1
|
Honda M, Miyakawa N, Yamamoto N. Photosensitized Z-isomerization of (all-E)-carotenoids by a natural sensitizer riboflavin (vitamin B 2): Experimental and quantum chemistry studies. Biochem Biophys Res Commun 2025; 757:151625. [PMID: 40107111 DOI: 10.1016/j.bbrc.2025.151625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Recent studies have shown that the Z-isomers of carotenoids have higher bioavailability and potentially greater biological activity than the naturally predominant all-E-isomers. Therefore, the development of a safe and efficient isomerization method is required. In this study, a riboflavin-mediated photoisomerization technique was established for increasing the Z-isomer ratio of carotenoids. Initially, to understand the riboflavin-mediated photoisomerization characteristics of carotenoids, the effects of the reaction conditions (e.g., riboflavin concentration, photoirradiation wavelength, and solvent type) on the isomerization and degradation of lycopene were studied, and the total Z-isomer ratio was successfully increased by >50 %. Riboflavin-mediated photoisomerization was also observed in other carotenoids, that is, β-carotene, lutein, astaxanthin, and fucoxanthin. Subsequently, the riboflavin-mediated photoisomerization of lycopene was investigated using quantum chemical calculations, which indicated that the isomerization proceeded via triplet-triplet energy transfer (TTET) from excited riboflavin to lycopene.
Collapse
Affiliation(s)
- Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan; Graduate School of Environmental and Human Sciences, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan.
| | - Naoya Miyakawa
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan
| | - Norifumi Yamamoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016, Japan.
| |
Collapse
|
2
|
Rasmussen EJF, Acs N, Jensen PR, Solem C. Harnessing Oxidative Stress to Obtain Natural Riboflavin Secreting Lactic Acid Bacteria for Use in Biofortification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26356-26365. [PMID: 39540590 DOI: 10.1021/acs.jafc.4c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lactococcus lactis suffers from oxidative stress and riboflavin starvation at elevated temperatures due to dissolved oxygen, which can be relieved partially by exogenously supplied riboflavin. Here we explore whether this phenomenon can be harnessed to obtain riboflavin overproducing mutants. Using a riboflavin auxotrophic L. lactis strain as a riboflavin biosensor, we screened L. lactis cultures that had been exposed to temperature induced oxidative stress for up to one year. Riboflavin secreting mutants could readily be identified, some of which had arisen after just two weeks of exposure to oxidative stress. Whole genome sequencing revealed mutations in the riboswitch, which regulate riboflavin biosynthesis. Riboflavin secretion conferred a significant increase in tolerance to oxidative stress and enabled growth at high temperatures in the presence of dissolved oxygen. It was subsequently demonstrated that vigorous aeration at high temperature (37 °C) could prompt rapid emergence of riboflavin secreting mutants. The protective effect provided by riboflavin against oxidative stress may explain the natural occurrence of lactic acid bacteria (LAB) secreting riboflavin. By optimizing fermentation conditions and eliminating lactate formation, we achieved 64 mg/L riboflavin, the highest reported titer so far for LAB, which indicates great potential for use as a riboflavin fortification agent in food.
Collapse
Affiliation(s)
| | - Norbert Acs
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Dricot CEMK, Erreygers I, Cauwenberghs E, De Paz J, Spacova I, Verhoeven V, Ahannach S, Lebeer S. Riboflavin for women's health and emerging microbiome strategies. NPJ Biofilms Microbiomes 2024; 10:107. [PMID: 39420006 PMCID: PMC11486906 DOI: 10.1038/s41522-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
Collapse
Affiliation(s)
- Caroline E M K Dricot
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Isabel Erreygers
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline Cauwenberghs
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jocelyn De Paz
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Peach JT, Puntscher H, Höger H, Marko D, Warth B. Rats exposed to Alternaria toxins in vivo exhibit altered liver activity highlighted by disruptions in riboflavin and acylcarnitine metabolism. Arch Toxicol 2024; 98:3477-3489. [PMID: 38951189 PMCID: PMC11402861 DOI: 10.1007/s00204-024-03810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Natural toxins produced by Alternaria fungi include the mycotoxins alternariol, tenuazonic acid and altertoxins I and II. Several of these toxins have shown high toxicity even at low levels including genotoxic, mutagenic, and estrogenic effects. However, the metabolic effects of toxin exposure from Alternaria are understudied, especially in the liver as a key target. To gain insight into the impact of Alternaria toxin exposure on the liver metabolome, rats (n = 21) were exposed to either (1) a complex culture extract with defined toxin profiles from Alternaria alternata (50 mg/kg body weight), (2) the isolated, highly genotoxic altertoxin-II (ATX-II) (0.7 mg/kg of body weight) or (3) a solvent control. The complex mixture contained a spectrum of Alternaria toxins including a controlled dose of ATX-II, matching the concentration of the isolated ATX-II. Liver samples were collected after 24 h and analyzed via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Authentic reference standards (> 100) were used to identify endogenous metabolites and exogenous compounds from the administered exposures in tandem with SWATH-acquired MS/MS data which was used for non-targeted analysis/screening. Screening for metabolites produced by Alternaria revealed several compounds solely isolated in the liver of rats exposed to the complex culture, confirming results from a previously performed targeted biomonitoring study. This included the altersetin and altercrasin A that were tentatively identified. An untargeted metabolomics analysis found upregulation of acylcarnitines in rats receiving the complex Alternaria extract as well as downregulation of riboflavin in rats exposed to both ATX-II and the complex mixture. Taken together, this work provides a mechanistic view of Alternari toxin exposure and new suspect screening insights into hardly characterized Alternaria toxins.
