1
|
Neglected Functions of TFCP2/TFCP2L1/UBP1 Transcription Factors May Offer Valuable Insights into Their Mechanisms of Action. Int J Mol Sci 2018; 19:ijms19102852. [PMID: 30241344 PMCID: PMC6213935 DOI: 10.3390/ijms19102852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, the TFCP2 (transcription factor cellular promoter 2)/TFCP2L1 (TFCP2-like 1)/UBP1 (upstream binding protein 1) subfamily of transcription factors has been attracting increasing attention in the scientific community. These factors are very important in cancer, Alzheimer’s disease, and other human conditions, and they can be attractive targets for drug development. However, the interpretation of experimental results is complicated, as in principle, any of these factors could substitute for the lack of another. Thus, studying their hitherto little known functions should enhance our understanding of mechanisms of their functioning, and analogous mechanisms might govern their functioning in medically relevant contexts. For example, there are numerous parallels between placental development and cancer growth; therefore, investigating the roles of TFCP2, TFCP2L1, and UBP1 in the placenta may help us better understand their functioning in cancer, as is evidenced by the studies of various other proteins and pathways. Our review article aims to call the attention of the scientific community to these neglected functions, and encourage further research in this field. Here, we present a systematic review of current knowledge of the TFCP2/TFCP2L1/UBP1 subfamily in reproduction, embryonic development, renal function, blood-pressure regulation, brain function, and other processes, where their involvement has not been studied much until now.
Collapse
|
2
|
Myrum C, Nikolaienko O, Bramham CR, Haavik J, Zayats T. Implication of the APP Gene in Intellectual Abilities. J Alzheimers Dis 2018; 59:723-735. [PMID: 28671113 PMCID: PMC5523840 DOI: 10.3233/jad-170049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Cognitive functions are highly heritable and polygenic, though the source of this genetic influence is unclear. On the neurobiological level, these functions rely on effective neuroplasticity, in which the activity-regulated cytoskeleton associated protein (ARC) plays an essential role. Objectives: To examine whether the ARC gene complex may contribute to the genetic components of intellectual function given the crucial role of ARC in brain plasticity and memory formation. Methods: The ARC complex was tested for association with intelligence (IQ) in children from the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 5,165). As Alzheimer’s disease (AD) shares genetics with cognitive functioning, the association was followed up in an AD sample (17,008 cases, 37,154 controls). Results: The ARC complex revealed association with verbal and total IQ (empirical p = 0.027 and 0.041, respectively) in the ALSPAC. The strongest single variant signal (rs2830077; empirical p = 0.018), within the APP gene, was confirmed in the AD sample (p = 2.76E-03). Functional analyses of this variant showed its preferential binding to the transcription factor CP2. Discussion: This study implicates APP in childhood IQ. While follow-up studies are needed, this observation could help elucidate the etiology of disorders associated with cognitive dysfunction, such as AD.
Collapse
Affiliation(s)
- Craig Myrum
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Oleksii Nikolaienko
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells. Cell Death Dis 2017; 8:e2597. [PMID: 28182010 PMCID: PMC5386473 DOI: 10.1038/cddis.2017.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/28/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Mammalian folliculogenesis is a complex process in which primordial follicles develop into pre-ovulatory follicles, followed by ovulation to release mature oocytes. In this study, we explored the role of miR-144 in ovulation. miR-144 was one of the differentially expressed microRNAs, which showed 5.59-fold changes, in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We demonstrated that overexpression of miR-144 significantly decreased the luciferase reporter activity under the control of the cyclooxygenase-2 (COX-2) or mothers against decapentaplegic homologue 4 (Smad4) 3'-untranslated region (3'-UTR) and suppressed COX-2 and Smad4 expression. In contrast, a miR-144 inhibitor increased COX-2 and Smad4 expression in mouse granulosa cells (mGCs). Meanwhile, Smad4 upregulated COX-2 expression, but this effect was abolished when the mGCs were treated with the transforming growth factor beta signalling pathway inhibitor SB431542. Moreover, luciferase reporter, chromatin immunoprecipitation and electrophoretic mobility shift assay results showed that the transcription factor CP2 upregulated miR-144 expression, which partially contributed to the suppression of COX-2 in mGCs. Both CP2 and miR-144 alter prostaglandin E2 (PGE2) production by regulating COX-2 expression. In addition, miR-144 regulated mGC apoptosis and affected follicular atresia, but these activities did not appear to be through COX-2 and Smad4. Taken together, we revealed an important CP2/miR-144/COX-2/PGE2/ovulation pathway in mGCs.
Collapse
|
4
|
Tsang RSM, Mather KA, Sachdev PS, Reppermund S. Systematic review and meta-analysis of genetic studies of late-life depression. Neurosci Biobehav Rev 2017; 75:129-139. [PMID: 28137459 DOI: 10.1016/j.neubiorev.2017.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/23/2017] [Indexed: 11/15/2022]
Abstract
Late-life depression (LLD) is thought to be multifactorial in etiology, including a significant genetic component. While a number of candidate gene studies have been carried out, results remain inconclusive. We undertook a systematic review of all genetic association studies of depression or depressive symptoms in late life published before February 2016, and performed meta-analyses on polymorphisms investigated in three or more independent studies. A total of 46 candidate gene studies examining 56 polymorphisms in 23 genes as well as a genome-wide association study (GWAS) were included. Meta-analyses were conducted for four polymorphisms using random effects models, of which three (APOE, BDNF, SLC6A4) were associated with LLD. These genes are implicated in hippocampal plasticity and stress reactivity, suggesting that dysregulation of these pathways may contribute to LLD. Despite using a large sample, the only GWAS published to date identified only one genome-wide significant locus in the 5q21 region. In the future, larger genetic studies specifically examining LLD, including non-hypothesis-driven GWAS, are required to further identify genetic determinants of LLD.
Collapse
Affiliation(s)
- Ruby S M Tsang
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia.
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Barker Street, Randwick, NSW, Australia
| | - Simone Reppermund
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia; Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Nensa FM, Neumann MHD, Schrötter A, Przyborski A, Mastalski T, Susdalzew S, Looβe C, Helling S, El Magraoui F, Erdmann R, Meyer HE, Uszkoreit J, Eisenacher M, Suh J, Guénette SY, Röhner N, Kögel D, Theiss C, Marcus K, Müller T. Amyloid beta a4 precursor protein-binding family B member 1 (FE65) interactomics revealed synaptic vesicle glycoprotein 2A (SV2A) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) as new binding proteins in the human brain. Mol Cell Proteomics 2013; 13:475-88. [PMID: 24284412 DOI: 10.1074/mcp.m113.029280] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FE65 is a cytosolic adapter protein and an important binding partner of amyloid precursor protein. Dependent on Thr668 phosphorylation in amyloid precursor protein, which influences amyloidogenic amyloid precursor protein processing, FE65 undergoes nuclear translocation, thereby transmitting a signal from the cell membrane to the nucleus. As this translocation may be relevant in Alzheimer disease, and as FE65 consists of three protein-protein interaction domains able to bind and affect a variety of other proteins and downstream signaling pathways, the identification of the FE65 interactome is of central interest in Alzheimer disease research. In this study, we identified 121 proteins as new potential FE65 interacting proteins in a pulldown/mass spectrometry approach using human post-mortem brain samples as protein pools for recombinantly expressed FE65. Co-immunoprecipitation assays further validated the interaction of FE65 with the candidates SV2A and SERCA2. In parallel, we investigated the whole cell proteome of primary hippocampal neurons from FE65/FE65L1 double knockout mice. Notably, the validated FE65 binding proteins were also found to be differentially abundant in neurons derived from the FE65 knockout mice relative to wild-type control neurons. SERCA2 is an important player in cellular calcium homeostasis, which was found to be up-regulated in double knockout neurons. Indeed, knock-down of FE65 in HEK293T cells also evoked an elevated sensitivity to thapsigargin, a stressor specifically targeting the activity of SERCA2. Thus, our results suggest that FE65 is involved in the regulation of intracellular calcium homeostasis. Whereas transfection of FE65 alone caused a typical dot-like phenotype in the nucleus, co-transfection of SV2A significantly reduced the percentage of FE65 dot-positive cells, pointing to a possible role for SV2A in the modulation of FE65 intracellular targeting. Given that SV2A has a signaling function at the presynapse, its effect on FE65 intracellular localization suggests that the SV2A/FE65 interaction might play a role in synaptic signal transduction.
