1
|
Sigdel SR, Zheng X, Babst F, Camarero JJ, Gao S, Li X, Lu X, Pandey J, Dawadi B, Sun J, Zhu H, Wang T, Liang E, Peñuelas J. Accelerated succession in Himalayan alpine treelines under climatic warming. NATURE PLANTS 2024; 10:1909-1918. [PMID: 39558135 DOI: 10.1038/s41477-024-01855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Understanding how climate change influences succession is fundamental for predicting future forest composition. Warming is expected to accelerate species succession at their cold thermal ranges, such as alpine treelines. Here we examined how interactions and successional strategies of the early-successional birch (Betula utilis) and the late-successional fir (Abies spectabilis) affected treeline dynamics by combining plot data with an individual-based treeline model at treelines in the central Himalayas. Fir showed increasing recruitment and a higher upslope shift rate (0.11 ± 0.02 m yr-1) compared with birch (0.06 ± 0.03 m yr-1) over the past 200 years. Spatial analyses indicate strong interspecies competition when trees were young. Model outputs from various climatic scenarios indicate that fir will probably accelerate its upslope movement with warming, while birch recruitment will decline drastically, forming stable or even retreating treelines. Our findings point to accelerating successional dynamics with late-successional species rapidly outcompeting pioneer species, offering insight into future forest succession and its influences on ecosystem services.
Collapse
Affiliation(s)
- Shalik Ram Sigdel
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Zheng
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USA
| | | | - Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Lu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Jayram Pandey
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binod Dawadi
- Central Department of Hydrology and Meteorology, Tribhuvan University, Kathmandu, Nepal
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.
| | - Josep Peñuelas
- CREAF, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| |
Collapse
|
2
|
Wei W, Shi Z, Yuan M, Yang S, Gao J. Mycorrhizal status regulates plant phenological mismatch caused by warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175117. [PMID: 39084389 DOI: 10.1016/j.scitotenv.2024.175117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/11/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Mycorrhiza is an important functional feature of plants, which plays a vital role in regulating plant phenology in response to environmental changes. However, the effect of mycorrhiza on plant phenological asymmetry in response to climate changes is still rarely reported. Based on a global database of mycorrhizal statuses (obligately mycorrhizal, OM and facultatively mycorrhizal, FM) and phenology, we demonstrated that mycorrhizas reduce the phenological mismatches between above- and below-ground plant responses to climate warming under OM status. The mismatch of above- and below-ground growing season length of FM plants to warming was as high as 10.65 days, 9.1925 days and 12.36 days in total, herbaceous and woody plants, respectively. The mismatch of growing season length of OM plants was only 2.12 days, -0.61 days and 7.64 days among plant groups, which was much lower than that of FM plants. Correlation analysis indicated that OM plants stabilized plant phenology by regulating the relationship between the start of the growing season and the length of the growing season. Path analysis found that herbaceous plants and woody plants reduced phenological mismatches by stabilizing below-ground and above-ground phenology, respectively. In exploring the effects of mycorrhizal status on early- or late-season phenophases, we found that different mycorrhizal statuses affected the response of early- or late-season phenophase to warming. OM promoted the advance of early-season phenophase, and FM promoted the delay of late-season phenophase among different plant groups. In different regions, OM and FM promoted the advance of early-season phenophase in temperate and boreal regions, respectively. Our results indicate that mycorrhizal status mediates plant phenological response to warming, so the potential effects of mycorrhizal status should be considered when studying plant phenology changes.
Collapse
Affiliation(s)
- Wenjing Wei
- College of Agriculture, Henan University of Science and Technology, Luoyang, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China; Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China; Henan Engineering Research Center of Human Settlements, Luoyang, China.
