1
|
Cauz-Santos LA, da Costa ZP, Sader MA, van den Berg C, Vieira MLC. Chloroplast genomic insights into adaptive evolution and rapid radiation in the genus Passiflora (Passifloraceae). BMC PLANT BIOLOGY 2025; 25:192. [PMID: 39948451 PMCID: PMC11823247 DOI: 10.1186/s12870-025-06210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Chloroplasts are essential organelles in plants and eukaryotic algae, responsible for photosynthesis, fatty acid synthesis, amino acid production, and stress responses. The genus Passiflora, known for its species diversity and dynamic chloroplast (cp) genome evolution, serves as an excellent model for studying structural variations. This study investigates evolutionary relationships within Passiflora by sequencing 11 new chloroplast genomes, assessing selective pressures on cp genes, and comparing plastid and nuclear phylogenies. Passiflora cp genomes showed significant variations in size, gene content, and structure, ranging from 132,736 to 163,292 base pairs, especially in Decaloba. Structural rearrangements and species-specific repeat patterns were identified. Selective pressure tests revealed significant adaptive evolution in certain lineages, with several genes, including clpP and petL, under positive selection. Phylogenetic analyses confirmed the monophyly of subgenera Astrophea, Passiflora, and Decaloba, while Deidamioides appeared polyphyletic. Nuclear phylogenetic analysis based on 35S rDNA sequences supported the monophyly of Astrophea but showed inconsistencies within subgenus Passiflora compared to cp genome data. This study highlights the evolutionary complexity of Passiflora cp genomes, demonstrating significant structural variations and adaptive evolution. The findings underscore the effectiveness of plastid phylogenomics in resolving phylogenetic relationships and provide insights into adaptive mechanisms shaping cp genome diversity in angiosperms.
Collapse
Affiliation(s)
| | - Zirlane Portugal da Costa
- Departmento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Mariela Analía Sader
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cássio van den Berg
- Departmento de Ciencias Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departmento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
2
|
Wang T, Feng H, Zhu H, Zhong B. Molecular phylogeny and comparative chloroplast genome analysis of the type species Crucigenia quadrata. BMC PLANT BIOLOGY 2025; 25:64. [PMID: 39815182 PMCID: PMC11737255 DOI: 10.1186/s12870-025-06070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial. Additionally, there are currently no reports on the chloroplast genome of Crucigenia. RESULTS In this study, we utilize molecular phylogenetics and comparative genomics to show that C. quadrata belongs to Chlorophyceae rather than Trebouxiophyceae. The Bayesian and maximum likelihood (ML) phylogenetic trees support a monophyletic group of C. quadrata and Scenedesmaceae (Chlorophyceae) species. Our study presents the first complete chloroplast genome of C. quadrata, which is 197,184 bp in length and has a GC content of 31%. It has a typical quadripartite structure, and the chloroplast genome codons exhibit usage bias. Nucleotide diversity analysis highlights six genes (ccsA, psbF, chlN, cemA, rps3, rps18) as hotspots for genetic variation. Coding gene sequence divergence analyses indicate that four genes (cemA, clpP, psaA, rps3) are subject to positive selection. CONCLUSIONS The determination of the phylogenetic status and the comparative chloroplast genomic analyses of C. quadrata will not only be useful in enhancing our understanding of the intricacy of Crucigenia taxonomy but also provide the important basis for studying the evolution of the incertae sedis taxa within Trebouxiophyceae.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Feng
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Wang R, Feng Y, Peng J, Tan C, Zhou J, Hai Y, Luo Y, Hao D, Li C, Tang W. Genetic characteristics of the diploid offsprings in potato Cooperation 88 induced by diploid donor IVP101. FRONTIERS IN PLANT SCIENCE 2024; 15:1486549. [PMID: 39582630 PMCID: PMC11582670 DOI: 10.3389/fpls.2024.1486549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
Diploid lines (2n = 2x = 24) derived from tetraploid potato cultivars have been utilized to hybridize with wild diploid potato species, yielding fertile offsprings. Utilizing the pollen of Solanum tuberosum Group Phureja, such as IVP101, IVP35 and IVP48, as an inducer for wide hybridization with tetraploid cultivars represents a common method for producing diploids. In this study, we created a distant hybridization induced population of tetraploid potato cultivar Cooperation 88 (C88) and IVP101, and screened all diploids using flow cytometry and ploidyNGS. We investigated the genetic composition of chloroplast and nuclear genomes in 43 diploid offsprings. We found that all diploid offsprings share the same chloroplast genomic sequence as C88 and no evidence of paternal chloroplast inheritance was found. Used SNP data to calculate the theoretical introgression index of IVP101 with diploid offsprings. The results showed that the inducer's nuclear genome was involved in the nuclear genome of the diploid offsprings with purple stem trait, indicating that the inducer nuclear genome was not completely eliminated in the nuclear genome during distant hybridization. Furthermore, we conducted a comparative analysis of the chloroplast genomes of the Solanum genus. The results indicated that (1) the chloroplast genome sizes of the 14 Solanum species ranged from 154,289 bp to 155,614 bp, with a total number of genes ranging 128-141, and with ycf1 and rps19 pseudogenes appearing at the IRB/SSC and IRA/LSC boundaries, respectively; (2) eight divergent hotspots distributed in the LSC and SSC regions of the Solanum chloroplast genomes were identified; (3) positive selection was detected in the clpP, rbcL, rps15, and rps4 genes, likely contributing to the adaptation of Solanum species to different habitats. These results reveal the variation and evolutionary characteristics of chloroplast genomes in Solanum plants.