Collapse
Affiliation(s)
- Fabian M Nensa
- Functional Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ha S, Furukawa R, Fechheimer M. Association of AICD and Fe65 with Hirano bodies reduces transcriptional activation and initiation of apoptosis. Neurobiol Aging 2011; 32:2287-98. [PMID: 20133016 PMCID: PMC2894277 DOI: 10.1016/j.neurobiolaging.2010.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 02/03/2023]
Abstract
Hirano bodies are cytoplasmic inclusions predominantly found in the central nervous system associated with various conditions including aging and Alzheimer's disease (AD). Since most studies of Hirano bodies have been performed in post-mortem samples, the physiological roles of Hirano bodies have not been investigated. Astrocytoma H4 cells were employed to test the hypothesis that Hirano bodies interact with and modulate signaling by the C-terminal fragment of amyloid-β precursor protein (AICD). We demonstrated by immunofluorescence and immunoprecipitation that model Hirano bodies accumulate AICD. Since stimulation of transcription by AICD is dependent on its interaction with the nuclear adaptor protein Fe65, we examined localization of Fe65, and employed a dual luciferase reporter assay to test the effects of Hirano bodies on AICD- and Fe65-dependent modulation of gene expression. We find that both AICD and Fe65 are co-localized in model Hirano bodies. Model Hirano bodies also down-regulate both AICD-dependent apoptosis and AICD- and Fe65-dependent transcriptional activity. Thus, association of AICD and Fe65 with Hirano bodies impedes their function in promoting apoptosis and modulating transcription.
Collapse
Affiliation(s)
- Sangdeuk Ha
- Department of Cellular Biology, University of Georgia, Athens, GA 30602 USA
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, GA 30602 USA
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
7
|
Zubenko GS, Hughes HB. Effects of the A(-115)G variant on CREB1 promoter activity in two brain cell lines: Interactions with gonadal steroids. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1365-72. [PMID: 20957653 PMCID: PMC3078048 DOI: 10.1002/ajmg.b.31133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/08/2010] [Indexed: 11/08/2022]
Abstract
Major depressive disorder (MDD) is a leading contributor to disease burden worldwide. Previous genetic studies have revealed significant evidence of linkage of the CREB1 region to mood disorders among women from families with recurrent, early-onset MDD (RE-MDD), a severe and familial subtype of MDD. Systematic resequencing of the CREB1 gene in affected members of these families has identified rare sequence variants at positions -656 and -115 that appear to cosegregate with unipolar mood disorders in two large multigenerational families and three small nuclear families, respectively. Results from previous transfection experiments that employed constructs containing the wild-type or variant CREB1 promoters coupled to a reporter gene support the hypothesis that the A(-656) allele contributes to the development of MDD in women by selectively increasing the activity of the CREB1 promoter in brain cell lines exposed to 17 β-estradiol. Analogous transfection experiments described in the current study revealed that the G(-115) promoter variant reduced promoter activity in CATH.a neuronal cells regardless of the hormonal environment, consistent with the observation that increased risk for unipolar mood disorders conferred by this allele was not limited by sex. The effects of CREB1 promoter variants on promoter activity, their influence on the development of mood disorders and related clinical features, and the interaction of their phenotypic expression with sex seem likely to be complex and allele-specific rather than a general property of the CREB1 locus. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- George S. Zubenko
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA,Department of Biological Sciences, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA
| | - Hugh B. Hughes
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
8
|
Jang SM, Kim JW, Kim CH, An JH, Kang EJ, Kim CG, Kim HJ, Choi KH. Control of transferrin expression by β-amyloid through the CP2 transcription factor. FEBS J 2010; 277:4054-65. [PMID: 20796026 DOI: 10.1111/j.1742-4658.2010.07801.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulation of β-amyloid protein (Aβ) is one of the most important pathological features of Alzheimer's disease. Although Aβ induces neurodegeneration in the cortex and hippocampus through several molecular mechanisms, few studies have evaluated the modulation of transcription factors during Aβ-induced neurotoxicity. Therefore, in this study, we investigated the transcriptional activity of transcription factor CP2 in neuronal damage mediated by Aβ (Aβ(1-42) and Aβ(25-35) ). An unbiased motif search of the transferrin promoter region showed that CP2 binds to the transferrin promoter, an iron-regulating protein, and regulates transferrin transcription. Ectopic expression of CP2 led to increased transferrin expression at both the mRNA and protein levels, whereas knockdown of CP2 down-regulated transferrin mRNA and protein expression. Moreover, CP2 trans-activated transcription of a transferrin reporter gene. An electrophoretic mobility shift assay and a chromatin immunoprecipitation assay showed that CP2 binds to the transferrin promoter region. Furthermore, the binding affinity of CP2 to the transferrin promoter was regulated by Aβ, as Aβ (Aβ(1-42) and Aβ(25-35) ) markedly increased the binding affinity of CP2 for the transferrin promoter. Taken together, these results suggest that CP2 contributes to the pathogenesis of Alzheimer's disease by inducing transferrin expression via up-regulating its transcription.
Collapse
Affiliation(s)
- Sang-Min Jang
- Department of Life Science (BK21 Program), College of Natural Sciences, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Cousin E, Macé S, Rocher C, Dib C, Muzard G, Hannequin D, Pradier L, Deleuze JF, Génin E, Brice A, Campion D. No replication of genetic association between candidate polymorphisms and Alzheimer's disease. Neurobiol Aging 2009; 32:1443-51. [PMID: 19889475 DOI: 10.1016/j.neurobiolaging.2009.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 08/28/2009] [Accepted: 09/27/2009] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease is a genetically complex disorder, for which new putative susceptibility genes are constantly proposed in the literature. We selected 16 candidate genes involved in biological pathways closely related to the pathology, and for which a genetic association with Alzheimer's disease was previously detected: ACE, BACE1, BDNF, ECE1, HSPG2, IDE, IL1a, IL6, IL10, MAPT, PLAU, PrnP, PSEN1, SORL1, TFCP2 and TGFb1. The variants originally associated with the disease were genotyped in a French Caucasian sample including 428 cases and 475 controls and tested for association in order to replicate the initial results. Despite a careful replication study design, we failed to validate the initial findings for any of these variants, with the possible exception of MAPT, SORL1 and TFCP2 for which some nominal but inconsistent evidence of association was observed.
Collapse
Affiliation(s)
- Emmanuelle Cousin
- Biological Sciences Department, sanofi-aventis Recherche et Développement, Centre de Génétique humaine, 91057 Evry, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zubenko GS, Hughes HB. Effects of the G(-656)A variant on CREB1 promoter activity in a neuronal cell line: interactions with gonadal steroids and stress. Mol Psychiatry 2009; 14:390-7. [PMID: 18317463 PMCID: PMC2830064 DOI: 10.1038/mp.2008.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major depressive disorder (MDD) constitutes a major public health problem worldwide and affects women twice as frequently as men. Previous genetic studies have revealed significant evidence of linkage of the cAMP-responsive element-binding protein 1 (CREB1) gene region (2q33-35) to mood disorders among women from families with recurrent, early-onset MDD (RE-MDD), a severe and familial subtype of MDD. A rare G-to-A transition at position -656 in the CREB1 promoter co-segregates with mood disorders in women from these families, implicating CREB1 as a sex-related susceptibility gene for unipolar mood disorders. In the current study, the functional significance of the CREB1 promoter variant was determined using transfection experiments that employed plasmid constructs containing the wild-type or variant CREB1 promoters coupled to a reporter gene. The results support the hypothesis that the A(-656) allele contributes to the development of MDD in women through selective alteration of CREB1 promoter activity by female gonadal steroids in noradrenergic neuronal cells. Furthermore, exaggeration of these effects during a simulated stress condition may be relevant to reported gene-environment interactions that contribute to the emergence of MDD in clinical populations.
Collapse
Affiliation(s)
- George S. Zubenko
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA,Department of Biological Sciences, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA
| | - Hugh B. Hughes
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
11
|
Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ. Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 2009; 84:445-58. [PMID: 19361613 DOI: 10.1016/j.ajhg.2009.03.011] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/02/2009] [Accepted: 03/17/2009] [Indexed: 11/18/2022] Open
Abstract
We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.
Collapse
Affiliation(s)
- Jennifer A Webster
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 2009; 32:199-206. [PMID: 19268374 DOI: 10.1016/j.tins.2008.12.003] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/14/2008] [Accepted: 12/10/2008] [Indexed: 12/21/2022]
Abstract
Brain development crucially depends on the integrity of microRNA (miRNA) pathways, which function at the post-transcriptional level as a rheostat of the transcriptome and proteome of the cell. miRNAs are also involved in many other, more specific, aspects of neuronal function such as neurite outgrowth and synapse formation. Complete loss of miRNA expression in the brain leads to neurodegeneration in several animal models. Evidence from patient material is emerging that miRNA dysregulation could, indeed, contribute to neurodegenerative disorders. The translation of proteins previously implicated in familial forms of disease seems to be under control of miRNAs, and changes in miRNAs might explain how these proteins become affected in sporadic neurodegenerative disease. Thus, miRNAs are moving rapidly center stage as key regulators of neuronal development and function in addition to important contributors to neurodegenerative disorder.
