1
|
Zhou S, Hu W, Wang X, Cai M, Wei X, Qin J, Wang X, Fu Z, Gong J, Zhang C, Xu W, Xia L. Flexible and Stretchable Electrochemical Sensor Merging the Multifunction of Monitoring Movement and Rapid Visual Signal Transmission. ACS Sens 2025; 10:2957-2967. [PMID: 40215191 DOI: 10.1021/acssensors.4c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Noninvasive detection sensors for comfort and moisture absorption are popular for personalized health monitoring, yet integrated sensors that enable the on-demand detection of both physical and chemical indexes remain significantly challenging. Herein, we report a multifunctional fiber-based flexible sensing yarn for improved electrochemical and resistance sensing performance for in situ sweat activating and monitoring of body motion as well as the distinct color variation derived from the pH of sweat. The core-shell structure of the composite yarn (TSY) consists of a core layer of direct wet-spun twisted polyurethane fibers mixed with carbon black and a hydrophilic fiber layer of conductive zinc wires and colored lyocell fiber through the braiding method. The internal confined space between the core-shell layers can induce ion enrichment in sweat, enhancing the electrochemical sensing ability in capturing 0.5 μL of sweat, while the space-separated design can further isolate the interference so that pH and motion can be analyzed. Additionally, the colored hydrophilic lyocell fiber can transmit visual signals by the variance of color derived from the characterization of natural dyes in the process of adsorption of sweat. The designed TSY represents a promising integrated system capable of real-time monitoring of the chemical composition of sweat and the exercise conditions of movement.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Textiles, Donghua University, Shanghai 201620, China
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Wanjin Hu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Xiaofeng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Mengyao Cai
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Xinjie Wei
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Jieyao Qin
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Xuelin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Zhuan Fu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junyao Gong
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Liangjun Xia
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Villegas-Ch W, Govea J, Gaibor-Naranjo W, Sanchez-Viteri S. Advancing smart city factories: enhancing industrial mechanical operations via deep learning techniques. Front Artif Intell 2024; 7:1398126. [PMID: 39568661 PMCID: PMC11576463 DOI: 10.3389/frai.2024.1398126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
In the contemporary realm of industry, the imperative for influential and steadfast systems to detect anomalies is critically recognized. Our study introduces a cutting-edge approach utilizing a deep learning model of the Long-Short Term Memory variety, meticulously crafted for real-time surveillance and mitigation of irregularities within industrial settings. Through the careful amalgamation of data acquisition and analytic processing informed by our model, we have forged a system adept at pinpointing anomalies with high precision, capable of autonomously proposing or implementing remedial measures. The findings demonstrate a marked enhancement in the efficacy of operations, with the model's accuracy surging to 95%, recall at 90%, and an F1 score reaching 92.5%. Moreover, the system has favorably impacted the environment, evidenced by a 25% decline in CO2 emissions and a 20% reduction in water usage. Our model surpasses preceding systems, showcasing significant gains in speed and precision. This research corroborates the capabilities of deep learning within the industrial sector. It underscores the role of automated systems in fostering more sustainable and efficient operations in the contemporary industrial landscape.
