1
|
Cushnie TPT, Luang-In V, Sexton DW. Necrophages and necrophiles: a review of their antibacterial defenses and biotechnological potential. Crit Rev Biotechnol 2025; 45:625-642. [PMID: 39198023 DOI: 10.1080/07388551.2024.2389175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 09/01/2024]
Abstract
With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene sarcotoxin IA to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Mueang, Maha Sarakham, Thailand
| | - Vijitra Luang-In
- Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Maha Sarakham, Thailand
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Fallah Ziarani M, Tohidfar M, Mirjalili MH. Evaluation of antibacterial properties of nisin peptide expressed in carrots. Sci Rep 2023; 13:22123. [PMID: 38092901 PMCID: PMC10719254 DOI: 10.1038/s41598-023-49466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Nisin, derived from Lactococcus lactis, is a well-known natural food preservative. In the present study, the gene of nisin was transformed to carrot by Agrobacterium tumefaciens strain LBA4404 harboring the recombinant binary vector pBI121 containing neomycin phosphotransferase II (nptII) gene, peptide signal KDEL, and Kozak sequence. The integration of nisin and nptII transgenes into the plant genome was confirmed by polymerase chain reaction (PCR) and dot blot analysis. The gene expression was also performed by RT-PCR and Enzyme-Linked Immunosorbent Assay. The level of nisin expressed in one gram of transgenic plant ranged from 0.05 to 0.08 μg/ml. The stability of nisin varied in orange and peach juices depending on the temperature on the 70th day. The leaf protein extracted from the transgenic plant showed a significant preservative effect of nisin in peach and orange juice. A complete inhibition activity against Staphylococcus aureus and Escherichia coli in orange juice was observed within 24 h. After 24 h, log 1 and log 2 were obtained in a peach juice containing Staphylococcus aureus and Escherichia coli, respectively. Results of HPLC indicated that Chlorogenic and Chicoric acid compounds were increased in transgenic plants, but this increase was not significant. The study of determining the genetic stability of transgenic plants in comparison with non-transgenic plants showed high genetic stability between non-transgenic plants and transgenic plants. This study confirmed the significant inhibitory effect of nisin protein on gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Masoumeh Fallah Ziarani
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Masoud Tohidfar
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
3
|
Sun Q, Zhang X, Ouyang Y, Yu P, Man Y, Guo S, Liu S, Chen Y, Wang Y, Tan X. Appressoria Formation in Phytopathogenic Fungi Suppressed by Antimicrobial Peptides and Hybrid Peptides from Black Soldier Flies. Genes (Basel) 2023; 14:genes14051096. [PMID: 37239456 DOI: 10.3390/genes14051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs) from black solider flies (Hermetia illucens, BSF) exhibiting broad-spectrum antimicrobial activity are the most promising green substitutes for preventing the infection of phytopathogenic fungi; therefore, AMPs have been a focal topic of research. Recently, many studies have focused on the antibacterial activities of BSF AMPs against animal pathogens; however, currently, their antifungal activities against phytopathogenic fungi remain unclear. In this study, 7 AMPs selected from 34 predicted AMPs based on BSF metagenomics were artificially synthesized. When conidia from the hemibiotrophic phytopathogenic fungi Magnaporthe oryzae and Colletotrichum acutatum were treated with the selected AMPs, three selected AMPs-CAD1, CAD5, and CAD7-showed high appressorium formation inhibited by lengthened germ tubes. Additionally, the MIC50 concentrations of the inhibited appressorium formations were 40 μM, 43 μM, and 43 μM for M. oryzae, while 51 μM, 49 μM, and 44 μM were observed for C. acutatum, respectively. A tandem hybrid AMP named CAD-Con comprising CAD1, CAD5, and CAD7 significantly enhanced antifungal activities, and the MIC50 concentrations against M. oryzae and C. acutatum were 15 μM and 22 μM, respectively. In comparison with the wild type, they were both significantly reduced in terms of virulence when infection assays were performed using the treated conidia of M. oryzae or C. acutatum by CAD1, CAD5, CAD7, or CAD-Con. Meanwhile, their expression levels of CAD1, CAD5, and CAD7 could also be activated and significantly increased after the BSF larvae were treated with the conidia of M. oryzae or C. acutatum, respectively. To our knowledge, the antifungal activities of BSF AMPs against plant pathogenic fungi, which help us to seek potential AMPs with antifungal activities, provide proof of the effectiveness of green control strategies for crop production.
