haifeng Ma
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, Qinghai 810001, P.R. China
| |
Collapse
|
10
|
Hu D, Tian Y, Xu J, Xie D, Wang Y, Liu M, Wang Y, Yang L. Oncolytic viral therapy as promising immunotherapy against glioma. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 03/19/2025]
Abstract
AbstractGlioma is a common primary central nervous system malignant tumor in clinical, traditional methods such as surgery and chemoradiotherapy are not effective in treatment. Therefore, more effective treatments need to be found. Oncolytic viruses (OVs) are a new type of immunotherapy that selectively infects and kills tumor cells instead of normal cells. OVs can mediate antitumor immune responses through a variety of mechanisms, and have the ability to activate antitumor immune responses, transform the tumor microenvironment from “cold” to “hot,” and enhance the efficacy of immune checkpoint inhibitors. Recently, a large number of preclinical and clinical studies have shown that OVs show great prospects in the treatment of gliomas. In this review, we summarize the current status of glioma therapies with a focus on OVs. First, this article introduces the current status of treatment of glioma and their respective shortcomings. Then, the important progress of OVs of in clinical trials of glioma is summarized. Finally, the urgent challenges of oncolytic virus treatment for glioma are sorted out, and related solutions are proposed. This review will help to further promote the use of OVs in the treatment of glioma.
Collapse
Affiliation(s)
- Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- College of Bioengineering Sichuan University of Science & Engineering Zigong China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
11
|
Bashyal N, Kim MG, Jung JH, Acharya R, Lee YJ, Hwang WS, Choi JM, Chang DY, Kim SS, Suh-Kim H. Preclinical Study on Biodistribution of Mesenchymal Stem Cells after Local Transplantation into the Brain. Int J Stem Cells 2023; 16:415-424. [PMID: 37643762 PMCID: PMC10686801 DOI: 10.15283/ijsc23062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.
Collapse
Affiliation(s)
| | - Min Gyeong Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
| | - Jin-Hwa Jung
- Research Center, CELLeBRAIN, Ltd., Jeonju, Korea
| | - Rakshya Acharya
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Young Jun Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
| | - Woo Sup Hwang
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | | | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
| | - Haeyoung Suh-Kim
- Research Center, CELLeBRAIN, Ltd., Jeonju, Korea
- Department of Anatomy, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
12
|
Song D, Jia X, Gao Y, Xiao T, Dan J, Shen R, Cai J, Liang J, Zhu W, Hu J, Yan G, Zhang Q, Lin Y. STT3A-mediated viral N-glycosylation underlies the tumor selectivity of oncolytic virus M1. Oncogene 2023; 42:3575-3588. [PMID: 37864032 DOI: 10.1038/s41388-023-02872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Oncolytic viruses are emerging as promising anticancer agents. Although the essential biological function of N-glycosylation on viruses are widely accepted, roles of N-glycan and glycan-processing enzyme in oncolytic viral therapy are remain elusive. Here, via cryo-EM analysis, we identified three distinct N-glycans on the envelope of oncolytic virus M1 (OVM) as being necessary for efficient receptor binding. E1-N141-glycan has immediate impact on the binding of MXRA8 receptor, E2-N200-glycan mediates the maturation of E2 from its precursor PE2 which is unable to bind with MXRA8, and E2-N262-glycan slightly promotes receptor binding. The necessity of OVM N-glycans in receptor binding make them indispensable for oncolysis in vitro and in vivo. Further investigations identified STT3A, a key catalytic subunit of oligosaccharyltransferase (OST), as the determinant of OVM N-glycosylation, and STT3A expression in tumor cells is positively correlated with OVM-induced oncolysis. Increased STT3A expression was observed in various solid tumors, pointing to a broad-spectrum anticancer potential of OVM. Collectively, our research supports the importance of STT3A-mediated N-glycosylation in receptor binding and oncolysis of OVM, thus providing a novel predictive biomarker for OVM.
Collapse
Affiliation(s)
- Deli Song
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xudong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuanzhu Gao
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tong Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia Dan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Runling Shen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qinfen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Agosti E, Zeppieri M, De Maria L, Tedeschi C, Fontanella MM, Panciani PP, Ius T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int J Mol Sci 2023; 24:15037. [PMID: 37894718 PMCID: PMC10606063 DOI: 10.3390/ijms242015037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth and high rates of recurrence. Despite the advancements in conventional therapies, the prognosis for GBM patients remains poor. Immunotherapy has recently emerged as a potential treatment option. The aim of this systematic review is to assess the current strategies and future perspectives of the GBM immunotherapy strategies. A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 3 September 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "glioblastomas," "immunotherapies," and "treatment." The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of immunotherapies for the treatment of gliomas in human subjects. A total of 1588 papers are initially identified. Eligibility is confirmed for 752 articles, while 655 are excluded for various reasons, including irrelevance to the research topic (627), insufficient method and results details (12), and being case-series or cohort studies (22), systematic literature reviews, or meta-analyses (3). All the studies within the systematic review were clinical trials spanning from 1995 to 2023, involving 6383 patients. Neuro-oncology published the most glioma immunotherapy-related clinical trials (15/97, 16%). Most studies were released between 2018 and 2022, averaging nine publications annually during this period. Adoptive cellular transfer chimeric antigen receptor (CAR) T cells were the primary focus in 11% of the studies, with immune checkpoint inhibitors (ICIs), oncolytic viruses (OVs), and cancer vaccines (CVs) comprising 26%, 12%, and 51%, respectively. Phase-I trials constituted the majority at 51%, while phase-III trials were only 7% of the total. Among these trials, 60% were single arm, 39% double arm, and one multi-arm. Immunotherapies were predominantly employed for recurrent GBM (55%). The review also revealed ongoing clinical trials, including 9 on ICIs, 7 on CVs, 10 on OVs, and 8 on CAR T cells, totaling 34 trials, with phase-I trials representing the majority at 53%, and only one in phase III. Overcoming immunotolerance, stimulating robust tumor antigen responses, and countering immunosuppressive microenvironment mechanisms are critical for curative GBM immunotherapy. Immune checkpoint inhibitors, such as PD-1 and CTLA-4 inhibitors, show promise, with the ongoing research aiming to enhance their effectiveness. Personalized cancer vaccines, especially targeting neoantigens, offer substantial potential. Oncolytic viruses exhibited dual mechanisms and a breakthrough status in the clinical trials. CAR T-cell therapy, engineered for specific antigen targeting, yields encouraging results, particularly against IL13 Rα2 and EGFRvIII. The development of second-generation CAR T cells with improved specificity exemplifies their adaptability.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Lucio De Maria
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Camilla Tedeschi
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Division of Neurosurgery, Radiological Sciences and Public Health, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, P.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
14
|
Fujino H, Sonoda-Fukuda E, Isoda L, Kawabe A, Takarada T, Kasahara N, Kubo S. Retroviral Replicating Vectors Mediated Prodrug Activator Gene Therapy in a Gastric Cancer Model. Int J Mol Sci 2023; 24:14823. [PMID: 37834271 PMCID: PMC10573151 DOI: 10.3390/ijms241914823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Retroviral replicating vectors (RRVs) selectively replicate and can specifically introduce prodrug-activating genes into tumor cells, whereby subsequent prodrug administration induces the death of the infected tumor cells. We assessed the ability of two distinct RRVs generated from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), which infect cells via type-III sodium-dependent phosphate transporters, PiT-2 and PiT-1, respectively, to infect human gastric cancer (GC) cells. A quantitative RT-PCR showed that all tested GC cell lines had higher expression levels of PiT-2 than PiT-1. Accordingly, AMLV, encoding a green fluorescent protein gene, infected and replicated more efficiently than GALV in most GC cell lines, whereas both RRVs had a low infection rate in human fibroblasts. RRV encoding a cytosine deaminase prodrug activator gene, which converts the prodrug 5-flucytosine (5-FC) to the active drug 5-fluorouracil, showed that AMLV promoted superior 5-FC-induced cytotoxicity compared with GALV, which correlated with the viral receptor expression level and viral spread. In MKN-74 subcutaneous xenograft models, AMLV had significant antitumor effects compared with GALV. Furthermore, in the MKN-74 recurrent tumor model in which 5-FC was discontinued, the resumption of 5-FC administration reduced the tumor volume. Thus, RRV-mediated prodrug activator gene therapy might be beneficial for treating human GC.
