1
|
Jin Q, Wang S, Yao Y, Jiang Q, Li K. The gut-eye axis: from brain neurodegenerative diseases to age-related macular degeneration. Neural Regen Res 2025; 20:2741-2757. [PMID: 39435619 PMCID: PMC11826455 DOI: 10.4103/nrr.nrr-d-24-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision. Unfortunately, the specific pathogenesis remains unclear, and effective early treatment options are consequently lacking. The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host. The intestinal microbiome undergoes dynamic changes owing to age, diet, genetics, and other factors. Such dysregulation of the intestinal flora can disrupt the microecological balance, resulting in immunological and metabolic dysfunction in the host, and affecting the development of many diseases. In recent decades, significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract, including the brain. Indeed, several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Similarly, the role of the "gut-eye axis" has been confirmed to play a role in the pathogenesis of many ocular disorders. Moreover, age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies. As such, the intestinal flora may play an important role in age-related macular degeneration. Given the above context, the present review aims to clarify the gut-brain and gut-eye connections, assess the effect of intestinal flora and metabolites on age-related macular degeneration, and identify potential diagnostic markers and therapeutic strategies. Currently, direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited, while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration. Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions, while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.
Collapse
Affiliation(s)
- Qianzi Jin
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Parrotta ME, Colangeli L, Scipione V, Vitale C, Sbraccia P, Guglielmi V. Time Restricted Eating: A Valuable Alternative to Calorie Restriction for Addressing Obesity? Curr Obes Rep 2025; 14:17. [PMID: 39899119 PMCID: PMC11790783 DOI: 10.1007/s13679-025-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE OF REVIEW In this review, we summarize the molecular effects of time-restricted eating (TRE) and its possible role in appetite regulation. We also discuss the potential clinical benefits of TRE in obesity. RECENT FINDINGS TRE is an emerging dietary approach consisting in limiting food intake to a specific window of time each day. The rationale behind this strategy is to restore the circadian misalignment, commonly seen in obesity. Preclinical studies have shown that restricting food intake only during the active phase of the day can positively influence several cellular functions including senescence, mitochondrial activity, inflammation, autophagy and nutrients' sensing pathways. Furthermore, TRE may play a role by modulating appetite and satiety hormones, though further research is needed to clarify its exact mechanisms. Clinical trials involving patients with obesity or type 2 diabetes suggest that TRE can be effective for weight loss, but its broader effects on improving other clinical outcomes, such as cardiovascular risk factors, remain less certain. The epidemic proportions of obesity cause urgency to find dietary, pharmacological and surgical interventions that can be effective in the medium and long term. According to its molecular effects, TRE can be an interesting alternative to caloric restriction in the treatment of obesity, but the considerable variability across clinical trials regarding population, intervention, and follow-up duration makes it difficult to reach definitive conclusions.
Collapse
Affiliation(s)
| | - Luca Colangeli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Scipione
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carolina Vitale
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
- Internal Medicine Unit - Obesity Center, University Hospital Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
4
|