Collapse
Affiliation(s)
- Sébastien S Hébert
- Center for Human Genetics, K.U. Leuven, Herestraat 49 bus 602, B-3000 Leuven, Belgium
| | | |
Collapse
|
13
|
Wadelius C. Integrating the Genome and Epigenome in Human Disease. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Zubenko GS, Hughes HB. Effects of the G(-656)A variant on CREB1 promoter activity in a glial cell line: interactions with gonadal steroids and stress. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:579-85. [PMID: 18213625 DOI: 10.1002/ajmg.b.30708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Major depressive disorder (MDD) constitutes a major public health problem worldwide and affects women twice as frequently as men. Previous genetic studies have revealed significant evidence of linkage of the CREB1 region to mood disorders among women from families with recurrent, early-onset MDD (RE-MDD), a severe and familial subtype of MDD. A rare G to A transition at position -656 in the CREB1 promoter cosegregates with mood disorders in women from these families, implicating CREB1 as a sex-related susceptibility gene for unipolar mood disorders. In the current study, the functional significance of the CREB1 promoter variant was determined using transfection experiments that employed constructs containing the wild-type or variant CREB1 promoters coupled to a reporter gene. The results support the hypothesis that the A(-656) allele contributes to the development of MDD in women by selectively altering the activity of the CREB1 promoter in glial cells exposed to 17 beta-estradiol. Furthermore, the exaggeration of this effect during a simulated stress condition may be relevant to reported gene-environment interactions that contribute to the emergence of MDD in clinical populations. The results of in silico analysis revealed four putative binding sites for transcription factors that are affected by the G to A transition at position -656, of which CP2 best fit the experimental observations.
Collapse
Affiliation(s)
- George S Zubenko
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
15
|
Suwalska K, Pawlak E, Karabon L, Tomkiewicz A, Dobosz T, Urbaniak-Kujda D, Kuliczkowski K, Wolowiec D, Jedynak A, Frydecka I. Association studies of CTLA-4, CD28, and ICOS gene polymorphisms with B-cell chronic lymphocytic leukemia in the Polish population. Hum Immunol 2008; 69:193-201. [DOI: 10.1016/j.humimm.2008.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 11/30/2022]
|
16
|
Randall CN, Strasburger D, Prozonic J, Morris SN, Winkie AD, Parker GR, Cheng D, Fennell EM, Lanham I, Vakil N, Huang J, Cathcart H, Huang R, Poduslo SE. Cluster analysis of risk factor genetic polymorphisms in Alzheimer's disease. Neurochem Res 2008; 34:23-8. [PMID: 18307033 DOI: 10.1007/s11064-008-9626-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
Multiple genetic variants may contribute to the risk of developing Alzheimer's disease. We have analyzed polymorphisms in 9 genes to determine whether particular combinations would contribute to this risk. The genes were APOE, LDLr, CST3, CTSD, TNF, BACE1, MAPT, STH, eNOS, and TFCP2. Three risk groups for the disease were identified. Risk group I was younger, was heterozygous for the CST3 (GA), CTSD2936 (AG), TNF -308 (AG) genetic variants. Risk group II was older, was homozygous for the -427 APOE promoter polymorphism (TT), and heterozygous for the MAPT deletion and for the STH variant (QR). Group III had both the youngest and oldest subjects, were heterozygous for the -863 (AC) and -1031 (CT) TNF promoter polymorphisms. All three groups carried the APOE 4 allele and were heterozygous for both BACE1 polymorphisms. The control groups were carriers of the APOE 3 allele and were homozygous for the BACE1 genetic variants.
Collapse
Affiliation(s)
- C N Randall
- Institute of Molecular Medicine and Genetics (IMMAG), Medical College of Georgia, 1120 15th Street, Augusta, GA, 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Laws SM, Friedrich P, Diehl-Schmid J, Müller J, Eisele T, Bäuml J, Förstl H, Kurz A, Riemenschneider M. Fine mapping of the MAPT locus using quantitative trait analysis identifies possible causal variants in Alzheimer's disease. Mol Psychiatry 2007; 12:510-7. [PMID: 17179995 DOI: 10.1038/sj.mp.4001935] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In addition to senile plaques, neurofibrillary tangles are characteristic of Alzheimer's disease (AD) pathology, suggesting a clear involvement of the microtubule-associated protein tau (MAPT) in AD. Recent findings, suggesting that the H1c haplotype is associated with increased risk, now also implicate MAPT genetically. In this study, we aim to clarify this association by a fine mapping approach using both a traditional phenotypic association analysis and a quantitative trait (QT) analysis using cerebrospinal fluid (CSF) tau protein levels in the German population. Here, we report that both methodologies identify that the H1c haplotype may play important role in AD (AD risk, P=0.007, uncorrected; CSF tau levels, P=0.027, uncorrected). Further, the use of a sliding window approach in the QT analysis allowed for the narrowing down of the region where a probable causal variant may be located. The data suggest that this may lie at or within close proximity to the rs242557 single nucleotide polymorphism as association with CSF tau levels seems to be primarily driven by rs242557 in a gene dosage-dependent manner (trend model: P=0.002, uncorrected). These findings provide functional evidence to support the genetic association of MAPT with AD.
Collapse
Affiliation(s)
- S M Laws
- Neurochemistry and Neurogenetics Laboratory, Department of Psychiatry and Psychotherapy, Technische Universität München, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boddaert J, Kinugawa K, Lambert JC, Boukhtouche F, Zoll J, Merval R, Blanc-Brude O, Mann D, Berr C, Vilar J, Garabedian B, Journiac N, Charue D, Silvestre JS, Duyckaerts C, Amouyel P, Mariani J, Tedgui A, Mallat Z. Evidence of a role for lactadherin in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:921-9. [PMID: 17322377 PMCID: PMC1864868 DOI: 10.2353/ajpath.2007.060664] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactadherin is a secreted extracellular matrix protein expressed in phagocytes and contributes to the removal of apoptotic cells. We examined lactadherin expression in brain sections of patients with or without Alzheimer's disease and studied its role in the phagocytosis of amyloid beta-peptide (Abeta). Cells involved in Alzheimer's disease, including vascular smooth muscle cells, astrocytes, and microglia, showed a time-related increase in lactadherin production in culture. Quantitative analysis of the level of lactadherin showed a 35% reduction in lactadherin mRNA expression in the brains of patients with Alzheimer's disease (n = 52) compared with age-matched controls (n = 58; P = 0.003). Interestingly, lactadherin protein was detected in the brains of patients with Alzheimer's disease and controls, with low expression in areas rich in senile plaques and marked expression in areas without Abeta deposition. Using surface plasmon resonance, we observed a direct protein-protein interaction between recombinant lactadherin and Abeta 1-42 peptide in vitro. Lactadherin deficiency or its neutralization using specific antibodies significantly prevented Abeta 1-42 phagocytosis by murine and human macrophages. In conclusion, lactadherin plays an important role in the phagocytosis of Abeta 1-42 peptide, and its expression is reduced in Alzheimer's disease. Alterations in lactadherin production/function may contribute to the initiation and/or progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Jacques Boddaert
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardiovasculaire Lariboisière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bullido MJ, Martínez-García A, Tenorio R, Sastre I, Muñoz DG, Frank A, Valdivieso F. Double stranded RNA activated EIF2 alpha kinase (EIF2AK2; PKR) is associated with Alzheimer's disease. Neurobiol Aging 2007; 29:1160-6. [PMID: 17420072 DOI: 10.1016/j.neurobiolaging.2007.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/09/2007] [Accepted: 02/15/2007] [Indexed: 11/15/2022]
Abstract
Sporadic Alzheimer's disease (AD) appears to be the consequence of the interaction between combinations of genes and environmental factors (for example virus infections). To test this hypothesis, we are examining human genes relevant to herpes simplex virus type 1 (HSV-1) infection via genetic association studies in AD case-control samples. Recently, we found that a variant in TAP2, a major target used by HSV-1 to evade immune surveillance, is associated with AD. The present work analyses another gene involved in the host cell response to HSV-1, EIF2AK2 (eukaryotic translation initiation factor 2-alpha kinase 2; coding for PKR); PKR mediates the virus-induced shut-off of translation, and levels of activated PKR are high in the brains of AD patients. An EIF2AK2 SNP (rs2254958) located in the 5'-UTR region within an exonic splicing enhancer was found to be associated with AD. More specifically: the C allele was more commonly found in the patients and, compared to non-CC genotypes, the CC homozygotes showed earlier (around 3.3 years) onset of AD, especially in the absence of the APOE4 allele. These results further support the hypothesis that variants of human genes participating in HSV-1 infection modulate the susceptibility and/or clinical manifestations of AD.