Collapse
Affiliation(s)
- Qianlong Sun
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xin Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Ying Ouyang
- College of Plant Science, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| | - Pingzhong Yu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yilong Man
- Agricultural Biotechnology Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Sheng Guo
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Sizhen Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yue Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
4
|
Tanaka A, Ryder MH, Suzuki T, Uesaka K, Yamaguchi N, Amimoto T, Otani M, Nakayachi O, Arakawa K, Tanaka N, Takemoto D. Production of Agrocinopine A by Ipomoea batatas Agrocinopine Synthase in Transgenic Tobacco and Its Effect on the Rhizosphere Microbial Community. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:73-84. [PMID: 34585955 DOI: 10.1094/mpmi-05-21-0114-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Agrobacterium tumefaciens is a bacterial pathogen that causes crown gall disease on a wide range of eudicot plants by genetic transformation. Besides T-DNA integrated by natural transformation of plant vegetative tissues by pathogenic Agrobacterium spp., previous reports have indicated that T-DNA sequences originating from an ancestral Agrobacterium sp. are present in the genomes of all cultivated sweet potato (Ipomoea batatas) varieties analyzed. Expression of an Agrobacterium-derived agrocinopine synthase (ACS) gene was detected in leaf and root tissues of sweet potato, suggesting that the plant can produce agrocinopine, a sugar-phosphodiester opine considered to be utilized by some strains of Agrobacterium spp. in crown gall. To validate the product synthesized by Ipomoea batatas ACS (IbACS), we introduced IbACS into tobacco under a constitutive promoter. High-voltage paper electrophoresis followed by alkaline silver nitrate staining detected the production of an agrocinopine-like substance in IbACS1-expressing tobacco, and further mass spectrometry and nuclear magnetic resonance analyses of the product confirmed that IbACS can produce agrocinopine A from natural plant substrates. The partially purified compound was biologically active in an agrocinopine A bioassay. A 16S ribosomal RNA amplicon sequencing and meta-transcriptome analysis revealed that the rhizosphere microbial community of tobacco was affected by the expression of IbACS. A new species of Leifsonia (actinobacteria) was isolated as an enriched bacterium in the rhizosphere of IbACS1-expressing tobacco. This Leifsonia sp. can catabolize agrocinopine A produced in tobacco, indicating that the production of agrocinopine A attracts rhizosphere bacteria that can utilize this sugar-phosphodiester. These results suggest a potential role of IbACS conserved among sweet potato cultivars in manipulating their microbial community.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Maarten H Ryder
- School of Agriculture, Food & Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 478-8501, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Nobuo Yamaguchi
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomoko Amimoto
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Motoyasu Otani
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Osamu Nakayachi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Nobukazu Tanaka
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Wada M, Nishitani C, Komori S. Stable and efficient transformation of apple. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:163-170. [PMID: 32821223 PMCID: PMC7434680 DOI: 10.5511/plantbiotechnology.20.0602a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
Apple is one of precious fruit crop grown in temperate zone. In the post genomic era, the analysis of gene functions in horticultural crops such as apple is required for agricultural utilization. For analysis of such crops, the protocol establishment of tissue culture and transformation is essential. Although transformation efficiency in family Rosaceae is generally very low, some cultivars of Malus species have high transformation ability. Apple cultivars are usually clonally propagated by grafting on rootstocks, which can affect fruit quality and maturity and scion productivity. Apple rootstock cultivar Japan Morioka 2 (JM2) was produced at the Division of Apple Research, Institute of Fruit and Tea Science, NARO, in Japan. JM2, which was developed for dwarfing scions and improving disease resistance, is easily propagated by hardwood cutting. Furthermore, JM2 can be stably transformed at a high efficiency, which is better than other JM series rootstocks derived from the same parent. Leaflets of cultured shoots of JM2 have been transformed using Agrobacterium (Rhizobium) with a transducing gene. In this article, the JM2 transformation protocol is introduced in detail. Various genes and promoters have been confirmed to function as expected, with the resultant transformants exhibiting specific staining and fluorescent signals, and modified floral organ shapes, precious blooming and other characteristics. JM2 is thus a useful rootstock material for the enhancement of genetic research on apple and its relatives.