Collapse
Affiliation(s)
- William Villegas-Ch
- Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador
| | - Jaime Govea
- Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador
| | - Walter Gaibor-Naranjo
- Carrera de Ciencias de la Computación, Universidad Politécnica Salesiana, Quito, Ecuador
| | | |
Collapse
|
3
|
Li J, Chen C, Chen Q, Li Z, Xiao S, Gao J, He S, Lin Z, Tang H, Li T, Hu L. Kilogram-scale production of strong and smart cellulosic fibers featuring unidirectional fibril alignment. Natl Sci Rev 2024; 11:nwae270. [PMID: 39301066 PMCID: PMC11409887 DOI: 10.1093/nsr/nwae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Multifunctional fibers with high mechanical strength enable advanced applications of smart textiles, robotics, and biomedicine. Herein, we reported a one-step degumming method to fabricate strong, stiff, and humidity-responsive smart cellulosic fibers from abundant natural grass. The facile process involves partially removing lignin and hemicellulose functioning as glue in grass, which leads to the separation of vessels, parenchymal cells, and cellulosic fibers, where cellulosic fibers are manufactured at kilogram scale. The resulting fibers show dense and unidirectional fibril structure at both micro- and nano-scales, which demonstrate high tensile strength of ∼0.9 GPa and Young's modulus of 72 GPa, being 13- and 14-times higher than original grass. Inspired by stretchable plant tendrils, we developed a humidity-responsive actuator by engineering cellulosic fibers into the spring-like structures, presenting superior response rate and lifting capability. These strong and smart cellulosic fibers can be manufactured at large scale with low cost, representing promising a fiber material derived from renewable and sustainable biomass.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Qiongyu Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Zhihan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shaoliang Xiao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jinlong Gao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shuaiming He
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Zhiwei Lin
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Hu Tang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Liu Y, Li Y, Yu S, Niu K, Liu H, Xing LB, Ma S. A Fluorescent Hydrogel with AIE Emission for Dehydration-Visualizable Wearable Sensors. Macromol Rapid Commun 2024; 45:e2400279. [PMID: 38816757 DOI: 10.1002/marc.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogel-based wearable sensors eventually experience dehydration, which negatively impacts their function, leading to decreased sensitivity. Monitoring the real-time water retention rate and sensing performance of wearable flexible sensors without dismantling them remains a significant difficulty. In this study, a molecule having aggregation-induced emission (AIE) properties in an aqueous environment has been developed and produced, which can combine with anionic guar gum and acrylic acid to create an AIE hydrogel. Wearable sensing electronic devices have the capability to track motion signals at various joints of the human body. Additionally, they can effectively and visually monitor dehydration status during extended periods of operation. The fluorescence intensity of the hydrogel is primarily influenced by the level of aggregation of luminous monomers inside the network. This level of aggregation is predominantly governed by the hydrogel's water retention rate. Hence, the extended duration of hydrogel dehydration can be manifested through alterations in their fluorescence characteristics, which are employed for strain sensing. This approach enables users to assess the water retention of hydrogels with greater efficiency, eliminating the requirement for disassembling them from the completed electrical gadget. In summary, the use of AIE-based fluorescent hydrogels will advance the progress of intelligent wearable electronics.
Collapse
Affiliation(s)
- Yanru Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yali Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Kaikai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, P. R. China
| |
Collapse
|
5
|
Dang C, Wang Z, Hughes-Riley T, Dias T, Qian S, Wang Z, Wang X, Liu M, Yu S, Liu R, Xu D, Wei L, Yan W, Zhu M. Fibres-threads of intelligence-enable a new generation of wearable systems. Chem Soc Rev 2024; 53:8790-8846. [PMID: 39087714 DOI: 10.1039/d4cs00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.
Collapse
Affiliation(s)
- Chao Dang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Theodore Hughes-Riley
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Tilak Dias
- Nottingham School of Art and Design, Nottingham Trent University, Dryden Street, Nottingham, NG1 4GG, UK.
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xingbei Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Rongkun Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Dewen Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore.
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Yu X, Chen L, Zhang J, Yan W, Hughes-Riley T, Cheng Y, Zhu M. Structural design of light-emitting fibers and fabrics for wearable and smart devices. Sci Bull (Beijing) 2024; 69:2439-2455. [PMID: 38853045 DOI: 10.1016/j.scib.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Flexible light-emitting fibers and fabrics serve to bridge human-machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural progress and improvements. This review focuses on the structural design of light-emitting fibers and fabrics, starting with a summary of design principles, emission mechanisms, and structural evolution of coaxial structured light-emitting fibers. Subsequently, we explore recent advances in the helical structure design strategies that boost the mechanical sensitivity of light-emitting fibers. Following that, we analyze continuous preparation processes and the development of large-area intelligent light-emitting fabrics based on interwoven structures. Examples based on stiff and rigid inorganic-based light-emitting diodes integrated into flexible systems are also presented. Finally, we discuss the current challenges and future opportunities for light-emitting applications in the field of wearable and smart devices.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Linfeng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | | | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Zhou X, Liu X, Yu X, Liu Q, Bai T, Gao M, Xu C, Zhang X, Zhu M, Cheng Y. Hybrid Water-Harvesting Channels Delivering Wide-Range and Supersensitive Passive Fluorescence Humidity Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27794-27803. [PMID: 38748448 DOI: 10.1021/acsami.4c05437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The development of optical humidity detection has been of considerable interest in highly integrated wearable electronics and packaged equipment. However, improving their capacities for color recognition at ultralow humidity and response-recovery rate remains a significant challenge. Herein, we propose a type of hybrid water-harvesting channel to construct brand-new passive fluorescence humidity sensors (PFHSs). Specifically, the hybrid water-harvesting channels involve porous metal-organic frameworks and a hydrophilic poly(acrylic acid) network that can capture water vapors from the ambient environment even at ultralow humidity, into which polar-responsive aggregation-induced emission molecules are doped to impart humidity-sensitive luminescence colors. As a result, the PFHSs exhibit clearly defined fluorescence signals within 0-98% RH coupling with desirable performances such as a fast response rate, precise quantitative feedback, and durable reversibility. Given the flexible processability of this system, we further upgrade the porous structure via electrostatic spinning to furnish a kind of Nano-PFHSs, demonstrating an impressive response time (<100 ms). Finally, we validate the promising applications of these sensors in electronic humidity monitoring and successfully fabricate a portable and rapid humidity indicator card.
