1
|
Mavila AM, Vargas JA, Condori E, Suclupe Farro EG, Furtado AA, López JM, Gonzalez SL, Pereira HD, Marapara JL, Paredes RR, Cobos M, Castro JC, Garratt RC, Leonardo DA. Phylogenetic analysis and structural studies of heteromeric acetyl-CoA carboxylase from the oleaginous Amazonian microalgae Ankistrodesmus sp.: Insights into the BC and BCCP subunits. J Struct Biol 2025; 217:108200. [PMID: 40174731 DOI: 10.1016/j.jsb.2025.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Acetyl-CoA carboxylase (ACC) is an essential enzyme in fatty acid biosynthesis that catalyzes the formation of malonyl-CoA from acetyl-CoA. While structural studies on ACC components have largely focused on prokaryotes and higher plants, the assembly and molecular adaptations of ACC in microalgae remain underexplored. This study aimed to fill this gap by providing the first structural and evolutionary characterization of both biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) from a microalga (Ankistrodesmus sp.). Phylogenetic analysis revealed distinct evolutionary trajectories for BC and BCCP, with BC forming a chlorophyte-specific clade closely related to other oleaginous species, while BCCP displayed two distinct isoforms within green algae, resulting from gene duplication. The crystallographic structure of BC was solved in its apo (1.75 Å) and ADP-Mg2+-bound (1.90 Å) states, revealing conserved conformational changes associated with cofactor binding. BCCP from Ankistrodesmus sp. displayed a unique QLGTF/H motif instead of the canonical AMKXM biotinylation motif, suggesting loss of biotinylation capacity. However, the presence of three additional lysines in the protruding thumb loop, with Lys95 as a candidate for biotin attachment, indicates potential compensatory adaptations. SEC-MALS and pull-down assays confirmed the formation of a stable 1:1 BC-BCCP complex, and circular dichroism showed increased thermal stability of the complex, supporting its structural stability. This study highlights unique structural adaptations in Ankistrodesmus sp. ACC, emphasizing the evolutionary plasticity of BC and BCCP. These insights provide a foundation for future investigations into ACC regulation in photosynthetic organisms and offer potential biotechnological applications for optimizing lipid production in microalgae.
Collapse
Affiliation(s)
- Andry Mercedes Mavila
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
| | - Jhon Antoni Vargas
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Eloy Condori
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Erick Giancarlo Suclupe Farro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Adriano Alves Furtado
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Josué Manuel López
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Silvia Lucila Gonzalez
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru
| | - Humberto D'Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Jorge Luis Marapara
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Departamento Académico de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Perú
| | - Roger Ruiz Paredes
- Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Peru
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Departamento Académico de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Perú
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, Iquitos 1600, Peru; Departamento Académico de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Ciudad Universitaria de Zungarococha, Iquitos 1600, Perú
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil.
| |
Collapse
|
2
|
Shivaiah K, Subedi G, Barb A, Nikolau B. Solution Structure and NMR Chemical Shift Perturbations of the Arabidopsis BCCP1 Identify Intersubunit Interactions Potentially Involved in the Assembly of the Heteromeric Acetyl-CoA Carboxylase. PLANT DIRECT 2025; 9:e70057. [PMID: 40124907 PMCID: PMC11926652 DOI: 10.1002/pld3.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025]
Abstract
Biotin carboxyl carrier protein (BCCP) is a subunit of the heteromeric acetyl-CoA carboxylase (htACCase), and it chemically links the two half-reactions that constitute the formation of malonyl-CoA from acetyl-CoA, a critical reaction in fatty acid biosynthesis. Because plants are a major source of edible fats and oils, it is important to understand the structural organization of the plant htACCase, relative to its potential to regulate fatty acid biosynthesis in plant plastids. Moreover, unique to the plant htACCase, noncatalytic subunits called biotin attachment domain-containing (BADC) proteins are important in the assembly of the holoenzyme, and they specifically interact with the bcCP and the biotin carboxylase (BC) subunits. We report herein NMR structural studies of the Arabidopsis BCCP isozymes (bcCP1 and BCCP2). We calculated the structure of C-terminal domain of BCCP1 (K200-P280) and explored structural changes in the BCCP1 protein upon its interactions with bc and BADC. The chemical shift perturbation experiments identified potential surface residues on the BCCP1 protein that may facilitate physical interactions between BC and BADC proteins. These studies indicate that the BADC protein interacts with a "thumb"-like protrusion, which is a common structural feature of the bacterial and plant bcCPs, and thereby acts as a potential "cap" to facilitate the assembly of a BC-BCCP-BADC complex.
Collapse
Affiliation(s)
- Kiran‐Kumar Shivaiah
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
- Center for Biorenewable ChemicalsIowa State UniversityAmesIowaUSA
- Center for Metabolic BiologyIowa State UniversityAmesIowaUSA
- Department of Biochemistry and Molecular Biology, DOE‐Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
| | - Ganesh P. Subedi
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
| | - Adam W. Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
- Center for Biorenewable ChemicalsIowa State UniversityAmesIowaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular BiologyIowa State UniversityAmesIowaUSA
- Center for Biorenewable ChemicalsIowa State UniversityAmesIowaUSA
- Center for Metabolic BiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
3
|
Jin Y. Validation of assay for measuring acetyl-coenzyme a carboxylase activity in grasses using malachite green. Anal Biochem 2025; 697:115723. [PMID: 39586417 DOI: 10.1016/j.ab.2024.115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Acetyl-CoA carboxylase (ACCase) is one of the most important enzymes as a herbicide target in gramineous plant species, however, assay methods for the enzyme are primarily limited to those using radioisotopes (RI). Typically, the measurement method that uses RI necessitates specialized facilities and equipment, and involves complex procedures throughout the experiment. As another method for detecting ACCase activity, the colorimetric method using malachite green (MG) is also known. However, reports on this method are limited, and information regarding the simplicity of the procedure and the scope of its application remains unclear. To better understand the method using MG and to develop a simpler assay method, crude enzymes extracted from various target-site resistant (TSR) biotypes of blackgrass (Alopecurus myosuroides) were examined in enzyme inhibition tests. As a result, this method was able to accurately detect the relationship between the chemical classes of ACC inhibitors and cross-resistance to specific TSRs. Moreover, the ACCase activity of other grass species was also examined using this method. By using crude enzymes from various species and a commercially available phosphatase kit containing MG, ACCase activity was detectable with good accuracy. In addition, enzyme inhibition studies using ACCase inhibiting herbicides revealed that this method reproduced results similar to those obtained with the RI method. The Z'-factor, an index of high-throughput screening (HTS), was around 0.7, indicating that it is an excellent screening system. These results suggest that the assay method using MG is very simple, labor-saving, and accurate with a throughput much higher than that of the existing RI method. Therefore, it is strongly suggested that the method could replace the RI method in most cases. These results indicate that it is applicable to HTS for ACCase inhibitors.
Collapse
Affiliation(s)
- Yoshinobu Jin
- Agro & Life Solutions Research Laboratory, Sumitomo Chemical Co., Ltd, Hyogo, Japan.
| |
Collapse
|
4
|
Scutt JN, Willetts NJ, Fernandes Campos B, Oliver S, Hennessy A, Joyce PM, Hutchings SJ, le Goupil G, Linares Colombo W, Kaundun SS. Metproxybicyclone, a Novel Carbocyclic Aryl-dione Acetyl-CoA Carboxylase-Inhibiting Herbicide for the Management of Sensitive and Resistant Grass Weeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21380-21392. [PMID: 39311764 DOI: 10.1021/acs.jafc.4c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Postemergence control of grass weeds has become problematic due to the evolution of resistance to 5-enolpyruvylshikimate-3-phosphate synthase, acetyl-CoA carboxylase (ACCase), and acetolactate synthase-inhibiting herbicides. Herein we describe the invention and synthesis journey toward metproxybicyclone, the first commercial carbocyclic aryl-dione ACCase-inhibiting herbicide for the cost-effective management of grass weeds in dicotyledonous crops and in preplant burndown applications. Glasshouse and field experiments have shown that metproxybicyclone is safe for use on soybean, cotton, and sugar beet, among other crops. It is effective on a variety of key grass weeds including Eleusine indica, Digitaria insularis, Sorghum halepense, and Echinochloa crus-galli. Importantly, metproxybicyclone was more efficacious at killing resistant grass weed populations than current ACCase herbicides. Metproxybicyclone controlled the main ACCase target-site and nontarget site resistant mechanisms in characterized Lolium multiflorum and E. indica populations under glasshouse conditions. Excellent control of a broad resistance-causing D2078G target-site mutant E. indica population was also observed under field conditions.
Collapse
Affiliation(s)
- James Nicholas Scutt
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Nigel James Willetts
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Breno Fernandes Campos
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Sophie Oliver
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Alan Hennessy
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Philip Matthew Joyce
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Sarah-Jane Hutchings
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Gael le Goupil
- Syngenta Crop Protection AG, Rosentalstrasse 67, CH-4058 Basel, Switzerland
| | - Wendy Linares Colombo
- Syngenta Protecao de Cultivos Ltda, Av. Nacoes Unidas 17.007, Torre Sigma-13° andar, Sao Paulo, Sao Paulo 04730-300, Brazil
| | - Shiv Shankhar Kaundun
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| |
Collapse
|
5
|
Wu X, Yang Z, Zhu Y, Zhan Y, Li Y, Teng W, Han Y, Zhao X. Bioinformatics Identification and Expression Analysis of Acetyl-CoA Carboxylase Reveal Its Role in Isoflavone Accumulation during Soybean Seed Development. Int J Mol Sci 2024; 25:10221. [PMID: 39337707 PMCID: PMC11432495 DOI: 10.3390/ijms251810221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Isoflavones belong to the class of flavonoid compounds, which are important secondary metabolites that play a crucial role in plant development and defense. Acetyl-CoA carboxylase (ACCase) is a biotin-dependent enzyme that catalyzes the conversion of Acetyl-CoA into Malonyl-CoA in plants. It is a key enzyme in fatty acid synthesis and also catalyzes the production of various secondary metabolites. However, information on the ACC gene family in the soybean (Glycine max L. Merr.) genome and the specific members involved in isoflavone biosynthesis is still lacking. In this study, we identified 20 ACC family genes (GmACCs) from the soybean genome and further characterized their evolutionary relationships and expression patterns. Phylogenetic analysis showed that the GmACCs could be divided into five groups, and the gene structures within the same groups were highly conserved, indicating that they had similar functions. The GmACCs were randomly distributed across 12 chromosomes, and collinearity analysis suggested that many GmACCs originated from tandem and segmental duplications, with these genes being under purifying selection. In addition, gene expression pattern analysis indicated that there was functional divergence among GmACCs in different tissues. The GmACCs reached their peak expression levels during the early or middle stages of seed development. Based on the transcriptome and isoflavone content data, a weighted gene co-expression network was constructed, and three candidate genes (Glyma.06G105900, Glyma.13G363500, and Glyma.13G057400) that may positively regulate isoflavone content were identified. These results provide valuable information for the further functional characterization and application of GmACCs in isoflavone biosynthesis in soybean.