Collapse
Affiliation(s)
- María J Bullido
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen JM, Férec C, Cooper DN. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants. Hum Genet 2006; 120:301-33. [PMID: 16807757 DOI: 10.1007/s00439-006-0218-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/29/2006] [Indexed: 12/13/2022]
Abstract
In an attempt both to catalogue 3' regulatory region (3' RR)-mediated disease and to improve our understanding of the structure and function of the 3' RR, we have performed a systematic analysis of disease-associated variants in the 3' RRs of human protein-coding genes. We have previously analysed the variants that have occurred in two specific domains/motifs of the 3' untranslated region (3' UTR) as well as in the 3' flanking region. Here we have focused upon 83 known variants within the upstream sequence (USS; between the translational termination codon and the upstream core polyadenylation signal sequence) of the 3' UTR. To place these variants in their proper context, we first performed a comprehensive survey of known cis-regulatory elements within the USS and the mechanisms by which they effect post-transcriptional gene regulation. Although this survey supports the view that RNA regulatory elements function within the context of specific secondary structures, there are no general rules governing how secondary structure might exert its influence. We have therefore addressed this question by systematically evaluating both functional and non-functional (based upon in vitro reporter gene and/or electrophoretic mobility shift assay data) USS variant-containing sequences against known cis-regulatory motifs within the context of predicted RNA secondary structures. This has allowed us not only to establish a reliable and objective means to perform secondary structure prediction but also to identify consistent patterns of secondary structural change that could potentiate the discrimination of functional USS variants from their non-functional counterparts. The resulting rules were then used to infer potential functionality in the case of some of the remaining functionally uncharacterized USS variants, from their predicted secondary structures. This not only led us to identify further patterns of secondary structural change but also several potential novel cis-regulatory motifs within the 3' UTRs studied.
Collapse
|
21
|
Xu Y, Kim HS, Joo Y, Choi Y, Chang KA, Park CH, Shin KY, Kim S, Cheon YH, Baik TK, Kim JH, Suh YH. Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3β expression. Cell Death Differ 2006; 14:79-91. [PMID: 16645641 DOI: 10.1038/sj.cdd.4401928] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amyloid precursor protein (APP) is a member of a gene family that includes two APP-like proteins, APLP1 and 2. Recently, it has been reported that APLP1 and 2 undergo presenilin-dependent gamma-secretase cleavage, as does APP, resulting in the release of an approximately 6 kDa intracellular C-terminal domain (ICD), which can translocate into the nucleus. In this study, we demonstrate that the APLP2-ICDs interact with CP2/LSF/LBP1 (CP2) transcription factor in the nucleus and induce the expression of glycogen synthase kinase 3beta (GSK-3beta), which has broad-ranged substrates such as tau- and beta-catenin. The significance of this finding is substantiated by the in vivo evidence of the increase in the immunoreactivities for the nuclear C-terminal fragments of APLP2, and for GSK-3beta in the AD patients' brain. Taken together, these results suggest that APLP2-ICDs contribute to the AD pathogenesis, by inducing GSK-3beta expression through the interaction with CP2 transcription factor in the nucleus.
Collapse
Affiliation(s)
- Y Xu
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Center for Alzheimer's Dementia and Neuroscience Research Institute, MRC, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bullido MJ, Martínez-García A, Artiga MJ, Aldudo J, Sastre I, Gil P, Coria F, Muñoz DG, Hachinski V, Frank A, Valdivieso F. A TAP2 genotype associated with Alzheimer's disease in APOE4 carriers. Neurobiol Aging 2006; 28:519-23. [PMID: 16595160 DOI: 10.1016/j.neurobiolaging.2006.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 11/19/2022]
Abstract
Sporadic Alzheimer's disease (AD) appears to be the consequence of the interaction between combinations of genes and environmental factors. Binding with the transporter associated with antigen processing (TAP) is thought to be the main way in which herpes simplex virus type 1 (HSV-1) evades immune surveillance. Several TAP gene polymorphisms were examined and a TAP2 SNP (rs241448) associated with AD found in two independent case-control samples, especially in carriers of the APOE4 allele. These findings are consistent with the hypothesis that human genetic variants facilitating the access of HSV-1 to the brain might result in susceptibility to AD.
Collapse
Affiliation(s)
- María J Bullido
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Panza F, Colacicco AM, D'Introno A, Capurso C, Liaci M, Capurso SA, Capurso A, Solfrizzi V. Candidate genes for late-onset Alzheimer's disease: Focus on chromosome 12. Mech Ageing Dev 2006; 127:36-47. [PMID: 16183100 DOI: 10.1016/j.mad.2005.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 07/29/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
In recent years, there was an increasing interest on candidate genes may play an important role in the development of Alzheimer's disease (AD). Several genome wide screens have undertaken so far or expanded recently, and suggested a number of genomic areas that may contain novel susceptibility genes for AD, in particular most compelling have been the findings on chromosome 12. Polymorphisms in different susceptibility genes on chromosome 12 (A2M, LRP1, CP2 and OLR1) are now being suggested as possible genetic markers for increased risk of developing AD. However, many of these studies are controversial and have shown conflicting results. Thus far, the search for the chromosome 12 Alzheimer's gene must continue and there are several other genes in this region that we are looking at. In this article, we focused on the current knowledge of the genetics of familial late-onset and sporadic AD linked to the chromosome 12, and the future search for other candidate genes.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
D'Introno A, Solfrizzi V, Colacicco AM, Capurso C, Amodio M, Todarello O, Capurso A, Kehoe PG, Panza F. Current knowledge of chromosome 12 susceptibility genes for late-onset Alzheimer's disease. Neurobiol Aging 2005; 27:1537-53. [PMID: 16257095 DOI: 10.1016/j.neurobiolaging.2005.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 09/16/2005] [Accepted: 09/20/2005] [Indexed: 12/16/2022]
Abstract
In the last decade, it has become more apparent the important role genes play in the development of late-onset Alzheimer's disease (AD). Great efforts, involving human genome scans and candidate gene studies, have been given towards identifying susceptibility genes for AD. A number of regions on different chromosomes have been reported to demonstrate linkage for AD. Of these, findings on chromosome 12 are some of the most compelling. Worldwide genetic association studies pre-dating and subsequent to recent linkage studies have identified and focused upon a number of genes that map to the areas of reported linkage on chromosome 12, however, analyses of those genes studied to date, on the whole, remain inconclusive and ambiguous. This paper reviews studies that have provided evidence of linkage for AD on chromosome 12 and in turn discusses the work conducted to date on candidate genes that have been identified and map to the chromosome 12 regions of interest.