Saleh SAK, Santos HO, Găman MA, Cerqueira HS, Zaher EA, Alromaih WR, Arafat NS, Adi AR, Adly HM, Alyoubi R, Alyahyawi N, Kord-Varkaneh H. Effects of intermittent fasting regimens on glycemic, hepatic, anthropometric, and clinical markers in patients with non-alcoholic fatty liver disease: Systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 59:70-80. [PMID: 38220409 DOI: 10.1016/j.clnesp.2023.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVES Intermittent fasting (IF) regimens have been hypothesized to influence several markers of cardiometabolic and liver function. The objective of our meta-analysis was to investigate the impact of IF regimens on cardiometabolic and liver markers in subjects diagnosed with non-alcoholic fatty liver disease (NAFLD). METHODS We searched several online databases (PubMed/Medline, Web of Science, Scopus and Embase) in order to identify suitable publications for inclusion in the meta-analysis. Results were expressed as weighted mean differences (WMD). RESULTS From 12343 articles identified in different databases, a total of 7 RCT arms were entered into the quantitative synthesis. The manuscripts were published between 2019 and 2023. IF regimens (the 5:2 diet, 16/8 time-restricting feeding, and alternate day fasting) varied from 2 months to 3 months. IF regimens reduced steatosis scores (WMD: -33.22 CAP dB/m, 95 % CI: -50.72 to -15.72), anthropometric characteristics of obesity (WMD: -0.77 kg/m2, 95 % CI: -1.38 to -0.17 for body mass index; WMD: -3.16 kg, 95 % CI: -4.71 to -1.61 for body weight; WMD: -1.90 kg, 95 % CI: -3.51 to -0.29 for waist circumference), as well as ALT (WMD: -9.10 U/L, 95 % CI: -12.45 to -5.75), triglyceride (WMD: -20.83 mg/dl, 95 % CI: -39.01 to -2.66), total cholesterol (WMD: -7.80 mg/dl, 95 % CI: -15.18), HbA1c (WMD: -0.14 %, 95 % CI: -0.20 to -0.08) and HOMA-IR (WMD: -1.21, 95 % CI: -2.08 to -0.34) levels versus controls. Nevertheless, no between-group differences were detected for other biomarkers, e.g., fasting blood glucose, insulin, AST, HDL-C or LDL-C values, and fibrosis scores. CONCLUSION IF regimens can improve some markers of cardiometabolic and liver function in patients with NAFLD. However, the available evidence to support the benefits of IF regimens is limited and derived from a small number of studies, thus further research is needed to clarify the impact of IF on the cardiometabolic health of NAFLD patients.
Collapse
Affiliation(s)
- Saleh A K Saleh
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, Carol Davila, University of Medicine and Pharmacy, Bucharest, Romania; Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Henrique S Cerqueira
- School of Medicine, University of São Paulo (USP), Ribeirão Preto 14049-900, Brazil
| | - Eman Abbas Zaher
- Department of Family Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Wafa Romaih Alromaih
- Department of Family Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Norah Saud Arafat
- Department of Family Medicine, Security Forces Hospital, Riyadh, Saudi Arabia
| | | | - Heba M Adly
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Reem Alyoubi
- Department of Pediatrics, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Naseem Alyahyawi
- Department of Pediatrics, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Hamed Kord-Varkaneh
- Department of Nutrition and Food Hygiene, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Qiu Y, Wang P, Guo Y, Zhang L, Lu J, Ren L. Enhancing food waste reduction efficiency and high-value biomass production in Hermetia illucens rearing through bioaugmentation with gut bacterial agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166488. [PMID: 37611705 DOI: 10.1016/j.scitotenv.2023.166488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The black soldier fly (BSF) rearing technology has been a promising bioconversion method for food waste (FW) disposal. However, when used independently, it currently only achieves low efficiency and biomass transformation rates (BTR). This study screened and identified two strains of gut beneficial bacteria, Bacillus cereus and Bacterium YC-LK-LKJ45. The efficiency of a complex culture formulated by these strains was investigated, focusing on enhancing FW reduction and high-value biomass production during the rearing of BSF larvae. The coculture agent group (G1-10%, with two strains in 1:1 volume ratio at a 10 % dosage) exhibited higher larval yield (627.67 g·kg-1), BTR (47.90 %), FW reduction efficiency (80.67 %), and total protein and fat yield (261.99 g·kg-1and 46.24 g·kg-1) compared to the control and the monoculture agent group (which added a single gut beneficial bacteria agent, either Bacillus cereus or Bacterium YC-LK-LKJ45). The bacterial agent altered the richness and diversity of the gut microbial community of BSF, increasing the relative abundance of beneficial bacteria such as Bacillus, Oceano bacillus, and Akkermansia, while decreasing pathogenic bacteria, such as Acinetobacter and Escherichia-Shigella. Structural equation model quantification revealed that α-diversity (λ = 0.897, p < 0.001) and BTR (λ = 0.747, p < 0.001) are crucial drivers for enhancing high-value biomass during bioaugmentation rearing. This investigation provides a theoretical framework for the effective management of food waste using BSF, enhancing its decomposition and transformation into higher-value biomass.