Collapse
Affiliation(s)
- Masato Wada
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Chikako Nishitani
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Sadao Komori
- Faculty of Agriculture, Iwate University, Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
6
|
Zakharchenko NS, Furs OV, Pigoleva SV, Dyachenko OV, Aripovskii AV, Buryanov YI, Shevchuk TV. Obtainment and Analysis of Marker-Free Oil Plants Camelina sativa (L.) Expressing of Antimicrobial Peptide Cecropin P1 Gene. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819090096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zakharchenko NS, Pigoleva SV, Furs OV, Shevchuk TV, Dyachenko OV, Buryanov YI. Gene Expression of the Antimicrobial Peptide Bombinin Increases the Resistance of Transgenic Tobacco Plants to Phytopathogens. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818070086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abstract
Bacterial spot (BS), caused by four species of Xanthomonas: X. euvesicatoria, X. vesicatoria, X. perforans and X. gardneri in tomato (Solanum lycopersicum L.) results in severe loss in yield and quality by defoliation and the appearance of lesions on fruits, respectively. The combined industry standard for BS control (foliar applications Actigard® rotated with copper plus mancozeb) does not offer sufficient protection, especially when weather conditions favor disease spread. Development of tomato cultivars with BS resistance is thus an important measure to minimize losses. Hypersensitive and non-hypersensitive resistance has been identified in different wild accessions and cultivated tomato relatives and has been transferred to cultivated tomato. However, complete resistance is yet to be obtained. With the advent of next generation sequencing and precise genome editing tools, the genetic regions that confer resistance to bacterial spot can be targeted and enriched through gene pyramiding in a new commercial cultivar which may confer higher degree of horizontal resistance to multiple strains of Xanthomonas causing bacterial spot in tomato.
Collapse
|
9
|
Frey ME, D'Ippolito S, Pepe A, Daleo GR, Guevara MG. Transgenic expression of plant-specific insert of potato aspartic proteases (StAP-PSI) confers enhanced resistance to Botrytis cinerea in Arabidopsis thaliana. PHYTOCHEMISTRY 2018; 149:1-11. [PMID: 29428248 DOI: 10.1016/j.phytochem.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 05/20/2023]
Abstract
The plant-specific insert of Solanum tuberosum aspartic proteases (StAP-PSI) has high structural similarity with NK-lysin and granulysin, two saposin-like proteins (SAPLIPs) with antimicrobial activity. Recombinant StAP-PSI and some SAPLIPs show antimicrobial activity against pathogens that affect human and plants. In this work, we transformed Arabidopsis thaliana plants with StAP-PSI encoding sequence with its corresponding signal peptide under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Results obtained show that StAP-PSI significantly enhances Arabidopsis resistance against Botrytis cinerea infection. StAP-PSI is secreted into the leaf apoplast and acts directly against pathogens; thereby complementing plant innate immune responses. Data obtained from real-time PCR assays show that the constitutive expression of StAP-PSI induces the expression of genes that regulate jasmonic acid signalling pathway, such as PDF1.2, in response to infection due to necrotrophic pathogens. On the other hand, according to the data described for other antimicrobial peptides, the presence of the StAP-PSI protein in the apoplast of A. thaliana leaves is responsible for the expression of salicylic acid-associated genes, such as PR-1, irrespective of infection with B. cinerea. These results indicate that the increased resistance demonstrated by A. thaliana plants that constitutively express StAP-PSI owing to B. cinerea infection compared to the wild-type plants is a consequence of two factors, i.e., the antifungal activity of StAP-PSI and the overexpression of A. thaliana defense genes induced by the constitutive expression of StAP-PSI. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the use of pesticides. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the spreading of resistance of agriculturally important pathogens.