| | - Mingli Yuan
- College of Agriculture, Henan University of Science and Technology, Luoyang, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China; Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Shuang Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China; Henan Engineering Research Center of Human Settlements, Luoyang, China
| | - Jiakai Gao
- College of Agriculture, Henan University of Science and Technology, Luoyang, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, China; Henan Engineering Research Center of Human Settlements, Luoyang, China
| |
Collapse
|
3
|
Qiu H, Yan Q, Yang Y, Huang X, Wang J, Luo J, Peng L, Bai G, Zhang L, Zhang R, Fu YH, Wu C, Peñuelas J, Chen L. Flowering in the Northern Hemisphere is delayed by frost after leaf-out. Nat Commun 2024; 15:9123. [PMID: 39443480 PMCID: PMC11500351 DOI: 10.1038/s41467-024-53382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Late spring frosts, occurring after spring phenological events, pose a dire threat to tree growth and forest productivity. With climate warming, earlier spring phenological events have become increasingly common and led to plants experiencing more frequent and severe frost damage. However, the effect of late spring frosts after leaf-out on subsequent flowering phenology in woody species remains unknown. Utilizing 572,734 phenological records of 640 species at 5024 sites from four long-term and large-scale in situ phenological networks across the Northern Hemisphere, we show that late spring frosts following leaf-out significantly delay the onset of the subsequent flowering by approximately 6.0 days. Late-leafing species exhibit greater sensitivity to the frosts than early-leafing species, resulting in a longer delay of 2.5 days in flowering. Trees in warm regions and periods exhibit a more pronounced frost-induced flowering delay compared to those in cold regions and periods. A significant increase in the frequency of late spring frost occurrence is observed in recent decades. Our findings elucidate the intricate relationships among leaf-out, frost, and flowering but also emphasize that the sequential progression of phenological events, rather than individual phenological stages, should be considered when assessing the phenological responses to climate change.
Collapse
Affiliation(s)
- Haoyu Qiu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Qin Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Yuchuan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Xu Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Jinmei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Jiajie Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Lang Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Ge Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Liuyue Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Chaoyang Wu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- Global Ecology Unit Center for Ecological Research and Forestry Applications (CREAF)-National Research Council (CSIC)-Universitat Autonoma de Barcelona (UAB), National Research Council (CSIC), Bellaterra, Catalonia, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
4
|
Li W, Jiang Y, Lin Z, Wang J, Zhang Y, Ma W. Warming-driven increased synchrony of tree growth across the southernmost part of the Asian boreal forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173389. [PMID: 38810743 DOI: 10.1016/j.scitotenv.2024.173389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Climate change has profoundly affected the synchrony of tree growth at multiple scales, thereby altering the structure and function of forest ecosystems. The Asian boreal forests extend southward to the Greater Khingan Range in northeast China. Given the ecological importance and susceptibility to climate change, the impacts of warming on this marginal forest community have been extensively investigated. Nonetheless, how tree growth synchrony changes across this region remains less understood. Focusing on this knowledge gap, we compiled a contiguously-distributed tree-ring network, containing 18 sampling populations and 475 individual larch trees, to explore the changes in multiple-scale growth synchrony across this region. We found increasing growth synchrony at both the individual and population levels over the past decades. The increasing trend of the regional inter-population growth synchrony was well in line with the increasing temperature and PDSI. Furthermore, 11 of the 18 sampling populations showed significant increases in their intra-population growth synchrony. We further associated the sliding intra-population growth synchrony with local climates. Intra-population growth synchrony of 13 and 11 sampling populations were significantly positively correlated with local temperature, and negatively correlated with local PDSI, respectively, demonstrating the driving role of warming-induced drought on growth synchrony. The linear regression model quantifying this relationship suggested that an increase of 1 °C in annual mean temperature would drive the intra-population growth synchrony to increase by 0.047. As warming trends in the study area are projected to continue over this century, our study warns of the further consequences of the increasing growth synchrony may have on the functioning, resilience, and persistence of forests.
Collapse
Affiliation(s)
- Wenqing Li
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
| | - Yuan Jiang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, Zhuhai 519087, China.
| | - Zhiqiang Lin
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning 530028, China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530029, China
| | - Jun Wang
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
| | - Yanan Zhang
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
| | - Wenqiu Ma
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Niu Y, Bai Y, Rossi S. Editorial: Vegetation-based degradation and restoration on the alpine grasslands of the Tibetan plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1467335. [PMID: 39148619 PMCID: PMC11325184 DOI: 10.3389/fpls.2024.1467335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Yujie Niu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou, Gansu, China
- Department of Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Yanfu Bai
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
6
|
Zheng X, Babst F, Camarero JJ, Li X, Lu X, Gao S, Sigdel SR, Wang Y, Zhu H, Liang E. Density-dependent species interactions modulate alpine treeline shifts. Ecol Lett 2024; 27:e14403. [PMID: 38577961 DOI: 10.1111/ele.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Species interactions such as facilitation and competition play a crucial role in driving species range shifts. However, density dependence as a key feature of these processes has received little attention in both empirical and modelling studies. Herein, we used a novel, individual-based treeline model informed by rich in situ observations to quantify the contribution of density-dependent species interactions to alpine treeline dynamics, an iconic biome boundary recognized as an indicator of global warming. We found that competition and facilitation dominate in dense versus sparse vegetation scenarios respectively. The optimal balance between these two effects was identified at an intermediate vegetation thickness where the treeline elevation was the highest. Furthermore, treeline shift rates decreased sharply with vegetation thickness and the associated transition from positive to negative species interactions. We thus postulate that vegetation density must be considered when modelling species range dynamics to avoid inadequate predictions of its responses to climate warming.