Collapse
Affiliation(s)
- Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwen Guo
- AnronX Technology (Beijing) Joint Stock Co., Ltd., Beijing 100086, China
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
6
|
Pontes-Silva A, Lopes AL, Maciel EDS, Quaresma FRP, Dibai-Filho AV. Human metabolism and body composition: prospects for novel studies. Nutr Rev 2023; 82:5-8. [PMID: 38073333 DOI: 10.1093/nutrit/nuad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
CONTEXT Most articles on gut microbiota argue the importance of body composition assessment in patients; however, body composition assessments are fragile (ie, with methodological limitations) in the most recent studies. OBJECTIVE To present two suggestions for further research using the human body composition assessment. METHODS The methods used in this study are based on a Pinto et al article published in Nutrition Reviews. DATA EXTRACTION On the basis of data. obtained from the PubMed, SCOPUS, LILACS, and Web of Science databases, Pinto et al provided a current survey of intermittent fasting protocols and an understanding of the outcomes to date in terms of the profile of the intestinal microbiota in obese organisms. DATA ANALYSIS Of the 82 original articles identified from the databases, 35 were eliminated because of duplication and 32 were excluded for not meeting the inclusion criteria. Two additional articles found in a new search were added, yielding a total of 17 studies to be included in this review. Among the protocols, alternate-day fasting and time-restricted feeding were the most common, and they were shown to have different mechanisms of metabolic signaling. Time-restricted feeding influences body mass control and biochemical parameters by regulating the circadian system and improving satiety control systems by acting on leptin secretion. In contrast, alternate-day fasting leads to a reduction of ±75% of all energy consumption regardless of dietary composition, in addition to promoting hormonal adjustments that promote body mass control. Furthermore, both protocols could remodel the intestinal microbiota by changing the Firmicutes to Bacteroidetes ratio and increasing the abundance of strains such as Lactobacillus spp. and Akkermansia that have a protective effect on metabolism against the effects of body mass gain. CONCLUSION Changes in adipose tissue (eg, body mass loss, control, gain) should be interpreted via the sum of skinfolds in absolute values, waist perimeter, and patients' body proportionality, because fat is just a fraction of the adipocyte (lipid).
Collapse
Affiliation(s)
- André Pontes-Silva
- is with the Physical Therapy Post-Graduate Program, Physical Therapy Department, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - André Luiz Lopes
- is with the Human Movement Sciences Post-Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika da Silva Maciel
- are with the Sciences and Health Teaching Post-Graduate Program, Federal University of Tocantins, Palmas, Tocantins, Brazil
| | | | - Almir Vieira Dibai-Filho
- is with the Physical Education Post-Graduate Program, Physical Education Department, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
7
|
Jo Y, Lee G, Ahmad S, Son H, Kim MJ, Sliti A, Lee S, Kim K, Lee SE, Shin JH. The Alteration of the Gut Microbiome during Ramadan Offers a Novel Perspective on Ramadan Fasting: A Pilot Study. Microorganisms 2023; 11:2106. [PMID: 37630666 PMCID: PMC10459652 DOI: 10.3390/microorganisms11082106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
An intermittent fasting regimen is widely perceived to lead to various beneficial health effects, including weight loss, the alleviation of insulin resistance, and the restructuring of a healthy gut microbiome. Because it shares certain commonalities with this dietary intervention, Ramadan fasting is sometimes misinterpreted as intermittent fasting, even though there are clear distinctions between these two regimens. The main purpose of this study is to verify whether Ramadan fasting drives the same beneficial effects as intermittent fasting by monitoring alterations in the gut microbiota. We conducted a study involving 20 Muslim individuals who were practicing Ramadan rituals and assessed the composition of their gut microbiomes during the 4-week period of Ramadan and the subsequent 8-week period post-Ramadan. Fecal microbiome analysis was conducted, and short-chain fatty acids (SCFAs) were assessed using liquid-chromatography-mass spectrometry. The observed decrease in the levels of SCFAs and beneficial bacteria during Ramadan, along with the increased microbial diversity post-Ramadan, suggests that the daily diet during Ramadan may not provide adequate nutrients to maintain robust gut microbiota. Additionally, the notable disparities in the functional genes detected through the metagenomic analysis and the strong correlation between Lactobacillus and SCFAs provide further support for our hypothesis.