Collapse
Affiliation(s)
- Hiroaki Fujino
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Emiko Sonoda-Fukuda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
| | - Lisa Isoda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Ayane Kawabe
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Toru Takarada
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Hyogo 658-8558, Japan
| | - Noriyuki Kasahara
- Departments of Neurological Surgery and Radiation Oncology, University of California, San Francisco, CA 94143, USA;
| | - Shuji Kubo
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Hyogo 663-8501, Japan (L.I.); (T.T.)
| |
Collapse
|
15
|
Zhang Q, Zhang J, Tian Y, Wang J, Jin G, Liu F. Ki67-targeted oncolytic adenovirus expressing IL-15 improves intratumoral T cell infiltration and PD-L1 expression in glioblastoma. Virology 2023; 587:109885. [PMID: 37738842 DOI: 10.1016/j.virol.2023.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Glioblastoma (GBM) is a devastating malignant brain tumor. Current therapeutic strategies targeting tumor cells have limited efficacy owing to the immunosuppressive microenvironment. Previous work demonstrated that the targeted Ad5-Ki67/IL-15 could specifically kill tumor cells and decrease the angiogenic capacity in vitro. However, the efficacy of this virus in vivo and its effect on the tumor microenvironment (TME) has not been elucidated. In this study, we found that the Ad5-Ki67/IL-15 treatment down-regulated PD-L1 expression of glioma cells. More importantly, Ad5-Ki67/IL-15 also remodeled the tumor microenvironment via increasing intratumoral T cell infiltration and PD-L1 improvement in a GBM model, as well as the increase of antitumor cytokines, thereby improving the efficacy of GBM treatment. Furthermore, a combination of Ad5-Ki67/IL-15 with PD-L1 blockade significantly inhibits tumor growth in the GBM model. These results provide new insight into the therapeutic effects of targeted oncolytic Ad5-Ki67/IL-15 in patients with GBM, indicating potential clinical applications.
Collapse
Affiliation(s)
- Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Yifu Tian
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, China; Beijing Laboratory of Biomedical Materials, Beijing, 100070, China.
| |
Collapse
|
16
|
Nehama D, Woodell AS, Maingi SM, Hingtgen SD, Dotti G. Cell-based therapies for glioblastoma: Promising tools against tumor heterogeneity. Neuro Oncol 2023; 25:1551-1562. [PMID: 37179459 PMCID: PMC10484163 DOI: 10.1093/neuonc/noad092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive tumor with a devastating impact on quality-of-life and abysmal survivorship. Patients have very limited effective treatment options. The successes of targeted small molecule drugs and immune checkpoint inhibitors seen in various solid tumors have not translated to GBM, despite significant advances in our understanding of its molecular, immune, and microenvironment landscapes. These discoveries, however, have unveiled GBM's incredible heterogeneity and its role in treatment failure and survival. Novel cellular therapy technologies are finding successes in oncology and harbor characteristics that make them uniquely suited to overcome challenges posed by GBM, such as increased resistance to tumor heterogeneity, modularity, localized delivery, and safety. Considering these advantages, we compiled this review article on cellular therapies for GBM, focusing on cellular immunotherapies and stem cell-based therapies, to evaluate their utility. We categorize them based on their specificity, review their preclinical and clinical data, and extract valuable insights to help guide future cellular therapy development.
Collapse
Affiliation(s)
- Dean Nehama
- Department of Internal Medicine, Montefiore Medical Center, New York, New York, USA
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Spencer M Maingi
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Tamura R, Miyoshi H, Imaizumi K, Yo M, Kase Y, Sato T, Sato M, Morimoto Y, Sampetrean O, Kohyama J, Shinozaki M, Miyawaki A, Yoshida K, Saya H, Okano H, Toda M. Gene therapy using genome-edited iPS cells for targeting malignant glioma. Bioeng Transl Med 2023; 8:e10406. [PMID: 37693056 PMCID: PMC10487333 DOI: 10.1002/btm2.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma is characterized by diffuse infiltration into the normal brain. Invasive glioma stem cells (GSCs) are an underlying cause of treatment failure. Despite the use of multimodal therapies, the prognosis remains dismal. New therapeutic approach targeting invasive GSCs is required. Here, we show that neural stem cells (NSCs) derived from CRISRP/Cas9-edited human-induced pluripotent stem cell (hiPSC) expressing a suicide gene had higher tumor-trophic migratory capacity compared with mesenchymal stem cells (MSCs), leading to marked in vivo antitumor effects. High migratory capacity in iPSC-NSCs was related to self-repulsive action and pathotropism involved in EphB-ephrinB and CXCL12-CXCR4 signaling. The gene insertion to ACTB provided higher and stable transgene expression than other common insertion sites, such as GAPDH or AAVS1. Ferroptosis was associated with enhanced antitumor immune responses. The thymidylate synthase and dihydroprimidine dehydrogenase expressions predicted the treatment efficacy of therapeutic hiPSC-NSCs. Our results indicate the potential benefit of genome-edited iPS cells based gene therapy for invasive GSCs. Furthermore, the present research concept may become a platform to promote clinical studies using hiPSC.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | | | - Kent Imaizumi
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Masahiro Yo
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Yoshitaka Kase
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
- Department of Geriatric MedicineGraduate School of Medicine, The University of TokyoBunkyo‐ku, TokyoJapan
| | - Tsukika Sato
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Mizuto Sato
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Yukina Morimoto
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Oltea Sampetrean
- Division of Gene RegulationKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Jun Kohyama
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Munehisa Shinozaki
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, RIKEN Center for Brain ScienceWako, SaitamaJapan
| | - Kazunari Yoshida
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Hideyuki Saya
- Division of Gene RegulationKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Hideyuki Okano
- Department of PhysiologyKeio University School of MedicineShinjuku‐ku, TokyoJapan
| | - Masahiro Toda
- Department of NeurosurgeryKeio University School of MedicineShinjuku‐ku, TokyoJapan
| |
Collapse
|
18
|
Vaz-Salgado MA, Villamayor M, Albarrán V, Alía V, Sotoca P, Chamorro J, Rosero D, Barrill AM, Martín M, Fernandez E, Gutierrez JA, Rojas-Medina LM, Ley L. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) 2023; 15:4279. [PMID: 37686553 PMCID: PMC10487236 DOI: 10.3390/cancers15174279] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma is a disease with a poor prognosis. Multiple efforts have been made to improve the long-term outcome, but the 5-year survival rate is still 5-10%. Recurrence of the disease is the usual way of progression. In this situation, there is no standard treatment. Different treatment options can be considered. Among them would be reoperation or reirradiation. There are different studies that have assessed the impact on survival and the selection of patients who may benefit most from these strategies. Chemotherapy treatments have also been considered in several studies, mainly with alkylating agents, with data mostly from phase II studies. On the other hand, multiple studies have been carried out with target-directed treatments. Bevacizumab, a monoclonal antibody with anti-angiogenic activity, has demonstrated activity in several studies, and the FDA has approved it for this indication. Several other TKI drugs have been evaluated in this setting, but no clear benefit has been demonstrated. Immunotherapy treatments have been shown to be effective in other types of tumors, and several studies have evaluated their efficacy in this disease, both immune checkpoint inhibitors, oncolytic viruses, and vaccines. This paper reviews data from different studies that have evaluated the efficacy of different forms of relapsed glioblastoma.