Collapse
Affiliation(s)
- Xu Wu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Zhenhong Yang
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yina Zhu
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Park S, An B, Park S. Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae). BMC PLANT BIOLOGY 2024; 24:303. [PMID: 38644497 PMCID: PMC11034061 DOI: 10.1186/s12870-024-05025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Corydalis DC., the largest genus in the family Papaveraceae, comprises > 465 species. Complete plastid genomes (plastomes) of Corydalis show evolutionary changes, including syntenic arrangements, gene losses and duplications, and IR boundary shifts. However, little is known about the evolution of the mitochondrial genome (mitogenome) in Corydalis. Both the organelle genomes and transcriptomes are needed to better understand the relationships between the patterns of evolution in mitochondrial and plastid genomes. RESULTS We obtained complete plastid and mitochondrial genomes from Corydalis pauciovulata using a hybrid assembly of Illumina and Oxford Nanopore Technologies reads to assess the evolutionary parallels between the organelle genomes. The mitogenome and plastome of C. pauciovulata had sizes of 675,483 bp and 185,814 bp, respectively. Three ancestral gene clusters were missing from the mitogenome, and expanded IR (46,060 bp) and miniaturized SSC (202 bp) regions were identified in the plastome. The mitogenome and plastome of C. pauciovulata contained 41 and 67 protein-coding genes, respectively; the loss of genes was a plastid-specific event. We also generated a draft genome and transcriptome for C. pauciovulata. A combination of genomic and transcriptomic data supported the functional replacement of acetyl-CoA carboxylase subunit β (accD) by intracellular transfer to the nucleus in C. pauciovulata. In contrast, our analyses suggested a concurrent loss of the NADH-plastoquinone oxidoreductase (ndh) complex in both the nuclear and plastid genomes. Finally, we performed genomic and transcriptomic analyses to characterize DNA replication, recombination, and repair (DNA-RRR) genes in C. pauciovulata as well as the transcriptomes of Liriodendron tulipifera and Nelumbo nuicifera. We obtained 25 DNA-RRR genes and identified their structure in C. pauciovulata. Pairwise comparisons of nonsynonymous (dN) and synonymous (dS) substitution rates revealed that several DNA-RRR genes in C. pauciovulata have higher dN and dS values than those in N. nuicifera. CONCLUSIONS The C. pauciovulata genomic data generated here provide a valuable resource for understanding the evolution of Corydalis organelle genomes. The first mitogenome of Papaveraceae provides an example that can be explored by other researchers sequencing the mitogenomes of related plants. Our results also provide fundamental information about DNA-RRR genes in Corydalis and their related rate variation, which elucidates the relationships between DNA-RRR genes and organelle genome stability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
7
|
Liao M, Jiang M, Wang X, Hu W, Zhao N, Cao H. The Cys-2088-Arg mutation in the ACCase gene and enhanced metabolism confer cyhalofop-butyl resistance in Chinese sprangletop (Leptochloa chinensis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105826. [PMID: 38582590 DOI: 10.1016/j.pestbp.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 04/08/2024]
Abstract
Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.
Collapse
Affiliation(s)
- Min Liao
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Jiang
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xumiao Wang
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wei Hu
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ning Zhao
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Anhui Province key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Li H, Che R, Zhu J, Yang X, Li J, Fernie AR, Yan J. Multi-omics-driven advances in the understanding of triacylglycerol biosynthesis in oil seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:999-1017. [PMID: 38009661 DOI: 10.1111/tpj.16545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Vegetable oils are rich sources of polyunsaturated fatty acids and energy as well as valuable sources of human food, animal feed, and bioenergy. Triacylglycerols, which are comprised of three fatty acids attached to a glycerol backbone, are the main component of vegetable oils. Here, we review the development and application of multiple-level omics in major oilseeds and emphasize the progress in the analysis of the biological roles of key genes underlying seed oil content and quality in major oilseeds. Finally, we discuss future research directions in functional genomics research based on current omics and oil metabolic engineering strategies that aim to enhance seed oil content and quality, and specific fatty acids components according to either human health needs or industrial requirements.
Collapse
Affiliation(s)
- Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Ronghui Che
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Shang H, Liu S, Xu C, Liu S, Liu H. Overexpression of genes involved in fatty acid biosynthesis increases lipid content in the NaHCO 3-tolerant Chlorella sp. JB6. Microbiol Spectr 2024; 12:e0318423. [PMID: 38047695 PMCID: PMC10783073 DOI: 10.1128/spectrum.03184-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Fatty acid (FA) contents can be altered in Chlorella JB6 in the presence of sodium bicarbonate (NaHCO3). Overexpression of the FA de novo synthesis genes inhibited the growth of JB6 cells and decreased their resistance to NaHCO3, but these transgenic JB6 strains could grow in a medium containing as high as 300 mM NaHCO3. In JB6, ectopic expression of the FA de novo synthesis genes increased the synthesis of very long-chain saturated FA (> 20C).
Collapse
Affiliation(s)
- Hongna Shang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Songsong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Chenghui Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, China
| |
Collapse
|
10
|
Zhang B, Deng C, Wang S, Deng Q, Chu Y, Bai Z, Huang A, Zhang Q, He Q. The RNA landscape of Dunaliella salina in response to short-term salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1278954. [PMID: 38111875 PMCID: PMC10726701 DOI: 10.3389/fpls.2023.1278954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Using the halotolerant green microalgae Dunaliella salina as a model organism has special merits, such as a wide range of salt tolerance, unicellular organism, and simple life cycle and growth conditions. These unique characteristics make it suitable for salt stress study. In order to provide an overview of the response of Dunaliella salina to salt stress and hopefully to reveal evolutionarily conserved mechanisms of photosynthetic organisms in response to salt stress, the transcriptomes and the genome of the algae were sequenced by the second and the third-generation sequencing technologies, then the transcriptomes under salt stress were compared to the transcriptomes under non-salt stress with the newly sequenced genome as the reference genome. The major cellular biological processes that being regulated in response to salt stress, include transcription, protein synthesis, protein degradation, protein folding, protein modification, protein transport, cellular component organization, cell redox homeostasis, DNA repair, glycerol synthesis, energy metabolism, lipid metabolism, and ion homeostasis. This study gives a comprehensive overview of how Dunaliella salina responses to salt stress at transcriptomic level, especially characterized by the nearly ubiquitous up-regulation of the genes involving in protein folding, DNA repair, and cell redox homeostasis, which may confer the algae important mechanisms to survive under salt stress. The three fundamental biological processes, which face huge challenges under salt stress, are ignored by most scientists and are worth further deep study to provide useful information for breeding economic important plants competent in tolerating salt stress, other than only depending on the commonly acknowledged osmotic balance and ion homeostasis.
Collapse
Affiliation(s)
- Bingbing Zhang
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Caiyun Deng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Shuo Wang
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Qianyi Deng
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Yongfan Chu
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Ziwei Bai
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Axiu Huang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qinglian Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qinghua He
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| |
Collapse
|
11
|
Guo X, Hu X, Li J, Shao B, Wang Y, Wang L, Li K, Lin D, Wang H, Gao Z, Jiao Y, Wen Y, Ji H, Ma C, Ge S, Jiang W, Jin X. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants. BMC Biol 2023; 21:134. [PMID: 37280593 DOI: 10.1186/s12915-023-01620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, 666303, China
| | - Bingyi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Long Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Kui Li
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Dongliang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Zhiyuan Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yingying Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hongyu Ji
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Chongbo Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083, China.
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
12
|
Yu D, Wang W, Huo J, Zhuang Y, Chen Y, Du X. Study on molecular mechanism of volatiles variation during Bupleurum scorzonerifolium root development based on metabolome and transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1159511. [PMID: 37035038 PMCID: PMC10079991 DOI: 10.3389/fpls.2023.1159511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Bupleurum scorzonerifolium Willd. is a medicinal herb. Its root has a high content of volatile oil (BSVO), which shows a variety of biological activities. Currently, BSVO in the injectable form is used for treating fever in humans and livestock. The yield and quality of volatile oils depends on the developmental stages of plants. However, the changes in BSVO yield and quality during root development in Bupleurum scorzonerifolium and the underlying molecular regulatory mechanisms remain unclear. This knowledge gap is limiting the improvement in the quality of BSVO. In the present study, B. scorzonerifolium root was collected at germinative, vegetative, florescence, fruiting and defoliating stages. The yield of BSVO, metabolic profile of volatile components and transcriptome of root samples at various developmental stages were comprehensively determined and compared. BSVO continuously accumulated from the germinative to fruiting stages, and its level slightly decreased from the fruiting to defoliating stages. A total of 82 volatile components were detected from B. scorzonerifolium root, of which 22 volatiles were identified as differentially accumulated metabolites (DAMs) during the root development. Of these volatiles, fatty acids and their derivatives accounted for the largest proportion. The contents of most major volatiles were highest at the fruiting stage. A large number of differentially expressed genes (DEGs) were detected during B. scorzonerifolium root development, of which 65 DEGs encoded various enzymes and transcription factors regulating the biosynthesis of fatty acids and their derivatives. In further analysis, 42 DEGs were identified to be significantly correlated with DAMs, and these DEGs may be the key genes for the biosynthesis of volatiles. To the best of our knowledge, this is the first study to comprehensively report the changes in the composition and content of volatiles and underlying mechanism during B. scorzonerifolium root development. This study provided important reference for future studies to determine the harvest time of B. scorzonerifolium roots and improve the quality of BSVO.
Collapse
Affiliation(s)
- Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenxue Wang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yan Zhuang
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Deslandes-Hérold G, Zanella M, Solhaug E, Fischer-Stettler M, Sharma M, Buergy L, Herrfurth C, Colinas M, Feussner I, Abt MR, Zeeman SC. The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling. THE PLANT CELL 2023; 35:808-826. [PMID: 36454674 PMCID: PMC9940875 DOI: 10.1093/plcell/koac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin-Benson-Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids-a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.