Collapse
Affiliation(s)
- Jesse T Peach
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Harald Höger
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
5
|
Qiao Y, Cui Y, Tan Y, Zhuang C, Li X, Yong Y, Zhang X, Ren X, Cai M, Yang J, Lang Y, Wang J, Liang C, Zhang J. Fluoride induces immunotoxicity by regulating riboflavin transport and metabolism partly through IL-17A in the spleen. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135085. [PMID: 38968825 DOI: 10.1016/j.jhazmat.2024.135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The impairment of the immune system by fluoride is a public health concern worldwide, yet the underlying mechanism is unclear. Both riboflavin and IL-17A are closely related to immune function and regulate the testicular toxicity of fluoride. However, whether riboflavin or IL-17A is involved in fluoride-induced immunotoxicity is unknown. Here, we first established a male ICR mouse model by treating mice with sodium fluoride (NaF) (100 mg/L) via the drinking water for 91 days. The results showed that fluoride increased the expression of the proinflammatory factors IL-1β and IL-17A, which led to splenic inflammation and morphological injury. Moreover, the expression levels of the riboflavin transporters SLC52A2 and SLC52A3; the transformation-related enzymes RFK and FLAD1; and the key mitochondrial functional determinants SDH, COX, and ATP in the spleen were measured via real-time PCR, Western blotting, and ELISA. The results revealed that fluoride disrupted riboflavin transport, transformation, metabolism, and mitochondrial function. Furthermore, wild-type (WT) and IL-17A knockout (IL-17A-/-) C57BL/6 J male mice of the same age were treated with NaF (24 mg/kg·bw, equivalent to 100 mg/L) and/or riboflavin sodium phosphate (5 mg/kg·bw) via gavage for 91 days. Similar parameters were evaluated as above. The results confirmed that fluoride increased riboflavin metabolism through RFK but not through FLAD1. Fluoride also affected mitochondrial function and activated neutrophils (marked with Ly6g) and macrophages (marked with CD68) in the spleen. Interestingly, IL-17A partly mediated fluoride-induced riboflavin metabolism disorder and immunotoxicity in the spleen. This work not only reveals a novel toxic mechanism for fluoride but also provides new clues for exploring the physiological function of riboflavin and for diagnosing and treating the toxic effects of fluoride in the environment.