Collapse
Affiliation(s)
- Xuyang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tianxiang Bai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
8
|
Hong SG, Oh BM, Kim JH, Lee JU. Textile-Based Adsorption Sensor via Mixed Solvent Dyeing with Aggregation-Induced Emission Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1745. [PMID: 38673102 PMCID: PMC11051475 DOI: 10.3390/ma17081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This study demonstrates a novel methodology for developing a textile-based adsorption sensor via mixed solvent dyeing with aggregation-induced emission (AIE) dyes on recycled fabrics. AIE dyes were incorporated into the fabrics using a mixed solvent dyeing method with a co-solvent mixture of H2O and organic solvents. This method imparted unique fluorescence properties to fabrics, altering fluorescence intensity or wavelength based on whether the AIE dye molecules were in an isolated or aggregated state on the fabrics. The precise control of the H2O fraction to organic solvent during dyeing was crucial for influencing fluorescence intensity and sensing characteristics. These dyed fabrics exhibited reactive thermochromic and vaporchromic properties, with changes in fluorescence intensity corresponding to variations in temperature and exposure to volatile organic solvents (VOCs). Their superior characteristics, including a repetitive fluorescence switching property and resistance to photo-bleaching, enhance their practicality across various applications. Consequently, the smart fabrics dyed with AIE dye not only find applications in clothing and fashion design but demonstrate versatility in various fields, extending to sensing temperature, humidity, and hazardous chemicals.
Collapse
Affiliation(s)
- Seong Gyun Hong
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| | - Byeong M. Oh
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jong H. Kim
- Department of Molecular Science and Technology, Ajou University, 206, World Cup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea; (B.M.O.); (J.H.K.)
| | - Jea Uk Lee
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 De-ogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
9
|
John VL, Nayana AR, Keerthi TR, K A AK, Sasidharan BCP, T P V. Mulberry Leaves (Morus Rubra)-Derived Blue-Emissive Carbon Dots Fed to Silkworms to Produce Augmented Silk Applicable for the Ratiometric Detection of Dopamine. Macromol Biosci 2023; 23:e2300081. [PMID: 37097218 DOI: 10.1002/mabi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Silk fibers (SF) reeled from silkworms are constituted by natural proteins, and their characteristic structural features render them applicable as materials for textiles and packaging. Modification of SF with functional materials can facilitate their applications in additional areas. In this work, the preparation of functional SF embedded with carbon dots (CD) is reported through the direct feeding of a CD-modified diet to silkworms. Fluorescent and mechanically robust SF are obtained from silkworms (Bombyx mori) that are fed on CDs synthesized from the Morus rubra variant of mulberry leaves (MB-CDs). MB-CDs are introduced to silkworms from the third instar by spraying them on the silkworm feed, the mulberry leaves. MB-CDs are synthesized hydrothermally without adding surface passivating agents and are observed to have a quantum yield of 22%. With sizes of ≈4 nm, MB-CDs exhibited blue fluorescence, and they can be used as efficient fluorophores to detect Dopamine (DA) up to the limit of 4.39 nM. The nanostructures and physical characteristics of SF weren't altered when the SF are infused with MB-CDs. Also, a novel DA sensing application based on fluorescence with the MB-CD incorporated SF is demonstrated.