Collapse
Affiliation(s)
- María Eugenia Frey
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Sebastián D'Ippolito
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Alfonso Pepe
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Gustavo Raúl Daleo
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - María Gabriela Guevara
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina.
| |
Collapse
|
10
|
Dong XL, Liu TH, Wang W, Pan CX, Du GY, Wu YF, Adur M, Zhang MJ, Pan MH, Lu C. Transgenic RNAi of BmREEPa in silkworms can enhance the resistance of silkworm to Bombyxmori Nucleopolyhedrovirus. Biochem Biophys Res Commun 2017; 483:855-859. [DOI: 10.1016/j.bbrc.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/02/2023]
|
11
|
Zakharchenko NS, Rukavtsova EB, Shevchuk TV, Furs OV, Pigoleva SV, Lebedeva AA, Chulina IA, Baidakova LK, Bur’yanov YI. The obtainment and characteristics of Kalanchoe pinnata L. plants expressing the artificial gene of the cecropin P1 antimicrobial peptide. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Goyal RK, Mattoo AK. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:135-49. [PMID: 25438794 DOI: 10.1016/j.plantsci.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 05/20/2023]
Abstract
Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.
Collapse
Affiliation(s)
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, ARS's Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
13
|
Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 2014; 98:5807-22. [PMID: 24811407 DOI: 10.1007/s00253-014-5792-6] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20-50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
Collapse
Affiliation(s)
- Hui-Yu Yi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | | | | |
Collapse
|
14
|
Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0392-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Zakharchenko NS, Kalyaeva MA, Buryanov YI. Expression of cecropin P1 gene increases resistance of Camelina sativa (L.) plants to microbial phytopathogenes. RUSS J GENET+ 2013. [DOI: 10.1134/s102279541305013x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Jiang L, Cheng T, Zhao P, Yang Q, Wang G, Jin S, Lin P, Xiao Y, Xia Q. Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, Bombyx mori. PLoS One 2012; 7:e41838. [PMID: 22870254 PMCID: PMC3411602 DOI: 10.1371/journal.pone.0041838] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/26/2012] [Indexed: 12/05/2022] Open
Abstract
The hycu-ep32 gene of Hyphantria cunea NPV can inhibit Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication in co-infected cells, but it is not known whether the overexpression of the hycu-ep32 gene has an antiviral effect in the silkworm, Bombyx mori. Thus, we constructed four transgenic vectors, which were under the control of the 39 K promoter of BmNPV (39 KP), Bombyx mori A4 promoter (A4P), hr3 enhancer of BmNPV combined with 39 KP, and hr3 combined with A4P. Transgenic lines were created via embryo microinjection using practical diapause silkworm. qPCR revealed that the expression level of hycu-ep32 could be induced effectively after BmNPV infection in transgenic lines where hycu-ep32 was controlled by hr3 combined with 39 KP (i.e., HEKG). After oral inoculation of BmNPV with 3 × 105 occlusion bodies per third instar, the mortality with HEKG-B was approximately 30% lower compared with the non-transgenic line. The economic characteristics of the transgenic lines remained unchanged. These results suggest that overexpression of an exogenous antiviral gene controlled by an inducible promoter and enhancer is a feasible method for breeding silkworms with a high antiviral capacity.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Qiong Yang
- Sericulture and Farm Product Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Shengkai Jin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Ping Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
| | - Yang Xiao
- Sericulture and Farm Product Processing Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P. R. China
- * E-mail:
| |
Collapse
|
17
|
Jiang L, Wang G, Cheng T, Yang Q, Jin S, Lu G, Wu F, Xiao Y, Xu H, Xia Q. Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms. Arch Virol 2012; 157:1323-8. [DOI: 10.1007/s00705-012-1309-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/13/2012] [Indexed: 12/01/2022]
|
18
|
López-García B, San Segundo B, Coca M. Antimicrobial Peptides as a Promising Alternative for Plant Disease Protection. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1095.ch013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- B. López-García
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - B. San Segundo
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - M. Coca
- CRAG-Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Edificio CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
19
|
Natori S. Molecules participating in insect immunity of Sarcophaga peregrina. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:927-38. [PMID: 21157125 PMCID: PMC3035055 DOI: 10.2183/pjab.86.927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/25/2010] [Indexed: 05/24/2023]
Abstract
Pricking the body wall of Sarcophaga peregrina (flesh fly) larvae with a needle activated the immune system of this insect and induced various immune molecules, including antibacterial proteins, in the hemolymph. In this review, I summarize and discuss the functions of these immune molecules, with particular emphasis on the dual roles of some of these molecules in defense and development.