Collapse
Affiliation(s)
- Alessia D'Introno
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Policlinico, Piazza Giulio Cesare, 11 70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Genetics of Alzheimer's disease. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
26
|
Veljkovic J, Hansen U. Lineage-specific and ubiquitous biological roles of the mammalian transcription factor LSF. Gene 2005; 343:23-40. [PMID: 15563829 PMCID: PMC3402097 DOI: 10.1016/j.gene.2004.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/30/2004] [Accepted: 08/12/2004] [Indexed: 01/15/2023]
Abstract
Transcriptional regulation in mammalian cells is driven by a complex interplay of multiple transcription factors that respond to signals from either external or internal stimuli. A single transcription factor can control expression of distinct sets of target genes, dependent on its state of post-translational modifications, interacting partner proteins, and the chromatin environment of the cellular genome. Furthermore, many transcription factors can act as either transcriptional repressors or activators, depending on promoter and cellular contexts [Alvarez, M., Rhodes, S.J., Bidwell, J.P., 2003. Context-dependent transcription: all politics is local. Gene 313, 43-57]. Even in this light, the versatility of LSF (Late SV40 Factor) is remarkable. A hallmark of LSF is its unusual DNA binding domain, as evidenced both by lack of homology to any other established DNA-binding domains and by its DNA recognition sequence. Although a dimer in solution, LSF requires additional multimerization with itself or partner proteins in order to interact with DNA. Transcriptionally, LSF can function as an activator or a repressor. It is a direct target of an increasing number of signal transduction pathways. Biologically, LSF plays roles in cell cycle progression and cell survival, as well as in cell lineage-specific functions, shown most strikingly to date in hematopoietic lineages. This review discusses how the unique aspects of LSF DNA-binding activity may make it particularly susceptible to regulation by signal transduction pathways and may relate to its distinct biological roles. We present current progress in elucidation of both tissue-specific and more universal cellular roles of LSF. Finally, we discuss suggestive data linking LSF to signaling by the amyloid precursor protein and to Alzheimer's disease, as well as to the regulation of latency of the human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
| | - Ulla Hansen
- Corresponding author: Dept. Biology, Boston University, 5 Cummington Street, Boston, MA 02215; Tel.: (617) 353-8730; fax: (617) 353-8484;
| |
Collapse
|
27
|
Kang HC, Chung BM, Chae JH, Yang SI, Kim CG, Kim CG. Identification and characterization of four novel peptide motifs that recognize distinct regions of the transcription factor CP2. FEBS J 2005; 272:1265-77. [PMID: 15720400 DOI: 10.1111/j.1742-4658.2005.04564.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although ubiquitously expressed, the transcriptional factor CP2 also exhibits some tissue- or stage-specific activation toward certain genes such as globin in red blood cells and interleukin-4 in T helper cells. Because this specificity may be achieved by interaction with other proteins, we screened a peptide display library and identified four consensus motifs in numerous CP2-binding peptides: HXPR, PHL, ASR and PXHXH. Protein-database searching revealed that RE-1 silencing factor (REST), Yin-Yang1 (YY1) and five other proteins have one or two of these CP2-binding motifs. Glutathione S-transferase pull-down and coimmunoprecipitation assays showed that two HXPR motif-containing proteins REST and YY1 indeed were able to bind CP2. Importantly, this binding to CP2 was almost abolished when a double amino acid substitution was made on the HXPR sequence of REST and YY1 proteins. The suppressing effect of YY1 on CP2's transcriptional activity was lost by this point mutation on the HXPR sequence of YY1 and reduced by an HXPR-containing peptide, further supporting the interaction between CP2 and YY1 via the HXPR sequence. Mapping the sites on CP2 for interaction with the four distinct CP2-binding motifs revealed at least three different regions on CP2. This suggests that CP2 recognizes several distinct binding motifs by virtue of employing different regions, thus being able to interact with and regulate many cellular partners.
Collapse
Affiliation(s)
- Ho Chul Kang
- Department of Life Science, Hanyang University, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Verbitsky M, Yonan AL, Malleret G, Kandel ER, Gilliam TC, Pavlidis P. Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn Mem 2004; 11:253-60. [PMID: 15169854 PMCID: PMC419727 DOI: 10.1101/lm.68204] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have carried out a global survey of age-related changes in mRNA levels in the C57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged mice displayed a mild but specific deficit in spatial memory in the Morris water maze. By using Affymetrix GeneChip microarrays, we found a distinct pattern of age-related change, consisting mostly of gene overexpression in the middle-aged mice, suggesting that the induction of negative regulators in the middle-aged hippocampus could be involved in impairment of learning. Interestingly, we report changes in transcript levels for genes that could affect synaptic plasticity. Those changes could be involved in the memory deficits we observed in the 15-month-old mice. In agreement with previous reports, we also found altered expression in genes related to inflammation, protein processing, and oxidative stress.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Columbia Genome Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kabbara A, Payet N, Cottel D, Frigard B, Amouyel P, Lambert JC. Exclusion of CYP46 and APOM as candidate genes for Alzheimer's disease in a French population. Neurosci Lett 2004; 363:139-43. [PMID: 15172102 DOI: 10.1016/j.neulet.2004.03.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/26/2004] [Accepted: 03/27/2004] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disorder, probably resulting from an interaction between environmental and genetic factors. Increasing evidence points to a link between cholesterol turnover and AD, suggesting that genes implicated in brain cholesterol homeostasis may be potential candidate genes for AD. With this background, we tested the potential association of the CYP46, APOM and APOF genes with the risk of developing AD. CYP46 encodes the enzyme cholesterol 24-hydrolase, which plays a key role in brain cholesterol turnover, and APOF and APOM encode apolipoproteins belonging to the large lipocalin family, which also includes ApoE. In contrast to two previous reports but in accordance with one other, we were unable to detect an association between an intron 2 polymorphism of CYP46 and AD. We also searched for polymorphisms within the APOM and APOF by dHPLC. We were unable to detect any polymorphisms in the coding and exon/intron sequences of the APOF. Finally, we excluded APOM as a genetic determinant of AD in our large French case control population.
Collapse
Affiliation(s)
- Amro Kabbara
- Unité INSERM 508, Institut Pasteur de Lille, BP 245, 1 rue du Professeur Calmette, 59019 Lille Cédex, France
| | | | | | | | | | | |
Collapse
|
30
|
Chartier-Harlin MC, Araria-Goumidi L, Lambert JC. Complexité génétique de la maladie d’Alzheimer. Rev Neurol (Paris) 2004; 160:251-5. [PMID: 15034485 DOI: 10.1016/s0035-3787(04)70899-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery of pathogenic mutations in the amyloid precursor protein (APP) gene and the presenilin (PS1, PS2) genes, causing familial early-onset AD has lead to the hypothesis of the amyloid cascade. The epsilon4 allele of the apolipoprotein E (APOE) gene, the only recognized genetic risk factor for AD, may be involved in the mechanism. However, to date, search for new genetic determinants has been hampered by methodological limitations. Some loci, for instance on chromosome 12, have been characterized by linkage studies performed in familial cases, but the regions of interest are very large and contain numerous genes. Furthermore, search for polymorphisms implicated in the development of AD, should not be limited to the coding part of the genes, but should also involve the non-translated sequences of the genes, for instance in the regions regulating gene expression. Indeed, these genetic variations may have important impact on key proteins of the pathologic process. Although this task is difficult, the identification of new susceptibility genes should lead to a better understanding of the development of AD.
Collapse
|
31
|
Hasin Y, Avidan N, Bercovich D, Korczyn A, Silman I, Beckmann JS, Sussman JL. A paradigm for single nucleotide polymorphism analysis: The case of the acetylcholinesterase gene. Hum Mutat 2004; 24:408-16. [PMID: 15459952 DOI: 10.1002/humu.20106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetylcholinesterase (AChE) plays a crucial physiological role in termination of impulse transmission at cholinergic synapses through rapid hydrolysis of acetylcholine. It is a highly conserved molecule, and only a few naturally occurring genetic polymorphisms have been reported in the human gene. The goal of the present study was to make a systematic effort to identify natural single nucleotide polymorphisms (SNPs) in the human ACHE gene. To this end, the genomic coding sequences for acetylcholinesterase of 96 unrelated control individuals from three distinct ethnic groups were analyzed. A total of 13 ACHE SNPs were identified, 10 of which are newly described, and five that should produce amino acid substitutions [c.101G>A (p.Arg34Gln), c.169G>A (p.Gly57Arg), c.1031A>G (p.Glu344Gly), c.1057C>A (p.His353Asn), and c.1775C>G (p.Pro592Arg)]. Population frequencies of 11 of the 13 SNPs were established in four different populations: African Americans, Ashkenazi Jews, Sephardic Jews, and Israeli Arabs; 15 haplotypes and five ethnospecific alleles were identified. The low number of SNPs identified until now in the ACHE gene is ascribed to technical hurdles arising from the high GC content and the presence of numerous repeat sequences, and does not reflect its intrinsic heterozygosity. Among the SNPs resulting in an amino acid substitution, three are within the mature protein, mapping on its external surface: they are thus unlikely to affect its catalytic properties, yet could have antigenic consequences or affect putative protein-protein interactions. Furthermore, the newly identified SNPs open the door to a study of the possible association of AChE with deleterious phenotypes-such as adverse drug responses to AChE inhibitors employed in treatment of Alzheimer patients and hypersensitivity to pesticides.