Collapse
Affiliation(s)
- Maria Angeles Vaz-Salgado
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - María Villamayor
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Alía
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Pilar Sotoca
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Jesús Chamorro
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Diana Rosero
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Ana M. Barrill
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Mercedes Martín
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - Eva Fernandez
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - José Antonio Gutierrez
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Mariano Rojas-Medina
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Ley
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| |
Collapse
|
19
|
Yuan Y, Su Y, Wu Y, Xue Y, Zhang Y, Zhang Y, Zheng M, Chang T, Qu Y, Zhao T. Knowledge structure and hotspots research of glioma immunotherapy: a bibliometric analysis. Front Oncol 2023; 13:1229905. [PMID: 37671057 PMCID: PMC10476340 DOI: 10.3389/fonc.2023.1229905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Background Glioma is the most common primary brain tumor. Traditional treatments for glioma include surgical resection, radiotherapy, chemotherapy, and bevacizumab therapy, but their efficacies are limited. Immunotherapy provides a new direction for glioma treatment. This study aimed to summarize the knowledge structure and research hotspots of glioma immunotherapy through a bibliometric analysis. Method Publications pertaining to glioma immunotherapy published during the period from 1st January 1990 to 27th March 2023 were downloaded from the Web of Science Core Collection (WoSCC). Bibliometric analysis and visualization were performed using the CiteSpace, VOSviewer, Online Analysis Platform of Literature Metrology, and R software. The hotspots and prospects of glioma immunotherapy research were illustrated via analyzing the countries, institutions, journals, authors, citations and keywords of eligible publications. Results A total of 1,929 publications pertaining to glioma immunotherapy in 502 journals were identified as of 27th March 2023, involving 9,505 authors from 1,988 institutions in 62 countries. Among them were 1,285 articles and 644 reviews. Most of publications were produced by the United States. JOURNAL OF NEURO-ONCOLOGY published the majority of publications pertaining to glioma immunotherapy. Among the authors, Lim M contributed the largest number of publications. Through analyzing keyword bursts and co-cited references, immune-checkpoint inhibitors (ICIs) were identified as the research focus and hotspot. Conclusion Using a bibliometric analysis, this study provided the knowledge structure and research hotspots in glioma immunotherapy research during the past 33 years, with ICIs staying in the current and future hotspot. Our findings may direct the research of glioma immunotherapy in the future.
Collapse
Affiliation(s)
- Yexin Yuan
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yingxi Wu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yafei Xue
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yunze Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yangyang Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Min Zheng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res 2023; 48:259-273. [PMID: 36067975 PMCID: PMC10248799 DOI: 10.1016/j.jare.2022.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Repurposing antifungal drugs in cancer therapy has attracted unprecedented attention in both preclinical and clinical research due to specific advantages, such as safety, high-cost effectiveness and time savings compared with cancer drug discovery. The surprising and encouraging efficacy of antifungal drugs in cancer therapy, mechanistically, is attributed to the overlapping targets or molecular pathways between fungal and cancer pathogenesis. Advancements in omics, informatics and analytical technology have led to the discovery of increasing "off-site" targets from antifungal drugs involved in cancerogenesis, such as smoothened (D477G) inhibition from itraconazole in basal cell carcinoma. AIM OF REVIEW This review illustrates several antifungal drugs repurposed for cancer therapy and reveals the underlying mechanism based on their original target and "off-site" target. Furthermore, the challenges and perspectives for the future development and clinical applications of antifungal drugs for cancer therapy are also discussed, providing a refresh understanding of drug repurposing. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide a basic understanding of repurposed antifungal drugs for clinical cancer management, thereby helping antifungal drugs broaden new indications and promote clinical translation.
Collapse
Affiliation(s)
- Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian 350011, PR China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
22
|
Webb MJ, Sener U, Vile RG. Current Status and Challenges of Oncolytic Virotherapy for the Treatment of Glioblastoma. Pharmaceuticals (Basel) 2023; 16:793. [PMID: 37375742 PMCID: PMC10301268 DOI: 10.3390/ph16060793] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Despite decades of research and numerous clinical trials, the prognosis of patients diagnosed with glioblastoma (GBM) remains dire with median observed survival at 8 months. There is a critical need for novel treatments for GBM, which is the most common malignant primary brain tumor. Major advances in cancer therapeutics such as immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy have not yet led to improved outcomes for GBM. Conventional therapy of surgery followed by chemoradiation with or without tumor treating fields remains the standard of care. One of the many approaches to GBM therapy currently being explored is viral therapies. These typically work by selectively lysing target neoplastic cells, called oncolysis, or by the targeted delivery of a therapeutic transgene via a viral vector. In this review, we discuss the underlying mechanisms of action and describe both recent and current human clinical trials using these viruses with an emphasis on promising viral therapeutics that may ultimately break the field's current stagnant paradigm.