Collapse
Affiliation(s)
- Shunji Natori
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
20
|
Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol 2009; 76:769-75. [PMID: 19966019 DOI: 10.1128/aem.00698-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S(50)s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 microg/ml and 0.29 microg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley alpha-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants ( approximately 0.05 microg in 50 mg of leaves) were far lower than the S(50) determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.
Collapse
|
21
|
Pigoleva SV, Zakharchenko NS, Pigolev AV, Trotsenko YA, Buryanov YI. The influence of colonizing methylobacteria on morphogenesis and resistance of sugar beet and white cabbage plants to Erwinia carotovora. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s0003683809060052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Zakharchenko NS, Pigoleva SV, Yukhmanova AA, Buryanov YI. Use of the gene of antimicrobial peptide cecropin P1 for producing marker-free transgenic plants. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409080067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Huang HE, Liu CA, Lee MJ, Kuo CG, Chen HM, Ger MJ, Tsai YC, Chen YR, Lin MK, Feng TY. Resistance enhancement of transgenic tomato to bacterial pathogens by the heterologous expression of sweet pepper ferredoxin-I protein. PHYTOPATHOLOGY 2007; 97:900-906. [PMID: 18943629 DOI: 10.1094/phyto-97-8-0900] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Expression of a foreign gene to enhance plant disease resistance to bacterial pathogens is a favorable strategy. It has been demonstrated that expressing sweet pepper ferredoxin-I protein (PFLP) in transgenic plants can enhance disease resistance to bacterial pathogens that infect leaf tissue. In this study, PFLP was applied to protect tomato (Lycopersicon esculentum cv. cherry Cln1558a) from the root-infecting pathogen, Ralstonia solanacearum. Independent R. solanacearum resistant T(1) lines were selected and bred to produce homozygous T(2) generations. Selected T(2) transgenic lines 24-18-7 and 26-2-1a, which showed high expression levels of PFLP in root tissue, were resistant to disease caused by R. solanacearum. In contrast, the transgenic line 23-17-1b and nontransgenic tomato, which showed low expression levels of PFLP in root tissue, were not resistant to R. solanacearum infection. The expansion of R. solanacearum populations in stem tissue of transgenic tomato line 24-18-7 was limited compared with the nontransgenic tomato Cln1558a. Using a detached leaf assay, transgenic line 24-18-7 was also resistant to maceration caused by E. carotovora subsp. carotovora; however, resistance to E. carotovora subsp. carotovora was less apparent in transgenic lines 26-2-1a and 23-17-1b. These results demonstrate that PFLP is able to enhance disease resistance at different levels to bacterial pathogens in individual tissue of transgenic tomato.