Collapse
Affiliation(s)
- Yehudit Hasin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Rocchi A, Pellegrini S, Siciliano G, Murri L. Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res Bull 2003; 61:1-24. [PMID: 12788204 DOI: 10.1016/s0361-9230(03)00067-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly population. Three genes have been identified as responsible for the rare early-onset familial form of the disease: the amyloid precursor protein (APP) gene, the presenilin 1 (PSEN1) gene and the presenilin 2 (PSEN2) gene. Mutations in these genes, however, account for less than 5% of the total number of AD cases. The remaining 95% of AD patients are mostly sporadic late-onset cases, with a complex aetiology due to interactions between environmental conditions and genetic features of the individual. In this paper, we review the most important genes supposed to be involved in the pathogenesis of AD, known as susceptibility genes, in an attempt to provide a comprehensive picture of what is known about the genetic mechanisms underlying the onset and progression of AD. Hypotheses about the role of each gene in the pathogenic pathway are discussed, taking into account the functions and molecular features, if known, of the coded protein. A major susceptibility gene, the apolipoprotein E (APOE) gene, found to be associated with sporadic late-onset AD cases and the only one, whose role in AD has been confirmed in numerous studies, will be included in a specific chapter. As the results reported by association studies are conflicting, we conclude that a better understanding of the complex aetiology that underlies AD may be achieved likely through a multidisciplinary approach that combines clinical and neurophysiological characterization of AD subtypes and in vivo functional brain imaging studies with molecular investigations of genetic components.
Collapse
Affiliation(s)
- A Rocchi
- Department of Neurosciences, Neurological Clinics, University of Pisa Medical School, Via Roma 67, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
33
|
Lambert JC, Luedecking-Zimmer E, Merrot S, Hayes A, Thaker U, Desai P, Houzet A, Hermant X, Cottel D, Pritchard A, Iwatsubo T, Pasquier F, Frigard B, Conneally PM, Chartier-Harlin MC, DeKosky ST, Lendon C, Mann D, Kamboh MI, Amouyel P. Association of 3'-UTR polymorphisms of the oxidised LDL receptor 1 (OLR1) gene with Alzheimer's disease. J Med Genet 2003; 40:424-30. [PMID: 12807963 PMCID: PMC1735503 DOI: 10.1136/jmg.40.6.424] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although possession of the epsilon 4 allele of the apolipoprotein E gene appears to be an important biological marker for Alzheimer's disease (AD) susceptibility, strong evidence indicates that at least one additional risk gene exists on chromosome 12. Here, we describe an association of the 3'-UTR +1073 C/T polymorphism of the OLR1 (oxidised LDL receptor 1) on chromosome 12 with AD in French sporadic (589 cases and 663 controls) and American familial (230 affected sibs and 143 unaffected sibs) populations. The age and sex adjusted odds ratio between the CC+CT genotypes versus the TT genotypes was 1.56 (p=0.001) in the French sample and 1.92 (p=0.02) in the American sample. Furthermore, we have discovered a new T/A polymorphism two bases upstream of the +1073 C/T polymorphism. This +1071 T/A polymorphism was not associated with the disease, although it may weakly modulate the impact of the +1073 C/T polymorphism. Using 3'-UTR sequence probes, we have observed specific DNA protein binding with nuclear proteins from lymphocyte, astrocytoma, and neuroblastoma cell lines, but not from the microglia cell line. This binding was modified by both the +1071 T/A and +1073 C/T polymorphisms. In addition, a trend was observed between the presence or absence of the +1073 C allele and the level of astrocytic activation in the brain of AD cases. However, Abeta(40), Abeta(42), Abeta total, and Tau loads or the level of microglial cell activation were not modulated by the 3'-UTR OLR1 polymorphisms. Finally, we assessed the impact of these polymorphisms on the level of OLR1 expression in lymphocytes from AD cases compared with controls. The OLR1 expression was significantly lower in AD cases bearing the CC and CT genotypes compared with controls with the same genotypes. In conclusion, our data suggest that genetic variation in the OLR1 gene may modify the risk of AD.
Collapse
Affiliation(s)
- J-C Lambert
- Unité INSERM 508, Institut Pasteur de Lille, BP 245, 1 rue du Professeur Calmette, 59019 Lille Cédex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kashour T, Burton T, Dibrov A, Amara FM. Late Simian virus 40 transcription factor is a target of the phosphoinositide 3-kinase/Akt pathway in anti-apoptotic Alzheimer's amyloid precursor protein signalling. Biochem J 2003; 370:1063-75. [PMID: 12472467 PMCID: PMC1223229 DOI: 10.1042/bj20021197] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 12/02/2002] [Accepted: 12/10/2002] [Indexed: 12/11/2022]
Abstract
The association of familial Alzheimer's disease (FAD) with mutations in Alzheimer's amyloid precursor protein (APP) suggests important functions for APP in the central nervous system. Mutations in APP impair its function to confer resistance to apoptosis in cells under stress, and this may contribute to neurodegeneration in Alzheimer's disease (AD) brain, but the mechanisms involved are unknown. We examined the role of the late Simian virus 40 transcription factor (LSF), in anti-apoptotic APP pathways. We show that in APP-deficient B103 cells, expression of wild-type human APP (hAPPwt), but not of FAD-mutant APP, inhibited staurosporine (STS)-induced apoptosis. This inhibition was further enhanced by expression of LSFwt, although LSFwt alone was not sufficient to inhibit STS-induced apoptosis. In contrast, expression of dominant-negative LSF led to a marked increase in STS-induced cell death that was significantly blocked by hAPPwt. These effects of APP were accompanied by LSF nuclear translocation and dependent gene transcription. The activation of LSF is dependent on the expression of hAPPwt and is inhibited by the expression of dominant-negative forms of either phosphoinositide 3-kinase or Akt. These results demonstrate that LSF activation is required for the neuroprotective effects of APP via phosphoinositide 3-kinase/Akt signalling. Alterations in this pathway by aberrations in APP and/or LSF could promote neuronal loss in AD brain, due to secondary insults. Thus a link is established between APP and LSF and AD.
Collapse
Affiliation(s)
- Tarek Kashour
- Section of Cardiology, Department of Medicine, St. Boniface General Hospital, The University of Manitoba, 770 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0W3
| | | | | | | |
Collapse
|
35
|
Luedecking-Zimmer E, DeKosky ST, Nebes R, Kamboh MI. Association of the 3' UTR transcription factor LBP-1c/CP2/LSF polymorphism with late-onset Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2003; 117B:114-7. [PMID: 12555245 DOI: 10.1002/ajmg.b.10026] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a genetically heterogeneous neurodegenerative disorder. To date, apolipoprotein E (apoE) is the only established susceptibility gene for late-onset AD. ApoE accounts for less than 50% of the risk of AD, indicating the presence of other unknown susceptibility loci. Linkage studies have indicated chromosome 12 as the most likely location for another late-onset AD locus. We examined seven polymorphisms in five candidate genes located in and around the linkage peaks on chromosome 12 in 564 cases and 523 controls. The genes included complement component 1R (C1R), vitamin D receptor (VDR), scavenger-receptor B1 (SR-B1), low-density lipoprotein receptor related protein 1 (LRP1), and transcription factor LBP-1c/CP2/LSF. We found no association with C1R, VDR, SR-B1, and LRP1 polymorphisms. However, the frequency of the A allele of the 3' (untranslated region) UTR LBP-1c/CP2/LSF polymorphism was higher in controls than cases (0.071 vs. 0.051; P = 0.042) with an adjusted odds ratio (OR) of 0.65 (95% confidence interval [CI]: 0.43-0.96; P = 0.0498). Our data suggest that the LBP-1c/CP2/LSF polymorphism may have a moderate protective effect against the risk of AD.
Collapse
Affiliation(s)
- Erin Luedecking-Zimmer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
36
|
Abstract
A remarkable rise in life expectancy during the past century has made Alzheimer's disease (AD) the most common form of progressive cognitive failure in humans. Compositional analyses of the classical brain lesions, the senile (amyloid) plaques and neurofibrillary tangles, preceded and has guided the search for genetic alterations. Four genes have been unequivocally implicated in inherited forms of AD, and mutations or polymorphisms in these genes cause excessive cerebral accumulation of the amyloid beta-protein and subsequent neuronal and glial pathology in brain regions important for memory and cognition. This understanding of the genotype-to-phenotype conversions of familial AD has led to the development of pharmacological strategies to lower amyloid beta-protein levels as a way of treating or preventing all forms of the disease.
