1
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
León-Félix CM, Maranhão AQ, Amorim CA, Lucci CM. Optimizing Decellularization of Bovine Ovarian Tissue: Toward a Transplantable Artificial Ovary Scaffold with Minimized Residual Toxicity and Preserved Extracellular Matrix Morphology. Cells Tissues Organs 2024; 213:413-423. [PMID: 38359805 DOI: 10.1159/000537838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION The decellularized extracellular matrix (dECM) from ovarian tissue could be the best scaffold for the development of a transplantable artificial ovary. Typically, dECM from ovarian tissue has been obtained using sodium dodecyl sulfate (SDS), at a concentration of 1% for 24 h. However, SDS can leave residues in the tissue, which may be toxic to the seeded cells. This study aimed to obtain dECM from bovine ovarian tissue using SDS and NaOH at a minimum concentration in the shortest incubation time. METHODS The respective SDS and NaOH concentrations investigated were 1% and 0.2 m; 0.5% and 0.1 m; 0.1% and 0.02 m; and 0.05% and 0.01 m, with 24-, 12-, and 6-h incubation periods. After the incubation time, the tissue was washed in 50 mL of distilled water for 6 h. RESULTS Histological analysis confirmed decellularization and showed the conservation of collagen fibers in all samples following treatment. Furthermore, the lowest SDS and NaOH concentrations that showed no DNA remaining during electrophoresis analysis were 0.1% and 0.02 m when incubated for 24 and 12 h. DNA quantification resulted in <0.2 ng DNA/mg ovarian tissue using these protocols. Additionally, the coculture of dECM (obtained by 0.1% SDS and 0.02 m NaOH for 12 h) with ovarian cells showed that there was no toxic effect for the cells for up to 72 h. CONCLUSION The protocol involving 0.1% SDS and 0.02 m NaOH for 12-h incubation decellularizes bovine ovarian tissue, generating a dECM that preserves the native ECM morphology and is nontoxic to ovarian cells.
Collapse
Affiliation(s)
- Cecibel M León-Félix
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil,
| | - Andrea Q Maranhão
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Christiani A Amorim
- Department of Gynecology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Carolina M Lucci
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
3
|
Albamonte MI, Vitullo AD. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet 2023; 40:2755-2767. [PMID: 37770817 PMCID: PMC10656407 DOI: 10.1007/s10815-023-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.
Collapse
Affiliation(s)
- María Itatí Albamonte
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Di Berardino C, Liverani L, Peserico A, Capacchietti G, Russo V, Bernabò N, Tosi U, Boccaccini AR, Barboni B. When Electrospun Fiber Support Matters: In Vitro Ovine Long-Term Folliculogenesis on Poly (Epsilon Caprolactone) (PCL)-Patterned Fibers. Cells 2022; 11:cells11121968. [PMID: 35741097 PMCID: PMC9222101 DOI: 10.3390/cells11121968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Current assisted reproduction technologies (ART) are insufficient to cover the slice of the population needing to restore fertility, as well as to amplify the reproductive performance of domestic animals or endangered species. The design of dedicated reproductive scaffolds has opened the possibility to better recapitulate the reproductive 3D ovarian environment, thus potentially innovating in vitro folliculogenesis (ivF) techniques. To this aim, the present research has been designed to compare ovine preantral follicles in vitro culture on poly(epsilon-caprolactone) (PCL)-based electrospun scaffolds designed with different topology (Random vs. Patterned fibers) with a previously validated system. The ivF performances were assessed after 14 days under 3D-oil, Two-Step (7 days in 3D-oil and on scaffold), or One-Step PCL protocols (14 days on PCL-scaffold) by assessing morphological and functional outcomes. The results show that Two- and One-Step PCL ivF protocols, when performed on patterned scaffolds, were both able to support follicle growth, antrum formation, and the upregulation of follicle marker genes leading to a greater oocyte meiotic competence than in the 3D-oil system. In conclusion, the One-Step approach could be proposed as a practical and valid strategy to support a synergic follicle-oocyte in vitro development, providing an innovative tool to enhance the availability of matured gametes on an individual basis for ART purposes.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
- Correspondence:
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Umberto Tosi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.L.); (A.R.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (A.P.); (G.C.); (V.R.); (N.B.); (U.T.); (B.B.)
| |
Collapse
|
6
|
S. Aljaser F. Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models. Vet Med Sci 2022. [DOI: 10.5772/intechopen.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The development in cryobiology in animal breeding had revolutionized the field of reproductive medicine. The main objective to preserve animal germplasm stems from variety of reasons such as conservation of endangered animal species, animal diversity, and an increased demand of animal models and/or genetically modified animals for research involving animal and human diseases. Cryopreservation has emerged as promising technique for fertility preservation and assisted reproduction techniques (ART) for production of animal breeds and genetically engineered animal species for research. Slow rate freezing and rapid freezing/vitrification are the two main methods of cryopreservation. Slow freezing is characterized by the phase transition (liquid turning into solid) when reducing the temperature below freezing point. Vitrification, on the other hand, is a phenomenon in which liquid solidifies without the formation of ice crystals, thus the process is referred to as a glass transition or ice-free cryopreservation. The vitrification protocol applies high concentrations of cryoprotective agents (CPA) used to avoid cryoinjury. This chapter provides a brief overview of fundamentals of cryopreservation and established methods adopted in cryopreservation. Strategies involved in cryopreserving germ cells (sperm and egg freezing) are included in this chapter. Last section describes the frontiers and advancement of cryopreservation in some of the important animal models like rodents (mouse and rats) and in few large animals (sheep, cow etc).
Collapse
|
7
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
9
|
Chen J, Todorov P, Isachenko E, Rahimi G, Mallmann P, Isachenko V. Construction and cryopreservation of an artificial ovary in cancer patients as an element of cancer therapy and a promising approach to fertility restoration. HUM FERTIL 2021; 25:651-661. [PMID: 33648431 DOI: 10.1080/14647273.2021.1885756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proportion of cancer patients that survive is increasing because of improvements in cancer therapy. However, some cancer treatments, such as chemo- and radio-therapies, can cause considerable damage to reproductive function. The issue of fertility is paramount for women of childbearing age once they are cured from cancer. For those patients with prepubertal or haematogenous cancer, the possibilities of conventional fertility treatments, such as oocyte or embryo cryopreservation and transplantation, are limited. Moreover, ovarian tissue cryopreservation as an alternative to fertility preservation has limitations, with a risk of re-implanting malignant cells in patients who have recovered from potentially fatal malignant disease. One possible way to restore fertility in these patients is to mimic artificially the function of the natural organ, the ovary, by grafting isolated follicles embedded in a biological scaffold to their native environment. Construction and cryopreservation of an artificial ovary might offer a safer alternative option to restore fertility for those who cannot benefit from traditional fertility preservation techniques. This review considers the protocols for constructing an artificial ovary, summarises advances in the field with potential clinical application, and discusses future trends for cryopreservation of these artificial constructions.