Collapse
Affiliation(s)
- Mason J. Webb
- Department of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| | - Ugur Sener
- Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA;
| |
Collapse
|
23
|
Straehla JP, Reardon DA, Wen PY, Agar NYR. The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:265-289. [PMID: 38323268 PMCID: PMC10846865 DOI: 10.1146/annurev-cancerbio-061421-040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The blood-brain barrier is critically important for the treatment of both primary and metastatic cancers of the central nervous system (CNS). Clinical outcomes for patients with primary CNS tumors are poor and have not significantly improved in decades. As treatments for patients with extracranial solid tumors improve, the incidence of CNS metastases is on the rise due to suboptimal CNS exposure of otherwise systemically active agents. Despite state-of-the art surgical care and increasingly precise radiation therapy, clinical progress is limited by the ability to deliver an effective dose of a therapeutic agent to all cancerous cells. Given the tremendous heterogeneity of CNS cancers, both across cancer subtypes and within a single tumor, and the range of diverse therapies under investigation, a nuanced examination of CNS drug exposure is needed. With a shared goal, common vocabulary, and interdisciplinary collaboration, the field is poised for renewed progress in the treatment of CNS cancers.
Collapse
Affiliation(s)
- Joelle P Straehla
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, Massachusetts, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Grogan PT, Helgager JJ, Deming DA, Howard SP, Jenkins RB, Robins HI. Case report: Radiographic complete response of radiation-induced glioblastoma to front-line radiotherapy: A report and molecular characterization of two unique cases. Front Neurol 2023; 14:1099424. [PMID: 37025206 PMCID: PMC10070702 DOI: 10.3389/fneur.2023.1099424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 04/08/2023] Open
Abstract
Radiation-induced gliomas (RIGs) are an uncommon disease type and a known long-term complication of prior central nervous system radiation exposure, often during childhood. Given the rarity of this malignancy subtype, no clinical trials have explored optimal therapy for these patients, and the literature is primarily limited to reports of patient cases and series. Indeed, the genomic profiles of RIGs have only recently been explored in limited numbers, categorizing these gliomas into a unique subset. Here, we describe two cases of RIG diagnosed as glioblastoma (GB), IDH-wildtype, in adults who had previously received central nervous system radiation for childhood cancers. Both patients demonstrated a surprising complete radiographic response of the postoperative residual disease to front-line therapy, a phenomenon rarely observed in the management of any GB and never previously reported for the radiation-induced subgroup. Both tumors were characterized by next-generation sequencing and chromosomal microarray to identify potential etiologies for this response as well as to further add to the limited literature about the unique molecular profile of RIGs, showing signatures more consistent with diffuse pediatric-type high-grade glioma, H3-wildtype, and IDH-wildtype, WHO grade 4. Ultimately, we demonstrate that treatment utilizing a radiation-based regimen for GB in a previously radiated tissue can be highly successful despite historical limitations in the management of this disease.
Collapse
Affiliation(s)
- Patrick T. Grogan
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin, Madison, WI, United States
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Jeffrey J. Helgager
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Dustin A. Deming
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin, Madison, WI, United States
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States
| | - Steven P. Howard
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
| | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - H. Ian Robins
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin, Madison, WI, United States
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin, Madison, WI, United States
- Department of Neurology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
25
|
Gatto L, Franceschi E, Tosoni A, Di Nunno V, Bartolini S, Brandes AA. Glioblastoma treatment slowly moves toward change: novel druggable targets and translational horizons in 2022. Expert Opin Drug Discov 2023; 18:269-286. [PMID: 36718723 DOI: 10.1080/17460441.2023.2174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain tumor in adults. GBM treatment options have been the same for the past 30 years and have only modestly extended survival, despite aggressive multimodal treatments. The progressively better knowledge of GBM biology and a comprehensive analysis of its genomic profile have elucidated GBM heterogeneity, contributing to a more effective molecular classification and to the development of innovative targeted therapeutic approaches. AREAS COVERED This article reports all the noteworthy innovations for immunotherapy and targeted therapy, providing insights into the current advances in trial designs, including combination therapies with immuno-oncology agents and target combinations. EXPERT OPINION GBM molecular heterogeneity and brain anatomical characteristics critically restrain drug effectiveness. Nevertheless, stimulating insights for future research and drug development come from innovative treatment strategies for GBM, such as multi-specific 'off-the-shelf' CAR-T therapy, oncolytic viral therapy and autologous dendritic cell vaccination. Disappointing results from targeted therapies-clinical trials are mainly due to complex interferences between signaling pathways and biological processes leading to drug resistance: hence, it is imperative in the future to develop combinatorial approaches and multimodal therapies.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | | | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
| |
Collapse
|
26
|
Varela ML, Comba A, Faisal SM, Argento A, Franson A, Barissi MN, Sachdev S, Castro MG, Lowenstein PR. Gene Therapy for High Grade Glioma: The Clinical Experience. Expert Opin Biol Ther 2023; 23:145-161. [PMID: 36510843 PMCID: PMC9998375 DOI: 10.1080/14712598.2022.2157718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION High-grade gliomas (HGG) are the most common malignant primary brain tumors in adults, with a median survival of ~18 months. The standard of care (SOC) is maximal safe surgical resection, and radiation therapy with concurrent and adjuvant temozolomide. This protocol remains unchanged since 2005, even though HGG median survival has marginally improved. AREAS COVERED Gene therapy was developed as a promising approach to treat HGG. Here, we review completed and ongoing clinical trials employing viral and non-viral vectors for adult and pediatric HGG, as well as the key supporting preclinical data. EXPERT OPINION These therapies have proven safe, and pre- and post-treatment tissue analyses demonstrated tumor cell lysis, increased immune cell infiltration, and increased systemic immune function. Although viral therapy in clinical trials has not yet significantly extended the survival of HGG, promising strategies are being tested. Oncolytic HSV vectors have shown promising results for both adult and pediatric HGG. A recently published study demonstrated that HG47Δ improved survival in recurrent HGG. Likewise, PVSRIPO has shown survival improvement compared to historical controls. It is likely that further analysis of these trials will stimulate the development of new administration protocols, and new therapeutic combinations that will improve HGG prognosis.
