1
|
Shi C, Gu M, Huang Y, You C, Bao S, Xie S, Gong J, Deng G, Wu P, Wu W, Zhu C, Sun X, Zeng J. Integrated genomic and transcriptomic analysis reveals the mechanisms underlying leaf variegation in 'Gonggan' mandarin. BMC PLANT BIOLOGY 2025; 25:472. [PMID: 40229686 PMCID: PMC11998453 DOI: 10.1186/s12870-025-06496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND The 'Gonggan' mandarin, an elite local cultivar from Zhaoqing City, Guangdong Province, combines the qualities of mandarin and sweet orange. A leaf-variegated mutant enhances its ornamental and economic value, providing an excellent model for studying chloroplast development and photosynthetic pigment metabolism in citrus. RESULTS We found that, in this variegated mutant, chloroplasts are severely deficient or absent in mesophyll cells. Physiological assessments revealed lower levels of chlorophyll, carotenoids, net photosynthetic rate (Pn), and stomatal conductance (Gs), alongside significantly higher non-photochemical quenching (NPQ) and the non-photochemical quenching coefficient (qN), reflecting increased photoprotective energy dissipation. To uncover the molecular basis of leaf variegation, high-quality genome assemblies and transcriptomes were generated for both the normal and variegated 'Gonggan' mandarin, enabling comparative multi-omics analysis. Key genes involved in chloroplast development, such as TOC159, PDV2, THA8, and SIG5, were downregulated in the variegated leaves. Similarly, structural genes linked to chlorophyll degradation, including CLH2, SGR, NOL, and NYC1, exhibited altered expression. Downregulation of transcription factors GLK, GNC, and GNC-LIKE (GNL), known regulators of chloroplast development and chlorophyll biosynthesis, was also observed. CONCLUSIONS These findings suggest that disrupted expression of critical genes impacts chloroplast development and pigment metabolism, causing the leaf variegation phenotype. Overall, this study lays a foundation for functional genomics research and potential germplasm improvement of 'Gonggan' mandarin, and provides new insights into the mechanisms driving color variation in citrus.
Collapse
Affiliation(s)
- Cong Shi
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Science and Technology Research on Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Miaofeng Gu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yongjing Huang
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Science and Technology Research on Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congjun You
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Sihan Bao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Shuangling Xie
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jinli Gong
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Guiming Deng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Science and Technology Research on Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Pingzhi Wu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Science and Technology Research on Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wen Wu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Science and Technology Research on Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congyi Zhu
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Science and Technology Research on Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangdong Province Key Laboratory of Science and Technology Research on Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Zhang J, Lee KP, Liu Y, Kim C. Temperature-driven changes in membrane fluidity differentially impact FILAMENTATION TEMPERATURE-SENSITIVE H2-mediated photosystem II repair. THE PLANT CELL 2024; 37:koae323. [PMID: 39665689 DOI: 10.1093/plcell/koae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant, lacking functional FILAMENTATION TEMPERATURE-SENSITIVE H2 (FtsH2), an ATP-dependent zinc metalloprotease, is a powerful tool for studying the photosystem II (PSII) repair process in plants. FtsH2, forming hetero-hexamers with FtsH1, FtsH5, and FtsH8, plays an indispensable role in PSII proteostasis. Although abiotic stresses like cold and heat increase chloroplast reactive oxygen species (ROS) and PSII damage, var2 mutants behave like wild-type plants under heat stress but collapse under cold stress. Our study on transgenic var2 lines expressing FtsH2 variants, defective in either substrate extraction or proteolysis, reveals that cold stress causes an increase in membrane viscosity, demanding more substrate extraction power than proteolysis by FtsH2. Overexpression of FtsH2 lacking substrate extraction activity does not rescue the cold-sensitive phenotype, while overexpression of FtsH2 lacking protease activity does in var2, with other FtsH isomers present. This indicates that FtsH2's substrate extraction activity is indispensable under cold stress when membranes become more viscous. As temperatures rise and membrane fluidity increases, substrate extraction activity from other isomers suffices, explaining the var2 mutant's heat stress resilience. These findings underscore the direct effect of membrane fluidity on the functionality of the thylakoid FtsH complex under stress. Future research should explore how membrane fluidity impacts proteostasis, potentially uncovering strategies to modulate thermosensitivity.
Collapse
Affiliation(s)
- Jingzhi Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanling Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
3
|
Dechkrong P, Srima S, Sukkhaeng S, Utkhao W, Thanomchat P, de Jong H, Tongyoo P. Mutation mapping of a variegated EMS tomato reveals an FtsH-like protein precursor potentially causing patches of four phenotype classes in the leaves with distinctive internal morphology. BMC PLANT BIOLOGY 2024; 24:265. [PMID: 38600480 PMCID: PMC11005157 DOI: 10.1186/s12870-024-04973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.
Collapse
Affiliation(s)
- Punyavee Dechkrong
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Sornsawan Srima
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Siriphan Sukkhaeng
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Winai Utkhao
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Piyanan Thanomchat
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, 10900, Thailand
| | - Hans de Jong
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Wageningen University, Plant Sciences Group, Laboratory of Genetics, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Pumipat Tongyoo
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand.
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
4
|
Melicher P, Dvořák P, Řehák J, Šamajová O, Pechan T, Šamaj J, Takáč T. Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:405-421. [PMID: 37728561 PMCID: PMC10735431 DOI: 10.1093/jxb/erad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.
Collapse
Affiliation(s)
- Pavol Melicher
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, USA
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
5
|
Kato Y, Kuroda H, Ozawa SI, Saito K, Dogra V, Scholz M, Zhang G, de Vitry C, Ishikita H, Kim C, Hippler M, Takahashi Y, Sakamoto W. Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. eLife 2023; 12:RP88822. [PMID: 37986577 PMCID: PMC10665015 DOI: 10.7554/elife.88822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Faculty of Agriculture, Setsunan UniversityOsakaJapan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of MünsterMünsterGermany
| | - Guoxian Zhang
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie CurieParisFrance
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
| | - Michael Hippler
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Institute of Plant Biology and Biotechnology, University of MünsterMünsterGermany
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
| |
Collapse
|
6
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Gebremeskel H, Umer MJ, Hongju Z, Li B, Shengjie Z, Yuan P, Xuqiang L, Nan H, Wenge L. Genetic mapping and molecular characterization of the delayed green gene dg in watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2023; 14:1152644. [PMID: 37152178 PMCID: PMC10158938 DOI: 10.3389/fpls.2023.1152644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Leaf color mutants are common in higher plants that can be used as markers in crop breeding and are important tools in understanding regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. Genetic analysis was performed by evaluating F1, F2 and BC1 populations derived from two parental lines (Charleston gray with green leaf color and Houlv with delayed green leaf color), suggesting that a single recessive gene controls the delayed green leaf color. In this study, the delayed green mutant showed a conditional pale green leaf color at the early leaf development but turned to green as the leaf development progressed. Delayed green leaf plants showed reduced pigment content, photosynthetic, chlorophyll fluorescence parameters, and impaired chloroplast development compared with green leaf plants. The delayed green (dg) locus was mapped to 7.48 Mb on chromosome 3 through bulk segregant analysis approach, and the gene controlling delayed green leaf color was narrowed to 53.54 kb between SNP130 and SNP135 markers containing three candidate genes. Sequence alignment of the three genes indicated that there was a single SNP mutation (G/A) in the coding region of ClCG03G010030 in the Houlv parent, which causes an amino acid change from Arginine to Lysine. The ClCG03G010030 gene encoded FtsH extracellular protease protein family is involved in early delayed green leaf development. The expression level of ClCG03G010030 was significantly reduced in delayed green leaf plants than in green leaf plants. These results indicated that the ClCG03G010030 might control watermelon green leaf color and the single SNP variation in ClCG03G010030 may result in early delayed green leaf color development during evolutionary process.