Collapse
|
24
|
Zakharchenko NS, Rukavtsova EB, Gudkov AT, Yukhmanova AA, Shkol'naya LA, Kado CI, Bur'yanov YI. Expression of the artificial gene encoding anti-microbial peptide cecropin P1 increases the resistance of transgenic potato plants to potato blight and white rot. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2007; 415:267-269. [PMID: 17929662 DOI: 10.1134/s0012496607040059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- N S Zakharchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Pushchino Branch), Russian Academy of Sciences, Pushchino, Moscow oblast, 142290 Russia
| | | | | | | | | | | | | |
Collapse
|
25
|
Radi A, Dina P, Guy A. Expression of sarcotoxin IA gene via a root-specific tob promoter enhanced host resistance against parasitic weeds in tomato plants. PLANT CELL REPORTS 2006; 25:297-303. [PMID: 16217684 DOI: 10.1007/s00299-005-0052-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Revised: 03/09/2005] [Accepted: 03/11/2005] [Indexed: 05/04/2023]
Abstract
We have developed a simple genetic engineering strategy for conferring resistance against parasitic weeds on host plants. Transgenic tomato plants expressing the sarcotoxin IA gene were grown either in polyethylene bags (PE) or in pots inoculated with Orobanche aegyptiaca seeds. The results indicate that transgenic plants exhibited strong inhibition of parasite growth and significantly increased yield as compared with non-transgenic ones. In both PE and pot systems most of the parasite tubercles attached to the transgenic root plants turned necrotic and developed abnormally. Integration and expression of the gene were confirmed by Southern blot, RT-PCR and Western blot analysis. Our results indicate that the insect gene produced in the plant cells was selectively toxic to the parasite and non-toxic to the host plant.
Collapse
Affiliation(s)
- Aly Radi
- Agricultural Research Organization (ARO), Department of Weed Research, Newe Yaar Research Center, Ramat Yishai, 30095 Ramat, Israel.
| | | | | |
Collapse
|
26
|
Enhanced Resistance to Phytopathogenic Bacteria in Transgenic Tobacco Plants with Synthetic Gene of Antimicrobial Peptide Cecropin P1. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0218-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Hamamouch N, Westwood JH, Banner I, Cramer CL, Gepstein S, Aly R. A peptide from insects protects transgenic tobacco from a parasitic weed. Transgenic Res 2005; 14:227-36. [PMID: 16145831 DOI: 10.1007/s11248-004-7546-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parasitic plants present some of the most intractable weed problems for agriculture in much of the world. Species of root parasites such as Orobanche can cause enormous yield losses, yet few control measures are effective and affordable. An ideal solution to this problem is the development of parasite-resistant crops, but this goal has been elusive for most susceptible crops. Here we report a mechanism for resistance to the parasitic angiosperm Orobanche based on expression of sarcotoxin IA in transgenic tobacco. Sarcotoxin IA is a 40-residue peptide with antibiotic activity, originally isolated from the fly, Sarcophaga peregrina. The sarcotoxin IA gene was fused to an Orobanche-inducible promoter, HMG2, which is induced locally in the host root at the point of contact with the parasite, and used to transform tobacco. The resulting transgenic plants accumulated more biomass than non-transformed plants in the presence of parasites. Furthermore, plants expressing sarcotoxin IA showed enhanced resistance to O. aegyptiaca as evidenced by abnormal parasite development and higher parasite mortality after attachment as compared to non-transformed plants. The transgenic plants were similar in appearance to non-transformed plants suggesting that sarcotoxin IA is not detrimental to the host.
Collapse
Affiliation(s)
- Noureddine Hamamouch
- Virginia Tech, Department of Plant Pathology, Phlysiology, and Weed Science, Blacksburg VA 24061, USA
| | | | | | | | | | | |
Collapse
|
28
|
Alan AR, Earle ED. Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:701-708. [PMID: 12118886 DOI: 10.1094/mpmi.2002.15.7.701] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In vitro and leaf disk assays of bacterial and fungal plant pathogens were conducted using three cationic lytic peptides, MSI-99, magainin II (MII), and cecropin B (CB). Growth of bacterial organisms was retarded or completely inhibited by low concentrations of these lytic peptides. The peptides also significantly reduced germination of fungal spores and growth of mycelia; however, higher concentrations of peptides were needed to inhibit fungal growth compared with those needed to inhibit bacteria. The relative efficacy of the peptides depended on the microorganism tested, but CB was the most inhibitory to the majority of the bacteria and fungi assayed. MSI-99, a synthetic derivative of MII with increased positive charge, showed equal or two- to fivefold higher antibacterial activity compared to MII in the in vitro assays. MSI-99 was also superior to MII against the oomycete, Phytophthora infestans but was slightly inferior to MII in assays with the true fungi, Penicillium digitatum and Alternaria solani. In the leaf disk assays, pretreating spores of Alternaria solani and Phytophthora infestans with the peptides at concentrations as low as 10 microg per ml led to significant reductions in the size of early blight lesions and prevented development of any late blight lesions on tomato leaf disks. Our results from in vitro and leaf disk assays suggest that MSI-99 can be used as a transgene to generate tomato lines with enhanced resistance to bacterial and fungal diseases of this crop.