Collapse
Affiliation(s)
- Gabriel Deslandes-Hérold
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martina Zanella
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Erik Solhaug
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Michaela Fischer-Stettler
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Mayank Sharma
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Léo Buergy
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Maite Colinas
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Melanie R Abt
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
14
|
Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Incompatibility and Interchangeability in Molecular Evolution. Genome Biol Evol 2023; 15:evac184. [PMID: 36583227 PMCID: PMC9839398 DOI: 10.1093/gbe/evac184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes-even single-nucleotide substitutions-create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: (1) function in multisubunit enzyme complexes and protein-protein interactions, (2) sensitivity to changes in gene dosage, (3) rapid rate of sequence evolution, and (4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Shady A Kuster
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
15
|
Megha S, Wang Z, Kav NNV, Rahman H. Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus. BMC Genomics 2022; 23:707. [PMID: 36253756 PMCID: PMC9578262 DOI: 10.1186/s12864-022-08920-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background Biotin carboxyl carrier protein (BCCP) is a subunit of Acetyl CoA-carboxylase (ACCase) which catalyzes the conversion of acetyl-CoA to malonyl-CoA in a committed step during the de novo biosynthesis of fatty acids. Lipids, lipid metabolites, lipid-metabolizing and -modifying enzymes are known to play a role in biotic and abiotic stress tolerance in plants. In this regard, an understanding of the Brassica napus BCCP genes will aid in the improvement of biotic and abiotic stress tolerance in canola. Results In this study, we identified 43 BCCP genes in five Brassica species based on published genome data. Among them, Brassica rapa, Brassica oleracea, Brassica nigra, Brassica napus and Brassica juncea had six, seven, seven, 10 and 13 BCCP homologs, respectively. Phylogenetic analysis categorized them into five classes, each with unique conserved domains. The promoter regions of all BCCP genes contained stress-related cis-acting elements as determined by cis-element analysis. We identified four and three duplicated gene pairs (segmental) in B. napus and B. juncea respectively, indicating the role of segmental duplication in the expansion of this gene family. The Ka/Ks ratios of orthologous gene pairs between Arabidopsis thaliana and five Brassica species were mostly less than 1.0, implying that purifying selection, i.e., selective removal of deleterious alleles, played a role during the evolution of Brassica genomes. Analysis of 10 BnaBCCP genes using qRT-PCR showed a different pattern of expression because of exposure of the plants to biotic stresses, such as clubroot and sclerotinia diseases, and abiotic stresses such as drought, low temperature and salinity stresses. Conclusions The identification and functional analysis of the Brassica BCCPs demonstrated that some of these genes might play important roles in biotic and abiotic stress responses. Results from this study could lay the foundation for a better understanding of these genes for the improvement of Brassica crops for stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08920-y.
Collapse
Affiliation(s)
- Swati Megha
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Zhengping Wang
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Nat N V Kav
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
16
|
Wang M, Garneau MG, Poudel AN, Lamm D, Koo AJ, Bates PD, Thelen JJ. Overexpression of pea α-carboxyltransferase in Arabidopsis and camelina increases fatty acid synthesis leading to improved seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1035-1046. [PMID: 35220631 DOI: 10.1111/tpj.15721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
SUMMARYHeteromeric acetyl‐CoA carboxylase (htACCase) catalyzes the committed step of de novo fatty acid biosynthesis in most plant plastids. Plant htACCase is comprised of four subunits: α‐ and β‐carboxyltransferase (α‐ and β‐CT), biotin carboxylase, and biotin carboxyl carrier protein. Based on in vivo absolute quantification of htACCase subunits, α‐CT is 3‐ to 10‐fold less abundant than its partner subunit β‐CT in developing Arabidopsis seeds [Wilson and Thelen, J. Proteome Res., 2018, 17 (5)]. To test the hypothesis that low expression of α‐CT limits htACCase activity and flux through fatty acid synthesis in planta, we overexpressed Pisum sativum α‐CT, either with or without its C‐terminal non‐catalytic domain, in both Arabidopsis thaliana and Camelina sativa. First‐generation Arabidopsis seed of 35S::Ps α‐CT (n = 25) and 35S::Ps α‐CTΔ406‐875 (n = 47) were on average 14% higher in oil content (% dry weight) than wild type co‐cultivated in a growth chamber. First‐generation camelina seed showed an average 8% increase compared to co‐cultivated wild type. Biochemical analyses confirmed the accumulation of Ps α‐CT and Ps α‐CTΔ406‐875 protein and higher htACCase activity in overexpression lines during early seed development. Overexpressed Ps α‐CT co‐migrated with native At β‐CT during anion exchange chromatography, indicating co‐association. By successfully increasing seed oil content upon heterologous overexpression of α‐CT, we demonstrate how absolute quantitation of in vivo protein complex stoichiometry can be used to guide rational metabolic engineering.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Matthew G Garneau
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Daniel Lamm
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
17
|
Advances in Understanding the Genetic Basis of Fatty Acids Biosynthesis in Perilla: An Update. PLANTS 2022; 11:plants11091207. [PMID: 35567213 PMCID: PMC9099743 DOI: 10.3390/plants11091207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids’ pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.
Collapse
|
18
|
Claude SJ, Park S, Park S. Gene loss, genome rearrangement, and accelerated substitution rates in plastid genome of Hypericum ascyron (Hypericaceae). BMC PLANT BIOLOGY 2022; 22:135. [PMID: 35321651 PMCID: PMC8941745 DOI: 10.1186/s12870-022-03515-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Comparative genomic analysis exhibits dynamic evolution of plastid genome (plastome) in the clusioid clade of Malpighiales, which comprise five families, including multiple inversions and gene losses. Little is known about the plastome evolution in Hypericaceae, a large family in the clade. Only the plastome of one species, Cratoxylum cochinchinense, has been published. RESULTS We generated a complete plastome sequence for Hypericum ascyron, providing the first complete plastome from the tribe Hypericeae (Hypericaceae). The H. ascyron plastome exhibits dynamic changes in gene and intron content, structure, and sequence divergence compared to the C. cochinchinense plastome from the tribe Cratoxyleae (Hypericaceae). Transcriptome data determined the evolutionary fate of the missing plastid genes infA, rps7, rps16, rpl23, and rpl32 in H. ascyron. Putative functional transfers of infA, rps7, and rpl32 were detected to the nucleus, whereas rps16 and rpl23 were substituted by nuclear-encoded homologs. The plastid rpl32 was integrated into the nuclear-encoded SODcp gene. Our findings suggested that the transferred rpl32 had undergone subfunctionalization by duplication rather than alternative splicing. The H. ascyron plastome rearrangements involved seven inversions, at least three inverted repeat (IR) boundary shifts, which generated gene relocations and duplications. Accelerated substitution rates of plastid genes were observed in the H. ascyron plastome compared with that of C. cochinchinense plastid genes. The higher substitution rates in the accD and clpP were correlated with structural change, including a large insertion of amino acids and losses of two introns, respectively. In addition, we found evidence of positive selection of the clpP, matK, and rps3 genes in the three branches related to H. ascyron. In particular, the matK gene was repeatedly under selection within the family Hypericaceae. Selective pressure in the H. ascyron matK gene was associated with the loss of trnK-UUU and relocation into the IR region. CONCLUSIONS The Hypericum ascyron plastome sequence provides valuable information for improving the understanding of plastome evolution among the clusioid of the Malpighiales. Evidence for intracellular gene transfer from the plastid to the nucleus was detected in the nuclear transcriptome, providing insight into the evolutionary fate of plastid genes in Hypericaceae.
Collapse
Affiliation(s)
- Sivagami-Jean Claude
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
19
|
Huang C, Li Y, Wang K, Xi J, Xu Y, Hong J, Si X, Ye H, Lyu S, Xia G, Wang J, Li P, Xing Y, Wang Y, Huang J. Integrated transcriptome and proteome analysis of developing embryo reveals the mechanisms underlying the high levels of oil accumulation in Carya cathayensis Sarg. TREE PHYSIOLOGY 2022; 42:684-702. [PMID: 34409460 DOI: 10.1093/treephys/tpab112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Hickory (Carya cathayensis Sarg.) is an extraordinary nut-bearing deciduous arbor with high content of oil in its embryo. However, the molecular mechanism underlying high oil accumulation is mostly unknown. Here, we reported that the lipid droplets and oil accumulation gradually increased with the embryo development and the oil content was up to ~76% at maturity. Furthermore, transcriptome and proteome analysis of developing hickory embryo identified 32,907 genes and 9857 proteins. Time-series analysis of gene expressions showed that these genes were divided into 12 clusters and lipid metabolism-related genes were enriched in Cluster 3, with the highest expression levels at 95 days after pollination (S2). Differentially expressed genes and proteins indicated high correlation, and both were enriched in the lipid metabolism. Notably, the genes involved in biosynthesis, transport of fatty acid/lipid and lipid droplets formation had high expression levels at S2, while the expression levels of other genes required for suberin/wax/cutin biosynthesis and lipid degradation were very low at all the sampling time points, ultimately promoting the accumulation of oil. Quantitative reverse-transcription PCR analysis also verified the results of RNA-seq. The co-regulatory networks of lipid metabolism were further constructed and WRINKLED1 (WRI1) was a core transcriptional factor located in the nucleus. Of note, CcWRI1A/B could directly activate the expression of some genes (CcBCCP2A, CcBCCP2B, CcFATA and CcFAD3) required for fatty acid synthesis. These results provided in-depth evidence for revealing the molecular mechanism of high oil accumulation in hickory embryo.
Collapse
Affiliation(s)
- Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jianwei Xi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yifan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Junyan Hong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Xiaolin Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Hongyu Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Guohua Xia
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jianhua Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Peipei Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yulin Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yige Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, No. 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
20
|
Camargo Tavares JC, Achakkagari SR, Archambault A, Stromvik MV. The plastome of the arctic Oxytropis arctobia (Fabaceae) has large differences compared with that of O. splendens and those of related species. Genome 2022; 65:301-313. [PMID: 35245153 DOI: 10.1139/gen-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anatomical and physiological specializations for plant adaptation to harsh climates are the results of molecular mechanisms that can be nuclear or organellar encoded. In this study, the complete plastomes of an arctic species, Oxytropis arctobia Bunge (Fabaceae,) and a closely related temperate species, O. splendens Douglas ex Hook., were assembled, annotated and analyzed to search for differences that might help explain their adaptation to different environments. Consistently with the previously sequenced O. bicolor DC. and O. glabra plastomes, the O. arctobia and O. splendens plastomes both have the common features of the inverted repeat-lacking clade (IRLC), as well as the atpF intron loss, which is unique to the genus. However, significant differences distinguishes the O. arctobia from O. splendens and other closely related plastomes (Oxytropis spp. and Astragalus spp.), including a 3 kb inversion, two large insertions (>1 kb), significant modifications of the accD gene, and an overall larger size.