Collapse
Affiliation(s)
- Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yukun Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yufei Yong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xinying Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xuting Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Miaomiao Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yilin Lang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
6
|
Gomaa AAM, Rashwan AA, Tewfik MI, Abou-Kassem DE, Youssef IM, Salah AS, Alfassam HE, Rudayni HA, Allam AA, Taha AE, Moustafa M, Alshaharni MO, Abd El-Hack ME, El-Mekkawy MM. Effects of immersing Japanese quail eggs in various doses of riboflavin on reproductive, growth performance traits, blood indices and economics. Poult Sci 2024; 103:103858. [PMID: 38838591 PMCID: PMC11190717 DOI: 10.1016/j.psj.2024.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
This investigation aimed to evaluate the impact of immersion (IM) riboflavin treatment on the hatchability, production efficiency, and carcass characteristics of Japanese quail eggs. A total of 260 eggs of Japanese quail birds were used for hatching and were randomly divided into 4 treatments with 5 replicates (13 eggs/replicate) in a fully randomized design. Hatching eggs were immersed in riboflavin for 2 min before incubation. The experiment treatments were designed as follows: G1 control group with no treatment, G2 treated with 3 g/L vit. B2 (IM), G3 treated with 4 g/L vit. B2 (IM) and G4 were treated with 5 g/L vit. B2 (IM). After hatching, 128 Japanese quail chicks, aged 7 d, were randomly grouped into 4 treatment groups, with 32 birds in each group. When quails were given vitamin B2 via immersion, they demonstrated significant enhancements in live body weight, body weight gain, feed consumption, and feed conversion ratio at different stages compared to the control group. Compared to control and other groups, the carcass parameters of Japanese quails given a 4 g/L immersion solution showed a significant improvement (P < 0.05). Hatchability and fertility (%) were considerably raised by Vit.B2 treatments of 3, 4, and 5g; the group immersed in 5 g/L had the highest percentages compared to the other groups. Furthermore, treated chickens with all concentrations of vitamin B2 had significantly higher blood indices than the controls. During the exploratory phase (1-6 wk) of age, the highest returns were reported in G4 treated with 5g/L vit. B2 (IM). Treating Japanese quail eggs with different dosages of vitamin B2 by immersion may be recommended to improve their productive and reproductive performance, blood indices, carcass traits, and economic efficiency.
Collapse
Affiliation(s)
- Ahmed A M Gomaa
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Ali A Rashwan
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Mostafa I Tewfik
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Diaa E Abou-Kassem
- Animal & Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Islam M Youssef
- Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Ayman S Salah
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, New Valley University, Egypt
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211 Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Apis 21944, Egypt
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed M El-Mekkawy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Aragão MÂ, Pires L, Santos-Buelga C, Barros L, Calhelha RC. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024; 13:2255. [PMID: 39063339 PMCID: PMC11276209 DOI: 10.3390/foods13142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Since the early twentieth century, research on vitamins has revealed their therapeutic potential beyond their role as essential micronutrients. Riboflavin, known as vitamin B2, stands out for its unique characteristics. Despite numerous studies, riboflavin remains vital, with implications for human health. Abundantly present in various foods, riboflavin acts as a coenzyme in numerous enzymatic reactions crucial for human metabolism. Its role in energy production, erythrocyte synthesis, and vitamin metabolism underscores its importance in maintaining homeostasis. The impact of riboflavin extends to neurological function, skin health, and cardiovascular well-being, with adequate levels linked to reduced risks of various ailments. However, inadequate intake or physiological stress can lead to deficiency, a condition that poses serious health risks, including severe complications. This underscores the importance of maintaining sufficient levels of riboflavin for general wellness. The essential role of riboflavin in immune function further emphasises its significance for human health and vitality. This paper examines the diverse effects of riboflavin on health and stresses the importance of maintaining sufficient levels for overall well-being.
Collapse
Affiliation(s)
- M. Ângela Aragão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
8
|
Jin X, Meng L, Qi Z, Mi L. Effects of dietary selenium deficiency and supplementation on liver in grazing sheep: insights from transcriptomic and metabolomic analysis. Front Vet Sci 2024; 11:1358975. [PMID: 38962704 PMCID: PMC11220315 DOI: 10.3389/fvets.2024.1358975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Background Mineral elements play a crucial role in supporting the life activities and physiological functions of animals. However, numerous studies have revealed that in some geographical areas and certain grazing situations, grazing livestock frequently suffers from mineral element deficiencies due to the loss of mineral elements from grassland forages, such as selenium (Se). To shed fresh light on this issue, this study aims to investigate the impact of dietary Se deficiency and supplementation on the liver of grazing sheep in these challenging conditions. Method This study involved 28 grazing Mongolian Wu Ranke sheep with an average body weight of about 32.20 ± 0.37 kg, which were divided into the Se treatment group and the control group. The Se treatment group was fed with the low-Se diet for 60 days and then continued to be fed with the high-Se diet for 41 days. The liver concentration of minerals, transcriptomic analysis, and untargeted metabolomic analysis were conducted to assess the impact of Se deficiency and supplementation on the liver of grazing sheep. Results Dietary Se deficiency and supplementation significantly reduced and elevated liver concentration of Se, respectively (p < 0.05). Gene functional enrichment analysis suggested that dietary Se deficiency might impair protein synthesis efficiency, while Se supplementation was found to enhance liver protein synthesis in grazing sheep. AGAP1, ERN1, MAL2, NFIC, and RERG were identified as critical genes through the weighted gene correlation network analysis, the quantitative real-time polymerase chain reaction, and the receiver operating characteristic curve validation that could potentially serve as biomarkers. Metabolomics analysis revealed that dietary Se deficiency significantly reduced the abundance of metabolites such as 5-hydroxytryptamine, while dietary Se supplementation significantly elevated the abundance of metabolites such as 5-hydroxytryptophan (p < 0.05). Conclusion Integrative analysis of the transcriptome and metabolome revealed that dietary Se deficiency led to reduced hepatic antioxidant and anti-inflammatory capacity, whereas Se supplementation increased the hepatic antioxidant and anti-inflammatory capacity in grazing Wu Ranke sheep. These findings provide new insights into the effects of dietary Se deficiency and supplementation on the liver of grazing sheep, potentially leading to improved overall health and well-being of grazing livestock.