Collapse
Affiliation(s)
- Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna Argento
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marcus N Barissi
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sean Sachdev
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Kotecha R, Odia Y, Khosla AA, Ahluwalia MS. Key Clinical Principles in the Management of Glioblastoma. JCO Oncol Pract 2023; 19:180-189. [PMID: 36638331 DOI: 10.1200/op.22.00476] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in the adult population and leads to considerable morbidity and mortality. It has a dismal prognosis with average survival of 15-18 months, and the current standard-of-care treatment paradigm includes maximal surgical resection and postoperative concurrent chemoradiotherapy and maintenance chemotherapy, with consideration of Tumor Treating Fields. There is a major emphasis to enroll patients onto ongoing clinical trials to further improve treatment outcomes, given the aggressive nature of the disease course and poor patient survival. Recent research efforts have focused on radiotherapy dose intensification, regulation of the tumor microenvironment, and exploration of immunotherapeutic approaches to overcome the barriers to treatment. This review article outlines the current evidence-based management principles as well as reviews recent clinical trial data and ongoing clinical studies evaluating novel therapeutic options.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.,Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL.,Division of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Atulya A Khosla
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL.,Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
28
|
Huang B, Zhang J, Zong W, Chen S, Zong Z, Zeng X, Zhang H. Myeloidcells in the immunosuppressive microenvironment in glioblastoma: The characteristics and therapeutic strategies. Front Immunol 2023; 14:994698. [PMID: 36923402 PMCID: PMC10008967 DOI: 10.3389/fimmu.2023.994698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal malignant tumor of the central nervous system in adults. Conventional therapies, including surgery, radiotherapy, and chemotherapy, have limited success in ameliorating patient survival. The immunosuppressive tumor microenvironment, which is infiltrated by a variety of myeloid cells, has been considered a crucial obstacle to current treatment. Recently, immunotherapy, which has achieved great success in hematological malignancies and some solid cancers, has garnered extensive attention for the treatment of GBM. In this review, we will present evidence on the features and functions of different populations of myeloid cells, and on current clinical advances in immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Boyuan Huang
- Department of Neurosurgery, Capital Medical University Electric Power Teaching Hospital/State Grid Beijing Electric Power Hospital, Beijing, China
| | - Jin Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sisi Chen
- Department of neurosurgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Zhitao Zong
- Department of neurosurgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Xiaojun Zeng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Immunotherapy as a New Therapeutic Approach for Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:73-84. [PMID: 36587382 DOI: 10.1007/978-3-031-14732-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically, the central nervous system (CNS) was considered an immune-privileged organ. However, recent studies have shown that the immune system plays a significant role in the CNS. Thus, there is renewed interest in applying cancer immunotherapy to CNS malignancies with the hope of generating a robust anti-tumor immune response and creating long-lasting immunity in patients. There has been some work with non-specific immunotherapy such as IL-2 for brain metastasis. Unfortunately, the results from non-specific immunotherapy studies were lackluster, so the focus has shifted to more specific CNS immunotherapies including cancer vaccines, immune checkpoint inhibitors, oncolytic virus therapy, and chimeric antigen receptor (CAR) T cell therapy. With respect to cancer vaccines, rindopepimut has been well-studied in glioblastoma (GBM) patients with the EGFRvIII mutation, with early results from phase II trials showing possible efficacy in carefully selected GBM patients. Other antigen-specific CNS tumor vaccines are still in the early stages. Immune checkpoint inhibitors are amongst the most promising and widely studied CNS immunotherapy strategies. Anti-PD-1 showed promising results in many non-CNS solid tumors, however, results from early clinical trials show poor efficacy for anti-PD-1 in GBM patients. Anti-PD-1 is also under investigation for CNS metastasis and showed some efficacy in non-small cell lung cancer and renal cell carcinoma patients. Anti-PD-1 is under early stage investigation for other CNS tumors such as chordoma. Oncolytic virus therapy is the strategy of infecting tumor cells with a virus that in turn triggers an innate immune response leading to tumor cell lysis. Oncolytic viruses currently under investigation include several adenovirus-based therapies and a herpes simplex virus-based therapy. Phase I studies have demonstrated the safety of oncolytic virus therapies in GBM patients. Current studies are evaluating the efficacy of these therapies both alone and in combination with other immunotherapy approaches such as checkpoint inhibition in patients with CNS tumors. CAR T cell therapy is a newer immunotherapy approach. CAR T cell therapies, directed against EGFRvIII mutation and HER-2 mutation, demonstrate an acceptable safety profile, although there is no conclusive evidence of the survival benefit of these therapies in early trials. Studies are currently underway to determine optimal tumor-specific antigen selection and modality of administration for CAR T cell therapy. Overall, the prognosis is generally poor for patients with CNS malignancies. The promising results of cancer immunotherapy for non-CNS tumors have created significant interest in applying these therapies for CNS malignancies. Preliminary results have not demonstrated robust efficacy for CNS immunotherapy. However, it is important to keep in mind that the field is still in its infancy and many clinical trials are still early-phase. Several, clinical trials are currently underway to further explore the role of immunotherapy for CNS malignancies.
Collapse
|
30
|
Cascão R, Faria CC. Optimizing the role of immunotherapy for the treatment of glioblastoma. NEW INSIGHTS INTO GLIOBLASTOMA 2023:553-591. [DOI: 10.1016/b978-0-323-99873-4.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Retroviral Replicating Vector Toca 511 ( Vocimagene Amiretrorepvec) for Prodrug Activator Gene Therapy of Lung Cancer. Cancers (Basel) 2022; 14:cancers14235820. [PMID: 36497300 PMCID: PMC9736610 DOI: 10.3390/cancers14235820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Therapeutic efficacy of retroviral replicating vector (RRV)-mediated prodrug activator gene therapy has been demonstrated in a variety of tumor models, but clinical investigation of this approach has so far been restricted to glioma and gastrointestinal malignancies. In the present study, we evaluated replication kinetics, transduction efficiency, and therapeutic efficacy of RRV in experimental models of lung cancer. RRV delivering GFP as a reporter gene showed rapid viral replication in a panel of lung cancer cells in vitro, as well as robust intratumoral replication and high levels of tumor transduction in subcutaneous and orthotopic pleural dissemination models of lung cancer in vivo. Toca 511 (vocimagene amiretrorepvec), a clinical-stage RRV encoding optimized yeast cytosine deaminase (yCD) which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil (5-FU), showed potent cytotoxicity in lung cancer cells upon exposure to 5-FC prodrug. In vivo, Toca 511 achieved significant tumor growth inhibition following 5-FC treatment in subcutaneous and orthotopic pleural dissemination models of lung cancer in both immunodeficient and immunocompetent hosts, resulting in significantly increased overall survival. This study demonstrates that RRV can serve as highly efficient vehicles for gene delivery to lung cancer, and indicates the translational potential of RRV-mediated prodrug activator gene therapy with Toca 511/5-FC as a novel therapeutic strategy for pulmonary malignancies.
Collapse
|
32
|
Kazemi Shariat Panahi H, Dehhaghi M, Lam SS, Peng W, Aghbashlo M, Tabatabaei M, Guillemin GJ. Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. Semin Cancer Biol 2022; 86:1122-1142. [PMID: 34004331 DOI: 10.1016/j.semcancer.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Mona Dehhaghi
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mortaza Aghbashlo
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.Org, Australia.
| |
Collapse
|
33
|
Shoaf ML, Desjardins A. Oncolytic Viral Therapy for Malignant Glioma and Their Application in Clinical Practice. Neurotherapeutics 2022; 19:1818-1831. [PMID: 35674873 PMCID: PMC9723031 DOI: 10.1007/s13311-022-01256-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults and outcomes remain poor despite the current standard of care multimodal therapy. Oncolytic virotherapy utilizes engineered viruses to exert an anti-tumor effect via both direct oncolysis and stimulation of an immune response within the tumor microenvironment, turning tumors from "cold" to "hot." This has shown promise as a novel therapeutic modality and attempts to circumvent the challenges associated with traditional treatments. Many oncolytic viruses have been investigated in completed and ongoing clinical trials and while safety has been demonstrated, clinical outcomes have been variable, often with only a subgroup of patients showing a significant response. This review summarizes these studies, addresses relevant technical aspects of oncolytic virus administration, and highlights practical considerations to assist providers in appropriately caring for patients treated with oncolytic virotherapy. Additionally, future directions within the field that may help to maximize efficacy of this modality are discussed.