Collapse
Affiliation(s)
- Haileslassie Gebremeskel
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Department of Horticulture, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Muhammad Jawad Umer
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhu Hongju
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingbing Li
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhao Shengjie
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Pingli Yuan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lu Xuqiang
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - He Nan
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liu Wenge
- Henan Joint International Research Laboratory of South Asian Fruits and Cucurbits, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Liu Wenge,
| |
Collapse
|
8
|
Yamatani H, Ito T, Nishimura K, Yamada T, Sakamoto W, Kusaba M. Genetic analysis of chlorophyll synthesis and degradation regulated by BALANCE of CHLOROPHYLL METABOLISM. PLANT PHYSIOLOGY 2022; 189:419-432. [PMID: 35348770 PMCID: PMC9070834 DOI: 10.1093/plphys/kiac059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 05/05/2023]
Abstract
Chlorophyll (Chl) serves a number of essential functions, capturing and converting light energy as a component of photosystem supercomplexes. Chl degradation during leaf senescence is also required for adequate degeneration of chloroplasts and salvaging of nutrients from senescent leaves. In this study, we performed genetic analysis to determine the functions of BALANCE of CHLOROPHYLL METABOLISM1 (BCM1) and BCM2, which control Chl levels by regulating synthesis and degradation, and STAY-GREEN (SGR)1 (also known as NON-YELLOWING1 [NYE1]) and SGR2, which encode Mg-dechelatase and catalyze Chl a degradation in Arabidopsis (Arabidopsis thaliana). Analysis of bcm1 bcm2 revealed that both BCM1 and BCM2 are involved in the regulation of Chl levels in presenescent leaves and Chl degradation in senescing leaves. Analysis of bcm1 bcm2 nye1 nye2 suggested that BCMs repress Chl-degrading activity in both presenescent and senescing leaves by regulating SGR activity. Furthermore, transactivation analysis and chromatin immunoprecipitation (ChIP) assay revealed that GOLDEN2-LIKE1 (GLK1), a central transcription factor regulating the expression of genes encoding photosystem-related proteins, such as light-harvesting Chl a/b-binding proteins (LHCPs), directly regulates the transcription of BCM1. LHCPs are stabilized by Chl binding, suggesting that GLKs control the amount of LHCP through transcriptional and post-translational regulation via BCM-mediated Chl-level regulation. Meanwhile, we generated a mutant of the BCM ortholog in lettuce (Lactuca sativa) by genome editing and found that it showed an early yellowing phenotype, but only a slight reduction in Chl in presenescent leaves. Thus, this study revealed a conserved but slightly diversified regulation of Chl and LHCP levels via the GLK-BCM pathway in eudicots.
Collapse
Affiliation(s)
| | - Takeshi Ito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | | | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | |
Collapse
|
9
|
Gan Y, Kou Y, Yan F, Wang X, Wang H, Song X, Zhang M, Zhao X, Jia R, Ge H, Yang S. Comparative Transcriptome Profiling Analysis Reveals the Adaptive Molecular Mechanism of Yellow-Green Leaf in Rosa beggeriana 'Aurea'. FRONTIERS IN PLANT SCIENCE 2022; 13:845662. [PMID: 35401615 PMCID: PMC8987444 DOI: 10.3389/fpls.2022.845662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 05/08/2023]
Abstract
Rosa beggeriana 'Aurea' is a yellow-green leaf (yl) mutant and originated from Rosa beggeriana Schrenk by 60Co-γ irradiation, which is an important ornamental woody species. However, the molecular mechanism of the yl mutant remains unknown. Herein, comparative transcriptome profiling was performed between the yl type and normal green color type (WT) by RNA sequencing. A total of 3,372 significantly differentially expressed genes (DEGs) were identified, consisting of 1,585 upregulated genes and 1,787 downregulated genes. Genes that took part in metabolic of biological process (1,090), membrane of cellular component (728), catalytic (1,114), and binding of molecular function (840) were significantly different in transcription level. DEGs involved in chlorophyll biosynthesis, carotenoids biosynthesis, cutin, suberine, wax biosynthesis, photosynthesis, chloroplast development, photosynthesis-antenna proteins, photosystem I (PSI) and photosystem II (PSII) components, CO2 fixation, ribosomal structure, and biogenesis related genes were downregulated. Meanwhile, linoleic acid metabolism, siroheme biosynthesis, and carbon source of pigments biosynthesis through methylerythritol 4-phosphate (MEP) pathways were upregulated. Moreover, a total of 147 putative transcription factors were signification different expression, involving NAC, WRKY, bHLH, MYB and AP2/ERF, C2H2, GRAS, and bZIP family gene. Our results showed that the disturbed pigments biosynthesis result in yl color by altering the ratio of chlorophylls and carotenoids in yl mutants. The yl mutants may evoke other metabolic pathways to compensate for the photodamage caused by the insufficient structure and function of chloroplasts, such as enhanced MEP pathways and linoleic acid metabolism against oxidative stress. This research can provide a reference for the application of leaf color mutants in the future.
Collapse
Affiliation(s)
- Ying Gan
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaping Kou
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Yan
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Wang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Hongqian Wang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangshang Song
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruidong Jia
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Ge
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuhua Yang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
11
|
Wu Q, Han T, Yang L, Wang Q, Zhao Y, Jiang D, Ruan X. The essential roles of OsFtsH2 in developing the chloroplast of rice. BMC PLANT BIOLOGY 2021; 21:445. [PMID: 34598671 PMCID: PMC8485545 DOI: 10.1186/s12870-021-03222-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Filamentation temperature-sensitive H (FtsH) is an ATP-dependent zinc metalloprotease with ATPase activity, proteolysis activity and molecular chaperone-like activity. For now, a total of nine FtsH proteins have been encoded in rice, but their functions have not revealed in detail. In order to investigate the molecular mechanism of OsFtsH2 here, several osftsh2 knockout mutants were successfully generated by the CRISPR/Cas9 gene editing technology. RESULTS All the mutants exhibited a phenotype of striking albino leaf and could not survive through the stage of three leaves. OsFtsH2 was located in the chloroplast and preferentially expressed in green tissues. In addition, osftsh2 mutants could not form normal chloroplasts and had lost photosynthetic autotrophic capacity. RNA sequencing analysis indicated that many biological processes such as photosynthesis-related pathways and plant hormone signal transduction were significantly affected in osftsh2 mutants. CONCLUSIONS Overall, the results suggested OsFtsH2 to be essential for chloroplast development in rice.
Collapse
Affiliation(s)
- Qingfei Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Tiantian Han
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Yingxian Zhao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Ruan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
12
|
Jeran N, Rotasperti L, Frabetti G, Calabritto A, Pesaresi P, Tadini L. The PUB4 E3 Ubiquitin Ligase Is Responsible for the Variegated Phenotype Observed upon Alteration of Chloroplast Protein Homeostasis in Arabidopsis Cotyledons. Genes (Basel) 2021; 12:genes12091387. [PMID: 34573369 PMCID: PMC8464772 DOI: 10.3390/genes12091387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022] Open
Abstract
During a plant's life cycle, plastids undergo several modifications, from undifferentiated pro-plastids to either photosynthetically-active chloroplasts, ezioplasts, chromoplasts or storage organelles, such as amyloplasts, elaioplasts and proteinoplasts. Plastid proteome rearrangements and protein homeostasis, together with intracellular communication pathways, are key factors for correct plastid differentiation and functioning. When plastid development is affected, aberrant organelles are degraded and recycled in a process that involves plastid protein ubiquitination. In this study, we have analysed the Arabidopsis gun1-102 ftsh5-3 double mutant, lacking both the plastid-located protein GUN1 (Genomes Uncoupled 1), involved in plastid-to-nucleus communication, and the chloroplast-located FTSH5 (Filamentous temperature-sensitive H5), a metalloprotease with a role in photosystem repair and chloroplast biogenesis. gun1-102 ftsh5-3 seedlings show variegated cotyledons and true leaves that we attempted to suppress by introgressing second-site mutations in genes involved in: (i) plastid translation, (ii) plastid folding/import and (iii) cytosolic protein ubiquitination. Different phenotypic effects, ranging from seedling-lethality to partial or complete suppression of the variegated phenotype, were observed in the corresponding triple mutants. Our findings indicate that Plant U-Box 4 (PUB4) E3 ubiquitin ligase plays a major role in the target degradation of damaged chloroplasts and is the main contributor to the variegated phenotype observed in gun1-102 ftsh5-3 seedlings.