Collapse
Affiliation(s)
- Dennis J Selkoe
- Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
37
|
Bruni P, Minopoli G, Brancaccio T, Napolitano M, Faraonio R, Zambrano N, Hansen U, Russo T. Fe65, a ligand of the Alzheimer's beta-amyloid precursor protein, blocks cell cycle progression by down-regulating thymidylate synthase expression. J Biol Chem 2002; 277:35481-8. [PMID: 12089154 DOI: 10.1074/jbc.m205227200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functions of the Alzheimer's beta-amyloid precursor protein (APP) and of its complex with the adaptor protein Fe65 are still unknown. We have demonstrated that Fe65 is also a nuclear protein and APP functions as an extranuclear anchor, thus preventing Fe65 nuclear translocation. According to this finding, it was also demonstrated that Fe65 could play a role in the regulation of transcription. In the present paper we show that the overexpression of Fe65 prevents G(1) --> S cell cycle progression of serum-stimulated fibroblasts and that the contemporary overexpression of APP abolishes this effect of Fe65. The overexpression of Fe65 completely abolishes the activation of a key S phase gene, the thymidylate synthase (TS) gene, driven by the transcription factor LSF/CP2/LBP1 (LSF). This phenomenon is observed only in experimental conditions leading to the accumulation of Fe65 in the nucleus. Similarly, the two other members of the Fe65 protein family, Fe65L1 and Fe65L2, have been found to translocate into the nucleus and to prevent the activation of the TS gene promoter induced by LSF. Two results support the hypothesis that the inhibitory effect of Fe65 on cell cycle progression in fibroblasts is the result of the inhibition of TS gene expression: (i) Fe65 overexpression, but not Fe65 and APP co-expression, prevents the accumulation of endogenous TS upon the exposure of cells to serum, and (ii) thymidine addition to the culture medium completely overcomes the growth arrest caused by Fe65. In neuronal PC12 cells, the overexpression of Fe65 or of Fe65L1 and Fe65L2 blocks cell cycle, as observed in fibroblasts, but thymidine supplementation to culture medium does not revert this block, thus suggesting that Fe65 proteins induce in neuronal cells a gene expression program different from that activated in fibroblasts.
Collapse
Affiliation(s)
- Paola Bruni
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bassett SS, Avramopoulos D, Fallin D. Evidence for parent of origin effect in late-onset Alzheimer disease. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 114:679-86. [PMID: 12210287 DOI: 10.1002/ajmg.10648] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Evidence for a parent of origin effect in Alzheimer disease was obtained from a sample of 148 sibships on which affection status of the parents was sought using family history interviews. The parent study recruited families with two or more affected sibs for late onset AD utilizing rigorous diagnostic criteria. In 74 families, there was evidence of an affected parent, 49 maternal and 25 paternal. Genome scan data were analyzed for the sample as a whole and for the maternal and paternal families separately, using Genehunter-ASM. Seven regions with Z(lr) scores >or=2 were identified, four in maternal families (chr. 10,12,19,20) and three in paternal families (chr. 1,7,13). With the exception of the chromosome 10 finding, analysis by parent of origin greatly increased evidence of linkage in areas showing no linkage in the overall analyses. For example, a chr. 12 region reached a LOD = 2.29 among maternal families whereas the same region showed a LOD = 0.3 when all families were analyzed together. The strongest findings among maternal families (chr. 10 and 12) were followed up with fine mapping that resulted in an increase in maximum LOD scores from 2.7-3.2 on chr. 10, and 2.29-2.42 on chr. 12. These analyses highlight the importance of parent of origin effects in late-onset AD families and identify several genomic regions that may include genes linked to late-onset AD specific to disease transmission from the mother and require further investigation.
Collapse
Affiliation(s)
- Susan Spear Bassett
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
39
|
Sambamurti K, Greig NH, Lahiri DK. Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer's disease. Neuromolecular Med 2002; 1:1-31. [PMID: 12025813 DOI: 10.1385/nmm:1:1:1] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2001] [Accepted: 10/10/2001] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive senile dementia characterized by deposition of a 4 kDa peptide of 39-42 residues known as amyloid beta-peptide (Abeta) in the form of senile plaques and the microtubule associated protein tau as paired helical filaments. Genetic studies have identified mutations in the Abeta precursor protein (APP) as the key triggers for the pathogenesis of AD. Other genes such as presenilins 1 and 2 (PS1/2) and apolipoprotein E (APOE) also play a critical role in increased Abeta deposition. Several biochemical and molecular studies using transfected cells and transgenic animals point to mechanisms by which Abeta is generated and aggregated to trigger the neurodegeneration that may cause AD. Three important enzymes collectively known as "secretases" participate in APP processing. An enzymatic activity, beta-secretase, cleaves APP on the amino side of Abeta producing a large secreted derivative, sAPPbeta, and an Abeta-bearing membrane-associated C-terminal derivative, CTFbeta, which is subsequently cleaved by the second activity, gamma-secretase, to release Abeta. Alternatively, a third activity, alpha-secretase, cleaves APP within Abeta to the secreted derivative sAPPalpha and membrane-associated CTFalpha. The predominant secreted APP derivative is sAPPalpha in most cell-types. Most of the secreted Abeta is 40 residues long (Abeta40) although a small percentage is 42 residues in length (Abeta42). However, the longer Abeta42 aggregates more readily and was therefore considered to be the pathologically important form. Advances in our understanding of APP processing, trafficking, and turnover will pave the way for better drug discovery for the eventual treatment of AD. In addition, APP gene regulation and its interaction with other proteins may provide useful drug targets for AD. The emerging knowledge related to the normal function of APP will help in determining whether or not the AD associated changes in APP metabolism affect its function. The present review summarizes our current understanding of APP metabolism and function and their relationship to other proteins involved in AD.
Collapse
Affiliation(s)
- Kumar Sambamurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
40
|
Sabo SL, Ikin AF. Cytosolic protein-protein interactions that regulate the amyloid precursor protein. Drug Dev Res 2002. [DOI: 10.1002/ddr.10078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Chartier-Harlin MC, Araria-Goumidi L, Lambert JC. Les formes tardivesde la maladie d’Alzheimer : de la génétique à la biologie. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021867709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Bertram L, Tanzi RE. Dancing in the dark? The status of late-onset Alzheimer's disease genetics. J Mol Neurosci 2001; 17:127-36. [PMID: 11816786 DOI: 10.1385/jmn:17:2:127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. Recent estimates suggest that possibly over 70% of the genetic variance for the disease remains unaccounted for by apolipoprotein E (APOE) and the three known early-onset AD genes (APP, PSEN1, PSEN2). Specifically, one recent segregation analysis predicted the existence of up to four additional susceptibility genes having a similar or greater effect than APOE. However, most of the nearly three dozen putative AD loci proposed to date have only been inconsistently replicated in follow up analyses and more studies are necessary to distinguish false-positive findings from genuine signals. Novel AD genes will not only provide valuable clues for the development of novel therapeutic approaches, but will also allow the development of new genetic risk-profiling strategies that are an essential prerequisite for early prediction/prevention of this devastating disease. In this review, we will present a brief overview of analytic tools in complex disease genetics, as well as a summary of recent linkage and association findings indicating the existence of novel late-onset AD genes on chromosomes 12, 10, and 9.
Collapse
Affiliation(s)
- L Bertram
- Department of Neurology and Center for Aging, Genetics and Neurodegeneration, Massachusetts General Hospital Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
43
|
Affiliation(s)
- C Lendon
- Department of Psychiatry, Division of Neuroscience, Queen Elizabeth Psychiatric Hospital, University of Birmingham, B15 2QZ, Birmingham, UK.
| | | |
Collapse
|
44
|
Bertram L, Tanzi RE. Of replications and refutations: the status of Alzheimer's disease genetic research. Curr Neurol Neurosci Rep 2001; 1:442-50. [PMID: 11898555 DOI: 10.1007/s11910-001-0104-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date, mutations in three genes (APP, PSEN1, PSEN2) have been described to cause familial early-onset AD. In addition, a common polymorphism in the gene encoding apolipoprotein E (APOE) has been associated with the more common late-onset form of the disease. However, many studies have shown that genetic factors other than APOE play an important role in late-onset AD. Along these lines, a recent report predicted the existence of at least four additional late-onset AD genes, one of which was estimated to have a much greater contribution to age of onset variation than the APOE epsilon 4-allele. However, most of the nearly three dozen loci that have been proposed as putative AD genes to date have been followed by both replications and refutations, making consensus impossible. In this overview, we discuss the current status of genetic research in AD, including a brief summary of applicable analytic tools, and a summary of recent findings suggesting the existence of novel AD genes on chromosomes 10, 11, and 12.