Collapse
Affiliation(s)
- Ali R Alan
- Department of Plant Breeding, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
29
|
Iwai T, Kaku H, Honkura R, Nakamura S, Ochiai H, Sasaki T, Ohashi Y. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:515-521. [PMID: 12059099 DOI: 10.1094/mpmi.2002.15.6.515] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bacterial attack is a serious agricultural problem for growth of rice seedlings in the nursery and field. The thionins purified from seed and etiolated seedlings of barley are known to have antimicrobial activity against necrotrophic pathogens; however, we found that no endogenous rice thionin genes alone are enough for resistance to two major seed-transmitted phytopathogenic bacteria, Burkholderia plantarii and B. glumae, although rice thionin genes constitutively expressed in coleoptile, the target organ of the bacteria. Thus, we isolated thionin genes from oat, one of which was overexpressed in rice. When wild-type rice seed were germinated with these bacteria, all seedlings were wilted with severe blight. In the seedling infected with B. plantarii, bacterial staining was intensively marked around stomata and intercellular spaces. However, transgenic rice seedlings accumulating a high level of oat thionin in cell walls grew almost normally with bacterial staining only on the surface of stomata. These results indicate that the oat thionin effectively works in rice plants against bacterial attack.
Collapse
Affiliation(s)
- Takayoshi Iwai
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 2000; 484:7-11. [PMID: 11056212 DOI: 10.1016/s0014-5793(00)02106-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The short persistence of cecropin B peptide in plants, due to post-translational degradation, is a serious impediment in its effective utilization for developing bacterial resistance transgenic plants. Two DNA constructs encoding the full-length precursor of cecropin B peptide and the mature sequence of cecropin B peptide preceded by a signal peptide derived from rice chitinase gene were transformed in rice. The differences in the transcriptional levels in independent transgenic lines showed moderate to high expression of cecropin B gene that correlated well with the differences in cecropin B accumulation observed by Western blot analysis. The development of lesions resulting from infection by Xanthomonas oryzae pv. oryzae was significantly confined in the infected leaflet of transgenic lines, when compared with the control plants.
Collapse
Affiliation(s)
- A Sharma
- National Institute of Sercultural and Entomological Science, Owashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
31
|
Mitsuhara I, Matsufuru H, Ohshima M, Kaku H, Nakajima Y, Murai N, Natori S, Ohashi Y. Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:860-8. [PMID: 10939257 DOI: 10.1094/mpmi.2000.13.8.860] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We demonstrate here that induced expression of sarcotoxin IA, a bactericidal peptide from Sarcophaga peregrina, enhanced the resistance of transgenic tobacco plants to both bacterial and fungal pathogens. The peptide was produced with a modified PR1a promoter, which is further activated by salicylic acid treatment and necrotic lesion formation by pathogen infection. Host resistance to infection of bacteria Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tabaci was shown to be dependent on the amounts of sarcotoxin IA expressed. Since we found antifungal activity of the peptide in vitro, transgenic seedlings were also inoculated with fungal pathogens Rhizoctonia solani and Pythium aphanidermatum. Transgenic plants expressing higher levels of sarcotoxin were able to withstand fungal infection and remained healthy even after 4 weeks, while control plants were dead by fungal infection after 2 weeks.
Collapse
Affiliation(s)
- I Mitsuhara
- National Institute of Agrobiological Resources, Tsukuba City, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|