Collapse
|
13
|
Xu K, Zhu J, Zhai H, Wu H, Gao Y, Li Y, Zhu X, Xia Z. A critical role of PvFtsH2 in the degradation of photodamaged D1 protein in common bean. HORTICULTURE RESEARCH 2021; 8:126. [PMID: 34059658 PMCID: PMC8167180 DOI: 10.1038/s41438-021-00554-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Light is required for initiating chloroplast biogenesis and photosynthesis; however, the photosystem II reaction center (PSII RC) can be photodamaged. In this study, we characterized pvsl1, a seedling-lethal mutant of Phaseolus vulgaris. This mutant showed lethality when exposed to sunlight irradiation and a yellow-green leaf phenotype when grown in a growth chamber under low-light conditions. We developed 124 insertion/deletion (INDEL) markers based on resequencing data of Dalong1 and PI60234, two local Chinese common bean cultivars, for genetic mapping. We identified Phvul.002G190900, which encodes the PvFtsH2 protein, as the candidate gene for this pvsl1 mutation through fine-mapping and functional analysis. A single-base deletion occurred in the coding region of Phvul.002G190900 in the pvsl1 mutant, resulting in a frameshift mutation and a truncated protein lacking the Zn2+ metalloprotease domain. Suppressed expression of Phvul.002G190900 at the transcriptional level was detected, while no change in the subcellular localization signal was observed. The seedlings of pvsl1 exhibited hypersensitivity to photoinhibition stress. In the pvsl1 mutant, abnormal accumulation of the D1 protein indicated a failure to rapidly degrade damaged D1 protein in the PSII RC. The results of this study demonstrated that PvFtsH2 is critically required for survival and maintaining photosynthetic activity by degrading photodamaged PSII RC D1 protein in common bean.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China
| | - Jinlong Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China
| | - Yi Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhuo Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Haping Road 138, Nangang District, 150081, Harbin City, Heilongjiang Province, China.
| |
Collapse
|
14
|
Mishra LS, Funk C. The FtsHi Enzymes of Arabidopsis thaliana: Pseudo-Proteases with an Important Function. Int J Mol Sci 2021; 22:5917. [PMID: 34072887 PMCID: PMC8197885 DOI: 10.3390/ijms22115917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023] Open
Abstract
FtsH metalloproteases found in eubacteria, animals, and plants are well-known for their vital role in the maintenance and proteolysis of membrane proteins. Their location is restricted to organelles of endosymbiotic origin, the chloroplasts, and mitochondria. In the model organism Arabidopsis thaliana, there are 17 membrane-bound FtsH proteases containing an AAA+ (ATPase associated with various cellular activities) and a Zn2+ metalloprotease domain. However, in five of those, the zinc-binding motif HEXXH is either mutated (FtsHi1, 2, 4, 5) or completely missing (FtsHi3), rendering these enzymes presumably inactive in proteolysis. Still, homozygous null mutants of the pseudo-proteases FtsHi1, 2, 4, 5 are embryo-lethal. Homozygous ftshi3 or a weak point mutant in FTSHi1 are affected in overall plant growth and development. This review will focus on the findings concerning the FtsHi pseudo-proteases and their involvement in protein import, leading to consequences in embryogenesis, seed growth, chloroplast, and leaf development and oxidative stress management.
Collapse
Affiliation(s)
| | - Christiane Funk
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden;
| |
Collapse
|
15
|
Sakamoto W. Editorial Feature: Meet the PCP Editor-In-Chief-Wataru Sakamoto. PLANT & CELL PHYSIOLOGY 2021; 62:222-223. [PMID: 33493292 DOI: 10.1093/pcp/pcab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Wataru Sakamoto
- Okayama University, Institute of Plant Science and Resources
| |
Collapse
|
16
|
Sanjaya A, Kazama Y, Ishii K, Muramatsu R, Kanamaru K, Ohbu S, Abe T, Fujiwara MT. An Argon-Ion-Induced Pale Green Mutant of Arabidopsis Exhibiting Rapid Disassembly of Mesophyll Chloroplast Grana. PLANTS (BASEL, SWITZERLAND) 2021; 10:848. [PMID: 33922223 PMCID: PMC8145761 DOI: 10.3390/plants10050848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/13/2023]
Abstract
Argon-ion beam is an effective mutagen capable of inducing a variety of mutation types. In this study, an argon ion-induced pale green mutant of Arabidopsis thaliana was isolated and characterized. The mutant, designated Ar50-33-pg1, exhibited moderate defects of growth and greening and exhibited rapid chlorosis in photosynthetic tissues. Fluorescence microscopy confirmed that mesophyll chloroplasts underwent substantial shrinkage during the chlorotic process. Genetic and whole-genome resequencing analyses revealed that Ar50-33-pg1 contained a large 940 kb deletion in chromosome V that encompassed more than 100 annotated genes, including 41 protein-coding genes such as TYRAAt1/TyrA1, EGY1, and MBD12. One of the deleted genes, EGY1, for a thylakoid membrane-localized metalloprotease, was the major contributory gene responsible for the pale mutant phenotype. Both an egy1 mutant and F1 progeny of an Ar50-33-pg1 × egy1 cross-exhibited chlorotic phenotypes similar to those of Ar50-33-pg1. Furthermore, ultrastructural analysis of mesophyll cells revealed that Ar50-33-pg1 and egy1 initially developed wild type-like chloroplasts, but these were rapidly disassembled, resulting in thylakoid disorganization and fragmentation, as well as plastoglobule accumulation, as terminal phenotypes. Together, these data support the utility of heavy-ion mutagenesis for plant genetic analysis and highlight the importance of EGY1 in the structural maintenance of grana in mesophyll chloroplasts.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Yusuke Kazama
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji, Yoshida, Fukui 910-1195, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Ryohsuke Muramatsu
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe, Hyogo 657-8501, Japan;
| | - Sumie Ohbu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Tomoko Abe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| | - Makoto T. Fujiwara
- Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan; (A.S.); (R.M.)
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (K.I.); (S.O.); (T.A.)
| |
Collapse
|
17
|
Li M, Guo G, Pidon H, Melzer M, Prina AR, Börner T, Stein N. ATP-Dependent Clp Protease Subunit C1, HvClpC1, Is a Strong Candidate Gene for Barley Variegation Mutant luteostrians as Revealed by Genetic Mapping and Genomic Re-sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:664085. [PMID: 33936155 PMCID: PMC8086601 DOI: 10.3389/fpls.2021.664085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Implementation of next-generation sequencing in forward genetic screens greatly accelerated gene discovery in species with larger genomes, including many crop plants. In barley, extensive mutant collections are available, however, the causative mutations for many of the genes remains largely unknown. Here we demonstrate how a combination of low-resolution genetic mapping, whole-genome resequencing and comparative functional analyses provides a promising path toward candidate identification of genes involved in plastid biology and/or photosynthesis, even if genes are located in recombination poor regions of the genome. As a proof of concept, we simulated the prediction of a candidate gene for the recently cloned variegation mutant albostrians (HvAST/HvCMF7) and adopted the approach for suggesting HvClpC1 as candidate gene for the yellow-green variegation mutant luteostrians.
Collapse
Affiliation(s)
- Mingjiu Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hélène Pidon
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Alberto R. Prina
- Institute of Genetics ‘Ewald A. Favret’ (IGEAF), INTA CICVyA/Argentina, Hurlingham, Buenos Aires, Argentina
| | - Thomas Börner
- Molecular Genetics, Institute of Biology, Humboldt University, Berlin, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
18
|
Yang S, Overlander M, Fiedler J. Genetic analysis of the barley variegation mutant, grandpa1.a. BMC PLANT BIOLOGY 2021; 21:134. [PMID: 33711931 PMCID: PMC7955646 DOI: 10.1186/s12870-021-02915-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Providing the photosynthesis factory for plants, chloroplasts are critical for crop biomass and economic yield. However, chloroplast development is a complicated process, coordinated by the cross-communication between the nucleus and plastids, and the underlying biogenesis mechanism has not been fully revealed. Variegation mutants have provided ideal models to identify genes or factors involved in chloroplast development. Well-developed chloroplasts are present in the green tissue areas, while the white areas contain undifferentiated plastids that are deficient in chlorophyll. Unlike albino plants, variegation mutants survive to maturity and enable investigation into the signaling pathways underlying chloroplast biogenesis. The allelic variegated mutants in barley, grandpa 1 (gpa1), have long been identified but have not been genetically characterized. RESULTS We characterized and genetically analyzed the grandpa1.a (gpa1.a) mutant. The chloroplast ultrastructure was evaluated using transmission electron microscopy (TEM), and it was confirmed that chloroplast biogenesis was disrupted in the white sections of gpa1.a. To determine the precise position of Gpa1, a high-resolution genetic map was constructed. Segregating individuals were genotyped with the barley 50 k iSelect SNP Array, and the linked SNPs were converted to PCR-based markers for genetic mapping. The Gpa1 gene was mapped to chromosome 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. In the variegated gpa1.a mutant, we identified a large deletion in this gene cluster that eliminates a putative plastid terminal oxidase (PTOX). CONCLUSIONS Here we characterized and genetically mapped the gpa1.a mutation causing a variegation phenotype in barley. The PTOX-encoding gene in the delimited region is a promising candidate for Gpa1. Therefore, the present study provides a foundation for the cloning of Gpa1, which will elevate our understanding of the molecular mechanisms underlying chloroplast biogenesis, particularly in monocot plants.