Collapse
Affiliation(s)
- Madison L Shoaf
- Department of Neurosurgery, Duke University Medical Center, PO Box 3624, Durham, NC, 27710, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, PO Box 3624, Durham, NC, 27710, USA.
| |
Collapse
|
34
|
|
35
|
Zhang Q, Zhang J, Wang P, Zhu G, Jin G, Liu F. Glioma-associated mesenchymal stem cells-mediated PD-L1 expression is attenuated by Ad5-Ki67/IL-15 in GBM treatment. Stem Cell Res Ther 2022; 13:284. [PMID: 35765095 PMCID: PMC9241198 DOI: 10.1186/s13287-022-02968-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma (GBM) is a highly immunosuppressive and vascular malignant brain tumor. Current therapeutic strategies targeting tumor cells have limited efficacy because of the immunosuppressive microenvironment and vascularization. Glioma-associated mesenchymal stem cells (GA-MSCs) have been identified as important stromal components of the tumor microenvironment, owing to their contribution to tumor angiogenesis and their potential to drive glioma stem cells. However, there are no reports on the effect of oncolytic Ad5-Ki67/IL-15 on programmed death ligand 1 (PD-L1) expression and angiogenesis induced by GA-MSCs. Methods Flow cytometry was respectively performed to detect the PD-L1 of glioma cells and programmed death protein 1 (PD-1), CD3, CD4 and CD8 in lymphocytes, as well as distribution of the cell cycle. CCK-8 assay investigated the proliferation of glioma cells and GA-MSCs in vitro. Tumor-bearing nude mice were established with U87-Luc cells and treated with the viruses, and further the IVIS spectrum was utilized to obtain luciferase images. Finally, the expression of PD-L1 in tumor tissues was also investigated using western blotting. Results We found that GA-MSCs had potential to induce PD-L1 upregulation and involved in vascular mimicry in vitro. Importantly, Ad5-Ki67/IL-15 reduced PD-L1 expression of glioma cells and neovascularization by targeting GA-MSCs. Furthermore, despite the presence of GA-MSCs, the virus has the ability to generate potent antitumor efficacy in vitro and vivo. Conclusions These findings suggest the use of oncolytic Ad5-Ki67/IL-15 targeting GA-MSCs to treat GBM, indicating potential clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02968-z.
Collapse
Affiliation(s)
- Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100070, People's Republic of China. .,Beijing Laboratory of Biomedical Materials, Beijing, 100070, People's Republic of China.
| |
Collapse
|
36
|
Sener U, Ruff MW, Campian JL. Immunotherapy in Glioblastoma: Current Approaches and Future Perspectives. Int J Mol Sci 2022; 23:7046. [PMID: 35806051 PMCID: PMC9266573 DOI: 10.3390/ijms23137046] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Despite multimodality treatment with surgical resection, radiation therapy, chemotherapy, and tumor treating fields, recurrence is universal, median observed survival is low at 8 months and 5-year overall survival is poor at 7%. Immunotherapy aims to generate a tumor-specific immune response to selectively eliminate tumor cells. In treatment of GBM, immunotherapy approaches including use of checkpoint inhibitors, chimeric antigen receptor (CAR) T-Cell therapy, vaccine-based approaches, viral vector therapies, and cytokine-based treatment has been studied. While there have been no major breakthroughs to date and broad implementation of immunotherapy for GBM remains elusive, multiple studies are underway. In this review, we discuss immunotherapy approaches to GBM with an emphasis on molecularly informed approaches.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Michael W. Ruff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
37
|
Niedbała M, Malarz K, Sharma G, Kramer-Marek G, Kaspera W. Glioblastoma: Pitfalls and Opportunities of Immunotherapeutic Combinations. Onco Targets Ther 2022; 15:437-468. [PMID: 35509452 PMCID: PMC9060812 DOI: 10.2147/ott.s215997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system tumour in adults. It has extremely poor prognosis since the current standard of care, comprising of gross total resection and temozolomide (TMZ) chemoradiotherapy, prolongs survival, but does not provide a durable response. To a certain extent, this is due to GBM's heterogeneous, hostile and cold tumour microenvironment (TME) and the unique ability of GBM to overcome the host's immune responses. Therefore, there is an urgent need to develop more effective therapeutic approaches. This review provides critical insights from completed and ongoing clinical studies investigating novel immunotherapy strategies for GBM patients, ranging from the use of immune checkpoint inhibitors in different settings of GBM treatment to novel combinatorial therapies. In particular, we discuss how treatment regimens based on single antigen peptide vaccines evolved into fully personalised, polyvalent cell-based vaccines, CAR-T cell, and viral or gene therapies. Furthermore, the results of the most influential clinical trials and a selection of innovative preclinical studies aimed at activating the immunologically cold GBM microenvironment are reviewed.
Collapse
Affiliation(s)
- Marcin Niedbała
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice, Chorzów, Poland
| | - Gitanjali Sharma
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland
| |
Collapse
|
38
|
Alekseenko IV, Pleshkan VV, Kuzmich AI, Kondratieva SA, Sverdlov ED. Gene-Immune Therapy of Cancer: Approaches and Problems. RUSS J GENET+ 2022; 58:491-506. [DOI: 10.1134/s1022795422040020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2025]
|
39
|
van Putten EH, Kleijn A, van Beusechem VW, Noske D, Lamers CH, de Goede AL, Idema S, Hoefnagel D, Kloezeman JJ, Fueyo J, Lang FF, Teunissen CE, Vernhout RM, Bakker C, Gerritsen W, Curiel DT, Vulto A, Lamfers ML, Dirven CM. Convection Enhanced Delivery of the Oncolytic Adenovirus Delta24-RGD in Patients with Recurrent GBM: A Phase I Clinical Trial Including Correlative Studies. Clin Cancer Res 2022; 28:1572-1585. [PMID: 35176144 PMCID: PMC9365362 DOI: 10.1158/1078-0432.ccr-21-3324] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/04/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Testing safety of Delta24-RGD (DNX-2401), an oncolytic adenovirus, locally delivered by convection enhanced delivery (CED) in tumor and surrounding brain of patients with recurrent glioblastoma. PATIENTS AND METHODS Dose-escalation phase I study with 3+3 cohorts, dosing 107 to 1 × 1011 viral particles (vp) in 20 patients. Besides clinical parameters, adverse events, and radiologic findings, blood, cerebrospinal fluid (CSF), brain interstitial fluid, and excreta were sampled over time and analyzed for presence of immune response, viral replication, distribution, and shedding. RESULTS Of 20 enrolled patients, 19 received the oncolytic adenovirus Delta24-RGD, which was found to be safe and feasible. Four patients demonstrated tumor response on MRI, one with complete regression and still alive after 8 years. Most serious adverse events were attributed to increased intracranial pressure caused by either an inflammatory reaction responding to steroid treatment or viral meningitis being transient and self-limiting. Often viral DNA concentrations in CSF increased over time, peaking after 2 to 4 weeks and remaining up to 3 months. Concomitantly Th1- and Th2-associated cytokine levels and numbers of CD3+ T and natural killer cells increased. Posttreatment tumor specimens revealed increased numbers of macrophages and CD4+ and CD8+ T cells. No evidence of viral shedding in excreta was observed. CONCLUSIONS CED of Delta24-RGD not only in the tumor but also in surrounding brain is safe, induces a local inflammatory reaction, and shows promising clinical responses.