Collapse
Affiliation(s)
- Jing Chen
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Sofia, Bulgaria
| | - Evgenia Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Gohar Rahimi
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Peter Mallmann
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Vladimir Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| |
Collapse
|
10
|
Wall MA, Padmanabhan V, Shikanov A. Hormonal Stimulation of Human Ovarian Xenografts in Mice: Studying Folliculogenesis, Activation, and Oocyte Maturation. Endocrinology 2020; 161:5939202. [PMID: 33099627 PMCID: PMC7671278 DOI: 10.1210/endocr/bqaa194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Ovarian tissue cryopreservation and banking provides a fertility preservation option for patients who cannot undergo oocyte retrieval; it is quickly becoming a critical component of assisted reproductive technology programs across the world. While the transplantation of cryopreserved ovarian tissue has resulted in over 130 live births, the field has ample room for technological improvements. Specifically, the functional timeline of grafted tissue and each patient's probability of achieving pregnancy is largely unpredictable due to patient-to-patient variability in ovarian reserve, lack of a reliable method for quantifying follicle numbers within tissue fragments, potential risk of reintroduction of cancer cells harbored in ovarian tissues, and an inability to control follicle activation rates. This review focuses on one of the most common physiological techniques used to study human ovarian tissue transplantation, xenotransplantation of human ovarian tissue to mice and endeavors to inform future studies by discussing the elements of the xenotransplantation model, challenges unique to the use of human ovarian tissue, and novel tissue engineering techniques currently under investigation.
Collapse
Affiliation(s)
- Monica Anne Wall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence: Ariella Shikanov, PhD, 2126 LBME, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, MI 48109, USA. E-mail:
| |
Collapse
|
11
|
Laronda MM. Engineering a bioprosthetic ovary for fertility and hormone restoration. Theriogenology 2020; 150:8-14. [PMID: 31973967 DOI: 10.1016/j.theriogenology.2020.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/14/2022]
Abstract
There has been an increase in childhood cancer survivors over the past few decades, and with this, an increased awareness of the co-morbidities of the treatment or disease that affect the survivor's quality-of-life. The increased rate of infertility among this patient group and the desire to have biological children voiced by childhood cancer survivors underscores the urgent need for fertility preservation and development of techniques to restore fertility and gonadal hormone function for this population. The ovarian tissue contains a finite source of female gametes that can be transplanted to restore ovarian function and has resulted in over one hundred reported live births. However, the success of biological offspring per ovarian tissue transplant, the reduced lifespan of these transplants, and the potential for these tissues to contain cancer cells from patients with metastatic diseases supports the need for improved options. One innovation that could improve ovarian transplantation is the development of a bioprosthetic ovary comprised of a 3D printed scaffold with isolated ovarian follicles. A murine bioprosthetic ovary restored ovarian hormones in ovariectomized mice, which also gave birth to healthy offspring. Research is ongoing to create the next iteration of the scaffold that would support ovarian follicles from large animal models and humans with the hopes of translating this technology for patients.
Collapse
Affiliation(s)
- Monica M Laronda
- Department of Endocrinology, Department of Surgery and Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, USA.
| |
Collapse
|
12
|
Lautz TB, Harris CJ, Laronda MM, Erickson LL, Rowell EE. A fertility preservation toolkit for pediatric surgeons caring for children with cancer. Semin Pediatr Surg 2019; 28:150861. [PMID: 31931969 DOI: 10.1016/j.sempedsurg.2019.150861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Survival for children with cancer has improved significantly in recent decades, prompting an increasing emphasis on minimizing late effects of therapy, including infertility and premature gonadal insufficiency. The time interval after diagnosis and before therapy initiation can be stressful and overwhelming for patients and their families coming to terms with the implications of the diagnosis, but is also the optimal time to address oncofertility options. Pediatric surgeons are often an integral part of the care team for these patients during this vulnerable time period and play a key role in advocating for and performing oncofertility procedures. Children with cancer have both non-experimental and experimental fertility preservation options available depending on their pubertal status and a risk assessment performed based on their anticipated therapy. This review provides an oncofertility toolkit for pediatric surgeons to perform a risk assessment, counsel families on fertility preservation options, and establish an oncofertility program tailored to the resources available at their institutions.
Collapse
Affiliation(s)
- Timothy B Lautz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States.
| | - Courtney J Harris
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States
| | - Monica M Laronda
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Laura L Erickson
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States
| | - Erin E Rowell
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 East Chicago Avenue Box 63, Chicago, IL, United States
| |
Collapse
|
13
|
Cho E, Kim YY, Noh K, Ku SY. A new possibility in fertility preservation: The artificial ovary. J Tissue Eng Regen Med 2019; 13:1294-1315. [PMID: 31062444 DOI: 10.1002/term.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Conventional fertility preservation methods such as oocyte or embryo cryopreservation are currently insufficient to treat including those patients with prepubertal cancer and premature ovarian failure. Ovarian tissue cryopreservation presents as an alternative but has limitations with a potential risk of reintroducing malignant cells in patients who recover from cancer, those of chemotherapy prior to tissue cryopreservation. The so called "artificial ovary" aims to resolve this issue by transplanting isolated follicles with or without a biological scaffold. The artificial ovary may also offer an effective alternative option for those who cannot benefit from traditional assisted reproductive techniques such as in vitro fertilisation. To date, in animal studies and human trial, the artificial ovary restored endocrine function, achieved in vivo follicular development, and resulted in successful pregnancies. However, development of a technique for higher follicular recovery rate and a more optimised design of delivery scaffold, better transplantation techniques to prevent postsurgical ischemia, and consideration for genetic safety are required for safer and consistent human clinical applications. Ideas from different transplantation surgeries (e.g., entire ovary, ovarian cortex, and transplantation with tissue-engineered products) can be applied to enhance the efficacy of artificial ovarian transplantation. For the better application of artificial ovary, a deeper understanding of mechanical and biochemical properties of the ovary and folliculogenesis after cryopreservation, transplantation with or without scaffold, and development of sophisticated in vivo imaging techniques of transplanted artificial ovary need to precede its efficient clinical application.
Collapse
Affiliation(s)
- Eun Cho
- College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon Young Kim
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Kevin Noh
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Seung-Yup Ku
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
14
|
Do Bioreactor Designs with More Efficient Oxygen Supply to Ovarian Cortical Tissue Fragments Enhance Follicle Viability and Growth In Vitro? Processes (Basel) 2019. [DOI: 10.3390/pr7070450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background: Autotransplantation of cryopreserved ovarian tissue is currently the main option to preserve fertility for cancer patients. To avoid cancer cell reintroduction at transplantation, a multi-step culture system has been proposed to obtain fully competent oocytes for in vitro fertilization. Current in vitro systems are limited by the low number and health of secondary follicles produced during the first step culture of ovarian tissue fragments. To overcome such limitations, bioreactor designs have been proposed to enhance oxygen supply to the tissue, with inconsistent results. This retrospective study investigates, on theoretical grounds, whether the lack of a rational design of the proposed bioreactors prevented the full exploitation of follicle growth potential. Methods: Models describing oxygen transport in bioreactors and tissue were developed and used to predict oxygen availability inside ovarian tissue in the pertinent literature. Results: The proposed theoretical analysis suggests that a successful outcome is associated with enhanced oxygen availability in the cultured tissue in the considered bioreactor designs. This suggests that a rational approach to bioreactor design for ovarian tissue culture in vitro may help exploit tissue potential to support follicle growth.