Collapse
Affiliation(s)
- Varsha Lisa John
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| | - A R Nayana
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - T R Keerthi
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - Athira Krishnan K A
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - B C P Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Vinod T P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| |
Collapse
|
10
|
Lin R, Liu J, Xu W, Liu Z, He X, Zheng C, Kang M, Li X, Zhang Z, Feng HT, Lam JWY, Wang D, Chen M, Tang BZ. Type I Photosensitization with Strong Hydroxyl Radical Generation in NIR Dye Boosted by Vigorous Intramolecular Motions for Synergistic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303212. [PMID: 37232045 DOI: 10.1002/adma.202303212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Development of type I photosensitizers (PSs) with strong hydroxyl radical (· OH) formation is particularly important in the anaerobic tumor treatment. On the other hand, it is challenging to obtain an efficient solid-state intramolecular motion to promote the development of molecular machine and molecular motor. However, the relationship between them is never revealed. In this work, a pyrazine-based near-infrared type I PS with remarkable donor-acceptor effect is developed. Notably, the intramolecular motions are almost maximized by the combination of intramolecular and intermolecular engineering to simultaneously introduce the unlimited bond stretching vibration and boost the group rotation. The photothermal conversion caused by the intramolecular motions is realized with efficiency as high as 86.8%. The D-A conformation of PS can also induce a very small singlet-triplet splitting of 0.07 eV, which is crucial to promote the intersystem crossing for the triplet sensitization. Interestingly, its photosensitization is closely related to the intramolecular motions, and a vigorous motion may give rise to a strong · OH generation. In view of its excellent photosensitization and photothermal behavior, the biocompatible PS exhibits a superior imaging-guided cancer synergistic therapy. This work stimulates the development of advanced PS for the biomedical application and solid-state intramolecular motions.
Collapse
Affiliation(s)
- Runfeng Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Weilin Xu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zicheng Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xiang He
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Canze Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xue Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Photochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ming Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
11
|
Zhang J, Tu Y, Shen H, Lam JWY, Sun J, Zhang H, Tang BZ. Regulating the proximity effect of heterocycle-containing AIEgens. Nat Commun 2023; 14:3772. [PMID: 37355670 PMCID: PMC10290688 DOI: 10.1038/s41467-023-39479-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
Proximity effect, which refers to the low-lying (n,π*) and (π,π*) states with close energy levels, usually plays a negative role in the luminescent behaviors of heterocyclic luminogens. However, no systematic study attempts to reveal and manipulate proximity effect on luminescent properties. Here, we report a series of methylquinoxaline derivatives with different electron-donating groups, which show different photophysical properties and aggregation-induced emission behaviors. Experimental results and theoretical calculation reveal the gradually changed energy levels and different coupling effects of the closely related (n,π*) and (π,π*) states, which intrinsically regulate proximity effect and aggregation-induced emission behaviors of these luminogens. With the intrinsic nature of heterocycle-containing compounds, they are utilized for sensors and information encryption with dynamic responses to acid/base stimuli. This work reveals both positive and negative impacts of proximity effect in heterocyclic aggregation-induced emission systems and provides a perspective to develop functional and responsive luminogens with aggregation-induced emission properties.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yujie Tu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China.
| |
Collapse
|
12
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
13
|
Shen S, Baryshnikov GV, Xie Q, Wu B, Lv M, Sun H, Li Z, Ågren H, Chen J, Zhu L. Making multi-twisted luminophores produce persistent room-temperature phosphorescence. Chem Sci 2023; 14:970-978. [PMID: 36755727 PMCID: PMC9890967 DOI: 10.1039/d2sc05741g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Multi-twisted molecules, especially those with more than four branched rotation axes, have served as superior prototypes in diverse fields like molecular machines, optical materials, sensors, and so forth. However, due to excessive non-radiative relaxation of these molecules, it remains challenging to address their persistent room-temperature phosphorescence (pRTP), which limits their further development. Herein, we develop a host-guest energy-transfer relay strategy to improve the phosphorescence lifetime of multi-twisted luminophores by over thousand-fold to realize pRTP, which can be witnessed by the naked eye after removing the excitation light source. Moreover, we employ photoexcitation-induced molecular rearrangement to further prolong the phosphorescence lifetime, which, to the best of our knowledge, is the first example of photoactivation in ordered host-guest systems. Our systems show superior humidity and oxygen resistance, enabling long-term (at least over 9-12 months) stability of the pRTP properties. By achieving pRTP of multi-twisted luminophores, this work can advance the understanding of molecular photophysical mechanisms and guide the study of more molecular systems that are difficult to achieve pRTP.