Collapse
Affiliation(s)
- Erik H.P. van Putten
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands.,Corresponding Author: Erik H.P. van Putten, Neurosurgery, Erasmus MC, Rotterdam, 3000 CA, the Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Victor W. van Beusechem
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - David Noske
- Department of Neurosurgery, Brain Tumor Center/Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Cor H.J. Lamers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Institute, Rotterdam, the Netherlands
| | - Anna L. de Goede
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, Brain Tumor Center/Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Daphna Hoefnagel
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jenneke J. Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Vrije Universiteit Amsterdam, the Netherlands
| | - René M. Vernhout
- Clinical Trial Center, Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Cathy Bakker
- Team Biosafety, Division of Safety & Environment, Support Service, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Winald Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David T. Curiel
- Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Arnold Vulto
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Clemens M.F. Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
40
|
Nguyen T, Mueller S, Malbari F. Review: Neurological Complications From Therapies for Pediatric Brain Tumors. Front Oncol 2022; 12:853034. [PMID: 35480100 PMCID: PMC9035987 DOI: 10.3389/fonc.2022.853034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Surgery, chemotherapy and radiation have been the mainstay of pediatric brain tumor treatment over the past decades. Recently, new treatment modalities have emerged for the management of pediatric brain tumors. These therapies range from novel radiotherapy techniques and targeted immunotherapies to checkpoint inhibitors and T cell transfer therapies. These treatments are currently investigated with the goal of improving survival and decreasing morbidity. However, compared to traditional therapies, these novel modalities are not as well elucidated and similarly has the potential to cause significant short and long-term sequelae, impacting quality of life. Treatment complications are commonly mediated through direct drug toxicity or vascular, infectious, or autoimmune mechanisms, ranging from immune effector cell associated neurotoxicity syndrome with CART-cells to neuropathy with checkpoint inhibitors. Addressing treatment-induced complications is the focus of new trials, specifically improving neurocognitive outcomes. The aim of this review is to explore the pathophysiology underlying treatment related neurologic side effects, highlight associated complications, and describe the future direction of brain tumor protocols. Increasing awareness of these neurologic complications from novel therapies underscores the need for quality-of-life metrics and considerations in clinical trials to decrease associated treatment-induced morbidity.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Pediatrics, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Thien Nguyen,
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of San Francisco, San Francisco, CA, United States
| | - Fatema Malbari
- Division of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
41
|
Recent advances in the therapeutic strategies of glioblastoma multiforme. Neuroscience 2022; 491:240-270. [PMID: 35395355 DOI: 10.1016/j.neuroscience.2022.03.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common, most formidable, and deadliest malignant types of primary astrocytoma with a poor prognosis. At present, the standard of care includes surgical tumor resection, followed by radiation therapy concomitant with chemotherapy and temozolomide. New developments and significant advances in the treatment of GBM have been achieved in recent decades. However, despite the advances, recurrence is often inevitable, and the survival of patients remains low. Various factors contribute to the difficulty in identifying an effective therapeutic option, among which are tumor complexity, the presence of the blood-brain barrier (BBB), and the presence of GBM cancer stem cells, prompting the need for improving existing treatment approaches and investigating new treatment alternatives for ameliorating the treatment strategies of GBM. In this review, we outline some of the most recent literature on the various available treatment options such as surgery, radiotherapy, cytotoxic chemotherapy, gene therapy, immunotherapy, phototherapy, nanotherapy, and tumor treating fields in the treatment of GBM, and we list some of the potential future directions of GBM. The reviewed studies confirm that GBM is a sophisticated disease with several challenges for scientists to address. Hence, more studies and a multimodal therapeutic approach are crucial to yield an effective cure and prolong the survival of GBM patients.
Collapse
|
42
|
Yuan B, Wang G, Tang X, Tong A, Zhou L. Immunotherapy of glioblastoma: recent advances and future prospects. Hum Vaccin Immunother 2022; 18:2055417. [PMID: 35344682 PMCID: PMC9248956 DOI: 10.1080/21645515.2022.2055417] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) stands out as the most common, aggressive form of primary malignant brain tumor conferring a devastatingly poor prognosis. Despite aggressive standard-of-care in surgical resection and chemoradiation with temozolomide, the median overall survival of patients still remains no longer than 15 months, due to significant tumor heterogeneity, immunosuppression induced by the tumor immune microenvironment and low mutational burden. Advances in immunotherapeutic approaches have revolutionized the treatment of various cancer types and become conceptually attractive for glioblastoma. In this review, we provide an overview of the basic knowledge underlying immune targeting and promising immunotherapeutic strategies including CAR T cells, oncolytic viruses, cancer vaccines, and checkpoint blockade inhibitors that have been recently investigated in glioblastoma. Current clinical trials and previous clinical trial findings are discussed, shedding light on novel strategies to overcome various limitations and challenges.
Collapse
Affiliation(s)
- Boyang Yuan
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
43
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
44
|
Picca A, Guyon D, Santonocito OS, Baldini C, Idbaih A, Carpentier A, Naccarato AG, Caccese M, Lombardi G, Di Stefano AL. Innovating Strategies and Tailored Approaches in Neuro-Oncology. Cancers (Basel) 2022; 14:1124. [PMID: 35267432 PMCID: PMC8909701 DOI: 10.3390/cancers14051124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
Diffuse gliomas, the most frequent and aggressive primary central nervous system neoplasms, currently lack effective curative treatments, particularly for cases lacking the favorable prognostic marker IDH mutation. Nonetheless, advances in molecular biology allowed to identify several druggable alterations in a subset of IDH wild-type gliomas, such as NTRK and FGFR-TACC fusions, and BRAF hotspot mutations. Multi-tyrosine kinase inhibitors, such as regorafenib, also showed efficacy in the setting of recurrent glioblastoma. IDH inhibitors are currently in the advanced phase of clinical evaluation for patients with IDH-mutant gliomas. Several immunotherapeutic approaches, such as tumor vaccines or checkpoint inhibitors, failed to improve patients' outcomes. Even so, they may be still beneficial in a subset of them. New methods, such as using pulsed ultrasound to disrupt the blood-brain barrier, gene therapy, and oncolytic virotherapy, are well tolerated and may be included in the therapeutic armamentarium soon.
Collapse
Affiliation(s)
- Alberto Picca
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - David Guyon
- Department of Medical Oncology, Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Orazio Santo Santonocito
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
| | - Capucine Baldini
- Drug Development Department (DITEP), Gustave Roussy University Hospital, 94800 Villejuif, France;
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Sorbonne Université, Inserm, CNRS, AP-HP, Hôpital Universitaire La Pitié Salpêtrière, DMU Neurosciences, 75013 Paris, France; (A.P.); (A.I.)
| | - Alexandre Carpentier
- Service de Neurochirurgie, Hôpital Universitaire La Pitié Salpêtrière, 75013 Paris, France;
| | - Antonio Giuseppe Naccarato
- Department of Translational Research and New Technologies in Medicine and Surgery, Division of Pathology, University of Pisa, 56100 Pisa, Italy;
- Anatomia Patologica 1, Department of Laboratory Medicine, Pisa University Hospital, 56126 Pisa, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.); (G.L.)