Collapse
|
15
|
Is the pre-antral ovarian follicle the 'holy grail'for female fertility preservation? Anim Reprod Sci 2019; 207:119-130. [PMID: 31208845 DOI: 10.1016/j.anireprosci.2019.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023]
Abstract
Fertility preservation is not only a concern for humans with compromised fertility after cancer treatment. The preservation of genetic material from endangered animal species or animals with important genetic traits will also greatly benefit from the development of alternative fertility preservation strategies. In humans, embryo cryopreservation and mature-oocyte cryopreservation are currently the only approved methods for fertility preservation. Ovarian tissue cryopreservation is specifically indicated for prepubertal girls and women whose cancer treatment cannot be postponed. The cryopreservation of pre-antral follicles (PAFs) is a safer alternative for cancer patients who are at risk of the reintroduction of malignant cells. As PAFs account for the vast majority of follicles in the ovarian cortex, they represent an untapped potential, which could be cultivated for reproduction, preservation, or research purposes. Vitrification is being used more and more as it seems to yield better results compared to slow freezing, although protocols still need to be optimized for each specific cell type and species. Several methods can be used to assess follicle quality, ranging from simple viability stains to more complex xenografting procedures. In vitro development of PAFs to the pre-ovulatory stage has not yet been achieved in humans and larger animals. However, in vitro culture systems for PAFs are under development and are expected to become available in the near future. This review will focus on recent developments in (human) fertility preservation strategies, which are often accomplished by the use of in vitro animal models due to ethical considerations and the scarcity of human research material.
Collapse
|
16
|
Anderson RA, Baird DT. The development of ovarian tissue cryopreservation in Edinburgh: Translation from a rodent model through validation in a large mammal and then into clinical practice. Acta Obstet Gynecol Scand 2019; 98:545-549. [DOI: 10.1111/aogs.13560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Richard A. Anderson
- MRC Center for Reproductive Health University of Edinburgh Queen's Medical Research Institute Edinburgh UK
| | - David T. Baird
- MRC Center for Reproductive Health University of Edinburgh Queen's Medical Research Institute Edinburgh UK
| |
Collapse
|
17
|
Gastal G, Aguiar F, Rodrigues A, Scimeca J, Apgar G, Banz W, Feugang J, Gastal E. Cryopreservation and in vitro culture of white-tailed deer ovarian tissue. Theriogenology 2018; 113:253-260. [DOI: 10.1016/j.theriogenology.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
|
18
|
Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017; 8:15261. [PMID: 28509899 PMCID: PMC5440811 DOI: 10.1038/ncomms15261] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle-scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering.
Collapse
Affiliation(s)
- Monica M. Laronda
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Alexandra L. Rutz
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Shuo Xiao
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Kelly A. Whelan
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Francesca E. Duncan
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Eric W. Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208, USA
| | - Teresa K. Woodruff
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Ramille N. Shah
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
19
|
Kashka RH, Zavareh S, Lashkarbolouki T. Augmenting effect of vitrification on lipid peroxidation in mouse preantral follicle during cultivation: Modulation by coenzyme Q10. Syst Biol Reprod Med 2016; 62:404-414. [DOI: 10.1080/19396368.2016.1235236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
- Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Taghi Lashkarbolouki
- School of Biology, Damghan University, Damghan, Iran
- Institute of Biological Sciences, Damghan University, Damghan, Iran
| |
Collapse
|
20
|
Devi L, Goel S. Fertility preservation through gonadal cryopreservation. Reprod Med Biol 2016; 15:235-251. [PMID: 29259441 PMCID: PMC5715865 DOI: 10.1007/s12522-016-0240-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Fertility preservation is an area of immense interest in today's society. The most effective and established means of fertility preservation is cryopreservation of gametes (sperm and oocytes) and embryos. Gonadal cryopreservation is yet another means for fertility preservation, especially if the gonadal function is threatened by premature menopause, gonadotoxic cancer treatment, surgical castration, or diseases. It can also aid in the preservation of germplasm of animals that die before attaining sexual maturity. This is especially of significance for valuable, rare, and endangered animals whose population is affected by high neonatal/juvenile mortality because of diseases, poor management practices, or inbreeding depression. Establishing genome resource banks to conserve the genetic status of wild animals will provide a critical interface between ex-situ and in-situ conservation strategies. Cryopreservation of gonads effectively lengthens the genetic lifespan of individuals in a breeding program even after their death and contributes towards germplasm conservation of prized animals. Although the studies on domestic animals are quite promising, there are limitations for developing cryopreservation strategies in wild animals. In this review, we discuss different options for gonadal tissue cryopreservation with respect to humans and to laboratory, domestic, and wild animals. This review also covers recent developments in gonadal tissue cryopreservation and transplantation, providing a systematic view and the advances in the field with the possibility for its application in fertility preservation and for the conservation of germplasm in domestic and wild species.
Collapse
Affiliation(s)
- Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular BiologyCouncil for Scientific and Industrial ResearchUppal Road500 007HyderabadIndia
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular BiologyCouncil for Scientific and Industrial ResearchUppal Road500 007HyderabadIndia
| |
Collapse
|
21
|
Amorim CA, Shikanov A. The artificial ovary: current status and future perspectives. Future Oncol 2016; 12:2323-32. [DOI: 10.2217/fon-2016-0202] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cryopreservation and transplantation of ovarian tissue has proved to be a promising technique to safeguard fertility in cancer patients. However, with some types of cancer, there is a risk of transmitting malignant cells present in the cryopreserved tissue, so transplantation after disease remission is not advisable. To restore fertility in these patients, some research teams have been developing a transplantable artificial ovary, whose main goal is to mimic the natural organ. It should be composed of a matrix that encapsulates and protects follicles, as well as ovarian cells, which are necessary for follicle survival and development. This article reviews progress made in the creation of a transplantable artificial ovary and discusses future trends for its development.