Collapse
Affiliation(s)
| | | | | | - Martina V Stromvik
- McGill University, 5620, Department of Plant Science, Montreal, Quebec, Canada;
| |
Collapse
|
21
|
The Plastome Sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) Exhibit Evolutionary Changes, Structural Characterization, Comparative Analysis, Phylogenomics and Time Divergence. Int J Mol Sci 2022; 23:ijms23052783. [PMID: 35269924 PMCID: PMC8911259 DOI: 10.3390/ijms23052783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
The mechanism and course of Triticum plastome evolution is currently unknown; thus, it remains unclear how Triticum plastomes evolved during recent polyploidization. Here, we report the complete plastomes of two polyploid wheat species, Triticum sphaerococcum (AABBDD) and Triticum turgidum subsp. durum (AABB), and compare them with 19 available and complete Triticum plastomes to create the first map of genomic structural variation. Both T. sphaerococcum and T. turgidum subsp. durum plastomes were found to have a quadripartite structure, with plastome lengths of 134,531 bp and 134,015 bp, respectively. Furthermore, diploid (AA), tetraploid (AB, AG) and hexaploid (ABD, AGAm) Triticum species plastomes displayed a conserved gene content and commonly harbored an identical set of annotated unique genes. Overall, there was a positive correlation between the number of repeats and plastome size. In all plastomes, the number of tandem repeats was higher than the number of palindromic and forward repeats. We constructed a Triticum phylogeny based on the complete plastomes and 42 shared genes from 71 plastomes. We estimated the divergence of Hordeum vulgare from wheat around 11.04-11.9 million years ago (mya) using a well-resolved plastome tree. Similarly, Sitopsis species diverged 2.8-2.9 mya before Triticum urartu (AA) and Triticum monococcum (AA). Aegilops speltoides was shown to be the maternal donor of polyploid wheat genomes and diverged ~0.2-0.9 mya. The phylogeny and divergence time estimates presented here can act as a reference framework for future studies of Triticum evolution.
Collapse
|
22
|
Williams AM, Carter OG, Forsythe ES, Mendoza HK, Sloan DB. Gene duplication and rate variation in the evolution of plastid ACCase and Clp genes in angiosperms. Mol Phylogenet Evol 2022; 168:107395. [PMID: 35033670 PMCID: PMC9673162 DOI: 10.1016/j.ympev.2022.107395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
Abstract
While the chloroplast (plastid) is known for its role in photosynthesis, it is also involved in many other metabolic pathways essential for plant survival. As such, plastids contain an extensive suite of enzymes required for non-photosynthetic processes. The evolution of the associated genes has been especially dynamic in flowering plants (angiosperms), including examples of gene duplication and extensive rate variation. We examined the role of ongoing gene duplication in two key plastid enzymes, the acetyl-CoA carboxylase (ACCase) and the caseinolytic protease (Clp), responsible for fatty acid biosynthesis and protein turnover, respectively. In plants, there are two ACCase complexes-a homomeric version present in the cytosol and a heteromeric version present in the plastid. Duplications of the nuclear-encoded homomeric ACCase gene and retargeting of one resultant protein to the plastid have been previously reported in multiple species. We find that these retargeted homomeric ACCase proteins exhibit elevated rates of sequence evolution, consistent with neofunctionalization and/or relaxation of selection. The plastid Clp complex catalytic core is composed of nine paralogous proteins that arose via ancient gene duplication in the cyanobacterial/plastid lineage. We show that further gene duplication occurred more recently in the nuclear-encoded core subunits of this complex, yielding additional paralogs in many species of angiosperms. Moreover, in six of eight cases, subunits that have undergone recent duplication display increased rates of sequence evolution relative to those that have remained single copy. We also compared substitution patterns between pairs of Clp core paralogs to gain insight into post-duplication evolutionary routes. These results show that gene duplication and rate variation continue to shape the plastid proteome.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States; Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States.
| | - Olivia G Carter
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Hannah K Mendoza
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
23
|
Biochemical and structural characterization of quizalofop-resistant wheat acetyl-CoA carboxylase. Sci Rep 2022; 12:679. [PMID: 35027605 PMCID: PMC8758669 DOI: 10.1038/s41598-021-04280-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
A novel nucleotide mutation in ACC1 resulting in an alanine to valine amino acid substitution in acetyl-CoA carboxylase (ACCase) at position 2004 of the Alopecurus myosuroides reference sequence (A2004V) imparts quizalofop resistance in wheat. Genotypes endowed with the homozygous mutation in one or two ACC1 homoeologs are seven- and 68-fold more resistant to quizalofop than a wildtype winter wheat in greenhouse experiments, respectively. In vitro ACCase activities in soluble protein extracts from these varieties are 3.8- and 39.4-fold more resistant to quizalofop with the homozygous mutation in either one or two genomes, relative to the wildtype. The A2004V mutation does not alter the specific activity of wheat ACCase, suggesting that this resistance trait does not affect the catalytic functions of ACCase. Modeling of wildtype and quizalofop-resistant wheat ACCase demonstrates that the A2004V amino acid substitution causes a reduction in the volume of the binding pocket that hinders quizalofop’s interaction with ACCase. Docking studies confirm that the mutation reduces the binding affinity of quizalofop. Interestingly, the models suggest that the A2004V mutation does not affect haloxyfop binding. Follow up in vivo and in vitro experiments reveal that the mutation, in fact, imparts negative cross-resistance to haloxyfop, with quizalofop-resistant varieties exhibiting higher sensitivity to haloxyfop than the wildtype winter wheat line.
Collapse
|
24
|
Park S, Jun M, Park S, Park S. Lineage-Specific Variation in IR Boundary Shift Events, Inversions, and Substitution Rates among Caprifoliaceae s.l. (Dipsacales) Plastomes. Int J Mol Sci 2021; 22:ijms221910485. [PMID: 34638831 PMCID: PMC8508905 DOI: 10.3390/ijms221910485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022] Open
Abstract
Caprifoliaceae s.l. plastid genomes (plastomes) show that one inversion and two inverted repeat boundary shifts occurred in the common ancestor of this family, after which the plastomes are generally conserved. This study reports plastome sequences of five additional species, Fedia cornucopiae, Valeriana fauriei, and Valerianella locusta from the subfamily Valerianoideae, as well as Dipsacus japonicus and Scabiosa comosa from the subfamily Dipsacoideae. Combined with the published plastomes, these plastomes provide new insights into the structural evolution of plastomes within the family. Moreover, the three plastomes from the subfamily Valerianoideae exhibited accelerated nucleotide substitution rates, particularly at synonymous sites, across the family. The patterns of accD sequence divergence in the family are dynamic with structural changes, including interruption of the conserved domain and increases in nonsynonymous substitution rates. In particular, the Valeriana accD gene harbors a large insertion of amino acid repeat (AAR) motifs, and intraspecific polymorphism with a variable number of AARs in the Valeriana accD gene was detected. We found a correlation between intron losses and increased ratios of nonsynonymous to synonymous substitution rates in the clpP gene with intensified positive selection. In addition, two Dipsacoideae plastomes revealed the loss of the plastid-encoded rps15, and a potential functional gene transfer to the nucleus was confirmed.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Minji Jun
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - Sunmi Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2377
| |
Collapse
|
25
|
Yang J, Park S, Gil HY, Pak JH, Kim SC. Characterization and Dynamics of Intracellular Gene Transfer in Plastid Genomes of Viola (Violaceae) and Order Malpighiales. FRONTIERS IN PLANT SCIENCE 2021; 12:678580. [PMID: 34512682 PMCID: PMC8429499 DOI: 10.3389/fpls.2021.678580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Functional gene transfer from organelles to the nucleus, known as intracellular gene transfer (IGT), is an ongoing process in flowering plants. The complete plastid genomes (plastomes) of two Ulleung island endemic violets, Viola ulleungdoensis and V. woosanensis, were characterized, revealing a lack of the plastid-encoded infA, rpl32, and rps16 genes. In addition, functional replacement of the three plastid-encoded genes in the nucleus was confirmed within the genus Viola and the order Malpighiales. Three strategies for the acquisition of a novel transit peptide for successful IGT were identified in the genus Viola. Nuclear INFA acquired a novel transit peptide with very low identity between these proteins, whereas the nuclear RPL32 gene acquired an existing transit peptide via fusion with the nuclear-encoded plastid-targeted SOD gene (Cu-Zn superoxide dismutase superfamily) as one exon, and translated both proteins in the cytosol using alternative mRNA splicing. Nuclear RPS16 contains an internal transit peptide without an N-terminal extension. Gene loss or pseudogenization of the plastid-borne rpl32 and rps16 loci was inferred to occur in the common ancestor of the genus Viola based on an infrageneric phylogenetic framework in Korea. Although infA was lost in the common ancestor of the order Malpighiales, the rpl32 and rps16 genes were lost multiple times independently within the order. Our current study sheds additional light on plastid genome composition and IGT mechanisms in the violet genus and in the order Malpighiales.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | - Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, South Korea
| | - Hee-Young Gil
- DMZ Botanic Garden, Korea National Arboretum, Yanggu, South Korea
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
- Department of Biology, School of Life Science, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Integrative Natural Sciences for the East Sea Rim, Kyungpook National University, Daegu, South Korea
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
26
|
Shrestha B, Gilbert LE, Ruhlman TA, Jansen RK. Rampant Nuclear Transfer and Substitutions of Plastid Genes in Passiflora. Genome Biol Evol 2021; 12:1313-1329. [PMID: 32539116 PMCID: PMC7488351 DOI: 10.1093/gbe/evaa123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Gene losses in plastid genomes (plastomes) are often accompanied by functional transfer to the nucleus or substitution of an alternative nuclear-encoded gene. Despite the highly conserved gene content in plastomes of photosynthetic land plants, recent gene loss events have been documented in several disparate angiosperm clades. Among these lineages, Passiflora lacks several essential ribosomal genes, rps7, rps16, rpl20, rpl22, and rpl32, the two largest plastid genes, ycf1 and ycf2, and has a highly divergent rpoA. Comparative transcriptome analyses were performed to determine the fate of the missing genes in Passiflora. Putative functional transfers of rps7, rpl22, and rpl32 to nucleus were detected, with the nuclear transfer of rps7, representing a novel event in angiosperms. Plastid-encoded rps7 was transferred into the intron of a nuclear-encoded plastid-targeted thioredoxin m-type gene, acquiring its plastid transit peptide (TP). Plastid rpl20 likely experienced a novel substitution by a duplicated, nuclear-encoded mitochondrial-targeted rpl20 that has a similar gene structure. Additionally, among rosids, evidence for a third independent transfer of rpl22 in Passiflora was detected that gained a TP from a nuclear gene containing an organelle RNA recognition motif. Nuclear transcripts representing rpoA, ycf1, and ycf2 were not detected. Further analyses suggest that the divergent rpoA remains functional and that the gene is under positive or purifying selection in different clades. Comparative analyses indicate that alternative translocon and motor protein complexes may have substituted for the loss of ycf1 and ycf2 in Passiflora.