Collapse
Affiliation(s)
- Shengming Yang
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
| | - Megan Overlander
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
19
|
Nishimura K, Nakagawa R, Hachisuga C, Nakajima Munekage Y. Deciphering the Proteotoxic Stress Responses Triggered by the Perturbed Thylakoid Proteostasis in Arabidopsis. PLANTS 2021; 10:plants10030519. [PMID: 33802194 PMCID: PMC8001255 DOI: 10.3390/plants10030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Here, we explored heat dependent thylakoid FtsH protease substrates and investigated proteotoxicity induced by thermal damage and processive protease dysfunction on the thylakoid membrane. Through our thylakoid enriched proteome analysis and biochemical experiments, carbonylated stromal proteins were suggested as possible FtsH targets. Furthermore, we observed in the thylakoid fractions in the absence of FtsH stromal reactive oxygen species-detoxifying enzymes, as well as heat shock proteins and chaperones, which are known to be upregulated at the transcriptional level when this protease is absent, which is called the damaged protein response, resembling unfolded protein response in eukaryotic cells. Interestingly, the thylakoid-enriched high-density fractions included stromal translation factors and RNA-binding proteins, along with aminoacyl-tRNA synthetase, reminiscent of the formation of stress granules. Unexpectedly, extraplastid proteins such as mitochondrial chaperones, peroxidase, tricarboxylic acid cycle and respiratory chain enzymes, as well as cytosolic ribosomes, translation factors, heat shock proteins, antioxidants and metabolic enzymes, were also found deposited in the high-density fractions depending on the loss of thylakoid FtsH, with more prominent effects of thermal stress on the cytosolic proteins. This may reflect intracellular adaptation to the proteotoxic influences from the organelle.
Collapse
Affiliation(s)
- Kenji Nishimura
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan; (C.H.); (Y.N.M.)
- Correspondence: ; Tel.: +81-79-565-7351
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics in RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Hyogo, Japan;
| | - Chisato Hachisuga
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan; (C.H.); (Y.N.M.)
| | - Yuri Nakajima Munekage
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan; (C.H.); (Y.N.M.)
| |
Collapse
|
20
|
Zhang K, Li Y, Zhu W, Wei Y, Njogu MK, Lou Q, Li J, Chen J. Fine Mapping and Transcriptome Analysis of Virescent Leaf Gene v-2 in Cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2020; 11:570817. [PMID: 33101337 PMCID: PMC7545910 DOI: 10.3389/fpls.2020.570817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/04/2020] [Indexed: 05/24/2023]
Abstract
Leaf color mutants are the ideal materials to explore the pathways of chlorophyll metabolism, chloroplast development and photosynthesis system. In this study, a new virescent leaf mutant 104Y was identified by spontaneous mutation, whose cotyledon and upper five true leaves were yellow color. The yellow true leaves gradually turned green from top to bottom with increased chlorophyll contents. Genetic analysis indicated that the virescent leaf was controlled by one single recessive gene v-2, which was accurately mapped into 36.0-39.7 Mb interval on chromosome 3 by using BSA-seq and linkage analysis. Fine mapping analysis further narrowed v-2 into 73-kb genomic region including eight genes with BC1 and F2 populations. Through BSA-seq and cDNA sequencing analysis, only one nonsynonymous mutation existed in the Csa3G890020 gene encoding auxin F-box protein was identified, which was predicted as the candidate gene controlling virescent leaf. Comparative transcriptome analysis and quantitative real-time PCR analysis revealed that the expression level of Csa3G890020 was not changed between EC1 and 104Y. However, RNA-seq analysis identified that the key genes involved in chlorophyll biosynthesis and auxin signaling transduction network were mainly down-regulated in 104Y compared with EC1, which indicated that the regulatory functions of Csa3G890020 could be performed at post-transcriptional level rather than transcriptional level. This is the first report to map-based clone an auxin F-box protein gene related to virescent leaf in cucumber. The results will exhibit a new insight into the chlorophyll biosynthesis regulated by auxin signaling transduction network.
Collapse
Affiliation(s)
- Kaijing Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Ying Li
- Nanjing Vegetable Science Research Institute, Nanjing, China
| | - Wenwei Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yifan Wei
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Martin Kagiki Njogu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qunfeng Lou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ji Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinfeng Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Islam MS, Van Nguyen T, Sakamoto W, Takagi S. Phototropin- and photosynthesis-dependent mitochondrial positioning in Arabidopsis thaliana mesophyll cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1352-1371. [PMID: 31961050 DOI: 10.1111/jipb.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue-light-dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue-light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop-and-go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma-membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2- and photosynthesis-dependent signals. The present study might add novel regulatory mechanism for light-dependent plant organelle interactions.
Collapse
Affiliation(s)
- Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Toan Van Nguyen
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
- Agricultural Genetics Institute, National Key Laboratory for Plant Cell Biotechnology, Pham Van Dong road, Bac Tu Liem district, Ha Noi, Vietnam
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
22
|
Zer H, Mizrahi H, Malchenko N, Avin-Wittenberg T, Klipcan L, Ostersetzer-Biran O. The Phytotoxicity of Meta-Tyrosine Is Associated With Altered Phenylalanine Metabolism and Misincorporation of This Non-Proteinogenic Phe-Analog to the Plant's Proteome. FRONTIERS IN PLANT SCIENCE 2020; 11:140. [PMID: 32210982 PMCID: PMC7069529 DOI: 10.3389/fpls.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 05/10/2023]
Abstract
Plants produce a myriad of specialized (secondary) metabolites that are highly diverse chemically, and exhibit distinct biological functions. Here, we focus on meta-tyrosine (m-tyrosine), a non-proteinogenic byproduct that is often formed by a direct oxidation of phenylalanine (Phe). Some plant species (e.g., Euphorbia myrsinites and Festuca rubra) produce and accumulate high levels of m-tyrosine in their root-tips via enzymatic pathways. Upon its release to soil, the Phe-analog, m-tyrosine, affects early post-germination development (i.e., altered root development, cotyledon or leaf chlorosis, and retarded growth) of nearby plant life. However, the molecular basis of m-tyrosine-mediated (phyto)toxicity remains, to date, insufficiently understood and are still awaiting their functional characterization. It is anticipated that upon its uptake, m-tyrosine impairs key metabolic processes, or affects essential cellular activities in the plant. Here, we provide evidences that the phytotoxic effects of m-tyrosine involve two distinct molecular pathways. These include reduced steady state levels of several amino acids, and in particularly altered biosynthesis of the phenylalanine (Phe), an essential α-amino acid, which is also required for the folding and activities of proteins. In addition, proteomic studies indicate that m-tyrosine is misincorporated in place of Phe, mainly into the plant organellar proteomes. These data are supported by analyses of adt mutants, which are affected in Phe-metabolism, as well as of var2 mutants, which lack FtsH2, a major component of the chloroplast FtsH proteolytic machinery, which show higher sensitivity to m-tyrosine. Plants treated with m-tyrosine show organellar biogenesis defects, reduced respiration and photosynthetic activities and growth and developmental defect phenotypes.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikol Malchenko
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Klipcan
- Institute of Plant Sciences, the Gilat Research Center, Agricultural Research Organization (ARO), Negev, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| |
Collapse
|
23
|
Marino G, Naranjo B, Wang J, Penzler JF, Kleine T, Leister D. Relationship of GUN1 to FUG1 in chloroplast protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:521-535. [PMID: 31002470 DOI: 10.1111/tpj.14342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
GUN1 integrates retrograde signals in chloroplasts but the underlying mechanism is elusive. FUG1, a chloroplast translation initiation factor, and GUN1 are co-expressed at the transcriptional level, and FUG1 co-immunoprecipitates with GUN1. We used mutants of GUN1 (gun1-103) and FUG1 (fug1-3) to analyse their functional relationship at the physiological and system-wide level, the latter including transcriptome and proteome analyses. Absence of GUN1 aggravates the effects of decreased FUG1 levels on chloroplast protein translation, resulting in transiently more pronounced phenotypes regarding photosynthesis, leaf colouration, growth and cold acclimation. The gun1-103 mutation also enhances variegation in the var2 mutant, increasing the fraction of white sectors, while fug1-3 suppresses the var2 phenotype. The transcriptomes of fug1-3 and gun1-103 plants are very similar, but absence of GUN1 alone has almost no effect on protein levels, whereas steady-state levels of chloroplast proteins are markedly decreased in fug1-3. In fug1 gun1 double mutants, effects on transcriptomes and particularly on proteomes are enhanced. Our results show that GUN1 function becomes critical when chloroplast proteostasis is perturbed by decreased rates of synthesis (fug1) or degradation (var2) of chloroplast proteins, or by low temperatures. The functions of FUG1 and GUN1 appear to be related, corroborating the view that GUN1 helps to maintain chloroplast protein homeostasis (proteostasis).