Collapse
Affiliation(s)
- Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - Ariella Shikanov
- Department of Macromolecular Science & Engineering, University of Michigan, 1101 Beal Avenue, Room 2126 LBME, Ann Arbor, MI 48109-2110, USA
| |
Collapse
|
22
|
Lin C, Tsai S. The effect of cryopreservation on DNA damage, gene expression and protein abundance in vertebrate. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2012.e21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Kniazeva E, Hardy AN, Boukaidi SA, Woodruff TK, Jeruss JS, Shea LD. Primordial Follicle Transplantation within Designer Biomaterial Grafts Produce Live Births in a Mouse Infertility Model. Sci Rep 2015; 5:17709. [PMID: 26633657 PMCID: PMC4668556 DOI: 10.1038/srep17709] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/04/2015] [Indexed: 11/09/2022] Open
Abstract
The gonadotoxic effects of chemotherapy and radiation may result in premature ovarian failure in premenopausal oncology patients. Although autotransplantation of ovarian tissue has led to successful live births, reintroduction of latent malignant cells inducing relapse is a significant concern. In this report, we investigated the design of biomaterial grafts for transplantation of isolated ovarian follicles as a means to preserve fertility. Primordial and primary ovarian follicles from young female mice were extracted and encapsulated into biomaterials for subsequent transplantation into adult mice. Among the formulations tested, aggregated follicles encapsulated within fibrin had enhanced survival and integration with the host tissue following transplantation relative to the fibrin-alginate and fibrin-collagen composites. All mice transplanted with fibrin-encapsulated follicles resumed cycling, and live births were achieved only for follicles transplanted within VEGF-loaded fibrin beads. The extent to which these procedures reduce the presence of metastatic breast cancer cells among the isolated follicles was evaluated, with significantly reduced numbers of cancer cells present relative to intact ovaries. This ability to obtain live births by transplanting isolated primordial and primary follicles, while also reducing the risk of re-seeding disease relative to ovarian tissue transplantation, may ultimately provide a means to preserve fertility in premenopausal oncology patients.
Collapse
Affiliation(s)
- E Kniazeva
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Obstetrics and Gynecology, Institute for Women's Health Research, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - A N Hardy
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - S A Boukaidi
- Department of Obstetrics and Gynecology and Reproductive Medicine, CHU de Nice, Archet 2 Hospital, Nice, France
| | - T K Woodruff
- Department of Obstetrics and Gynecology, Institute for Women's Health Research, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - J S Jeruss
- Department of Obstetrics and Gynecology, Institute for Women's Health Research, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - L D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Obstetrics and Gynecology, Institute for Women's Health Research, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Pazoki H, Eimani H, Farokhi F, Shahverdi A, Salman Yazdi R, Tahaei LS. Comparing the growth and the development of mouse pre-antral follicle in medium with PL (Platelet Layset) and with FBS. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2015. [DOI: 10.1016/j.mefs.2015.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
25
|
Rajabzadeh AR, Eimani H, Mohseni Koochesfahani H, Shahvardi AH, Fathi R. Morphological study of isolated ovarian preantral follicles using fibrin gel plus platelet lysate after subcutaneous transplantation. CELL JOURNAL 2015; 17:145-52. [PMID: 25870844 PMCID: PMC4393662 DOI: 10.22074/cellj.2015.521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/10/2014] [Indexed: 11/20/2022]
Abstract
Objective Ovarian and follicle transplantation may preserve fertility in young cancer survivors. In this study, we have transplanted preantral follicles using fibrin gel as a carrier
and fibrin gel supplemented with platelet lysate (PL) as a rich source of angiogenic and
growth factors. The purpose of this study was to evaluate the role of fibrin gel and PL in
follicle transplantation. Materials and Methods In this experimental study, ovaries were taken from 14-day-
old Naval Medical Research Institute (NMRI) mice. Preantral follicles were dissected
from the ovaries and encapsulated into fibrin gel supplemented with 5, 10, 15 or 20%
PL, then transplanted back into the same donor mice. Fibrin gels supplemented with
PL that contained preantral follicles were placed in a subcutaneous pocket in the
back of the neck of the recipient, donor mouse (the same mouse that follicles were
collected). After 14 days the grafts were processed and embedded in paraffin blocks,
then serially sectioned for histological evaluation. We counted the follicles and classified them according to stage (preantral or antral). Data were presented as mean ±
standard error of mean (SEM) and analysed by analysis of variance (ANOVA) and the
Kruskal-Wallistest.
Results The mean percentage of recovered follicles encapsulated and transplanted
in each group were 33.30 ± 2.47 (fibrin gel), 31.96 ± 1.90 (fibrin gel+5% PL), 34.02
± 2.44 (fibrin gel+10% PL), 48.31 ± 2.06 (fibrin gel+15% PL) and 17.60 ± 2.79 (fibrin
gel+20% PL). There was a significant increase in the recovery rate of grafted follicles with fibrin gel+15% PL (48.31%; p<0.001). The percentage of preantral follicles
showed no significant difference in all groups (p<0.05). The percentage of antral follicles showed a significant decrease in follicles grafted with fibrin gel+20% PL when
compared to the other groups (11.77%; p<0.005) but no significant difference was
observed in the other groups.
Conclusion The use of PL in follicle transplantation can improve ovarian follicular
survival rate.
Collapse
Affiliation(s)
- Ali Reza Rajabzadeh
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran ; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hossein Eimani
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran ; Department of Anatomy, Faculty of Medicine, Baqiyatallah (a.s.) University of Medical Sciences, Tehran, Iran
| | - Homa Mohseni Koochesfahani
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Abdol-Hossein Shahvardi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
26
|
Ganji R, Nabiuni M, Faraji R. Development of mouse preantral follicle after in vitro culture in a medium containing melatonin. CELL JOURNAL 2015; 16:546-53. [PMID: 25685745 PMCID: PMC4297493 DOI: 10.22074/cellj.2015.499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 12/01/2013] [Indexed: 12/15/2022]
Abstract
Objective Improvements in cancer treatment have allowed more young women to survive. However, many cancer patients suffer from ovarian failure. Cryopreservation is one
of the solutions for fertility restoration in these patients. The cryopreservation of isolated
follicles is a more attractive approach in the long term. Many endocrine and paracrine
factors can stimulate the granulosa cells of preantral follicles to proliferate. Melatonin acts
as direct free radical scavenger and indirect antioxidant. In this study, we investigated the
direct effects of melatonin on follicle development and oocyte maturation by exposing in
vitro cultured mouse vitrified-warmed ovarian follicles to melatonin.
Materials and Methods In an experimental study, preantral follicles with diameter of
150-180 µm were isolated from prepubertal mouse ovaries. Follicles were vitrified and
thawed using cryolock method. They were then cultured individually for 7 days in droplets
supplemented with 0, 10 and 100 pM melatonin, while ovulation was induced using epidermal growth factor (EGF) and human chorionic gonadotropin (hCG). The survival rate of
follicles and nuclear maturation of ovulated oocytes were determined.
Results At the end of culture, significant increases in follicle survival (p<0.001) and in diameter (p<0.05) were noticed in 10 pM melatonin group compared to control group. In the 100
pM group, survival rate was not affected by melatonin. It was revealed that after induction of
ovulation, total number of metaphase II oocytes in treatment groups were not influenced by
melatonin (p>0.05).