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Spedali Riuniti di Livorno—USL Toscana Nord-Ovest, 57124 Livorno, Italy;
- Department of Neurology, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
45
|
Bagley SJ, Kothari S, Rahman R, Lee EQ, Dunn GP, Galanis E, Chang SM, Burt Nabors L, Ahluwalia MS, Stupp R, Mehta MP, Reardon DA, Grossman SA, Sulman EP, Sampson JH, Khagi S, Weller M, Cloughesy TF, Wen PY, Khasraw M. Glioblastoma Clinical Trials: Current Landscape and Opportunities for Improvement. Clin Cancer Res 2022; 28:594-602. [PMID: 34561269 PMCID: PMC9044253 DOI: 10.1158/1078-0432.ccr-21-2750] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
Therapeutic advances for glioblastoma have been minimal over the past 2 decades. In light of the multitude of recent phase III trials that have failed to meet their primary endpoints following promising preclinical and early-phase programs, a Society for Neuro-Oncology Think Tank was held in November 2020 to prioritize areas for improvement in the conduct of glioblastoma clinical trials. Here, we review the literature, identify challenges related to clinical trial eligibility criteria and trial design in glioblastoma, and provide recommendations from the Think Tank. In addition, we provide a data-driven context with which to frame this discussion by analyzing key study design features of adult glioblastoma clinical trials listed on ClinicalTrials.gov as "recruiting" or "not yet recruiting" as of February 2021.
Collapse
Affiliation(s)
- Stephen J. Bagley
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shawn Kothari
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rifaquat Rahman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Eudocia Q. Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gavin P. Dunn
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri
| | | | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Louis Burt Nabors
- Division of Neuro-oncology, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Manmeet S. Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Roger Stupp
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - David A. Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Stuart A. Grossman
- Department of Oncology, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland
| | - Erik P. Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York
| | - John H. Sampson
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Simon Khagi
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Timothy F. Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
46
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
47
|
Abstract
Faced with unique immunobiology and marked heterogeneity, treatment strategies for glioblastoma require therapeutic approaches that diverge from conventional oncological strategies. The selection and prioritization of targeted and immunotherapeutic strategies will need to carefully consider these features and companion biomarkers developed alongside treatment strategies to identify the appropriate patient populations. Novel clinical trial strategies that interrogate the tumor microenvironment for drug penetration and target engagement will inform go/no-go later-stage clinical studies. Innovative trial designs and analyses are needed to move effective agents toward regulatory approvals more rapidly.
Collapse
Affiliation(s)
- Mustafa Khasraw
- Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Yoko Fujita
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Catalina Lee-Chang
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Irina V Balyasnikova
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Hinda Najem
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| | - Amy B Heimberger
- Department of Neurosurgery, Northwestern University, Chicago, Illinois 60611, USA;
| |
Collapse
|
48
|
Immunotherapy for Neuro-oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:233-258. [PMID: 34972967 DOI: 10.1007/978-3-030-79308-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunotherapy has changed the landscape of treatment of many solid and hematological malignancies and is at the forefront of cancer breakthroughs. Several circumstances unique to the central nervous system (CNS) such as limited space for an inflammatory response, difficulties with repeated sampling, corticosteroid use for management of cerebral edema, and immunosuppressive mechanisms within the tumor and brain parenchyma have posed challenges in clinical development of immunotherapy for intracranial tumors. Nonetheless, the success of immunotherapy in brain metastases (BMs) from solid cancers such as melanoma and non-small cell lung cancer (NSCLC) proves that the CNS is not an immune-privileged organ and is capable of initiating and regulating immune responses that lead to tumor control. However, the development of immunotherapeutics for the most malignant primary brain tumor, glioblastoma (GBM), has been challenging due to systemic and profound tumor-mediated immunosuppression unique to GBM, intratumoral and intertumoral heterogeneity, and lack of stably expressed clonal antigens. Here, we review recent advances in the field of immunotherapy for neuro-oncology with a focus on BM, GBM, and rare CNS cancers.
Collapse
|
49
|
Zhang M, Choi J, Lim M. Advances in Immunotherapies for Gliomas. Curr Neurol Neurosci Rep 2022; 22:1-10. [PMID: 35107784 PMCID: PMC9186001 DOI: 10.1007/s11910-022-01176-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Immunotherapy-based treatment of glioblastoma has been challenging because of the tumor's limited neoantigen profile and weakly immunogenic composition. This article summarizes the current clinical trials underway by evaluating the leading immunotherapy paradigms, the encountered barriers, and the future directions needed to overcome such tumor evasion. RECENT FINDINGS A limited number of phase III trials have been completed for checkpoint inhibitor, vaccine, as well as gene therapies, and have been unable to show improvement in survival outcomes. Nevertheless, these trials have also shown these strategies to be safe and promising with further adaptations. Further large-scale studies for chimeric antigen receptors T cell therapies and viral therapies are anticipated. Many current trials are broadening the number of antigens targeted and modulating the microtumor environment to abrogate early mechanisms of resistance. Future GBM treatment will also likely require synergistic effects by combination regimens.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - John Choi
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA,Department of Neurosurgery, Departments of Oncology, Otolaryngology, and Radiation Oncology, 453 Quarry Road, Neurosurgery 5327, Palo Alto, CA 94304, USA
| |
Collapse
|
50
|
Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, AlSharif SA, Hashem AM, Alkayyal AA. Advances in immunotherapy for glioblastoma multiforme. Front Immunol 2022; 13:944452. [PMID: 36311781 PMCID: PMC9597698 DOI: 10.3389/fimmu.2022.944452] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor of the central nervous system and has a very poor prognosis. The current standard of care for patients with GBM involves surgical resection, radiotherapy, and chemotherapy. Unfortunately, conventional therapies have not resulted in significant improvements in the survival outcomes of patients with GBM; therefore, the overall mortality rate remains high. Immunotherapy is a type of cancer treatment that helps the immune system to fight cancer and has shown success in different types of aggressive cancers. Recently, healthcare providers have been actively investigating various immunotherapeutic approaches to treat GBM. We reviewed the most promising immunotherapy candidates for glioblastoma that have achieved encouraging results in clinical trials, focusing on immune checkpoint inhibitors, oncolytic viruses, nonreplicating viral vectors, and chimeric antigen receptor (CAR) immunotherapies.
Collapse
Affiliation(s)
- Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| | - Reham Ajina
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah Aref
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Manar Darwish
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - May Alsayb
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mustafa Taher
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Shaker A. AlSharif
- King Fahad Hospital, Ministry of Health, Almadinah Almunwarah, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| |
Collapse
|