Collapse
Affiliation(s)
| | | | - Zhi Qi
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lan Mi
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
9
|
Kramarz C, McHugh J, Rossor A. Strachan's syndrome and riboflavin deficiency. Pract Neurol 2024; 24:121-128. [PMID: 38290841 DOI: 10.1136/pn-2023-003822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Strachan's syndrome comprises a triad of optic, auditory and painful sensory peripheral neuropathy. It has been recognised since the late 19th century and is presumed to result from nutritional deficiency. Patients present acute or subacutely after a period of systemic illness, weight loss or, most commonly, dietary restriction, especially veganism, which can cause riboflavin (vitamin B2) and vitamin B12 deficiencies. The syndrome is more common in people who are black British and often of Jamaican descent. We describe the clinical phenotype using a typical case example, review other endemic nutritional peripheral neuropathies and discuss the potential benefit of riboflavin as a treatment.
Collapse
Affiliation(s)
- Caroline Kramarz
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - James McHugh
- Department of Ophthalmology, King's College Hospital, London, UK
| | - Alexander Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, Guys and St Thomas' Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Hess SY, Smith TJ, Sitthideth D, Arnold CD, Tan X, Jones KS, Brown KH, Alayon S, Kounnavong S. Risk factors for anaemia among women and their young children hospitalised with suspected thiamine deficiency in northern Lao PDR. MATERNAL & CHILD NUTRITION 2024; 20:e13565. [PMID: 37803889 PMCID: PMC10749997 DOI: 10.1111/mcn.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Anaemia among women and young children remains a major public health concern. This secondary study describes the anaemia prevalence among young hospitalised children and their mothers in northern Lao People's Democratic Republic and explores possible nutritional causes and risk factors for anaemia. Hospitalised children (ages 21 days to <18 months) with clinical symptoms suggestive of thiamine deficiency disorders were eligible along with their mothers. Venous blood was collected for determination of haemoglobin, ferritin, soluble transferrin receptor (sTfR), retinol-binding protein (RBP), erythrocyte glutathione reductase activation coefficient (EGRac), thiamine diphosphate (ThDP) and acute phase proteins. Risk factors for anaemia were modelled using minimally adjusted logistic regression controlling for age. Haemoglobin results were available for 436 women (mean ± SD age 24.7 ± 6.4 years; 1.6% pregnant) and 427 children (4.3 ± 3.5 months; 60.3% male). Anaemia prevalence (Hb < 120 g/L for nonpregnant women and <110 g/L for pregnant women and children) was 30.7% among women and 55.2% among children. In bivariate analyses, biomarkers significantly associated with anaemia in women were ferritin, sTfR, RBP, EGRac and ThDP. Other risk factors for women were lower BMI, mid-upper arm circumference < 23.5 cm, lower education, lower socioeconomic index, food insecurity, Hmong ethnicity, not/rarely having attended antenatal care, not having taken antenatal iron-containing supplements and not meeting minimum dietary diversity. Risk factors for anaemia among children were older age, male sex, stunting, sTfR, ThDP and alpha-1-acid-glycoprotein. Anaemia was common among women and their hospitalised children and was associated with micronutrient deficiencies and socioeconomic, dietary and health care-seeking risk factors, suggesting that multiple strategies are required to prevent anaemia among women and children.