Conclusion Culture of mouse vitrified-warmed preantral follicles in a medium supplemented with 10 pM melatonin increased the number of surviving follicles.
Collapse
Affiliation(s)
- Roya Ganji
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Roya Faraji
- Reproductive Health Research Center, Guilan University of Medical Sciences, Guilan, Iran
| |
Collapse
|
27
|
Vanacker J, Dolmans MM, Luyckx V, Donnez J, Amorim CA. First transplantation of isolated murine follicles in alginate. Regen Med 2014; 9:609-19. [DOI: 10.2217/rme.14.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Our aim is to develop an artificial ovary allowing survival and growth of isolated follicles and ovarian cells, to restore fertility in women diagnosed with pathologies at high risk of ovarian involvement. Materials & methods: For this, alginate beads containing isolated preantral follicles and ovarian cells were autografted to immunocompetent mice. One week after grafting, the beads were invaded by proliferating murine cells (12.1%) and capillaries. Results: The recovery rate of follicles per graft ranged from 0% to 35.5%. Of the analyzed follicles, 77% were Ki67-positive and 81%, TUNEL-negative. Three antral follicles were also identified, evidencing their ability to grow in the matrix. Conclusion: Our results suggest that an artificial ovary is now conceivable, opening new perspectives to restore fertility in women.
Collapse
Affiliation(s)
- Julie Vanacker
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
- Cliniques Universitaires Saint-Luc, Gynecology Department, 1200 Brussels, Belgium
| | - Valérie Luyckx
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jacques Donnez
- SRI (Society for Research into Infertility), Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
28
|
Chen CH, Tan SJ, Tzeng CR. In vivo fate mapping of cryopreserved murine ovarian grafts. J Ovarian Res 2014; 7:81. [PMID: 25296709 PMCID: PMC4145225 DOI: 10.1186/s13048-014-0081-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/06/2014] [Indexed: 11/25/2022] Open
Abstract
Background Cryopreservation of ovarian tissue has been suggested as an alternative to restore fertility for ovarian failure before chemotherapy. Methods Ovaries of donor FVB/N-Tg (PolII–Luc) Ltc transgenic mice (n = 5) were cryopreserved and transplanted to the back muscles of recipient FVB/NJNarl wild-type mice that had undergone bilateral oophorectomy. We evaluated the fate of cryopreserved murine ovarian grafts by in vivo bioluminescent imaging (BLI), AMH mRNA expression and follicle counts. Results There were significantly stronger BLI signals in the fresh ovaries than in the frozen–thawed ones. The number of primordial follicles was significantly lower in frozen–thawed ovaries at 10 days after transplantation (P < 0.001). The AMH mRNA expression was significantly lower in the frozen–thawed ovaries (P < 0.001), showing that unavoidable harm occurs after transplantation. Conclusions Ovarian cryopreservation by slow freezing compromises ovarian reserve by cryoinjury and ischemia, evident at an early stage after transplantation.
Collapse
|
29
|
Smith RM, Shikanov A, Kniazeva E, Ramadurai D, Woodruff TK, Shea LD. Fibrin-mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Eng Part A 2014; 20:3021-30. [PMID: 24802617 DOI: 10.1089/ten.tea.2013.0675] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cryopreservation and autotransplantation of ovarian tissue is emerging as a powerful approach for preserving fertility. However, for cancer patients, it may not be possible to transplant ovarian tissue due to the risk of re-seeding disease. We investigated strategies for transplantation of individually isolated follicles to minimize the risk of re-introducing cancer cells present within the vasculature of ovarian stroma. Procedures for large-scale isolation of early-stage follicles and their encapsulation into fibrin hydrogels were developed. For in vivo validation studies, mice were ovariectomized and transplanted with encapsulated follicles into the ovarian bursa. A substantial increase in the number of secondary follicles was observed in the graft at 9 days after transplantation, and antral follicles by day 21, demonstrating primordial follicle recruitment into the growing pool. Initially, elevated follicle-stimulating hormone levels declined substantially by day 21, indicating feedback from the graft; presence of corpora lutea showed the graft's capability of restoring hormone cyclicity. Taken together, the transplanted follicles were able to engraft, mature, and restore ovarian function in an infertile mouse. This biomaterial may, thus, provide a platform for follicle transplantation with a low risk of cancer contamination and for developing strategies that preserve fertility for women facing a cancer diagnosis.
Collapse
Affiliation(s)
- Rachel M Smith
- 1 Department of Chemical and Biological Engineering, Northwestern University , Evanston, Illinois
| | | | | | | | | | | |
Collapse
|
30
|
Lotz L, Liebenthron J, Nichols-Burns SM, Montag M, Hoffmann I, Beckmann MW, van der Ven H, Töpfer D, Dittrich R. Spontaneous antral follicle formation and metaphase II oocyte from a non-stimulated prepubertal ovarian tissue xenotransplant. Reprod Biol Endocrinol 2014; 12:41. [PMID: 24886634 PMCID: PMC4036711 DOI: 10.1186/1477-7827-12-41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/26/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Current strategies in cancer treatment have markedly increased the rates of remission and survival for cancer patients, but are often associated with subsequent sterility. While there are various options available to an adult female depending on the patient's particular situation, the only realistic option for preserving fertility in prepubertal females is to cryopreserve ovarian tissue. This is the first report of a morphologically mature oocyte collected from non-stimulated prepubertal ovarian tissue xenotransplants. METHODS Ovarian tissue from a 6 year old patient suffering from nephroblastoma was removed and cryopreserved for fertility preservation. The frozen-thawed ovarian tissue fragments were xenotransplanted to bilaterally oophorectomized severe combined immunodeficiency (SCID) mice to assess follicle development. RESULTS Antral follicle formation occurred post-xenotransplantation in a single ovarian fragment without exogenous hormone stimulation. A morphologically maturing oocyte was harvested from these follicles. CONCLUSIONS Prepubertal human ovarian follicles and oocytes can be matured after xenotransplantation even without exogenous hormone stimulation. These results indicate that tissue collected from prepubertal patients can support fertility in cancer survivors.