Collapse
Affiliation(s)
- Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Glib V. Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping UniversityNorrköping 60174Sweden
| | - Qishan Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Bin Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Meng Lv
- State Key Laboratory of Precision Spectroscopy, East China Normal UniversityShanghai200241P. R. China
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala UniversityBox 516UppsalaSE-751 20Sweden
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal UniversityShanghai200241P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200438 China
| |
Collapse
|
14
|
Sun J, Guo J, Qian Y, Guan F, Zhang Y, He J, Feng S. Humidity-Responsive Guar Gum Fibers by Wet Spinning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15327-15339. [PMID: 36441520 DOI: 10.1021/acs.langmuir.2c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, guar gum fibers were obtained by wet spinning, in which epichlorohydrin (ECH) and calcium chloride (CaCl2) were used as the cross-linking agent and metal complexing agent, respectively. The fibers' chemical structure, morphology, crystallinity, and thermal and mechanical properties were analyzed by Fourier infrared spectroscopy, scanning electron microscopy, and so forth. The results showed that ECH reacted with guar gum and formed ether bonds. Meanwhile, ECH can effectively increase the number of cross-linking points and improve the mechanical properties of the fibers. When the ECH content was 12% (w/w), the breaking strength could reach 2.4 cN/dtex. The conductivity of MC-GG fibers varied with the relative humidity and could reach 2.845 × 10-2 S/cm at maximum. Meanwhile, the contact angle of MC-GG fibers was 33°, indicating that the fibers had good hydrophilicity and humidity response ability and had excellent potential in the field of smart fabrics.
Collapse
Affiliation(s)
- Jianbin Sun
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian116034, China
| | - Yongfang Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
- Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Jiahao He
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| | - Shi Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian116034, China
| |
Collapse
|
15
|
Li B, Zhang Y, Wang J, Yan B, Liang J, Dong Y, Zhou Q. Fast and Reversibly Humidity-Responsive Fluorescence Based on AIEgen Proton Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49119-49127. [PMID: 36256864 DOI: 10.1021/acsami.2c13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The construction of humidity-responsive fluorescent materials with reversibility, specificity, and sensitivity is of great importance for the development of information encryption, fluorescence patterning, and sensors. Nevertheless, to date, the application of these materials has been limited by their slow response rate and nonspecificity. Herein, a humidity-responsive fluorescence system was designed and assembled to achieve a rapid, reversible, and specific moisture response. The system comprised tetra-(4-pyridylphenyl)ethylene (TPE-4Py) as a fluorescent proton acceptor with an aggregation-induced emission (AIE) effect and poly(acrylic acid) (PAA) as a proton donor with an efficient moisture-capturing ability. The fluorescence color and intensity rapidly changed with increasing relative humidity (RH) because of TPE-4Py protonation, and TPE-4Py deprotonation resulted in recovery of the original fluorescence color in low-humidity environments. The proton transfer between the pyridyl group in TPE-4Py and the carboxyl group in PAA was reversible and chemically stable, and the humidity-responsive fluorescence system showed a high response/recovery speed, an obvious color change, good reversibility, and an outstanding specific moisture response. Because of these advantages, diverse applications of this humidity-responsive fluorescence system in transient fluorescent patterning and the encryption of information were also developed and demonstrated.
Collapse
Affiliation(s)
- Botian Li
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Yichi Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Jian Wang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Bo Yan
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Jundang Liang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qiong Zhou
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
16
|
Xue T, Ma L, Lu H, Nie J, Zhu X. The acidochromism of an N-methyl pyrrole-based enone dye toward trifluoroacetic acid in different solvents and solid state. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Yu W, Yu X, Qiu Z, Xu C, Gao M, Zheng J, Zhang J, Wang G, Cheng Y, Zhu M. 1+1>2: Fiber Synergy in Aggregation‐Induced Emission. Chemistry 2022; 28:e202201664. [DOI: 10.1002/chem.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wanting Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junjie Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
18
|
Qiu Z, Yu X, Zhang J, Xu C, Gao M, Cheng Y, Zhu M. Fibrous aggregates: Amplifying aggregation-induced emission to boost health protection. Biomaterials 2022; 287:121666. [PMID: 35835002 PMCID: PMC9250848 DOI: 10.1016/j.biomaterials.2022.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Environmental monitoring and personal protection are critical for preventing and for protecting human health during all infectious disease outbreaks (including COVID-19). Fluorescent probes combining sensing, imaging and therapy functions, could not only afford direct visualizing existence of biotargets and monitoring their dynamic information, but also provide therapeutic functions for killing various bacteria or viruses. Luminogens with aggregation-induced emission (AIE) could be well suited for above requirements because of their typical photophysical properties and therapeutic functions. Integration of these molecules with fibers or textiles is of great interest for developing flexible devices and wearable systems. In this review, we mainly focus on how fibers and AIEgens to be combined for health protection based on the latest advances in biosensing and bioprotection. We first discuss the construction of fibrous sensors for visualization of biomolecules. Next recent advances in therapeutic fabrics for individual protection are introduced. Finally, the current challenges and future opportunities for "AIE + Fiber" in sensing and therapeutic applications are presented.