Collapse
Affiliation(s)
- Bikash Shrestha
- Department of Integrative Biology, University of Texas, Austin
| | - Lawrence E Gilbert
- Faculty of Science, Department of Biological Sciences, Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin.,Faculty of Science, Department of Biological Sciences, Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Yu SY, Zhang X, Huang LB, Lyu YP, Zhang Y, Yao ZJ, Zhang XX, Yuan JH, Hu YH. Transcriptomic analysis of α-linolenic acid content and biosynthesis in Paeonia ostii fruits and seeds. BMC Genomics 2021; 22:297. [PMID: 33892636 PMCID: PMC8063412 DOI: 10.1186/s12864-021-07594-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paeonia ostii is a potentially important oilseed crop because its seed yield is high, and the seeds are rich in α-linolenic acid (ALA). However, the molecular mechanisms underlying ALA biosynthesis during seed kernel, seed testa, and fruit pericarp development in this plant are unclear. We used transcriptome data to address this knowledge gap. RESULTS Gas chromatograph-mass spectrometry indicated that ALA content was highest in the kernel, moderate in the testa, and lowest in the pericarp. Therefore, we used RNA-sequencing to compare ALA synthesis among these three tissues. We identified 227,837 unigenes, with an average length of 755 bp. Of these, 1371 unigenes were associated with lipid metabolism. The fatty acid (FA) biosynthesis and metabolism pathways were significantly enriched during the early stages of oil accumulation in the kernel. ALA biosynthesis was significantly enriched in parallel with increasing ALA content in the testa, but these metabolic pathways were not significantly enriched during pericarp development. By comparing unigene transcription profiles with patterns of ALA accumulation, specific unigenes encoding crucial enzymes and transcription factors (TFs) involved in de novo FA biosynthesis and oil accumulation were identified. Specifically, the bell-shaped expression patterns of genes encoding SAD, FAD2, FAD3, PDCT, PDAT, OLE, CLE, and SLE in the kernel were similar to the patterns of ALA accumulation in this tissue. Genes encoding BCCP, BC, KAS I- III, and FATA were also upregulated during the early stages of oil accumulation in the kernel. In the testa, the upregulation of the genes encoding SAD, FAD2, and FAD3 was followed by a sharp increase in the concentrations of ALA. In contrast, these genes were minimally expressed (and ALA content was low) throughout pericarp development. CONCLUSIONS We used three tissues with high, moderate, and low ALA concentrations as an exemplar system in which to investigate tissue-specific ALA accumulation mechanisms in P. ostii. The genes and TFs identified herein might be useful targets for future studies of ALA accumulation in the tree peony. This study also provides a framework for future studies of FA biosynthesis in other oilseed plants.
Collapse
Affiliation(s)
- Shui-Yan Yu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xiao Zhang
- Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | | | - Yu-Ping Lyu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ying Zhang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zu-Jie Yao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xiao-Xiao Zhang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Jun-Hui Yuan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| |
Collapse
|
28
|
Ma L, Cheng X, Wang C, Zhang X, Xue F, Li Y, Zhu Q, Sun J, Liu F. Explore the gene network regulating the composition of fatty acids in cottonseed. BMC PLANT BIOLOGY 2021; 21:177. [PMID: 33849439 PMCID: PMC8042725 DOI: 10.1186/s12870-021-02952-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cottonseed is one of the major sources of vegetable oil. Analysis of the dynamic changes of fatty acid components and the genes regulating the composition of fatty acids of cottonseed oil is of great significance for understanding the biological processes underlying biosynthesis of fatty acids and for genetic improving the oil nutritional qualities. RESULTS In this study, we investigated the dynamic relationship of 13 fatty acid components at 12 developmental time points of cottonseed (Gossypium hirsutum L.) and generated cottonseed transcriptome of the 12 time points. At 5-15 day post anthesis (DPA), the contents of polyunsaturated linolenic acid (C18:3n-3) and saturated stearic acid (C18:0) were higher, while linoleic acid (C18:2n-6) was mainly synthesized after 15 DPA. Using 5 DPA as a reference, 15,647 non-redundant differentially expressed genes were identified in 10-60 DPA cottonseed. Co-expression gene network analysis identified six modules containing 3275 genes significantly associated with middle-late seed developmental stages and enriched with genes related to the linoleic acid metabolic pathway and α-linolenic acid metabolism. Genes (Gh_D03G0588 and Gh_A02G1788) encoding stearoyl-ACP desaturase were identified as hub genes and significantly up-regulated at 25 DPA. They seemed to play a decisive role in determining the ratio of saturated fatty acids to unsaturated fatty acids. FAD2 genes (Gh_A13G1850 and Gh_D13G2238) were highly expressed at 25-50 DPA, eventually leading to the high content of C18:2n-6 in cottonseed. The content of C18:3n-3 was significantly decreased from 5 DPA (7.44%) to 25 DPA (0.11%) and correlated with the expression characteristics of Gh_A09G0848 and Gh_D09G0870. CONCLUSIONS These results contribute to our understanding on the relationship between the accumulation pattern of fatty acid components and the expression characteristics of key genes involved in fatty acid biosynthesis during the entire period of cottonseed development.
Collapse
Affiliation(s)
- Lihong Ma
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinqi Cheng
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chuan Wang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
29
|
Alqahtani AA, Jansen RK. The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome. Sci Rep 2021; 11:7466. [PMID: 33811236 PMCID: PMC8018952 DOI: 10.1038/s41598-021-86820-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identified previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passifloraceae. An E. schimperi transcript of pt SOD-1-RPL32 confirmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passifloraceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passifloraceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
Collapse
Affiliation(s)
- Aldanah A Alqahtani
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA. .,Department of Biology, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.,Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
30
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
Guest M, Kriek N, Flemming AJ. Studies of an insecticidal inhibitor of acetyl-CoA carboxylase in the nematode C. elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104604. [PMID: 32828380 DOI: 10.1016/j.pestbp.2020.104604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
We have studied the mode of action of the insecticide spirotetramat in the nematode Caenorhabditis elegans. A combination of symptomology, forward genetics and genome editing show that spirotetramat acts on acetyl-CoA carboxylase (ACC) in C. elegans, as it does in insects. We found C. elegans embryos exposed to spirotetramat show a cell division defect which closely resembles the phenotype of loss-of-function mutations in the gene pod-2, which encodes ACC. We then identified two mutations in the carboxyl transferase domain of pod-2 (ACC) which confer resistance and were confirmed using CRISPR/Cas9. One of these mutations substitutes an invertebrate-specific amino acid with one ubiquitous in other taxa; this residue may, therefore, be a determinant of the selectivity of spirotetramat for invertebrates. Such a mutation may also be the target of selection for resistance in the field. Our study is a further demonstration of the utility of C. elegans in studying bioactive chemicals.
Collapse
Affiliation(s)
- M Guest
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - N Kriek
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - A J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK.
| |
Collapse
|
32
|
Fu L, Yan G, Li Y, Li Q, Zhou D. Phosphorus supply via a fed-batch strategy improves lipid heterotrophic production of Chlorella regularis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31677-31685. [PMID: 32500492 DOI: 10.1007/s11356-020-09495-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Intracellular phosphorus (P) accumulation can improve microalgal growth and lipid synthesis. However, large excess of P causes cell poisoning. This study utilized a P-fed-batch strategy to investigate its potential to improve the utilization of the excessive P, while avoiding toxic side effects. This strategy contributed to a more complete utilization of the intracellularly stored P, which enhanced the microalgae biomass by 10-15% by upregulating the brassinosteroid growth hormone gene at a P-fed-batch frequency of 2-8. Furthermore, the lipid content increased by 4-16% via upregulation of lipid synthesis-related genes. As a result, the P-fed-batch strategy significantly increased the lipid production by 13-19%. The content of saturated fatty acid increased by ~ 100%, implying improved combustibility and oxidative stability. This is the first study of this P-fed-batch strategy and provides a new concept for the complete utilization of excessive P.
Collapse
Affiliation(s)
- Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yunbao Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Qingcheng Li
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
33
|
Molecular characteristics of the first case of haloxyfop-resistant Poa annua. Sci Rep 2020; 10:4231. [PMID: 32144361 PMCID: PMC7060245 DOI: 10.1038/s41598-020-61104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/06/2020] [Indexed: 12/02/2022] Open
Abstract
Haloxyfop is one of two acetyl-coenzyme A carboxylase (ACCase) inhibitors that is recommended for controlling Poa annua. We have characterised a population of P. annua that had developed resistance to haloxyfop. This resistant population was found to be almost 20 times less sensitive to haloxyfop than a susceptible population based on percentage survival of individuals in two dose-response experiments. However, the haloxyfop-resistant population was still susceptible to clethodim. Pre-treatment of resistant individuals with a cytochrome P450 inhibitor, malathion, did not change the sensitivity level of the resistant plants to haloxyfop, suggesting that a non-target site mechanism of resistance involving enhanced metabolism, was not responsible for this resistance in P. annua. Gene sequencing showed that a target site mutation at position 2041, which replaced isoleucine with threonine in the carboxyltransferase (CT) domain of the ACCase enzyme, was associated with resistance to haloxyfop in the resistant population. An evaluation of the 3-D structure of the CT domain suggested that, unlike Asn-2041, which is the most common mutation at this position reported to date, Thr-2041 does not change the conformational structure of the CT domain. This is the first study investigating the molecular mechanism involved with haloxyfop resistance in P. annua.
Collapse
|
34
|
He M, Qin CX, Wang X, Ding NZ. Plant Unsaturated Fatty Acids: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:390. [PMID: 32425958 PMCID: PMC7212373 DOI: 10.3389/fpls.2020.00390] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
In most plants, major unsaturated fatty acids (UFAs) are three C18 species, namely, oleic (18:1), linoleic (18:2), and α-linolenic (18:3) acids. These simple compounds play multiple crucial roles in planta and are also important economic traits of oil crops. The enzymatic steps of C18 UFA biosynthesis have been well established. However, the associated FA/lipid trafficking between the plastid and the endoplasmic reticulum remains largely unclear, as does the regulation of the expression and activities of the involved enzymes. In this review, we will revisit the biosynthesis of C18 UFAs with an emphasis on the trafficking, and present an overview of the key enzymes and their regulation. Of particular interest is the emerging regulatory network composed of transcriptional factors and upstream signaling pathways. The review thereby provides the promise of using physical, biochemical and/or genetic means to manipulate FA composition and increase oil yield in crop improvement.