Collapse
Affiliation(s)
- Laura Lotz
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Liebenthron
- Department of Gynecologic Endocrinology and Reproductive Medicine, University Women’s Hospital, Bonn, Germany
| | - Stephanie M Nichols-Burns
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Montag
- ilabcomm GmbH, Eisenachstr. 34, 53757 St. Augustin, Germany
| | - Inge Hoffmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Hans van der Ven
- Department of Gynecologic Endocrinology and Reproductive Medicine, University Women’s Hospital, Bonn, Germany
| | - Dagmar Töpfer
- Department of Reproductive Biology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 2, 30559 Hannover, Germany
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
Luyckx V, Dolmans MM, Vanacker J, Scalercio SR, Donnez J, Amorim CA. First step in developing a 3D biodegradable fibrin scaffold for an artificial ovary. J Ovarian Res 2013; 6:83. [PMID: 24274108 PMCID: PMC4176293 DOI: 10.1186/1757-2215-6-83] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although transplantation of cryopreserved ovarian tissue is a promising approach to restore fertility in cancer patients, it is not advisable for women at risk of ovarian involvement due to the threat of reintroducing malignant cells. The aim of this study was therefore to find an alternative for these patients by development of an artificial ovary. METHODS For construction of the artificial ovary matrix, we used a central composite design to investigate nine combinations of fibrinogen (mg/ml) and thrombin (IU/mL) (F/T): F1/T4, F12.5/T1, F12.5/T20, F25/T0.1, F25/T4, F25/T500, F50/T1, F50/T20 and F100/T4. From the first qualitative analyses (handling and matrix size), five combinations (F12.5/T1, F25/T4, F50/T20, F50/T1 and F100/T4) yielded positive results. They were further evaluated in order to assess fibrin matrix degradation and homogeneous cell encapsulation (density), survival and proliferation (Ki67), and atresia (TUNEL) before and after 7 days of in vitro culture. To determine the best compromise between maximizing the dynamic density (Y1) and minimizing the apoptosis rate (Y2), we used the desirability function approach. RESULTS Two combinations (F12.5/T1 and F25/T4) showed greater distribution of cells before in vitro culture, reproducible degradation of the fibrin network and adequate support for isolated human ovarian stromal cells, with a high proportion of Ki67-positive cells. SEM analysis revealed a network of fibers with regular pores and healthy stromal cells after in vitro culture with both F/T combinations. CONCLUSION This study reports two optimal F/T combinations that allow survival and proliferation of isolated human ovarian cells. Further studies are required to determine if such a scaffold will also be a suitable environment for isolated ovarian follicles.
Collapse
Affiliation(s)
- Valérie Luyckx
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
Luyckx V, Scalercio S, Jadoul P, Amorim CA, Soares M, Donnez J, Dolmans MM. Evaluation of cryopreserved ovarian tissue from prepubertal patients after long-term xenografting and exogenous stimulation. Fertil Steril 2013; 100:1350-7. [DOI: 10.1016/j.fertnstert.2013.07.202] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/26/2013] [Accepted: 07/10/2013] [Indexed: 11/25/2022]
|
33
|
Camboni A, Van Langendonckt A, Donnez J, Vanacker J, Dolmans M, Amorim C. Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology 2013; 67:64-9. [DOI: 10.1016/j.cryobiol.2013.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/08/2013] [Accepted: 05/08/2013] [Indexed: 11/29/2022]
|
34
|
Bian J, Li T, Ding C, Xin W, Zhu B, Zhou C. Vitreous cryopreservation of human preantral follicles encapsulated in alginate beads with mini mesh cups. J Reprod Dev 2013; 59:288-95. [PMID: 23485957 PMCID: PMC3934133 DOI: 10.1262/jrd.2012-157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To completely avoid ice crystal formation and thus get a higher survival rate,
vitrification methods have been commonly used for cryopreservation of oocytes and embryos.
However, currently used vitrification methods for oocytes and embryos are not suitable for
the cryopreservation of preantral follicles (PFs). In the present study, stainless steel
mesh was fabricated into mini mesh cups to vitrify isolated PFs. Moreover, isolated
follicles were encapsulated and then subjected to vitreous cryopreservation to facilitate
in vitro culture/maturation of follicles after warming. The results
showed that the percentages of viable follicles did not differ significantly between the
vitrification group and fresh group soon after warming (81.25% vs.
85.29%, P>0.05) and after a 7-day culture period (77.78% vs. 83.33%,
P>0.05). No difference in mean follicular diameter was observed between cryopreserved
and fresh follicles when cultured in vitro. Transmission electron
microscopic analysis revealed that vitreous cryopreservation could maintain the
ultrastructure of follicles in alginate beads. In conclusion, the present vitrification
method could efficiently cryopreserve isolated human ovarian follicles encapsulated by
calcium alginate, which could be put into immediate use (in vitro
culture/ maturation) after warming. However, more follicles and some detailed biochemical
analyses are required to further investigate the effects of vitrification on the long-term
growth of human encapsulated PFs.
Collapse
Affiliation(s)
- Jiang Bian
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Gosden RG. Memoir of fertility preservation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 761:85-94. [PMID: 24097383 DOI: 10.1007/978-1-4614-8214-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fertility preservation has been practiced for at least 50 years using semen banking, pelvic surgery, and radiation shields, but in the past 20 years it has emerged as a rapidly growing subspecialty of reproductive medicine. A dramatic rise in survivorship of young cancer patients and the widespread postponement of family building to the later years of the female reproductive lifespan have been major driving forces. Throughout the history of fertility preservation, low temperature banking has played a pivotal role, first for gametes and later for embryos and immature germ cells, while ovarian transplantation recently began to contribute and spermatogonial stem cell transfer holds future promise for men and prepubertal boys. But there are significant risks with some diseases from reimplanting residual disease, which hopefully can be eliminated by new methods for purging the tissue and germ cell culture. Since all technologies are interim, cryopreservation as a mainstay in this field will likely be swept aside eventually by a stream of progress aimed at managing fertility preservation in vivo.
Collapse
|
36
|
Grynberg M, Poulain M, Sebag-Peyrelevade S, le Parco S, Fanchin R, Frydman N. Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil Steril 2012; 97:1260-8. [PMID: 22656306 DOI: 10.1016/j.fertnstert.2012.04.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To review and summarize data from the scientific literature on ovarian tissue and follicle transplantation as an option for fertility preservation. DESIGN Review of pertinent literature. SETTING University hospital. PATIENT(S) Women having undergone ovarian tissue transplantation. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Review of the literature. RESULT(S) Over the last decade, the field of ovarian transplantation and cryopreservation has significantly progressed, becoming applicable in humans. Indeed, fresh and frozen cortical ovarian tissue transplantations have been successfully reported worldwide, resulting in around 28 healthy babies. Although ovarian-tissue harvesting seems to be safe, the risk of reimplantation of cancer from ovarian cortical transplants cannot be estimated at this time. As a consequence, auto-transplantation of ovarian tissue in women having suffered from systemic hematological malignancies is not recommended. In these situations, reimplantation of isolated ovarian follicles might represent an interesting option in the future. CONCLUSION(S) Although the clinical experience is limited, the robust results obtained open new perspectives for the management of premature ovarian failure resulting or not from gonadotoxic treatments.