Collapse
Affiliation(s)
- Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| |
Collapse
|
19
|
Du Z, Zhang T, Gai H, Sheng L, Guan Y, Wang X, Qin T, Li M, Wang S, Zhang Y, Nie H, Zhang SX. Multi-Component Collaborative Step-by-Step Coloring Strategy to Achieve High-Performance Light-Responsive Color-Switching. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103309. [PMID: 34802199 PMCID: PMC8805571 DOI: 10.1002/advs.202103309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Light-responsive color-switching materials (LCMs) are long-lasting hot fields. However, non-ideal comprehensive performance (such as color contrast and retention time cannot be combined, unsatisfactory repeatability, and non-automated coloring mode) significantly hinder their development toward high-end products. Herein, the development of LCMs that exhibit long retention time, good color contrast, repeatability, and the property of automatic coloring is reported. The realization of this goal stems from the adoption of a bio-inspired multi-component collaborative step-by-step coloring strategy. Under this strategy, a conventional one-step photochromic process is divided into a "light+heat" controlled multi-step process for the fabrication of the desired LCMs. The obtained LCMs can effectively resist the long-troubled ambient-light interference and avoid its inherent yellow background, thereby achieving the longest retention time and good repeatability. Multiple colors are generated and ultra-fast imaging compatible with the laser-printing technology is also realized. The application potential of the materials in short-term reusable identity cards, absorptive readers, billboards, and shelf labels is demonstrated. The results reported herein can potentially help in developing and designing various high-performance, switchable materials that can be used for the production of high-end products.
Collapse
Affiliation(s)
- Zhen Du
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Ting Zhang
- School of Materials Science and EngineeringDongguan University of TechnologyGuangdong523710China
| | - Hanqi Gai
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Lan Sheng
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Yu Guan
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Xiaojun Wang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Tianyou Qin
- College of Basic MedicineJilin UniversityChangchun130012China
| | - Minjie Li
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Shuo Wang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Yu‐Mo Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Hui Nie
- College of ChemistryHuazhong University of Science and TechnologyWuhan430074China
| | - Sean Xiao‐An Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| |
Collapse
|
20
|
Yang FH, Hao B, Yue X, Ma PC. Fluorescent and stimuli-responsive performance of polymer composites filled with tetraphenylethene derivatives. Polym Chem 2022. [DOI: 10.1039/d2py00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a series of tetraphenylethene (TPE) derivatives with 3-butenloxy moieties were synthesized. The developed TPE with different number of substituent groups showed controlled aggregation-induced emission performance and variable...
Collapse
|
21
|
Han J, Cheng SC, Yiu SM, Tse MK, Ko CC. Luminescent monomeric and dimeric Ru(ii) acyclic carbene complexes as selective sensors for NH 3/amine vapor and humidity. Chem Sci 2021; 12:14103-14110. [PMID: 34760194 PMCID: PMC8565393 DOI: 10.1039/d1sc04074j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022] Open
Abstract
A new class of luminescent bis(bipyridyl) Ru(ii) pyridyl acyclic carbene complexes with environmentally-sensitive dimerization equilibrium have been developed. Owing to the involvement of the orbitals of the diaminocarbene ligand in the emissive excited state, the phosphorescence properties of these complexes are strongly affected by H-bonding interactions with various H-bonding donor/acceptor molecules. With the remarkable differences in the emission properties of the monomer, dimer, and H-bonded amine adducts together with the change of the dimerization equilibrium, these complexes can be used as luminescent gas sensors for humidity, ammonia, and amine vapors. With the responses to amines and humidity and the corresponding change in the luminescence properties, a proof-of-principle for binary optical data storage with a reversible concealment process has been described.