Collapse
Affiliation(s)
- YoungJae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Sajjad Ahmad
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Amani Sliti
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
| | - Seungjun Lee
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.); (G.L.); (S.A.); (H.S.); (M.-J.K.); (A.S.); (S.-E.L.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
- NGS Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Lee SY, Park HM, Kim CH, Kim HR. Dysbiosis of gut microbiota during fecal stream diversion in patients with colorectal cancer. Gut Pathog 2023; 15:40. [PMID: 37596621 PMCID: PMC10439566 DOI: 10.1186/s13099-023-00566-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The effect of fecal stream diversion on the gut microbiota is still uncertain. The present study was designed to assess the effect of fecal stream diversion on the composition of the gut microbiota in patients with colorectal cancer. We included patients undergoing left-sided colorectal cancer surgery with (ileostomy group) or without (control group) diverting ileostomy. Fecal samples were collected from 10 patients in each group before surgery (t1) and after ileostomy repair in the ileostomy group and 6-12 months after the initial surgery in the control group (t2). The fecal microbiota was assessed using 16S rRNA sequencing, and changes in the composition of the fecal microbiota were compared between the two groups. RESULTS Alpha diversity analysis revealed that the complexity of fecal microbiota decreased between t1 and t2 only in the ileostomy group. Beta diversity analysis also showed dissimilarity between t1 and t2 only in the ileostomy group. The composition of the microbiota was similar between the two groups at t1. However, at t2, the ileostomy group had lower proportion of beneficial bacteria (Lachnospiraceae, 3.8% vs. 29.9%, p < 0.001; Ruminococcaceae, 0.6% vs. 18.4%, p < 0.001; Blautia, 0.1% vs. 9.1%, p < 0.001; Faecalibacterium, 0.2% vs. 7.5%, p < 0.001) and a higher proportion of harmful bacteria (Proteobacteria, 17.9% vs. 5.1%, p = 0.006; Clostridium, 16.2% vs. 1.1%, p = 0.013; Streptococcus, 17.7% vs. 1.6%, p = 0.002) than the control group. CONCLUSIONS Fecal stream diversion was closely associated with less diversity and dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Soo Young Lee
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-Ro Hwasun-Eup, Hwasun-Gun, Jeonnam, 58128, South Korea
| | - Hyeung-Min Park
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-Ro Hwasun-Eup, Hwasun-Gun, Jeonnam, 58128, South Korea
| | - Chang Hyun Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-Ro Hwasun-Eup, Hwasun-Gun, Jeonnam, 58128, South Korea
| | - Hyeong Rok Kim
- Department of Surgery, Chonnam National University Hwasun Hospital and Medical School, 322 Seoyang-Ro Hwasun-Eup, Hwasun-Gun, Jeonnam, 58128, South Korea.