Collapse
Affiliation(s)
- Michael Grynberg
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Antoine Béclère, Clamart, France.
| | | | | | | | | | | |
Collapse
|
37
|
Cryopreservation of ovarian tissue in pediatric patients. Obstet Gynecol Int 2012; 2012:910698. [PMID: 22518166 PMCID: PMC3306942 DOI: 10.1155/2012/910698] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/22/2011] [Indexed: 11/28/2022] Open
Abstract
Cancer treatments improve the survival rate of children and adolescents; however chemo- and radiotherapy result in gonadal damage leading to acute ovarian failure and sterility. Ovarian tissue cryopreservation allows long-term storage of primordial follicles and represents the only possibility of preserving the potential fertility in prepubertal girls. The aim of the present study is to describe our experience in ovarian tissue cryopreservation in 45 pediatric patients. The number of follicles per square millimeter of the overall section area and follicle quality were evaluated histologically. A strong negative correlation was found between age and follicular density in patients both prior to and after chemotherapy (P < 0.0001). Damage in follicular quality, that is, increased oocyte vacuolization and detachment of the oocyte from granulosa cells, was found after chemotherapy. Ovarian tissue cryopreservation, preferably performed before initiation of chemotherapy, should be offered to pediatric patients, including prepubertal girls, at risk of sterility.
Collapse
|
38
|
Demeestere I, Moffa F, Peccatori F, Poirot C, Shalom-Paz E. Multiple approaches for individualized fertility protective therapy in cancer patients. Obstet Gynecol Int 2011; 2012:961232. [PMID: 22253632 PMCID: PMC3255296 DOI: 10.1155/2012/961232] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022] Open
Abstract
In the last decade, fertility preservation has risen as a major field of interest, creating new interactions between oncologists and gynecologists. Various options, such as cryopreservation of ovarian tissue, have been developed and are currently routinely proposed in many centers. However, many of the options remain experimental and should be offered to patients only after adequate counseling. This paper addresses the efficiency and the potential of the different fertility preservation approaches.
Collapse
Affiliation(s)
- I. Demeestere
- Fertility Clinic, Universite Libre de Bruxelles (ULB), Hôpital Erasme, 1070 Brussels, Belgium
- Fertility Clinic, Universite Libre de Bruxelles (ULB), Campus Erasme, 1070 Brussels, Belgium
| | - F. Moffa
- Fertility Clinic, Universite Libre de Bruxelles (ULB), Hôpital Erasme, 1070 Brussels, Belgium
- Instituto Marquès, 08034 Barcelona, Spain
| | - F. Peccatori
- Department of Medicine, Division of Hematology Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - C. Poirot
- UF de Biologie de la Reproduction, Groupe Hospitalier Pitié-Salpêtrière, 75651 Paris, France
| | - E. Shalom-Paz
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada H3A 2T5
| |
Collapse
|
39
|
Carvalho A, Faustino L, Silva C, Castro S, Luz H, Rossetto R, Lopes C, Campello C, Figueiredo J, Rodrigues A, Costa A. Influence of vitrification techniques and solutions on the morphology and survival of preantral follicles after in vitro culture of caprine ovarian tissue. Theriogenology 2011; 76:933-41. [DOI: 10.1016/j.theriogenology.2011.04.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 10/17/2022]
|
40
|
Desai N, AbdelHafez F, Ali MY, Sayed EH, Abu-Alhassan AM, Falcone T, Goldfarb J. Mouse ovarian follicle cryopreservation using vitrification or slow programmed cooling: assessment of in vitro development, maturation, ultra-structure and meiotic spindle organization. J Obstet Gynaecol Res 2011; 37:1-12. [PMID: 20731766 DOI: 10.1111/j.1447-0756.2010.01215.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To compare different outcomes of vitrification and slow freezing of isolated pre-antral follicles and to evaluate different cryo-devices for vitrification of isolated follicles. METHODS Pre-antral follicles were isolated from mouse ovaries and cryopreserved using vitrification and slow freezing. A preliminary experiment was carried out to select the optimal cryo-device for vitrification of isolated follicles. A total of 414 follicles were randomly distributed among four groups: control (CT) fresh (n=100), nylon mesh (n=96), electron microscopy grid (n=102), and micro-capillary tips (n=116). Subsequently, a total of 979 follicles were randomly assigned to three different groups: CT fresh (n=256), vitrification (n=399) and slow freezing (n=324). CT and cryopreserved/thawed follicles were cultured in vitro and examined daily for development. Final maturation was triggered with human chorionic gonadotrophin and rates of oocyte maturation were calculated. The ultra-structure of cryopreserved/thawed follicles was studied using electron microscopy. Meiotic spindle presence and organization in mature oocytes were examined using the Oosight imaging system. RESULTS Micro-capillary tips resulted in poor immediate post-warming survival but no differences were observed in the subsequent in vitro development characteristics between different cryo-devices. Nylon mesh proved to be the easiest carrier, particularly when large numbers of follicles were to be vitrified. Compared to vitrification, slow freezing resulted in a significantly lower number of intact follicles at the end of the culture period (P<0.0001). However all other outcome measures were comparable between both techniques. CONCLUSIONS Isolated follicles were more vulnerable to cryodamage after slow freezing as compared to vitrification.
Collapse
Affiliation(s)
- Nina Desai
- Department of OB-GYN, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Dath C, Dethy A, Van Langendonckt A, Van Eyck A, Amorim C, Luyckx V, Donnez J, Dolmans M. Endothelial cells are essential for ovarian stromal tissue restructuring after xenotransplantation of isolated ovarian stromal cells. Hum Reprod 2011; 26:1431-9. [DOI: 10.1093/humrep/der073] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Diedrich K, Fauser B, Devroey P. Cancer and fertility: strategies to preserve fertility. Reprod Biomed Online 2011; 22:232-48. [DOI: 10.1016/j.rbmo.2010.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 09/07/2010] [Accepted: 11/02/2010] [Indexed: 11/26/2022]
|
44
|
Cryopreservation of ovarian tissue: An emerging technology for female germline preservation of endangered species and breeds. Anim Reprod Sci 2010; 122:151-63. [DOI: 10.1016/j.anireprosci.2010.08.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022]
|
45
|
Levine J, Canada A, Stern CJ. Fertility Preservation in Adolescents and Young Adults With Cancer. J Clin Oncol 2010; 28:4831-41. [DOI: 10.1200/jco.2009.22.8312] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Preservation of fertility is important to adolescent and young adult (AYA) survivors of cancer. Many survivors will maintain their reproductive potential after the successful completion of treatment for cancer. However total-body irradiation, radiation to the gonads, and chemotherapy regimens containing high-dose alkylators can place women at risk for acute ovarian failure or premature menopause and men at risk for temporary or permanent azoospermia. The most effective and established means of preserving fertility in this population is embryo cryopreservation in women and sperm cryopreservation in men before the initiation of cancer-directed therapy. Cryopreservation of mature oocytes is also becoming more commonplace as methods of thawing become more sophisticated. The use of in vitro fertilization and intracytoplasmic sperm injection has added to the viability of sperm and oocyte cryopreservation. Cryopreservation and transplantation of gonadal tissue in both males and females remains experimental but continues to be evaluated. Hormonal suppression has not been shown to be effective in males but may have promise in females, although larger scale trials are needed to evaluate this. Providing information about risk of infertility and possible interventions to maintain reproductive potential are critical for the AYA population at the time of diagnosis. Given the competing demands of providing complicated and detailed information about cancer treatment, the evolving information related to fertility preservation, and the ethical issues involved, it may be preferable, where possible, to have a specialized team, rather than the primary oncologist, address these issues with AYA patients.