Collapse
Affiliation(s)
- Jingqi Han
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Man-Kit Tse
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
22
|
Yao Y, Zhu J, Shen Y, Wu H. pH-Responsive Dual-Emitting Hydroxypropyl Methylcellulose-Based Material Containing Fluorescein Isothiocyanate and CaAl 2O 4:Eu 2+,Dy 3+ Phosphors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50338-50349. [PMID: 34637258 DOI: 10.1021/acsami.1c14305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we prepared a dual-emitting cellulose film with pH response, which offers high transparency, good flexibility, and intense thermal stability. The color of the fluorescent film that changes from green to blue-green to cyan was achieved by covalently attaching organic dye fluorescein isothiocyanate (FITC), inorganic pigment NH2-CaAl2O4:Eu2+,Dy3+ (NH2-CAO), and organic-inorganic fluorescence species onto hydroxypropyl methylcellulose (HMPC) chains, respectively. Benefiting from the "anchoring" and "dilution" effects of the HMPC skeleton, HPMC-FITC and HPMC@NH2-CAO fluorescent solutions and solid-state films emit green and blue-green fluorescence at 535 and 480 nm, respectively. The obtained pH-responsive cellulose-based dual-emitting film can continuously emit cyan light at the two emission peaks of 480 and 535 nm for a long time and exhibits strong fluorescence intensity under exceedingly alkaline conditions. Moreover, the HPMC-based fluorescent solution coated on glass and fabric substrate shows strong fluorescence under 365 nm UV light stimulation. Compared with the existing cellulose-based fluorescent films, this work expands the emission wavelength range of cellulose-based fluorescent films and prolongs the luminescent time of environment-responsive fluorescent films. This provides a new way to prepare intelligent color-changing fabric-coating materials and sensitive pH sensors based on biomass.
Collapse
Affiliation(s)
- Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Junxin Zhu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| |
Collapse
|
23
|
Wang H, Zhang Y, Liang X, Zhang Y. Smart Fibers and Textiles for Personal Health Management. ACS NANO 2021; 15:12497-12508. [PMID: 34398600 DOI: 10.1021/acsnano.1c06230] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fibers and textiles play key roles in the development and day-to-day activities of human society. Innovations related to flexible electronics-smart fibers and textiles with sensing, thermal regulation, and energy management capabilities-have drawn great interest from both academic and industrial communities. Smart fibers and textiles are anticipated to revolutionize personal health management due to their manifold features and capabilities, providing the foundation for many intelligent wearables. In this Perspective, we provide a brief overview of recent advances in the design and fabrication of smart fibers and textiles for health management applications, focusing primarily on those with sensing, thermal regulation, and energy management functions. We describe the existing challenges and opportunities and propose future development directions.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
24
|
Khorloo M, Yu X, Cheng Y, Zhang H, Yu S, Lam JWY, Zhu M, Tang BZ. Enantiomeric Switching of the Circularly Polarized Luminescence Processes in a Hierarchical Biomimetic System by Film Tilting. ACS NANO 2021; 15:1397-1406. [PMID: 33275400 DOI: 10.1021/acsnano.0c08665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Circularly polarized luminescence (CPL) switching has attracted great attention due to the potential applications in chiral photonics and electronics. However, the lack of examples to achieve switchable CPL within a single material in the dry solid state hampers the scope of applications. Herein, we demonstrate a crystalline chiral polymer film as a polarizing medium consisting of radially assembled twisted crystallites, where achiral aggregation-induced emissive luminogens (AIEgens) are confined between the twisted crystalline stacks, eventually yielding handedness-switchable CPL by simple film tilting. Hierarchically organized twisted crystallites create the selective reflection activity of the polarizing medium. Upon film tilting, enantiomeric switching is realized by selectively collecting transmitted and reflected CPL components. The confined AIEgens in the crystalline polarizing system show a great enhancement of the luminescence efficiency. Moreover, the approach is general with broadband activity, and various AIEgens could be applied to generate full-color-tunable CPL. Additionally, the rigid and continuous nature of this polarizing system affords enhanced optical stability and facile modulation, developing a general route for designing chiroptical materials.
Collapse
Affiliation(s)
- Michidmaa Khorloo
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- AIE Institute, Guangzhou Development District, Huangpu, Gunagzhou 510530, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
|