Collapse
Affiliation(s)
- Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jing Wang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jan-Ferdinand Penzler
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Kato Y, Sakamoto W. Phosphorylation of the Chloroplastic Metalloprotease FtsH in Arabidopsis Characterized by Phos-Tag SDS-PAGE. FRONTIERS IN PLANT SCIENCE 2019; 10:1080. [PMID: 31552075 PMCID: PMC6747001 DOI: 10.3389/fpls.2019.01080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 05/07/2023]
Abstract
FtsH is an essential ATP-dependent metalloprotease for protein quality control in the thylakoid membrane of Arabidopsis thaliana chloroplasts. It is required for chloroplast development during leaf growth, and particularly for the specific degradation of photo-damaged D1 protein in the photosystem II (PSII) complex to maintain photosynthesis activity. In the thylakoid membrane, the reversible phosphorylation of proteins is known to control the activity and remodeling of photosynthetic complexes, and previous studies implicate that FtsH is also phosphorylated. We therefore assessed the phosphorylation status of FtsH and its possible role in the regulatory mechanism in this study. The phosphorylation level of FtsHs that compose the FtsH heterohexameric complex was investigated by phosphate-affinity gel electrophoresis using a Phos-Tag molecule. Phos-tag SDS-PAGE of thylakoid proteins and subsequent immunoblot analysis showed that both type A (FtsH1/5) and type B (FtsH2/8) subunits were separable into phosphorylated and non-phosphorylated forms. Neither different light conditions nor the lack of two major thylakoid kinases, STN7 and STN8, resulted in any clear difference in FtsH phosphorylation, suggesting that this process is independent of the light-dependent regulation of photosynthesis-related proteins. Site-directed mutagenesis of putatively phosphorylated Ser or Thr residues into Ala demonstrated that Ser-212 may play a role in FtsH stability in the thylakoid membranes. Different phosphorylation status of FtsH oligomers analyzed by two-dimensional clear-native/Phos-tag SDS-PAGE implied that phosphorylation partially affects FtsH complex formation or its stability.
Collapse
|
25
|
Liu S, Zheng L, Jia J, Guo J, Zheng M, Zhao J, Shao J, Liu X, An L, Yu F, Qi Y. Chloroplast Translation Elongation Factor EF-Tu/SVR11 Is Involved in var2-Mediated Leaf Variegation and Leaf Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:295. [PMID: 30915096 PMCID: PMC6423176 DOI: 10.3389/fpls.2019.00295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 05/02/2023]
Abstract
Chloroplasts are semiautonomous organelles, retaining their own genomes and gene expression apparatuses but controlled by nucleus genome encoded protein factors during evolution. To analyze the genetic regulatory network of FtsH-mediated chloroplast development in Arabidopsis, a set of suppressor mutants of yellow variegated (var2) have been identified. In this research, we reported the identification of another new var2 suppressor locus, SUPPRESSOR OF VARIEGATION11 (SVR11), which encodes a putative chloroplast-localized prokaryotic type translation elongation factor EF-Tu. SVR11 is likely essential to chloroplast development and plant survival. GUS activity reveals that SVR11 is abundant in the juvenile leaf tissue, lateral roots, and root tips. Interestingly, we found that SVR11 and SVR9 together regulate leaf development, including leaf margin development and cotyledon venation patterns. These findings reinforce the notion that chloroplast translation state triggers retrograde signals regulate not only chloroplast development but also leaf development.
Collapse
|
26
|
Lopes KL, Rodrigues RAO, Silva MC, Braga WGS, Silva-Filho MC. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:504. [PMID: 29720990 PMCID: PMC5915565 DOI: 10.3389/fpls.2018.00504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 05/15/2023]
Abstract
Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein), which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP) showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.
Collapse
|
27
|
Kato Y, Sakamoto W. FtsH Protease in the Thylakoid Membrane: Physiological Functions and the Regulation of Protease Activity. FRONTIERS IN PLANT SCIENCE 2018; 9:855. [PMID: 29973948 PMCID: PMC6019477 DOI: 10.3389/fpls.2018.00855] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 05/18/2023]
Abstract
Protein homeostasis in the thylakoid membranes is dependent on protein quality control mechanisms, which are necessary to remove photodamaged and misfolded proteins. An ATP-dependent zinc metalloprotease, FtsH, is the major thylakoid membrane protease. FtsH proteases in the thylakoid membranes of Arabidopsis thaliana form a hetero-hexameric complex consisting of four FtsH subunits, which are divided into two types: type A (FtsH1 and FtsH5) and type B (FtsH2 and FtsH8). An increasing number of studies have identified the critical roles of FtsH in the biogenesis of thylakoid membranes and quality control in the photosystem II repair cycle. Furthermore, the involvement of FtsH proteolysis in a singlet oxygen- and EXECUTER1-dependent retrograde signaling mechanism has been suggested recently. FtsH is also involved in the degradation and assembly of several protein complexes in the photosynthetic electron-transport pathways. In this minireview, we provide an update on the functions of FtsH in thylakoid biogenesis and describe our current understanding of the D1 degradation processes in the photosystem II repair cycle. We also discuss the regulation mechanisms of FtsH protease activity, which suggest the flexible oligomerization capability of FtsH in the chloroplasts of seed plants.
Collapse
|
28
|
Llamas E, Pulido P, Rodriguez-Concepcion M. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS Genet 2017; 13:e1007022. [PMID: 28937985 PMCID: PMC5627961 DOI: 10.1371/journal.pgen.1007022] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/04/2017] [Accepted: 09/15/2017] [Indexed: 11/27/2022] Open
Abstract
Disruption of protein homeostasis in chloroplasts impairs the correct functioning of essential metabolic pathways, including the methylerythritol 4-phosphate (MEP) pathway for the production of plastidial isoprenoids involved in photosynthesis and growth. We previously found that misfolded and aggregated forms of the first enzyme of the MEP pathway are degraded by the Clp protease with the involvement of Hsp70 and Hsp100/ClpC1 chaperones in Arabidopsis thaliana. By contrast, the combined unfolding and disaggregating actions of Hsp70 and Hsp100/ClpB3 chaperones allow solubilization and hence reactivation of the enzyme. The repair pathway is promoted when the levels of ClpB3 proteins increase upon reduction of Clp protease activity in mutants or wild-type plants treated with the chloroplast protein synthesis inhibitor lincomycin (LIN). Here we show that LIN treatment rapidly increases the levels of aggregated proteins in the chloroplast, unleashing a specific retrograde signaling pathway that up-regulates expression of ClpB3 and other nuclear genes encoding plastidial chaperones. As a consequence, folding capacity is increased to restore protein homeostasis. This sort of chloroplast unfolded protein response (cpUPR) mechanism appears to be mediated by the heat shock transcription factor HsfA2. Expression of HsfA2 and cpUPR-related target genes is independent of GUN1, a central integrator of retrograde signaling pathways. However, double mutants defective in both GUN1 and plastome gene expression (or Clp protease activity) are seedling lethal, confirming that the GUN1 protein is essential for protein homeostasis in chloroplasts.