Collapse
Affiliation(s)
- Jennifer Levine
- From the Division of Pediatric Oncology, Columbia University Medical Center, New York, NY; Rush University Medical Center, Chicago, IL; and Reproductive Services, The Royal Women's Hospital and Melbourne IVF, Melbourne, Victoria, Australia
| | - Andrea Canada
- From the Division of Pediatric Oncology, Columbia University Medical Center, New York, NY; Rush University Medical Center, Chicago, IL; and Reproductive Services, The Royal Women's Hospital and Melbourne IVF, Melbourne, Victoria, Australia
| | - Catharyn J. Stern
- From the Division of Pediatric Oncology, Columbia University Medical Center, New York, NY; Rush University Medical Center, Chicago, IL; and Reproductive Services, The Royal Women's Hospital and Melbourne IVF, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A, Falcone T. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod Biol Endocrinol 2010; 8:119. [PMID: 20946661 PMCID: PMC2967553 DOI: 10.1186/1477-7827-8-119] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/14/2010] [Indexed: 01/15/2023] Open
Abstract
In vitro ovarian follicle culture is a new frontier in assisted reproductive technology with tremendous potential, especially for fertility preservation. Folliculogenesis within the ovary is a complex process requiring interaction between somatic cell components and the oocyte. Conventional two-dimensional culture on tissue culture substrata impedes spherical growth and preservation of the spatial arrangements between oocyte and surrounding granulosa cells. Granulosa cell attachment and migration can leave the oocyte naked and unable to complete the maturation process. Recognition of the importance of spatial arrangements between cells has spurred research in to three-dimensional culture system. Such systems may be vital when dealing with human primordial follicles that may require as long as three months in culture. In the present work we review pertinent aspects of in vitro follicle maturation, with an emphasis on tissue-engineering solutions for maintaining the follicular unit during the culture interval. We focus primarily on presenting the various 3-dimensional culture systems that have been applied for in vitro maturation of follicle:oocyte complexes. We also try to present an overview of outcomes with various biomaterials and animal models and also the limitations of the existing systems.
Collapse
Affiliation(s)
- Nina Desai
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anastasia Alex
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Faten AbdelHafez
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - James Goldfarb
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Aaron Fleischman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Tommaso Falcone
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Aerts JM, Martinez-Madrid B, Leroy JL, Van Aelst S, Bols PE. Xenotransplantation by injection of a suspension of isolated preantral ovarian follicles and stroma cells under the kidney capsule of nude mice. Fertil Steril 2010; 94:708-14. [DOI: 10.1016/j.fertnstert.2009.03.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/27/2009] [Accepted: 03/12/2009] [Indexed: 10/20/2022]
|
48
|
Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, Picton HM, Plancha C, Shea LD, Stouffer RL, Telfer EE, Woodruff TK, Zelinski MB. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 2010; 16:395-414. [PMID: 20124287 PMCID: PMC2880913 DOI: 10.1093/humupd/dmp056] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/12/2009] [Accepted: 12/10/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Female cancer patients are offered 'banking' of gametes before starting fertility-threatening cancer therapy. Transplants of fresh and frozen ovarian tissue between healthy fertile and infertile women have demonstrated the utility of the tissue banked for restoration of endocrine and fertility function. Additional methods, like follicle culture and isolated follicle transplantation, are in development. METHODS Specialist reproductive medicine scientists and clinicians with complementary expertise in ovarian tissue culture and transplantation presented relevant published literature in their field of expertise and also unpublished promising data for discussion. As the major aims were to identify the current gaps prohibiting advancement, to share technical experience and to orient new research, contributors were allowed to provide their opinioned expert views on future research. RESULTS Normal healthy children have been born in cancer survivors after orthotopic transplantation of their cryopreserved ovarian tissue. Longevity of the graft might be optimized by using new vitrification techniques and by promoting rapid revascularization of the graft. For the in vitro culture of follicles, a successive battery of culture methods including the use of defined media, growth factors and three-dimensional extracellular matrix support might overcome growth arrest of the follicles. Molecular methods and immunoassay can evaluate stage of maturation and guide adequate differentiation. Large animals, including non-human primates, are essential working models. CONCLUSIONS Experiments on ovarian tissue from non-human primate models and from consenting fertile and infertile patients benefit from a multidisciplinary approach. The new discipline of oncofertility requires professionalization, multidisciplinarity and mobilization of funding for basic and translational research.
Collapse
Affiliation(s)
- J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fray MD. Biological methods for archiving and maintaining mutant laboratory mice. Part I: conserving mutant strains. Methods Mol Biol 2009; 561:301-19. [PMID: 19504080 DOI: 10.1007/978-1-60327-019-9_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The mouse is now firmly established as the model organism of choice for scientists studying mammalian biology and human disease. Consequently, a plethora of novel, genetically altered (GA) mouse lines have been created. In addition, the output from the large scale mutagenesis programmes currently under way around the world will increase the collection of GA mouse strains still further. Because of the implications for animal welfare and the constraints on resources, it would be unreasonable to expect anything other than those strains essential for ongoing research programmes to be maintained as breeding colonies. Unfortunately, unless the redundant strains are preserved using robust procedures, which guarantee their recovery, they will be lost to future generations of researchers.This chapter describes some of the preservation methods currently used in laboratories around the world to archive novel mouse strains.
Collapse
Affiliation(s)
- Martin D Fray
- Frozen Embryo & Sperm Archive (FESA), Medical Research Council, Mammalian Genetics Unit, Harwell, Oxfordshire, UK
| |
Collapse
|
50
|
Abstract
A scientist at Edinburgh University announced in 1994 that he had removed ovaries from, mouse fetuses and transplanted them, to adult mice. The ovaries released eggs, and conceptions occurred. Although this was not the first such attempt with mice, the study attracted attention because the researcher suggested, that fetal to adult ovarian transplants were a theoretical possibility for humans. If aborted, fetuses were used, as egg sources in assisted conception, a new entity would arise: the never-born genetic mother. Using eggs from aborted fetuses for conception would lead to quixotic and novel family ties. Its use would echo surrogate gestational motherhood, in which a child has both a genetic mother who contributed her egg and a gestational mother who contributed her uterus for gestation and childbirth. With fetal egg use, however, the child's genetic mother would be a never-born fetus without sentience or known, physiology.
Collapse
|