Collapse
Affiliation(s)
- Sonja Y. Hess
- Institute for Global Nutrition and Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Taryn J. Smith
- Institute for Global Nutrition and Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Dalaphone Sitthideth
- Lao Tropical and Public Health InstituteVientianeLao People's Democratic Republic
| | - Charles D. Arnold
- Institute for Global Nutrition and Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Xiuping Tan
- Institute for Global Nutrition and Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Kerry S. Jones
- Nutritional Biomarker Laboratory, MRC Epidemiology UnitUniversity of CambridgeCambridgeUK
| | - Kenneth H. Brown
- Institute for Global Nutrition and Department of NutritionUniversity of California DavisDavisCaliforniaUSA
| | - Silvia Alayon
- USAID Advancing NutritionArlingtonVirginiaUSA
- Save the ChildrenWashingtonWashington, D.C.USA
| | - Sengchanh Kounnavong
- Lao Tropical and Public Health InstituteVientianeLao People's Democratic Republic
| |
Collapse
|
11
|
Parkington DA, Koulman A, Jones KS. Protocol for measuring erythrocyte glutathione reductase activity coefficient to assess riboflavin status. STAR Protoc 2023; 4:102726. [PMID: 37988268 PMCID: PMC10696246 DOI: 10.1016/j.xpro.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023] Open
Abstract
Riboflavin (vitamin B2) is a component of the co-enzyme flavin adenine dinucleotide (FAD). The activity coefficient of erythrocyte glutathione reductase (EGRAC), a FAD-dependent enzyme, is a biomarker of riboflavin status. Here, we describe a protocol for measuring unstimulated (basal) and FAD-stimulated (activated) erythrocyte glutathione reductase activity to calculate EGRAC. We describe the steps for preparing washed red blood cells and hemolysates; preparing reagents; loading, incubating, and reading the 96-well plate; and calculating the results. For complete details on the use and execution of this protocol, please refer to Hess et al.1.
Collapse
Affiliation(s)
- Damon A Parkington
- Nutritional Biomarker Laboratory, MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0SL, UK.
| | - Albert Koulman
- Nutritional Biomarker Laboratory, MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0SL, UK
| | - Kerry S Jones
- Nutritional Biomarker Laboratory, MRC Epidemiology Unit, University of Cambridge, Cambridge CB2 0SL, UK.
| |
Collapse
|
12
|
Kramarz C, Murphy E, Reilly MM, Rossor AM. Nutritional peripheral neuropathies. J Neurol Neurosurg Psychiatry 2023; 95:61-72. [PMID: 37536924 DOI: 10.1136/jnnp-2022-329849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Nutritional peripheral neuropathies are a global problem, heavily influenced by geopolitical, cultural and socioeconomic factors. Peripheral neuropathy occurs most frequently secondary to B-vitamin deficiencies, which is suspected to increase in years to come due to the popularity of vegan and vegetarian diets and increased use of bariatric surgery.This review will focus on the common B-vitamins for which a causal link to peripheral neuropathy is more established (vitamins B1, B2, B6, B9 and B12). We will review the historical human and animal data on which much of the clinical descriptions of vitamin deficiencies are based and summarise current available tools for accurately diagnosing a nutritional deficiency. We will also review recently described genetic diseases due to pathogenic variants in genes involved in B-vitamin metabolism that have helped to inform the phenotypes and potential causality of certain B-vitamins in peripheral neuropathy (B2 and B9).Endemic outbreaks of peripheral neuropathy over the last two centuries have been linked to food shortages and nutritional deficiency. These include outbreaks in Jamaican sugar plantation workers in the nineteenth century (Strachan's syndrome), World War two prisoners of war, Cuban endemic neuropathy and also Tanzanian endemic optic neuropathy, which remains a significant public health burden today. An improved understanding of lack of which vitamins cause peripheral neuropathy and how to identify specific deficiencies may lead to prevention of significant and irreversible disability in vulnerable populations.