Collapse
Affiliation(s)
- Xiangyu Zheng
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, Arizona, USA
| | | | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Lu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Shalik Ram Sigdel
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Yafeng Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Li D, Li X, Li Z, Fu Y, Zhang J, Zhao Y, Wang Y, Liang E, Rossi S. Drought limits vegetation carbon sequestration by affecting photosynthetic capacity of semi-arid ecosystems on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168778. [PMID: 38008313 DOI: 10.1016/j.scitotenv.2023.168778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Drought is the driver for ecosystem production in semi-arid areas. However, the response mechanism of ecosystem productivity to drought remains largely unknown. In particular, it is still unclear whether drought limits the production via photosynthetic capacity or phenological process. Herein, we assess the effects of maximum seasonal photosynthesis, growing season length, and climate on the annual gross primary productivity (GPP) in vegetation areas of the Loess Plateau using multi-source remote sensing and climate data from 2001 to 2021. We found that maximum seasonal photosynthesis rather than growing season length dominates annual GPP, with above 90 % of the study area showing significant and positive correlation. GPP and maximum seasonal photosynthesis were positively correlated with self-calibrating Palmer Drought Severity Index (scPDSI), standardized precipitation and evapotranspiration index (SPEI) in >95 % of the study area. Structural equation model demonstrated that both drought indices contributed to the annual GPP by promoting the maximum seasonal photosynthesis. Total annual precipitation had a positive and significant effect on two drought indices, whereas the effects of temperature and radiation were not significant. Evidence from wood formation data also confirmed that low precipitation inhibited long-term carbon sequestration by decreasing the maximum growth rate in forests. Our findings suggest that drought limits ecosystem carbon sequestration by inhibiting vegetation photosynthetic capacity rather than phenology, providing a support for assessing the future dynamics of the terrestrial carbon cycle and guiding landscape management in semi-arid ecosystems.
Collapse
Affiliation(s)
- Dou Li
- College of Ecology, Lanzhou University, Lanzhou 730000, China; Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yang Fu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; College of Earth and Environment Science, Lanzhou University, Lanzhou 730000, China
| | - Jingtian Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yijin Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yafeng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| |
Collapse
|
8
|
Gao S, Camarero JJ, Babst F, Liang E. Global tree growth resilience to cold extremes following the Tambora volcanic eruption. Nat Commun 2023; 14:6616. [PMID: 37857605 PMCID: PMC10587176 DOI: 10.1038/s41467-023-42409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Although the global climate is warming, external forcing driven by explosive volcanic eruptions may still cause abrupt cooling. The 1809 and 1815 Tambora eruptions caused lasting cold extremes worldwide, providing a unique lens that allows us to investigate the magnitude of global forest resilience to and recovery from volcanic cooling. Here, we show that growth resilience inferred from tree-ring data was severely impacted by cooling in high latitudes and elevations: the average tree growth decreased substantially (up to 31.8%), especially in larch forests, and regional-scale probabilities of severe growth reduction (below -2σ) increased up to 1390%. The influence of the eruptions extended longer (beyond the year 1824) in mid- than in high-latitudes, presumably due to the combined impacts of cold and drought stress. As Tambora-size eruptions statistically occur every 200-400 years, assessing their influences on ecosystems can help humankind mitigate adverse impacts on natural resources through improved management, especially in high latitude and elevation regions.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059, Zaragoza, Spain
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
9
|
Elliott GP. Windows of opportunity: a new tree-shrub dynamic at alpine treeline? Natl Sci Rev 2023; 10:nwad212. [PMID: 37719991 PMCID: PMC10503643 DOI: 10.1093/nsr/nwad212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/19/2023] Open
|