Collapse
|
35
|
Sudianto E, Chaw SM. Two Independent Plastid accD Transfers to the Nuclear Genome of Gnetum and Other Insights on Acetyl-CoA Carboxylase Evolution in Gymnosperms. Genome Biol Evol 2019; 11:1691-1705. [PMID: 30924880 PMCID: PMC6595918 DOI: 10.1093/gbe/evz059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Acetyl-CoA carboxylase (ACCase) is the key regulator of fatty acid biosynthesis. In most plants, ACCase exists in two locations (cytosol and plastids) and in two forms (homomeric and heteromeric). Heteromeric ACCase comprises four subunits, three of them (ACCA-C) are nuclear encoded (nr) and the fourth (ACCD) is usually plastid encoded. Homomeric ACCase is encoded by a single nr-gene (ACC). We investigated the ACCase gene evolution in gymnosperms by examining the transcriptomes of newly sequenced Gnetum ula, combined with 75 transcriptomes and 110 plastomes of other gymnosperms. AccD-coding sequences are elongated through the insertion of repetitive DNA in four out of five cupressophyte families (except Sciadopityaceae) and were functionally transferred to the nucleus of gnetophytes and Sciadopitys. We discovered that, among the three genera of gnetophytes, only Gnetum has two copies of nr-accD. Furthermore, using protoplast transient expression assays, we experimentally verified that the nr-accD precursor proteins in Gnetum and Sciadopitys can be delivered to the plastids. Of the two nr-accD copies of Gnetum, one dually targets plastids and mitochondria, whereas the other potentially targets plastoglobuli. The distinct transit peptides, gene architectures, and flanking sequences between the two Gnetum accDs suggest that they have independent origins. Our findings are the first account of two distinctly targeted nr-accDs of any green plants and the most comprehensive analyses of ACCase evolution in gymnosperms to date.
Collapse
Affiliation(s)
- Edi Sudianto
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Liu B, Ding F, Wang M, Wang F, Luo X, Li L. Cross-resistance pattern to ACCase-inhibiting herbicides in a novel Trp 1999Leu mutation American sloughgrass (Beckmannia syzigachne) population. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:80-84. [PMID: 31400787 DOI: 10.1016/j.pestbp.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 05/13/2023]
Abstract
The plastid acetyl coenzyme carboxylase (ACCase) Trp1999Leu mutation was identified in a Beckmannia syzigachne population resistant to fenoxaprop-p-ethyl. The pattern of cross-resistance for the Trp1999Leu mutation is still ambiguous. In this paper, mutant homozygote (1999Leu/Leu, RR) and wild type (1999Trp/Trp, SS) B. syzigachne plants with the same genetic background were purified from the JS-26 population using the dCAPS method. The activity of ACCase in RR and SS was determined. Then, the cross-resistance pattern to ACCase inhibiting herbicides of the Trp1999Leu mutation was determined using the whole-plant method. ACCase activity showed that the Trp1999Leu mutation decreased ACCase sensitivity to fenoxaprop-p-ethyl by 2.73-fold. A dose-response experiment indicated that the Trp1999Leu mutation conferred high resistance to quizalofop-p-ethyl (20.29-fold), metamifop (12.22-fold) and pinoxaden (18.60-fold), moderate resistance to fenoxaprop-p-ethyl (8.20-fold) and sethoxydim (6.38-fold), low resistance to cyhalofop-butyl (2.73-fold) and no resistance to clodinafop-propargyl (1.42 fold) and clethodim (1.59-fold). This is the first report of the role of Trp1999Leu in fenoxaprop-p-ethyl resistance and of the patterns of cross-resistance to ACCase-inhibiting herbicides in B. syzigachne.
Collapse
Affiliation(s)
- Bingqi Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, No.700 of Chang Cheng Road, Chengyang District, Qingdao 266109, PR China; Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao 266109, PR China
| | - Fei Ding
- College of Plant Health and Medicine, Qingdao Agricultural University, No.700 of Chang Cheng Road, Chengyang District, Qingdao 266109, PR China; Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao 266109, PR China
| | - Mingliang Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, No.700 of Chang Cheng Road, Chengyang District, Qingdao 266109, PR China; Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao 266109, PR China
| | - Fei Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, No.700 of Chang Cheng Road, Chengyang District, Qingdao 266109, PR China
| | - Xiaoyong Luo
- College of Plant Health and Medicine, Qingdao Agricultural University, No.700 of Chang Cheng Road, Chengyang District, Qingdao 266109, PR China; Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao 266109, PR China
| | - Lingxu Li
- College of Plant Health and Medicine, Qingdao Agricultural University, No.700 of Chang Cheng Road, Chengyang District, Qingdao 266109, PR China; Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao 266109, PR China.
| |
Collapse
|
37
|
Darshetkar AM, Datar MN, Tamhankar S, Li P, Choudhary RK. Understanding evolution in Poales: Insights from Eriocaulaceae plastome. PLoS One 2019; 14:e0221423. [PMID: 31430346 PMCID: PMC6701780 DOI: 10.1371/journal.pone.0221423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022] Open
Abstract
In this study, we report the plastome of Eriocaulon decemflorum (Eriocaulaceae) and make an effort to understand the genome evolution, structural rearrangements and gene content of the order Poales by comparing it with other available plastomes. The size of complete E. decemflorum plastome is 151,671 bp with an LSC (81,477bp), SSC (17,180bp) and a pair of IRs (26,507 bp). The plastome exhibits GC content of 35.8% and 134 protein-coding genes with 19 genes duplicated in the IR region. The Eriocaulaceae plastome is characterized by the presence of accD, ycf1 and ycf2 genes and presence of introns in clpP and rpoC1 genes which have been lost in the Graminid plastomes. Phylogenomic analysis based on 81 protein-coding genes placed Eriocaulaceae sister to Mayacaceae. The present study enhances our understanding of the evolution of Poales by analyzing the plastome data from the order.
Collapse
Affiliation(s)
- Ashwini M. Darshetkar
- Agharkar Research Institute, Pune, Maharashtra, India
- Savitribai Phule Pune University, Pune, Maharashtra, India
| | | | | | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (RKC); (PL)
| | - Ritesh Kumar Choudhary
- Agharkar Research Institute, Pune, Maharashtra, India
- Savitribai Phule Pune University, Pune, Maharashtra, India
- * E-mail: (RKC); (PL)
| |
Collapse
|
38
|
Kaundun SS, Marchegiani E, Hutchings SJ, Baker K. Derived Polymorphic Amplified Cleaved Sequence (dPACS): A Novel PCR-RFLP Procedure for Detecting Known Single Nucleotide and Deletion-Insertion Polymorphisms. Int J Mol Sci 2019; 20:E3193. [PMID: 31261867 PMCID: PMC6651057 DOI: 10.3390/ijms20133193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Most methods developed for detecting known single nucleotide polymorphisms (SNP) and deletion-insertion polymorphisms (DIP) are dependent on sequence conservation around the SNP/DIP and are therefore not suitable for application to heterogeneous organisms. Here we describe a novel, versatile and simple PCR-RFLP procedure baptised 'derived Polymorphic Amplified Cleaved Sequence' (dPACS) for genotyping individual samples. The notable advantage of the method is that it employs a pair of primers that cover the entire fragment to be amplified except for one or few diagnostic bases around the SNP/DIP being investigated. As such, it provides greater opportunities to introduce mismatches in one or both of the 35-55 bp primers for creating a restriction site that unambiguously differentiates wild from mutant sequences following PCR-RFLP and horizontal MetaPhorTM gel electrophoresis. Selection of effective restriction enzymes and primers is aided by the newly developed dPACS 1.0 software. The highly transferable dPACS procedure is exemplified here with the positive detection (in up to 24 grass and broadleaf species tested) of wild type proline106 of 5-enolpyruvylshikimate-3-phosphate synthase and its serine, threonine and alanine variants that confer resistance to glyphosate, and serine264 and isoleucine2041 which are key target-site determinants for weed sensitivities to some photosystem II and acetyl-CoA carboxylase inhibiting herbicides, respectively.
Collapse
Affiliation(s)
- Shiv Shankhar Kaundun
- Herbicide Bioscience, Syngenta Ltd., Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK.
| | - Elisabetta Marchegiani
- Herbicide Bioscience, Syngenta Ltd., Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK
| | - Sarah-Jane Hutchings
- Herbicide Bioscience, Syngenta Ltd., Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK
| | - Ken Baker
- General Bioinformatics, Jealott's Hill International Research Centre, RG42 6EY Bracknell, UK
| |
Collapse
|
39
|
Guo F, Iwakami S, Yamaguchi T, Uchino A, Sunohara Y, Matsumoto H. Role of CYP81A cytochrome P450s in clomazone metabolism in Echinochloa phyllopogon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:321-328. [PMID: 31128703 DOI: 10.1016/j.plantsci.2019.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/24/2018] [Accepted: 02/16/2019] [Indexed: 05/11/2023]
Abstract
Clomazone is a herbicide used in the cultivation of numerous crops due to its unique site of action and effectiveness on weeds. The differences in clomazone susceptibility among plants have been attributed to the differences in their complex clomazone metabolic pathways that are not fully understood. We previously identified two CYP81A cytochrome P450 monooxygenases that metabolize five chemically unrelated herbicides in multiple-herbicide resistant Echinochloa phyllopogon. Since the resistant E. phyllopogon have decreased clomazone susceptibility, involvement of these P450s in clomazone resistance was suggested. In this study, we revealed that each P450 gene endowed Arabidopsis thaliana (Arabidopsis) with clomazone resistance. Consistent with this, clomazone resistance co-segregated with resistance to other herbicides in F6 progenies of crosses between susceptible and resistant E. phyllopogon, suggesting that the P450s are involved in differential clomazone susceptibility in E. phyllopogon. Arabidopsis transformations of the other seven CYP81As of E. phyllopogon found that two more genes, CYP81A15 and CYP81A24, decreased Arabidopsis susceptibility to clomazone. Differences in substrate preference between clomazone and a herbicide that inhibits acetolactate synthase were suggested among the four CYP81A P450s. This study provides insights into clomazone metabolism in plants.
Collapse
Affiliation(s)
- Feng Guo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Takuya Yamaguchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Akira Uchino
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, 514-2392, Japan
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| |
Collapse
|
40
|
Jung SH, Kim RJ, Kim KJ, Lee DH, Suh MC. Plastidial and Mitochondrial Malonyl CoA-ACP Malonyltransferase is Essential for Cell Division and Its Overexpression Increases Storage Oil Content. PLANT & CELL PHYSIOLOGY 2019; 60:1239-1249. [PMID: 30796840 DOI: 10.1093/pcp/pcz032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Malonyl-acyl carrier protein (ACP) is a key building block for the synthesis of fatty acids, which are important components of cell membranes, storage oils and lipid-signaling molecules. Malonyl CoA-ACP malonyltransferase (MCAMT) catalyzes the production of malonyl-ACP and CoA from malonyl-CoA and ACP. Here, we report that MCAMT plays a critical role in cell division and has the potential to increase the storage oil content in Arabidopsis. The quantitative real-time PCR and MCAMT promoter:GUS analyses showed that MCAMT is predominantly expressed in shoot and root apical meristems, leaf hydathodes and developing embryos. The fluorescent signals of MCAMT:eYFP were observed in both chloroplasts and mitochondria of tobacco leaf protoplasts. In particular, the N-terminal region (amino acid residues 1-30) of MCAMT was required for mitochondrial targeting. The Arabidopsis mcamt-1 and -2 mutants exhibited an embryo-lethal phenotype because of the arrest of embryo development at the globular stage. The transgenic Arabidopsis expressing antisense MCAMT RNA showed growth retardation caused by the defects in cell division. The overexpression of MCAMT driven by the promoter of the senescence-associated 1 (SEN1) gene, which is predominantly expressed in developing seeds, increased the seed yield and storage oil content of Arabidopsis. Taken together, the plastidial and mitochondrial MCAMT is essential for Arabidopsis cell division and is a novel genetic resource useful for enhancing storage oil content in oilseed crops.