| |
Collapse
|
9
|
Qu L, Liu F, Fang Y, Wang L, Chen H, Yang Q, Dong H, Jin L, Wu W, Sun D. Improvement in Zebrafish with Diabetes and Alzheimer's Disease Treated with Pasteurized Akkermansia muciniphila. Microbiol Spectr 2023; 11:e0084923. [PMID: 37191572 PMCID: PMC10269592 DOI: 10.1128/spectrum.00849-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes and Alzheimer's disease (AD) are associated with specific changes in the composition of the intestinal flora. Studies have shown that the supplementation with pasteurized Akkermansia muciniphila has therapeutic and preventive effects on diabetes. However, it is not clear whether there is any association with improvement in and prevention of Alzheimer's disease and diabetes with Alzheimer's disease. Here, we found that pasteurized Akkermansia muciniphila can significantly improve the blood glucose, body mass index, and diabetes indexes of zebrafish with diabetes mellitus complicated with Alzheimer's disease and also alleviate the related indexes of Alzheimer's disease. The memory, anxiety, aggression, and social preference behavior of zebrafish with combined type 2 diabetes mellitus (T2DM) and Alzheimer's disease (TA zebrafish) were significantly improved after pasteurized Akkermansia muciniphila treatment. Moreover, we examined the preventive effect of pasteurized Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease. The results showed that the zebrafish in the prevention group were better in terms of biochemical index and behavior than the zebrafish in the treatment group. These findings provide new ideas for the prevention and treatment of diabetes mellitus complicated with Alzheimer's disease. IMPORTANCE The interaction between intestinal microflora and host affects the progression of diabetes and Alzheimer's disease. As a recognized next-generation probiotic, Akkermansia muciniphila has been shown to play a key role in the progression of diabetes and Alzheimer's disease, but whether A. muciniphila can improve diabetes complicated with Alzheimer's disease and its potential mechanism are unclear. In this study, a new zebrafish model of diabetes mellitus complicated with Alzheimer's disease was established, and the effect of Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease is discussed. The results showed that Akkermansia muciniphila after pasteurization significantly improved and prevented diabetes mellitus complicated with Alzheimer's disease. Treatment with pasteurized Akkermansia muciniphila improved the memory, social preference, and aggressive and anxiety behavior of TA zebrafish and alleviated the pathological characteristics of T2DM and AD. These results provide a new prospect for probiotics in the treatment of diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
10
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
11
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
12
|
Ageeli RY, Sharma S, Puppa M, Bloomer RJ, Buddington RK, van der Merwe M. Fasting Protocols Do Not Improve Intestinal Architecture and Immune Parameters in C57BL/6 Male Mice Fed a High Fat Diet. MEDICINES (BASEL, SWITZERLAND) 2023; 10:18. [PMID: 36827218 PMCID: PMC9961949 DOI: 10.3390/medicines10020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The intestinal ecosystem, including epithelium, immune cells, and microbiota, are influenced by diet and timing of food consumption. The purpose of this study was to evaluate various dietary protocols after ad libitum high fat diet (HFD) consumption on intestinal morphology and mucosal immunity. METHODS C57BL/6 male mice were fed a 45% high fat diet (HFD) for 6 weeks and then randomized to the following protocols; (1) chow, (2) a purified high fiber diet known as the Daniel Fast (DF), HFD consumed (3) ad libitum or in a restricted manner; (4) caloric-restricted, (5) time-restricted (six hours of fasting in each 24 h), or (6) alternate-day fasting (24 h fasting every other day). Intestinal morphology and gut-associated immune parameters were investigated after 2 months on respective protocols. RESULTS Consuming a HFD resulted in shortening of the intestine and reduction in villi and crypt size. Fasting, while consuming the HFD, did not restore these parameters to the extent seen with the chow and DF diet. Goblet cell number and regulatory T cells had improved recovery with high fiber diets, not seen with the HFD irrespective of fasting. CONCLUSION Nutritional content is a critical determinant of intestinal parameters associated with gut health.
Collapse
Affiliation(s)
| | | | | | | | | | - Marie van der Merwe
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
13
|
Elortegui Pascual P, Rolands MR, Eldridge AL, Kassis A, Mainardi F, Lê K, Karagounis LG, Gut P, Varady KA. A meta-analysis comparing the effectiveness of alternate day fasting, the 5:2 diet, and time-restricted eating for weight loss. Obesity (Silver Spring) 2023; 31 Suppl 1:9-21. [PMID: 36349432 PMCID: PMC10098946 DOI: 10.1002/oby.23568] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The objective of this meta-analysis was to compare the effectiveness of different intermittent fasting (IF) regimens on weight loss, in the general population, and compare these to traditional caloric energy restriction (CER). METHODS Three databases were searched from 2011 to June 2021 for randomized controlled trials (RCTs) that assessed weight loss and IF, including alternate day fasting (ADF), the 5:2 diet, and time-restricted eating (TRE). A random effect network analysis was used to compare the effectiveness between the three regimens. Meta-regression analysis was presented as weighted mean differences of body weight loss. RESULTS The exploratory random effects network analysis of 24 RCTs (n = 1768) ranked ADF as the most effective, followed by CER and TRE. The meta-analysis showed that IF regimens resulted in similar weight loss to CER (mean difference 0.26 kg, 95% CI: -0.31 to 0.84; p = 0.37). Compliance was generally high (>80%) in trials shorter than 3 months. CONCLUSIONS The present meta-analysis concludes that IF is comparable to CER and a promising alternative for weight loss. Among the three regimens, ADF showed the highest effectiveness for weight loss, followed by CER and TRE. Further well-powered RCTs with longer durations of intervention are required to draw solid conclusions.