Collapse
Affiliation(s)
- L Bertram
- Genetics and Aging Unit, Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
45
|
Lambert JC, Harris JM, Mann D, Lemmon H, Coates J, Cumming A, St-Clair D, Lendon C. Are the estrogen receptors involved in Alzheimer's disease? Neurosci Lett 2001; 306:193-7. [PMID: 11406328 DOI: 10.1016/s0304-3940(01)01806-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Retrospective analysis shows that women who took estrogen replacement therapy may have less risk of cognitive decline and of developing Alzheimer's disease (AD). The greater risk associated with female gender and these observations suggest that estrogen may be implicated in the aetiology of AD. Estrogen is one of a family of sex steroids that exerts many of its genomic effects through the activation of the nuclear estrogen receptors, ERalpha and ERbeta. Previously, increased risk for AD has been reported for polymorphisms in the ERalpha gene in a Japanese cohort, however, this association has not been systematically replicated. We have further investigated polymorphisms in the ERalpha and have extended this to investigate an association with a polymorphism within the ERbeta gene in an independent UK Caucasian population. We found no independent association of these polymorphisms with the risk of developing AD in the total sample nor within either gender. However, we did detect a significant interaction between the ERalpha and ERbeta polymorphisms and the risk for AD (OR=0.22 95% CI (0.05-0.88), P=0.02). If this finding can be supported in other independent studies, it may suggest that the risk for AD may be modulated only when both ERalpha and ERbeta have particular variations in their expression and/or biological activities.
Collapse
Affiliation(s)
- J C Lambert
- Molecular Psychiatry Department, Division of Neuroscience, Queen Elisabeth Psychiatry Hospital, University of Birmingham, Birmingham, B15 2QZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Delatour B, Mercken L, El Hachimi KH, Colle MA, Pradier L, Duyckaerts C. FE65 in Alzheimer's disease: neuronal distribution and association with neurofibrillary tangles. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1585-91. [PMID: 11337355 PMCID: PMC1891962 DOI: 10.1016/s0002-9440(10)64113-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2001] [Indexed: 10/18/2022]
Abstract
FE65, a protein expressed in the nervous system, has the ability to bind the C-terminal domain of the amyloid precursor protein. This suggests a role for FE65 in the pathogenesis of Alzheimer's disease (AD). The present study was conducted to find out if the distribution of FE65 immunoreactivity was affected during the course of AD, and to determine the degree of co-localization of FE65 with other proteins known to be involved in AD. Single immunoperoxidase-labeling experiments, conducted on six sporadic AD patients and six nondemented age-matched controls, showed that the proportion of volume occupied by FE65 immunoreactivity was not modified in the isocortex of AD patients. However, in hippocampal area CA4, increased FE65 immunoreactivity seemed to be associated with the severity of the disease. Double-immunofluorescent labeling did not show any clear co-localization of FE65 with the amyloid precursor protein. FE65 immunoreactivity was also absent from focal and diffuse deposits of the beta-amyloid peptide. Unexpectedly double labeling experiments showed a co-localization of FE65 and tau proteins in intracellular tangles. Ultrastructural observations confirmed that FE65 was associated with paired helical filaments.
Collapse
Affiliation(s)
- B Delatour
- Laboratoire de Neuropathologie Escourolle, Inserm U106, Université Paris VI, Paris. Aventis Pharma, Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Taylor AE, Yip A, Brayne C, Easton D, Evans JG, Xuereb J, Cairns N, Esiri MM, Rubinsztein DC. Genetic association of an LBP-1c/CP2/LSF gene polymorphism with late onset Alzheimer's disease. J Med Genet 2001; 38:232-3. [PMID: 11283204 PMCID: PMC1734850 DOI: 10.1136/jmg.38.4.232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The only locus unequivocally associated with late onset Alzheimer's disease (AD) risk is APOE. However, this locus accounts for less than half the genetic variance. A recent study suggested that the A allele of the 3'UTR biallelic polymorphism in the LBP-1c/CP2/LSF gene was associated with reduced AD risk. Samples were diagnosed predominantly by clinical rather than pathological criteria. We have sought to replicate this finding in a series of necropsy confirmed, late onset AD cases and non-demented controls. METHODS The 3'UTR polymorphism in the LBP-1c/CP2/LSF gene was typed in 216 necropsy confirmed AD cases and 301 non-demented controls aged >73 years. RESULTS We found different LBP-1c/CP2/LSF allele distributions in our AD cases and controls (p=0.048); the A allele was associated with reduced AD risk. The allele and genotype frequencies observed in our cases and controls were similar to those previously reported. No significant effects emerged when the data were adjusted for age, sex, or apoE epsilon4 carrier status. CONCLUSIONS Our data support LBP-1c/CP2/LSF as a candidate gene/risk factor for AD and provide justification for future studies to investigate the role of this gene in Alzheimer's disease.
Collapse
Affiliation(s)
- A E Taylor
- Department of Medical Genetics, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Minopoli G, de Candia P, Bonetti A, Faraonio R, Zambrano N, Russo T. The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J Biol Chem 2001; 276:6545-50. [PMID: 11085987 DOI: 10.1074/jbc.m007340200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we addressed the question of the intracellular localization of Fe65, an adaptor protein interacting with the beta-amyloid precursor protein (APP) and with the transcription factor CP2/LSF/LBP1. By using tagged Fe65 expression vectors, we observed that a significant fraction of Fe65 is localized in the nucleus of transfected COS7 cells. Furthermore, the isolation of nuclei from untransfected PC12 cells allowed us to observe that a part of the endogenous Fe65 is present in the nuclear extract. The analysis of Fe65 mutant constructs demonstrated that the region of the protein required for its nuclear translocation includes the WW domain, and that, on the other hand, a small fragment of 100 residues, including this WW domain, contains enough structural information to target a reporter protein (green fluorescent protein (GFP)-GFP) to the nucleus. To evaluate whether the Fe65-APP interaction could affect Fe65 intracellular trafficking, COS7 cells were cotransfected with APP(695) or APP(751) and with GFP-Fe65 expression vectors. These experiments demonstrated that Fe65 is no longer translocated to the nucleus when the cells overexpress APP, whereas the nuclear targeting of GFP-Fe65 mutants, unable to interact with APP, is unaffected by the coexpression of APP, thus suggesting that the interaction with APP anchors Fe65 in the cytosol.
Collapse
Affiliation(s)
- G Minopoli
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, I-80131 Naples, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
The WW domain is a protein module found in a wide range of signaling proteins. It is one of the smallest protein modules that folds as a monomer without disulfide bridges or cofactors. WW domains bind proteins containing short linear peptide motifs that are proline-rich or contain at least one proline. Although the WW domain was initially considered a 'cytoplasmic module', the proteins containing WW domains have also been localized in the cell nucleus. Moreover, these proteins have been documented to participate in co-activation of transcription and modulation of RNA polymerase II activity. The carboxy-terminal domain (CTD) of RNA polymerase II acts as an assembly platform for distinct WW domain-containing proteins that affect the function of the RNA polymerase II. The formation of complexes between CTD and WW domain-containing proteins is regulated by phosphorylation of the CTD. Since the CTD sequence is highly repetitive and a target of several post-translational modifications and conformational changes, it presents a unique structure capable of enormous molecular diversity. The WW domain has been implicated in several human diseases including Alzheimer's disease. The WW domain-containing iso-prolyl isomerase named Pin1, a protein known to be essential for cell cycle progression, was shown to be active in restoration of the microtubule-binding activity of Tau, a protein of neurofibrillar tangles found in the brains of Alzheimer's patients. It is the WW domain of Pin1 that interacts directly with Tau protein. In addition, the WW domain-containing adapter protein FE65 was shown to regulate processing of Alzheimer's amyloid precursor protein. It is expected that by understanding the details of the WW domain-mediated protein-protein interactions, we will be able to illuminate numerous signaling pathways which control certain aspects of transcription and cell cycle.
Collapse
Affiliation(s)
- M Sudol
- Department of Medicine, Mount Sinai Medical Center, New York, NY 10029, USA.
| | | | | |
Collapse
|
50
|
Abstract
Alzheimer's disease is the most frequent cause of dementia. Family and twin studies have suggested that genetic factors play a role in Alzheimer's disease development. Some Alzheimer's disease cases show an autosomal dominant inheritance pattern and thus allow the discovery of major disease genes. However, most Alzheimer's disease cases are sporadic. These cases are mainly due to the effects of several different genes and of interactions between genetic susceptibility factors and environmental factors. Such interactions are illustrated by the apolipoprotein E epsilon4 allele, associated with a higher risk of Alzheimer's disease. Other genetic susceptibility factors have been reported but variously confirmed in Alzheimer's disease: apolipoprotein E receptors, alpha2-macroglobulin or angiotensin I converting enzyme genes. Thus, except for a small percentage of Alzheimer's disease cases with a dominant inheritance pattern, the genetic component of the vast majority of cases is underlain by complex interactions of genetic susceptibility factors and environmental conditions.
Collapse
Affiliation(s)
- F Richard
- INSERM 508, Institut Pasteur de Lille, 1 rue Calmette, 59019 Cedex, Lille, France
| | | |
Collapse
|