Collapse
Affiliation(s)
- Seh Hui Jung
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Ryeo Jin Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Kook Jin Kim
- Genomine Inc. Venture Bldg 306, Pohang TechnoPark, 394 Jigok-ro, Nam-gu, Pohang, Republic of Korea
| | - Dong Hee Lee
- Genomine Inc. Venture Bldg 306, Pohang TechnoPark, 394 Jigok-ro, Nam-gu, Pohang, Republic of Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Shrestha B, Weng ML, Theriot EC, Gilbert LE, Ruhlman TA, Krosnick SE, Jansen RK. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Mol Phylogenet Evol 2019; 138:53-64. [PMID: 31129347 DOI: 10.1016/j.ympev.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
Plastid genomes (plastomes) of photosynthetic angiosperms are for the most part highly conserved in their organization, mode of inheritance and rates of nucleotide substitution. A small number of distantly related lineages share a syndrome of features that deviate from this general pattern, including extensive genomic rearrangements, accelerated rates of nucleotide substitution, biparental inheritance and plastome-genome incompatibility. Previous studies of plastomes in Passiflora with limited taxon sampling suggested that the genus exhibits this syndrome. To examine this phenomenon further, 15 new plastomes from Passiflora were sequenced and combined with previously published data to examine the phylogenetic relationships, genome organization and evolutionary rates across all five subgenera and the sister genus Adenia. Phylogenomic analyses using 68 protein-coding genes shared by Passiflora generated a fully resolved and strongly supported tree that is congruent with previous phylogenies based on a few plastid and nuclear loci. This phylogeny was used to examine the distribution of plastome rearrangements across Passiflora. Multiple gene and intron losses and inversions were identified in Passiflora with some occurring in parallel and others that extended across the Passifloraceae. Furthermore, extensive expansions and contractions of the inverted repeat (IR) were uncovered and in some cases this resulted in exclusion of all ribosomal RNA genes from the IR. The most highly rearranged lineage was subgenus Decaloba, which experienced extensive IR expansion that incorporated up to 25 protein-coding genes usually located in large single copy region. Nucleotide substitution rate analyses of 68 protein-coding genes across the genus showed lineage- and locus-specific acceleration. Significant increase in dS, dN and dN/dS was detected for clpP across the genus and for ycf4 in certain lineages. Significant increases in dN and dN/dS for ribosomal subunits and plastid-encoded RNA polymerase genes were detected in the branch leading to the expanded IR-clade in subgenus Decaloba. This subgenus displays the syndrome of unusual features, making it an ideal system to investigate the dynamic evolution of angiosperm plastomes.
Collapse
Affiliation(s)
- Bikash Shrestha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Edward C Theriot
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Shawn E Krosnick
- Department of Biology, Tennessee Tech University, Cookeville, TN, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA; Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Zhang Z, Dunwell JM, Zhang YM. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. BMC PLANT BIOLOGY 2018; 18:328. [PMID: 30514240 PMCID: PMC6280547 DOI: 10.1186/s12870-018-1542-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/20/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) and soybean (Glycine max L.) seeds are rich in both protein and oil, which are major sources of biofuels and nutrition. Although the difference in seed oil content between soybean (~ 20%) and rapeseed (~ 40%) exists, little is known about its underlying molecular mechanism. RESULTS An integrated omics analysis was performed in soybean, rapeseed, Arabidopsis (Arabidopsis thaliana L. Heynh), and sesame (Sesamum indicum L.), based on Arabidopsis acyl-lipid metabolism- and carbon metabolism-related genes. As a result, candidate genes and their transcription factors and microRNAs, along with phylogenetic analysis and co-expression network analysis of the PEPC gene family, were found to be largely associated with the difference between the two species. First, three soybean genes (Glyma.13G148600, Glyma.13G207900 and Glyma.12G122900) co-expressed with GmPEPC1 are specifically enriched during seed storage protein accumulation stages, while the expression of BnPEPC1 is putatively inhibited by bna-miR169, and two genes BnSTKA and BnCKII are co-expressed with BnPEPC1 and are specifically associated with plant circadian rhythm, which are related to seed oil biosynthesis. Then, in de novo fatty acid synthesis there are rapeseed-specific genes encoding subunits β-CT (BnaC05g37990D) and BCCP1 (BnaA03g06000D) of heterogeneous ACCase, which could interfere with synthesis rate, and β-CT is positively regulated by four transcription factors (BnaA01g37250D, BnaA02g26190D, BnaC01g01040D and BnaC07g21470D). In triglyceride synthesis, GmLPAAT2 is putatively inhibited by three miRNAs (gma-miR171, gma-miR1516 and gma-miR5775). Finally, in rapeseed there was evidence for the expansion of gene families, CALO, OBO and STERO, related to lipid storage, and the contraction of gene families, LOX, LAH and HSI2, related to oil degradation. CONCLUSIONS The molecular mechanisms associated with differences in seed oil content provide the basis for future breeding efforts to improve seed oil content.
Collapse
Affiliation(s)
- Zhibin Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AS UK
| | - Yuan-Ming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
43
|
Transcriptome Analysis Reveals Dynamic Fat Accumulation in the Walnut Kernel. Int J Genomics 2018; 2018:8931651. [PMID: 30622952 PMCID: PMC6304212 DOI: 10.1155/2018/8931651] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 01/02/2023] Open
Abstract
Walnut (Juglans regia L.) is an important woody oilseed species cultivated throughout the world. In this study, comparative transcript profiling was performed using high-throughput RNA sequencing technology at the following three stages of walnut fat synthesis in the “Lvling” walnut cultivar: the initial developmental stage (L1), the fast developing stage (L2), and the last developing stage (L3). A total of 68.18 GB of data were obtained on the three developmental stages, and 92% to 94% of clean data were able to be located to the reference genome. Further comparisons of the transcripts in the three libraries revealed that 724, 2027, and 4817 genes were differentially expressed between the L2 and L1 (L2vsL1), L3 and L2 (L3vsL2), and L3 and L1 (L3vsL1) samples, respectively. Through the GO gene enrichment analysis, differentially expressed genes (DEGs) in L2vsL1, L3vsL2, and L3vsL1 were enriched into 3, 0, and 2 functional categories, respectively. According to the KEGG enrichment analysis, DEGs in L2vsL1, L3vsL2, and L3vsL1 were annotated into 77, 110, and 3717 taxonomic metabolic pathways in the KEGG database, respectively. Next, we analyzed expression levels of genes related to fat synthesis. Our results indicated that ACCase, LACS, and FAD7 were the key genes related to fat synthesis. The high-throughput transcriptome sequencing of walnut in different developmental stages has greatly enriched the current genomic available resources. The comparison of DEGs under different developmental stages identified a wealth of candidate genes involved in fat synthesis, which will facilitate further genetic improvement and molecular studies of the walnut.
Collapse
|
44
|
Lincoln AE, Brooks RK, Hamman ST. Off-Target Impacts of Graminoid-Specific Herbicide on Common Camas (Camassia quamash) Growth, Abundance, Reproduction, and Palatability to Herbivores. NORTHWEST SCIENCE 2018. [DOI: 10.3955/046.092.0304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandra E. Lincoln
- Center for Natural Lands Management, 120 Union Street SE, #215, Olympia, Washington 98501
| | - Rachel K. Brooks
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Drive SE, Lacey, Washington 98503
| | - Sarah T. Hamman
- Center for Natural Lands Management, 120 Union Street SE, #215, Olympia, Washington 98501
| |
Collapse
|
45
|
Li J, Su Y, Wang T. The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes. FRONTIERS IN PLANT SCIENCE 2018; 9:533. [PMID: 29731764 PMCID: PMC5920036 DOI: 10.3389/fpls.2018.00533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 05/23/2023]
Abstract
The plastid accD gene encodes a subunit of the acetyl-CoA carboxylase (ACCase) enzyme. The length of accD gene has been supposed to expand in Cryptomeria japonica, Taiwania cryptomerioides, Cephalotaxus, Taxus chinensis, and Podocarpus lambertii, and the main reason for this phenomenon was the existence of tandemly repeated sequences. However, it is still unknown whether the accD gene length in other cupressophytes has expanded. Here, in order to investigate how widespread this phenomenon was, 18 accD sequences and its surrounding regions of cupressophyte were sequenced and analyzed. Together with 39 GenBank sequence data, our taxon sampling covered all the extant gymnosperm orders. The repetitive elements and substitution rates of accD among 57 gymnosperm species were analyzed, the results show: (1) Reading frame length of accD gene in 18 cupressophytes species has also expanded. (2) Many repetitive elements were identified in accD gene of cupressophyte lineages. (3) The synonymous and non-synonymous substitution rates of accD were accelerated in cupressophytes. (4) accD was located in rearrangement endpoints. These results suggested that repetitive elements may mediate the chloroplast genome rearrangement and accelerated the substitution rates.