Collapse
Affiliation(s)
| | | | | | - Amira Kassis
- Whiteboard Nutrition ScienceBeaconsfieldQuebecCanada
| | - Fabio Mainardi
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland
| | - Kim‐Anne Lê
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland
| | - Leonidas G. Karagounis
- Nestlé Health ScienceTranslation ResearchLausanneSwitzerland
- Institute of Social and Preventive Medicine (ISPM)University of BernBernSwitzerland
| | - Philipp Gut
- Nestlé Institute of Health SciencesNestlé ResearchLausanneSwitzerland
| | - Krista A. Varady
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
14
|
Horne BD, Bunker T. Pathogenic Mechanisms of the Severe Acute Respiratory Syndrome Coronavirus 2 and Potential Direct and Indirect Counteractions by Intermittent Fasting. Nutrients 2022; 15:20. [PMID: 36615679 PMCID: PMC9823718 DOI: 10.3390/nu15010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic created an unprecedented burden on human health and on the function and interaction of societies across the globe. Public health preventive measures, vaccines, and antivirals were key components of the world-wide response to the health emergency. Due to the uncoordinated and variably successful response to COVID-19 and the ability of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to rapidly mutate, SARS-CoV-2 continues to create considerable difficulty for humanity today. Additional preventive or therapeutic modalities are needed to help people to achieve the best possible health outcomes in the context of the evolving COVID-19 threat. Intermittent fasting is a potential complementary therapy that not only impacts chronic disease risk but also has good evidence of an impact on infectious diseases. While the data regarding fasting and COVID-19 outcomes are very limited, the conceptual connection of fasting to better outcomes includes a variety of mechanisms in human biology. This paper reviews the known mechanisms of disease impacted by SARS-CoV-2 infection and the potential or likely direct or indirect counteractions that fasting may provide that may reduce the severity of COVID-19 and help to realize the best possible health outcomes. Furthermore, fasting adds no financial cost to a care plan and, when practiced safely, is available to most adults without limitation. Further research is needed on the impact of intermittent fasting on human health in the fight against infectious diseases including COVID-19.
Collapse
Affiliation(s)
- Benjamin D. Horne
- Intermountain Medical Center Heart Institute, Salt Lake City, UT 84107, USA
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
15
|
Gao J, Xu C, Zhang M, Liu J, Wu X, Cui C, Wei H, Peng J, Zheng R. Functional fiber enhances the effect of every-other-day fasting on insulin sensitivity by regulating the gut microecosystem. J Nutr Biochem 2022; 110:109122. [PMID: 35977666 DOI: 10.1016/j.jnutbio.2022.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/22/2022] [Accepted: 06/20/2022] [Indexed: 01/13/2023]
Abstract
Every-other-day fasting (EODF), which involves alternating days of fasting and feeding, has been reported to lower obesity, and dietary fibers can improve metabolism by altering gut microbiota. This study investigated whether the combination of functional fiber (FF) and EODF (FF-EODF) can further improve insulin sensitivity by regulating the composition of microbiota and curbing weight gain. Twenty-eight diet-induced obese (DIO) mice were randomly divided into four experimental groups (n=7): (1) ad-libitum (AL), (2) EODF, (3) 4% FF-EODF and (4) 6% FF-EODF. After exposure to a high-fat basal diet (HFD) for 12 weeks (1-12 weeks, period 1) and then to a normal chow diet (NCD) for 4 weeks (13-16 weeks, period 2). Compared with EODF alone, 6% FF-EODF treatment could significantly improve the insulin sensitivity of DIO mice without affecting their body weight during period 1(HFD), while significantly increasing satiety, energy consumption, weight, and adipose loss, and insulin sensitivity during period 2 (NCD). Meanwhile, FF-EODF showed a higher increase in short-chain fatty acids (SCFAs) and restored the proportion of induced intraepithelial lymphocytes in the intestinal epithelium compared to EODF alone. Although EODF could increase the relative abundances of Lactobacillus and Bifidobacteriumin, FF supplementation further increased the relative abundance of Lactobacillus, Bifidobacterium, and S24-7 in the intestine. This increase was positively correlated with the decrease in adiposity and insulin resistance, indicating that FF plays a key role in insulin improvement. Our study demonstrated the potential of FF-EODF in promoting insulin sensitivity and reducing body weight via beneficial regulation of gut microecosystem.