Collapse
Affiliation(s)
- Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
29
|
Bobik K, McCray TN, Ernest B, Fernandez JC, Howell KA, Lane T, Staton M, Burch-Smith TM. The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:114-131. [PMID: 28346704 DOI: 10.1111/tpj.13550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2 expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2's role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2's involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2's evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Katharine A Howell
- Plant Energy Biology, ARC Center of Excellence, University of Western Australia, Perth, Australia
| | - Thomas Lane
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Margaret Staton
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
30
|
Nishimura K, Kato Y, Sakamoto W. Essentials of Proteolytic Machineries in Chloroplasts. MOLECULAR PLANT 2017; 10:4-19. [PMID: 27585878 DOI: 10.1016/j.molp.2016.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 05/22/2023]
Abstract
Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic processes, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degradation, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remodeling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation machineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
31
|
Du Y, Luo S, Li X, Yang J, Cui T, Li W, Yu L, Feng H, Chen Y, Mu J, Chen X, Shu Q, Guo T, Luo W, Zhou L. Identification of Substitutions and Small Insertion-Deletions Induced by Carbon-Ion Beam Irradiation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1851. [PMID: 29163581 PMCID: PMC5665000 DOI: 10.3389/fpls.2017.01851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/11/2017] [Indexed: 05/06/2023]
Abstract
Heavy-ion beam irradiation is one of the principal methods used to create mutants in plants. Research on mutagenic effects and molecular mechanisms of radiation is an important subject that is multi-disciplinary. Here, we re-sequenced 11 mutagenesis progeny (M3) Arabidopsis thaliana lines derived from carbon-ion beam (CIB) irradiation, and subsequently focused on substitutions and small insertion-deletion (INDELs). We found that CIB induced more substitutions (320) than INDELs (124). Meanwhile, the single base INDELs were more prevalent than those in large size (≥2 bp). In details, the detected substitutions showed an obvious bias of C > T transitions, by activating the formation of covalent linkages between neighboring pyrimidine residues in the DNA sequence. An A and T bias was observed among the single base INDELs, in which most of these were induced by replication slippage at either the homopolymer or polynucleotide repeat regions. The mutation rate of 200-Gy CIB irradiation was estimated as 3.37 × 10-7 per site. Different from previous researches which mainly focused on the phenotype, chromosome aberration, genetic polymorphism, or sequencing analysis of specific genes only, our study revealed genome-wide molecular profile and rate of mutations induced by CIB irradiation. We hope our data could provide valuable clues for explaining the potential mechanism of plant mutation breeding by CIB irradiation.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shanwei Luo
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiangyan Yang
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tao Cui
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lixia Yu
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hui Feng
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuze Chen
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinhu Mu
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Chen
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Wenlong Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Libin Zhou
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Libin Zhou
| |
Collapse
|
32
|
Van Dingenen J, Blomme J, Gonzalez N, Inzé D. Plants grow with a little help from their organelle friends. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6267-6281. [PMID: 27815330 DOI: 10.1093/jxb/erw399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.
Collapse
Affiliation(s)
- Judith Van Dingenen
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
33
|
Wang F, Liu J, Chen M, Zhou L, Li Z, Zhao Q, Pan G, Zaidi SHR, Cheng F. Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves. PLoS One 2016; 11:e0161203. [PMID: 27532299 PMCID: PMC4988704 DOI: 10.1371/journal.pone.0161203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 01/03/2023] Open
Abstract
D1 protein in the PSII reaction center is the major target of photodamage, and it exhibits the highest turnover rate among all the thylakoid proteins. In this paper, rice psf (premature senescence of flag leaves) mutant and its wild type were used to investigate the genotype-dependent alteration in PSII photo-damage and D1 protein turnover during leaf senescence and its relation to ABA accumulation in senescent leaves. The symptom and extent of leaf senescence of the psf mutant appeared to be sunlight-dependent under natural field condition. The psf also displayed significantly higher levels of ABA accumulation in senescent leaves than the wild type. However, the premature senescence lesion of psf leaves could be alleviated by shaded treatment, concomitantly with the strikingly suppressed ABA level in the shaded areas of flag leaves. The change in ABA concentration contributed to the regulation of shade-delayed leaf senescence. The participation of ABA in the timing of senescence initiation and in the subsequent rate of leaf senescence was closely associated with PSII photodamage and D1 protein turnover during leaf senescence, in which the transcriptional expression of several key genes (psbA, psbB, psbC and OsFtsH2) involved in D1 protein biosynthesis and PSII repair cycle was seriously suppressed by the significantly increased ABA level. This response resulted in the low rate of D1 protein synthesis and impaired repair recovery in the presence of ABA. The psf showed evidently decreased D1 protein amount in the senescent leaves. Both the inhibition of de novo synthesized D1 protein and the slow rate of proteolytic removal for the photodamaged D1 protein was among the most crucial steps for the linkage between light-dependent leaf senescence and the varying ABA concentration in psf mutant leaves. OsFtsH2 transcriptional expression possibly played an important role in the regulation of D1 protein turnover and PSII repair cycle in relation to ABA mediated leaf senescence.
Collapse
Affiliation(s)
- Fubiao Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianchao Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Minxue Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhaowei Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Qian Zhao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Gang Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Syed-Hassan-Raza Zaidi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- * E-mail:
| |
Collapse
|
34
|
Qi Y, Zhao J, An R, Zhang J, Liang S, Shao J, Liu X, An L, Yu F. Mutations in circularly permuted GTPase family genes AtNOA1/RIF1/SVR10 and BPG2 suppress var2-mediated leaf variegation in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2016; 127:355-67. [PMID: 26435530 DOI: 10.1007/s11120-015-0195-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/24/2015] [Indexed: 05/18/2023]
Abstract
Leaf variegation mutants constitute a unique group of chloroplast development mutants and are ideal genetic materials to dissect the regulation of chloroplast development. We have utilized the Arabidopsis yellow variegated (var2) mutant and genetic suppressor analysis to probe the mechanisms of chloroplast development. Here we report the isolation of a new var2 suppressor locus SUPPRESSOR OF VARIEGATION (SVR10). Genetic mapping and molecular complementation indicated that SVR10 encodes a circularly permuted GTPase that has been reported as Arabidopsis thaliana NITRIC OXIDE ASSOCIATED 1 (AtNOA1) and RESISTANT TO INHIBITION BY FOSMIDOMYCIN 1 (RIF1). Biochemical evidence showed that SVR10/AtNOA1/RIF1 likely localizes to the chloroplast stroma. We further demonstrate that the mutant of a close homologue of SVR10/AtNOA1/RIF1, BRASSINAZOLE INSENSITIVE PALE GREEN 2 (BPG2), can also suppress var2 leaf variegation. Mutants of SVR10 and BPG2 are impaired in photosynthesis and the accumulation of chloroplast proteins. Interestingly, two-dimensional blue native gel analysis showed that mutants of SVR10 and BPG2 display defects in the assembly of thylakoid membrane complexes including reduced levels of major photosynthetic complexes and the abnormal accumulation of a chlorophyll-protein supercomplex containing photosystem I. Taken together, our findings suggest that SVR10 and BPG2 are functionally related with VAR2, likely through their potential roles in regulating chloroplast protein homeostasis, and both SVR10 and BPG2 are required for efficient thylakoid protein complex assembly and photosynthesis.