Collapse
Affiliation(s)
- Jia Li
- Department of Life Sciences, Shaanxi Xueqian Normal University, Xi’an, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University, Shenzhen, China
| | - Ting Wang
- College of Life Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Liao B, Hao Y, Lu J, Bai H, Guan L, Zhang T. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genomics 2018; 19:213. [PMID: 29562889 PMCID: PMC5863459 DOI: 10.1186/s12864-018-4595-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023] Open
Abstract
Background Perilla frutescens is well known for its high α-linolenic acid (ALA) accumulation in seeds and medicinal values as well as a source of edible and general-purpose oils. However, the regulatory mechanisms of the biosynthesis of fatty acid in its seeds remain poorly understood due to the lacking of sequenced genome. For better understanding the regulation of lipid metabolism and further increase its oil content or modify oil composition, time-course transcriptome and lipid composition analyses were performed. Results Analysis of fatty acid content and composition showed that the α-linolenic acid and oleic acid accumulated rapidly from 5 DAF to 15 DAF and then kept relatively stable. However, the amount of palmitic acid and linoleic acid decreased quickly from 5 DAF to 15DAF. No significant variation of stearic acid content was observed from 5 DAF to 25DAF. Our transcriptome data analyses revealed that 110,176 unigenes were generated from six seed libraries at 5, 10, 20 DAF. Of these, 53 (31 up, 22 down) and 653 (259 up, 394 down) genes showed temporal and differentially expression during the seed development in 5 DAF vs 10 DAF, 20 vs 10 DAF, respectively. The differentially expressed genes were annotated and found to be involved in distinct functional categories and metabolic pathways. Deep mining of transcriptome data led to the identification of key genes involved in fatty acid and triacylglycerol biosynthesis and metabolism. Thirty seven members of transcription factor family AP2, B3 and NFYB putatively involved in oil synthesis and deposition were differentially expressed during seed development. The results of qRT-PCR for selected genes showed a strong positive correlation with the expression abundance measured in RNA-seq analysis. Conclusions The present study provides valuable genomic resources for characterizing Perilla seed gene expression at the transcriptional level and will extend our understanding of the complex molecular and cellular events of oil biosynthesis and accumulation in oilseed crops. Electronic supplementary material The online version of this article (10.1186/s12864-018-4595-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- BingNan Liao
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - YouJin Hao
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - JunXing Lu
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - HuiYang Bai
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Li Guan
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Tao Zhang
- Collage of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
47
|
Dong WL, Wang RN, Zhang NY, Fan WB, Fang MF, Li ZH. Molecular Evolution of Chloroplast Genomes of Orchid Species: Insights into Phylogenetic Relationship and Adaptive Evolution. Int J Mol Sci 2018; 19:ijms19030716. [PMID: 29498674 PMCID: PMC5877577 DOI: 10.3390/ijms19030716] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 01/08/2023] Open
Abstract
Orchidaceae is the 3rd largest family of angiosperms, an evolved young branch of monocotyledons. This family contains a number of economically-important horticulture and flowering plants. However, the limited availability of genomic information largely hindered the study of molecular evolution and phylogeny of Orchidaceae. In this study, we determined the evolutionary characteristics of whole chloroplast (cp) genomes and the phylogenetic relationships of the family Orchidaceae. We firstly characterized the cp genomes of four orchid species: Cremastra appendiculata, Calanthe davidii, Epipactis mairei, and Platanthera japonica. The size of the chloroplast genome ranged from 153,629 bp (C. davidi) to 160,427 bp (E. mairei). The gene order, GC content, and gene compositions are similar to those of other previously-reported angiosperms. We identified that the genes of ndhC, ndhI, and ndhK were lost in C. appendiculata, in that the ndh I gene was lost in P. japonica and E. mairei. In addition, the four types of repeats (forward, palindromic, reverse, and complement repeats) were examined in orchid species. E. mairei had the highest number of repeats (81), while C. davidii had the lowest number (57). The total number of Simple Sequence Repeats is at least 50 in C. davidii, and, at most, 78 in P. japonica. Interestingly, we identified 16 genes with positive selection sites (the psbH, petD, petL, rpl22, rpl32, rpoC1, rpoC2, rps12, rps15, rps16, accD, ccsA, rbcL, ycf1, ycf2, and ycf4 genes), which might play an important role in the orchid species’ adaptation to diverse environments. Additionally, 11 mutational hotspot regions were determined, including five non-coding regions (ndhB intron, ccsA-ndhD, rpl33-rps18, ndhE-ndhG, and ndhF-rpl32) and six coding regions (rps16, ndhC, rpl32, ndhI, ndhK, and ndhF). The phylogenetic analysis based on whole cp genomes showed that C. appendiculata was closely related to C. striata var. vreelandii, while C. davidii and C. triplicate formed a small monophyletic evolutionary clade with a high bootstrap support. In addition, five subfamilies of Orchidaceae, Apostasioideae, Cypripedioideae, Epidendroideae, Orchidoideae, and Vanilloideae, formed a nested evolutionary relationship in the phylogenetic tree. These results provide important insights into the adaptive evolution and phylogeny of Orchidaceae.
Collapse
Affiliation(s)
- Wan-Lin Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ruo-Nan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Na-Yao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Wei-Bing Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Min-Feng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
48
|
Poczai P, Hyvönen J. The complete chloroplast genome sequence of the CAM epiphyte Spanish moss (Tillandsia usneoides, Bromeliaceae) and its comparative analysis. PLoS One 2017; 12:e0187199. [PMID: 29095905 PMCID: PMC5667773 DOI: 10.1371/journal.pone.0187199] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/16/2017] [Indexed: 11/24/2022] Open
Abstract
Spanish moss (Tillandsia usneoides) is an epiphytic bromeliad widely distributed throughout tropical and warm temperate America. This plant is highly adapted to extreme environmental conditions. Striking features of this species include specialized trichomes (scales) covering the surface of its shoots aiding the absorption of water and nutrients directly from the atmosphere and a specific photosynthesis using crassulacean acid metabolism (CAM). Here we report the plastid genome of Spanish moss and present the comparison of genome organization and sequence evolution within Poales. The plastome of Spanish moss has a quadripartite structure consisting of a large single copy (LSC, 87,439 bp), two inverted regions (IRa and IRb, 26,803 bp) and short single copy (SSC, 18,612 bp) region. The plastid genome had 37.2% GC content and 134 genes with 88 being unique protein-coding genes and 20 of these are duplicated in the IR, similar to other reported bromeliads. Our study shows that early diverging lineages of Poales do not have high substitution rates as compared to grasses, and plastid genomes of bromeliads show structural features considered to be ancestral in graminids. These include the loss of the introns in the clpP and rpoC1 genes and the complete loss or partial degradation of accD and ycf genes in the Graminid clade. Further structural rearrangements appeared in the graminids lacking in Spanish moss, which include a 28-kb inversion between the trnG-UCC-rps14 region and 6-kb in the trnG-UCC-psbD, followed by a third <1kb inversion in the trnT sequence.
Collapse
Affiliation(s)
- Péter Poczai
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
| | - Jaakko Hyvönen
- Finnish Museum of Natural History (Botany), University of Helsinki, Helsinki, Finland
- Dept. Biosci. (Plant Biology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Laforest M, Soufiane B, Simard MJ, Obeid K, Page E, Nurse RE. Acetyl-CoA carboxylase overexpression in herbicide-resistant large crabgrass (Digitaria sanguinalis). PEST MANAGEMENT SCIENCE 2017; 73:2227-2235. [PMID: 28755464 DOI: 10.1002/ps.4675] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The occurrence of herbicide-resistant weed biotypes is increasing and this report of an acetyl-CoA carboxylase (ACCase) inhibitor-resistant Digitaria sanguinalis L. Scop. from southwestern Ontario is another example. The identified weed escaped control in an onion and carrot rotation in which graminicides were used for several consecutive years. Our goal was to characterize the level and mechanism of resistance of the biotype. RESULTS The biotype was resistant to all five ACCase inhibitor herbicides tested. Gene-expression profiling was performed because none of the mutations known to confer resistance in the ACCase gene were detected. RNASeq and quantitative reverse-transcriptase PCR (qRT-PCR) results indicated that transcription of ACCase was 3.4-9.3 times higher in the resistant biotype than the susceptible biotype. ACCase gene copy number was determined by qPCR to be five to seven times higher in the resistant compared with the susceptible biotype. ACCase gene overexpression was directly related to the increase of the ACCase gene copy number. CONCLUSION Our results are consistent with the hypothesis that overexpression of the herbicide target gene ACCase confers resistance to the herbicide. This is the first reported case of target gene duplication conferring resistance to a herbicide other than glyphosate. © 2017 Society of Chemical Industry See related Article.
Collapse
Affiliation(s)
- Martin Laforest
- Agriculture and Agri-Food Canada (AAFC), Saint-Jean-sur-Richelieu Research and Development Centre, St-Jean-sur-Richelieu, Québec, Canada
| | - Brahim Soufiane
- Agriculture and Agri-Food Canada (AAFC), Saint-Jean-sur-Richelieu Research and Development Centre, St-Jean-sur-Richelieu, Québec, Canada
| | - Marie-Josée Simard
- Agriculture and Agri-Food Canada (AAFC), Saint-Jean-sur-Richelieu Research and Development Centre, St-Jean-sur-Richelieu, Québec, Canada
| | - Kristen Obeid
- Ontario Ministry of Agriculture, Food and Rural Affairs, Harrow Research and Development Centre, Harrow, Ontario, Canada
| | - Eric Page
- Agriculture and Agri-Food Canada (AAFC), Harrow Research and Development Centre, Harrow, Ontario, Canada
| | - Robert E Nurse
- Agriculture and Agri-Food Canada (AAFC), Harrow Research and Development Centre, Harrow, Ontario, Canada
| |
Collapse
|
50
|
Liu Z, Li P, Sun X, Zhou F, Yang C, Li L, Matsumoto H, Luo X. Fluazifop-P-butyl induced ROS generation with IAA (indole-3-acetic acid) oxidation in Acanthospermum hispidum D.C. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:312-318. [PMID: 29183607 DOI: 10.1016/j.pestbp.2017.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Acanthospermum hispidum D.C. was particularly susceptible to fluazifop-P-butyl, an aryloxyphenoxypropionate herbicide, and the primary action site for the herbicide was shoot apical meristem, which is also the main site of indole-3-acetic acid (IAA) biosynthesis and action. Membrane lipid peroxidation caused by increasing levels of reactive oxygen species (ROS) was considered as an action mechanism of fluazifop-P-butyl in A. hispidum. To further clarify the ROS inducing mechanism of fluazifop-P-butyl in the plant, the interactions between fluazifop-P-butyl and auxin compounds IAA or 2,4-dichlorophenoxyacetic acid (2,4-D) were studied. Haloxyfop-P-methyl, an AOPP herbicide which is inactive on A. hispidum, was used for comparison. The results showed that the growth inhibition and malondialdehyde or H2O2 increases induced by fluazifop-P-butyl on A. hispidum were reversed by IAA or 2,4-D. The IAA content was decreased but the contents of three IAA oxidation metabolites, indole-3-methanol, indole-3-aldehyde and indole-3-carboxylic acid were increased by fluazifop-P-butyl in A. hispidum, but not by haloxyfop-P-methyl. The growth of A. hispidum was not inhibited by three IAA oxidative compounds. Moreover, the activities of IAA oxidase and peroxidase were increased by fluazifop-P-butyl but not by haloxyfop-P-methyl, and the increase was reversed by IAA or 2,4-D. We suggest that there is an antagonistic effect between fluazifop-P-butyl and IAA or 2,4-D, and the IAA oxidation may be involved in the action mechanism of fluazifop-P-butyl in A. hispidum.
Collapse
Affiliation(s)
- Zhihang Liu
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Pingliang Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao, Shandong 266109, China
| | - Xiaoxue Sun
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fei Zhou
- College of Plant Health and Medicine, Qingdao Agricultural University, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao, Shandong 266109, China
| | - Congjun Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao, Shandong 266109, China
| | - Lingxu Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao, Shandong 266109, China
| | - Hiroshi Matsumoto
- Doctoral Program in Life Sciences and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaoyong Luo
- College of Plant Health and Medicine, Qingdao Agricultural University, Key Lab of Integrated Crop Pest Management of Shandong Province, Qingdao, Shandong 266109, China.
| |
Collapse
|