Collapse
Affiliation(s)
- Jianwei Gao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chuanhui Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengdi Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhua Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Rong Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
16
|
Mokhtari Z, Hosseini E, Hekmatdoost A, Haskey N, Gibson DL, Askari G. The effects of fasting diets on nonalcoholic fatty liver disease. Nutr Rev 2022:6809036. [DOI: 10.1093/nutrit/nuac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. There is no confirmed treatment for NAFLD as yet. Recently, fasting regimens and their relationship to NAFLD have drawn a great deal of attention in the literature. We review the current evidence that supports fasting diets as an adjunctive therapeutic strategy for patients with NAFLD and address potential action mechanisms. We reason that the fasting diets might be a promising approach for modulating hepatic steatosis, fibroblast growth factors 19 and 21 signaling, lipophagy, and the metabolic profile.
Collapse
Affiliation(s)
- Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
| | - Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and, Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences with the , Tehran, Iran
| | - Natasha Haskey
- Department of Biology, University of British Columbia—Okanagan Campus are with the , Kelowna, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia—Okanagan Campus are with the , Kelowna, British Columbia, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences with the , Isfahan, Iran
| |
Collapse
|
17
|
Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022; 19:625-637. [PMID: 35641786 DOI: 10.1038/s41575-022-00631-9] [Citation(s) in RCA: 522] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
Ever since Akkermansia muciniphila was discovered and characterized two decades ago, numerous studies have shown that the lack or decreased abundance of this commensal bacterium was linked with multiple diseases (such as obesity, diabetes, liver steatosis, inflammation and response to cancer immunotherapies). Although primarily based on simple associations, there are nowadays an increasing number of studies moving from correlations to causality. The causal evidence derived from a variety of animal models performed in different laboratories and recently was also recapitulated in a human proof-of-concept trial. In this Review, we cover the history of the discovery of A. muciniphila and summarize the numerous findings and main mechanisms of action by which this intestinal symbiont improves health. A comparison of this microorganism with other next-generation beneficial microorganisms that are being developed is also made.
Collapse
|
18
|
The Effects of Time-Restricted Eating on Metabolism and Gut Microbiota: A Real-Life Study. Nutrients 2022; 14:nu14132569. [PMID: 35807750 PMCID: PMC9267969 DOI: 10.3390/nu14132569] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
The metabolic benefits of time-restricted eating (TRE) in humans are statistically significant but not clinically relevant. Few data are available about the effects of TRE on the gut microbiota. We compared the effects of a TRE regimen (<12 h feeding; n = 25) with a time-unrestricted (TUE) regimen (>12 h feeding; n = 24), on the clinical and dietary variables and gut-microbiota composition in patients with obesity, who were subjected for 12 weeks to the same caloric restriction. Median weight loss was 4.0 kg and 2.2 kg in the TRE and TUE groups, respectively, with a between-group borderline difference (p = 0.049). No significant between-group difference was found in other dietary, anthropometric, or laboratory variables. There were no substantial between-group differences in alpha and beta diversity or gut-microbiota composition. The TRE group showed a significant increase in the frequency of Lachnospiraceae, Parasutterella, and Romboutsia at the study’s end. A TRE regimen induced small changes both in metabolic/dietary variables and in the gut-microbiota composition, with respect to the TUE. The microbial changes we have found were of uncertain clinical significance.