Collapse
Affiliation(s)
- Caroline Kramarz
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
13
|
Chen Y, Zhao J, McLinden AP, Luo M, Cao K, Liu J. Severe erythroid hypoplasia and erythroblast vacuolization in a male with Brown-Vialetto-Van Laere syndrome 2 misdiagnosed as Diamond Blackfan anemia. Pediatr Blood Cancer 2023; 70:e30396. [PMID: 37132082 DOI: 10.1002/pbc.30396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Yanxia Chen
- Department of Rheumatology and Immunology, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Jiwei Zhao
- Department of Laboratory Medicine, Nanjing Lishui District Hospital of TraditionalChinese Medicine, Nanjing, Jiangsu, China
| | - A Patrick McLinden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Meizhu Luo
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ke Cao
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jinlin Liu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Ullah H, Sommella E, Minno AD, Piccinocchi R, Buccato DG, Lellis LFD, Riccioni C, Baldi A, El-Seedi HR, Khalifa SAM, Piccinocchi G, Campiglia P, Sacchi R, Daglia M. Combination of Chemically Characterized Pomegranate Extract and Hydrophilic Vitamins against Prolonged Fatigue: A Monocentric, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:2883. [PMID: 37447210 PMCID: PMC10343643 DOI: 10.3390/nu15132883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Prolonged fatigue is associated with non-pathological causes and lacks an established therapeutic approach. The current study is aimed at assessing the efficacy of a new food supplement (Improve™) based on a chemically characterized pomegranate extract and hydro-soluble vitamins (B complex and C). UHPLC-HRMS analysis of pomegranate extract showed the presence of 59 compounds, with gallotannins and ellagitannins being the most abundant phytochemicals. For the clinical study, 58 subjects were randomized into two groups, 1 and 2 (n = 29, each), which received either the food supplement or placebo. The effects of the food supplement against fatigue were assessed via validated questionnaires, recorded at time intervals t0 (at baseline), t1 (after 28 days), t2 (56 days), and t3 (after follow-up) in combination with the analysis of biochemical markers at t0 and t2. Fatigue severity scale (FSS) questionnaire scores were significantly decreased at the t2 and t3 time intervals in subjects treated with the food supplements, while the effect of the food supplement on a 12-Item Short Form Survey (SF-12) was not considerable. Moreover, the food supplement did not significantly affect biochemical parameters associated with fatigue and stress conditions. This study shows that the food supplement tested reduces prolonged fatigue following two months of supplementation in healthy subjects with mild prolonged fatigue.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.); (D.G.B.); (L.F.D.L.); (A.B.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (P.C.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.); (D.G.B.); (L.F.D.L.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Roberto Piccinocchi
- Level 1 Medical Director Anaesthesia and Resuscitation A. U. O. Luigi Vanvitelli, Via Santa Maria di Costantinopoli, 80138 Naples, Italy;
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.); (D.G.B.); (L.F.D.L.); (A.B.)
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.); (D.G.B.); (L.F.D.L.); (A.B.)
| | | | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.); (D.G.B.); (L.F.D.L.); (A.B.)
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Gaetano Piccinocchi
- Comegen S.c.S., Società Cooperativa Sociale di Medici di Medicina Generale, Viale Maria Bakunin 41, 80125 Naples, Italy;
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (P.C.)
- European Biomedical Research Institute of Salerno, Via De Renzi 50, 84125 Salerno, Italy
| | - Roberto Sacchi
- Applied Statistic Unit, Department of Earth and Environmental Sciences, University of Pavia, Viale Taramelli 24, 27100 Pavia, Italy;
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (H.U.); (A.D.M.); (D.G.B.); (L.F.D.L.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
15
|
Riboflavin Intake Inversely Associated with Cardiovascular-Disease Mortality and Interacting with Folate Intake: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005-2016. Nutrients 2022; 14:nu14245345. [PMID: 36558504 PMCID: PMC9785396 DOI: 10.3390/nu14245345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The association between intakes of riboflavin and mortality has not been examined intensively in general populations. In this study, 10,480 adults in the 2005-2016 National Health and Nutrition Examination Survey (NHANES) were followed-up until 2019 for their vital status. Riboflavin and folate were assessed by two-day 24 h recall. The date and cause of death were obtained from the US Mortality Registry. The risks of all-cause mortality and cardiovascular disease (CVD) mortality were investigated using a Cox regression analysis. During a mean of 8.5 years follow-up, there were 1214 deaths registered (including 373 deaths from CVD and 302 from cancer). Compared to low level (quartile 1, Q1) of riboflavin intake, the hazard ratios (HRs) (95% confidence interval (CI)) for high level (quartile 4, Q4) were 0.53 (0.31-0.90) for CVD mortality and 0.62 (0.48-0.81) for all-cause mortality. The inverse association between riboflavin intake and CVD mortality was only significant among those with a high intake of folate (p for interaction 0.045). Those with a high folate intake (Q4) and low intake of riboflavin (Q1) had the highest risk of CVD mortality (HR 4.38, 95% CI 1.79-10.72), as compared with a high intake of both riboflavin and folate. In conclusion, riboflavin intake was inversely associated with all-cause mortality and CVD mortality, and the association was modified by folate intake.
Collapse
|