Collapse
Affiliation(s)
- Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Juan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
35
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
36
|
Kato Y, Ozawa SI, Takahashi Y, Sakamoto W. D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model. PHOTOSYNTHESIS RESEARCH 2015; 126:409-16. [PMID: 25893898 DOI: 10.1007/s11120-015-0144-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/09/2015] [Indexed: 05/26/2023]
Abstract
Light energy drives photosynthesis, but it simultaneously inactivates photosynthetic mechanisms. A major target site of photo-damage is photosystem II (PSII). It further targets one reaction center protein, D1, which is maintained efficiently by the PSII repair cycle. Two proteases, FtsH and Deg, are known to contribute to this process, respectively, by efficient degradation of photo-damaged D1 protein processively and endoproteolytically. This study tested whether the D1 cleavage accomplished by these proteases is affected by different monochromic lights such as blue and red light-emitting-diode light sources, remaining mindful that the use of these lights distinguishes the current models for photoinhibition: the excess-energy model and the two-step model. It is noteworthy that in the two-step model, primary damage results from the absorption of light energy in the Mn-cluster, which can be enhanced by a blue rather than a red light source. Results showed that blue and red lights affect D1 degradation differently. One prominent finding was that D1 fragmentation that is specifically generated by luminal Deg proteases was enhanced by blue light but not by red light in the mutant lacking FtsH2. Although circumstantial, this evidence supports a two-step model of PSII photo-damage. We infer that enhanced D1 fragmentation by luminal Deg proteases is a response to primary damage at the Mn-cluster.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Shin-Ichiro Ozawa
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Yuichiro Takahashi
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
37
|
Hung CY, Umstead ML, Chen J, Holliday BM, Kittur FS, Henny RJ, Burkey KO, Xie J. Differential expression of a novel gene EaF82a in green and yellow sectors of variegated Epipremnum aureum leaves is related to uneven distribution of auxin. PHYSIOLOGIA PLANTARUM 2014; 152:749-62. [PMID: 24796240 DOI: 10.1111/ppl.12219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/26/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
EaF82, a gene identified in previous studies of the variegated plant Epipremnum aureum, exhibited a unique expression pattern with greater transcript abundance in yellow sectors than green sectors of variegated leaves, but lower abundance in regenerated pale yellow plants than in green plants derived from leaf tissue culture. Studies of its full-length cDNA and promoter region revealed two members with only the EaF82a expressed. Immunoblotting confirmed that EaF82a encodes a 12 kDa protein and its accumulation consistent with its gene expression patterns in different color tissues. Transient expression of EaF82a-sGFP fusion proteins in protoplasts showed that EaF82a seems to be present in the cytosol as unidentified spots. Sequence motif search reveals a potential auxin responsive element in promoter region. Using transgenic Arabidopsis seedlings carrying EaF82a promoter driving the bacterial uidA (GUS) gene, an increased GUS activity was observed when IAA (indole-3-acetic acid) concentration was elevated. In E. aureum, EaF82a is more abundant at the site where axillary buds emerge and at the lower side of bending nodes where more IAA accumulates relative to the upper side. The measurement of endogenous IAA levels in different color tissues revealed the same pattern of IAA distribution as that of EaF82a expression, further supporting that EaF82a is an IAA responsive gene. EaF82a expression in etiolated transgenic Arabidopsis seedlings responded to IAA under the influence of light suggesting a microenvironment of uneven light condition affects the EaF82a transcript levels and protein accumulation in variegated leaves.
Collapse
Affiliation(s)
- Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, 27707, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kato Y, Sakamoto W. Phosphorylation of photosystem II core proteins prevents undesirable cleavage of D1 and contributes to the fine-tuned repair of photosystem II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:312-21. [PMID: 24862025 DOI: 10.1111/tpj.12562] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/16/2014] [Accepted: 05/13/2014] [Indexed: 05/23/2023]
Abstract
Photosystem II (PSII) is a primary target for light-induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo-oxidative damage. We propose that PSII core phosphorylation contributes to fine-tuned degradation of D1.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | |
Collapse
|
39
|
Lu X, Zhang D, Li S, Su Y, Liang Q, Meng H, Shen S, Fan Y, Liu C, Zhang C. FtsHi4 is essential for embryogenesis due to its influence on chloroplast development in Arabidopsis. PLoS One 2014; 9:e99741. [PMID: 24964212 PMCID: PMC4070914 DOI: 10.1371/journal.pone.0099741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/17/2014] [Indexed: 12/31/2022] Open
Abstract
Chloroplast formation is associated with embryo development and seedling growth. However, the relationship between chloroplast differentiation and embryo development remains unclear. Five FtsHi genes that encode proteins with high similarity to FtsH proteins, but lack Zn2+-binding motifs, are present in the Arabidopsis genome. In this study, we showed that T-DNA insertion mutations in the Arabidopsis FtsHi4 gene resulted in embryo arrest at the globular-to-heart-shaped transition stage. Transmission electron microscopic analyses revealed abnormal plastid differentiation with a severe defect in thylakoid formation in the mutant embryos. Immunocytological studies demonstrated that FtsHi4 localized in chloroplasts as a thylakoid membrane-associated protein, supporting its essential role in thylakoid membrane formation. We further showed that FtsHi4 forms protein complexes, and that there was a significant reduction in the accumulation of D2 and PsbO (two photosystem II proteins) in mutant ovules. The role of FtsHi4 in chloroplast development was confirmed using an RNA-interfering approach. Additionally, mutations in other FtsHi genes including FtsHi1, FtsHi2, and FtsHi5 caused phenotypic abnormalities similar to ftshi4 with respect to plastid differentiation during embryogenesis. Taken together, our data suggest that FtsHi4, together with FtsHi1, FtsHi2, and FtsHi5 are essential for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoduo Lu
- Department of Life Sciences, Qilu Normal University, Jinan, China
| | - Dongyuan Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shipeng Li
- Department of Life Sciences, Qilu Normal University, Jinan, China
| | - Yanping Su
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, China
| | - Hongyan Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Songdong Shen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, China
| | - Chunming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, China
| |
Collapse
|
40
|
Zhang Q, Xue D, Li X, Long Y, Zeng X, Liu Y. Characterization and molecular mapping of a new virescent mutant in rice. J Genet Genomics 2014; 41:353-6. [PMID: 24976125 DOI: 10.1016/j.jgg.2014.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Qunyu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Dexing Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yunming Long
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xianjie Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
41
|
Du Y, Li W, Yu L, Chen G, Liu Q, Luo S, Shu Q, Zhou L. Mutagenic effects of carbon-ion irradiation on dry Arabidopsis thaliana seeds. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 759:28-36. [DOI: 10.1016/j.mrgentox.2013.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/07/2013] [Accepted: 07/08/2013] [Indexed: 11/30/2022]
|
42
|
Putarjunan A, Liu X, Nolan T, Yu F, Rodermel S. Understanding chloroplast biogenesis using second-site suppressors of immutans and var2. PHOTOSYNTHESIS RESEARCH 2013; 116:437-53. [PMID: 23703455 DOI: 10.1007/s11120-013-9855-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/15/2013] [Indexed: 05/07/2023]
Abstract
Chloroplast biogenesis is an essential light-dependent process involving the differentiation of photosynthetically competent chloroplasts from precursors that include undifferentiated proplastids in leaf meristems, as well as etioplasts in dark-grown seedlings. The mechanisms that govern these developmental processes are poorly understood, but entail the coordinated expression of nuclear and plastid genes. This coordination is achieved, in part, by signals generated in response to the metabolic and developmental state of the plastid that regulate the transcription of nuclear genes for photosynthetic proteins (retrograde signaling). Variegation mutants are powerful tools to understand pathways of chloroplast biogenesis, and over the years our lab has focused on immutans (im) and variegated2 (var2), two nuclear gene-induced variegations of Arabidopsis. im and var2 are among the best-characterized chloroplast biogenesis mutants, and they define the genes for plastid terminal oxidase (PTOX) and the AtFtsH2 subunit of the thylakoid FtsH metalloprotease complex, respectively. To gain insight into the function of these proteins, forward and reverse genetic approaches have been used to identify second-site suppressors of im and var2 that replace or bypass the need for PTOX and AtFtsH2 during chloroplast development. In this review, we provide a brief update of im and var2 and the functions of PTOX and AtFtsH2. We then summarize information about second-site suppressors of im and var2 that have been identified to date, and describe how they have provided insight into mechanisms of photosynthesis and pathways of chloroplast development.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | |
Collapse
|
43
|
Luciński R, Jackowski G. AtFtsH heterocomplex-mediated degradation of apoproteins of the major light harvesting complex of photosystem II (LHCII) in response to stresses. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1082-1089. [PMID: 23598180 DOI: 10.1016/j.jplph.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
Chloroplastic heterocomplex consisting of AtFtsH1, 2, 5 and 8 proteases, integrally bound to thylakoid membrane was shown to play a critical role in degradation of photodamaged PsbA molecules, inherent to photosystem II (PSII) repair cycle and in plastid development. As no one thylakoid bound apoproteins besides PsbA has been identified as target for the heterocomplex-mediated degradation we investigated the significance of this protease complex in degradation of apoproteins of the major light harvesting complex of photosystem II (LHCII) in response to various stressing conditions and in stress-related changes in overall composition of LHCII trimers of PSII-enriched membranes (BBY particles). To reach this goal a combination of approaches was applied based on immunoblotting, in vitro degradation and non-denaturing isoelectrofocusing. Exposure of Arabidopsis thaliana leaves to desiccation, cold and high irradiance led to a step-wise disappearance of Lhcb1 and Lhcb2, while Lhcb3 level remained unchanged, except for high irradiance which caused significant Lhcb3 decrease. Furthermore, it was demonstrated that stress-dependent disappearance of Lhcb1-3 is a proteolytic phenomenon for which a metalloprotease is responsible. No changes in Lhcb1-3 level were observed due to exposition of var1-1 mutant leaves to the three stresses clearly pointing to the involvement of AtFtsH heterocomplex in the desiccation, cold and high irradiance-dependent degradation of Lhcb1 and Lhcb2 and in high irradiance-dependent degradation of Lhcb3. Non-denaturing isoelectrofocusing analyses revealed that AtFtsH heterocomplex-dependent differential Lhcb1-3 disappearance behaviour following desiccation stress was accompanied by modulations in abundances of individual LHCII trimers of BBY particles and that LHCII of var1-1 resisted the modulations.