Collapse
|
19
|
Feng J, Zhang S, Li W, Bai T, Liu Y, Chang X. Intermittent Fasting to the Eye: A New Dimension Involved in Physiological and Pathological Changes. Front Med (Lausanne) 2022; 9:867624. [PMID: 35685418 PMCID: PMC9171076 DOI: 10.3389/fmed.2022.867624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Intermittent fasting (IF) is gaining popularity as a therapeutic dietary strategy that regulates metabolism and can alter the development of metabolic disorders. An increasing amount of research has connected ocular diseases to IF and discovered that it has a direct and indirect effect on the eye’s physiological structure and pathological alterations. This article summarizes the progress of research on IF in regulating the physiological structures of the ocular vasculature, the anterior segment of the eye, the retina, and the choroid. We explored the therapeutic potential of IF for various common ocular diseases. In the future, a comprehensive study into the fundamental processes of IF will provide a direct and rigorous approach to eye disease prevention and therapy.
Collapse
Affiliation(s)
- Jiaqing Feng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shijiao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenning Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianle Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yulin Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Ratiner K, Shapiro H, Goldenberg K, Elinav E. Time-limited diets and the gut microbiota in cardiometabolic disease. J Diabetes 2022; 14:377-393. [PMID: 35698246 PMCID: PMC9366560 DOI: 10.1111/1753-0407.13288] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, intermittent fasting (IF), including periodic fasting and time-restricted feeding (TRF), has been increasingly suggested to constitute a promising treatment for cardiometabolic diseases (CMD). A deliberate daily pause in food consumption influences the gut microbiome and the host circadian clock, resulting in improved cardiometabolic health. Understanding the molecular mechanisms by which circadian host-microbiome interactions affect host metabolism and immunity may add a potentially important dimension to effective implementation of IF diets. In this review, we discuss emerging evidence potentially linking compositional and functional alterations of the gut microbiome with IF impacts on mammalian metabolism and risk of development of hypertension, type 2 diabetes (T2D), obesity, and their long-term micro- and macrovascular complications. We highlight the challenges and unknowns in causally linking diurnal bacterial signals with dietary cues and downstream metabolic consequences and means of harnessing these signals toward future microbiome integration into precision medicine.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Hagit Shapiro
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Kim Goldenberg
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Eran Elinav
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
- Microbiome & Cancer Division, DKFZHeidelbergGermany
| |
Collapse
|
21
|
Alnasser A, Almutairi M. Considering intermittent fasting among Saudis: insights into practices. BMC Public Health 2022; 22:592. [PMID: 35346130 PMCID: PMC8959076 DOI: 10.1186/s12889-022-12908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND There is a dearth of studies on intermittent fasting in Saudi Arabia outside of Ramadan. The aim of this research was to study and describe the practice of intermittent fasting outside of Ramadan among Saudi people. METHODS A web-based survey that focused on intermittent fasting practices-specifically the use of intermittent fasting applications, goal setting, and the effects of fasting on an individual's state of health-was administered, collected, and analyzed. RESULTS The study revealed that 58% (298/514) of the respondents practiced intermittent fasting for a duration of less than 3 months. The most-practiced pattern of intermittent fasting was a 16/8 fasting pattern (43.8%, 225/514). About 88.3% (454/514) of those who followed intermittent fasting drank fluids while fasting. Additionally, the amount of weight loss after intermittent fasting was less than 2.2 kg for 35% (180/514) of the participants. The primary goal of intermittent fasting for 44.9% (231/514) of the respondents was to lose weight. The majority of the participants (84.6%, 435/514) did not use any fasting applications. CONCLUSION The results of the current research on intermittent fasting outside of Ramadan are preliminary and inconclusive. The findings of the present study advance the idea that for some Saudis, the practice of intermittent fasting does not necessarily begin and end with Ramadan; this finding may present a strategic opportunity for Saudi health professionals who are focused on the obesity epidemic and other public health issues in Saudi Arabia. This study sought to help start a discussion on this topic and fill the knowledge gap.
Collapse
Affiliation(s)
- Aroub Alnasser
- Food Science and Nutrition Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Mashael Almutairi
- Food Science and Nutrition Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|