Collapse
Affiliation(s)
- Robert Luciński
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| | | |
Collapse
|
44
|
Kato Y, Sakamoto W. Possible compensatory role among chloroplast proteases under excess-light stress condition. PLANT SIGNALING & BEHAVIOR 2013; 8:e23198. [PMID: 23299325 PMCID: PMC3676490 DOI: 10.4161/psb.23198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The reaction center protein D1 of photosystem II (PSII), known as a primary target of photodamage, is repaired efficiently by the PSII repair cycle, to cope with constant photooxidative damage. Recent studies of Arabidopsis show that the endo-type Deg protease and the exo-type FtsH proteases cooperatively degrade D1 in the PSII repair in vivo. It is particularly interesting that we observed upregulation of Clp and SppA proteases when FtsH was limited in the mutant lacking FtsH2. To examine how the complementary functions of chloroplastic proteases are commonly regulated, we undertook a high-light stress on wild-type Arabidopsis leaves. The result that wild type leaves also showed increased levels of these proteases upon exposure to excessively strong illumination not only revealed the importance of FtsH and Deg in the PSII repair, but also implied cooperation among chloroplastic proteases under chronic stress conditions.
Collapse
|
45
|
Abstract
This review focuses on organellar AAA/FtsH proteases, whose proteolytic and chaperone-like activity is a crucial component of the protein quality control systems of mitochondrial and chloroplast membranes. We compare the AAA/FtsH proteases from yeast, mammals and plants. The nature of the complexes formed by AAA/FtsH proteases and the current view on their involvement in degradation of non-native organellar proteins or assembly of membrane complexes are discussed. Additional functions of AAA proteases not directly connected with protein quality control found in yeast and mammals but not yet in plants are also described shortly. Following an overview of the molecular functions of the AAA/FtsH proteases we discuss physiological consequences of their inactivation in yeast, mammals and plants. The molecular basis of phenotypes associated with inactivation of the AAA/FtsH proteases is not fully understood yet, with the notable exception of those observed in m-AAA protease-deficient yeast cells, which are caused by impaired maturation of mitochondrial ribosomal protein. Finally, examples of cytosolic events affecting protein quality control in mitochondria and chloroplasts are given. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Hanna Janska
- Department of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|
46
|
Nagao R, Tomo T, Noguchi E, Suzuki T, Okumura A, Narikawa R, Enami I, Ikeuchi M. Proteases are associated with a minor fucoxanthin chlorophyll a/c-binding protein from the diatom, Chaetoceros gracilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2110-7. [DOI: 10.1016/j.bbabio.2012.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
47
|
Kato Y, Sun X, Zhang L, Sakamoto W. Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:1428-39. [PMID: 22698923 PMCID: PMC3425188 DOI: 10.1104/pp.112.199042] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Light energy constantly damages photosynthetic apparatuses, ultimately causing impaired growth. Particularly, the sessile nature of higher plants has allowed chloroplasts to develop unique mechanisms to alleviate the irreversible inactivation of photosynthesis. Photosystem II (PSII) is known as a primary target of photodamage. Photosynthetic organisms have evolved the so-called PSII repair cycle, in which a reaction center protein, D1, is degraded rapidly in a specific manner. Two proteases that perform processive or endopeptidic degradation, FtsH and Deg, respectively, participate in this cycle. To examine the cooperative D1 degradation by these proteases, we engaged Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) and Deg5/Deg8 (deg5 deg8) in detecting D1 cleaved fragments. We detected several D1 fragments only under the var2 background, using amino-terminal or carboxyl-terminal specific antibodies of D1. The appearance of these D1 fragments was inhibited by a serine protease inhibitor and by deg5 deg8 mutations. Given the localization of Deg5/Deg8 on the luminal side of thylakoid membranes, we inferred that Deg5/Deg8 cleaves D1 at its luminal loop connecting the transmembrane helices C and D and that the cleaved products of D1 are the substrate for FtsH. These D1 fragments detected in var2 were associated with the PSII monomer, dimer, and partial disassembly complex but not with PSII supercomplexes. It is particularly interesting that another processive protease, Clp, was up-regulated and appeared to be recruited from stroma to the thylakoid membrane in var2, suggesting compensation for FtsH deficiency. Together, our data demonstrate in vivo cooperative degradation of D1, in which Deg cleavage assists FtsH processive degradation under photoinhibitory conditions.
Collapse
|
48
|
Anatomical and Physiological Differences and Differentially Expressed Genes Between the Green and Yellow Leaf Tissue in a Variegated Chrysanthemum Variety. Mol Biotechnol 2012; 54:393-411. [PMID: 22782702 DOI: 10.1007/s12033-012-9578-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Peng Y, Zhang Y, Lv J, Zhang J, Li P, Shi X, Wang Y, Zhang H, He Z, Teng S. Characterization and fine mapping of a novel rice albino mutant low temperature albino 1. J Genet Genomics 2012; 39:385-96. [PMID: 22884095 DOI: 10.1016/j.jgg.2012.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 11/16/2022]
Abstract
Albino mutants are useful genetic resource for studying chlorophyll biosynthesis and chloroplast development and cloning genes involved in these processes in plants. Here we report a novel rice mutant low temperature albino 1 (lta1) that showed albino leaves before 4-leaf stage when grown under temperature lower than 20°C, but developed normal green leaves under temperature higher than 24°C or similar morphological phenotypes in dark as did the wild-type (WT). Our analysis showed that the contents of chlorophylls and chlorophyll precursors were remarkably decreased in the lta1 mutant under low temperature compared to WT. Transmission electron microscope observation revealed that chloroplasts were defectively developed in the albino lta1 leaves, which lacked of well-stacked granum and contained less stroma lamellae. These results suggested that the lta1 mutation may delay the light-induced thylakoid assembly under low temperature. Genetic analysis indicated that the albino phenotype was controlled by a single recessive locus. Through map-based approach, we finally located the Lta1 gene to a region of 40.3 kb on the short arm of chromosome 11. There are 8 predicted open reading frames (ORFs) in this region and two of them were deleted in lta1 genome compared with the WT genome. The further characterization of the Lta1 gene would provide a good approach to uncover the novel molecular mechanisms involved in chloroplast development under low temperature stress.
Collapse
Affiliation(s)
- Yu Peng
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tang LY, Matsushima R, Sakamoto W. Mutations defective in ribonucleotide reductase activity interfere with pollen plastid DNA degradation mediated by DPD1 exonuclease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:637-49. [PMID: 22239102 DOI: 10.1111/j.1365-313x.2012.04904.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organellar DNAs in mitochondria and plastids are present in multiple copies and make up a substantial proportion of total cellular DNA despite their limited genetic capacity. We recently demonstrated that organellar DNA degradation occurs during pollen maturation, mediated by the Mg(2+) -dependent organelle exonuclease DPD1. To further understand organellar DNA degradation, we characterized a distinct mutant (dpd2). In contrast to the dpd1 mutant, which retains both plastid and mitochondrial DNAs, dpd2 showed specific accumulation of plastid DNAs. Multiple abnormalities in vegetative and reproductive tissues of dpd2 were also detected. DPD2 encodes the large subunit of ribonucleotide reductase, an enzyme that functions at the rate-limiting step of de novo nucleotide biosynthesis. We demonstrated that the defects in ribonucleotide reductase indirectly compromise the activity of DPD1 nuclease in plastids, thus supporting a different regulation of organellar DNA degradation in pollen. Several lines of evidence provided here reinforce our previous conclusion that the DPD1 exonuclease plays a central role in organellar DNA degradation, functioning in DNA salvage rather than maternal inheritance during pollen development.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Fluorescence
- Mutation
- Phenotype
- Plants, Genetically Modified
- Plastids/genetics
- Pollen/genetics
- Pollen/ultrastructure
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleotide Reductases/genetics
- Ribonucleotide Reductases/metabolism
Collapse
Affiliation(s)
- Lay Yin Tang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | | | | |
Collapse
|