Collapse
Affiliation(s)
- Rongyan Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yan Feng
- School of Economics, Yunnan Normal University, Kunming, China
| | - Jing Peng
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Chen Tan
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Jian Zhou
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yang Hai
- Yunnan YinMore Modern Agriculture Co., Ltd., Kunming, China
| | - Youwei Luo
- Dehong Agricultural Technology Extension Center, Mangshi, China
| | - Dahai Hao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Canhui Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wei Tang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
4
|
Wu W, Shao M, Qi J, Jin G, Zhang R, Yao Y, Jiang C. Integrating genetic analysis of germplasm wealth for enhanced selection and improvement in olive (Olea europaea L.): insights from leaves. PLANT CELL REPORTS 2024; 43:247. [PMID: 39347829 DOI: 10.1007/s00299-024-03323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE High-throughput next-generation sequencing of 161 olive germplas. 33 samples were selected as core olive germplasm and Fingerprints were constructed. After GWAS analysis of olive leaf shape, 14 candidate genes were localized. Olive (Olea europaea L.) has been introduced to China since the 1960s. After a prolonged period of variation and domestication, there is a lack of comprehensive research on its genetics. The olive oil directly extracted from Olea europaea L. is recognized as 'liquid gold', nevertheless, people constantly overlook the valuable wealth of olive leaves. High-throughput next-generation sequencing was performed on 161 olive germplasm to analyze the kinship, genetic structure and diversity of olives, and the core germplasm of olives were selected and fingerprints were constructed. Meanwhile, Genome-wide association analysis (GWAS) was performed to locate the gene for regulating olive leaf shape. Herein, the results parsed that most of the Chinese olive germplasm was more closely related to the Italian germplasm. A wealth of hybridized germplasm possessed high genetic diversity and had the potential to be used as superior parental material for olive germplasm. A total of 33 samples were selected and characterized as core germplasm of olive and Fingerprints were also constructed. A total of 14 candidate genes were localized after GWAS analysis of four olive leaf shape phenotypes, including leaf shape, leaf curvature shape, leaf tip and leaf base shape. Collectively, this study revealed the genetic basis of olives in China and also succeeded in constructing the core germplasm that stands for the genetic diversity of olives, which can contribute to the scientific and effective collection and preservation of olive germplasm resources, and provide a scientific basis for the in-depth excavation and utilization of genes regulating olive leaf shape.
Collapse
Affiliation(s)
- Wenjun Wu
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jianli Qi
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Gaoming Jin
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Rong Zhang
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Yufang Yao
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China
| | - Chengying Jiang
- Gansu Research Academy of Forestry Science and Technology, Lanzhou, Gansu Province, 730020, People's Republic of China.
| |
Collapse
|
5
|
Hossain A, Gnanagobal H, Cao T, Chakraborty S, Chukwu-Osazuwa J, Soto-Dávila M, Vasquez I, Santander J. Role of cold shock proteins B and D in Aeromonas salmonicida subsp. salmonicida physiology and virulence in lumpfish ( Cyclopterus lumpus). Infect Immun 2024; 92:e0001124. [PMID: 38920386 PMCID: PMC11320987 DOI: 10.1128/iai.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Collapse
Affiliation(s)
- Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| |
Collapse
|
6
|
Nguyen HD, Do HDK, Vu MT. Comparative genomics revealed new insights into the plastome evolution of Ludwigia (Onagraceae, Myrtales). Sci Prog 2024; 107:368504241272741. [PMID: 39150375 PMCID: PMC11329976 DOI: 10.1177/00368504241272741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The primrose-willow (Ludwigia L.), a well-defined genus of the Onagraceae family, comprises 87 species widely distributed worldwide. In this study, we sequenced and characterized the complete chloroplast (cp) genomes of three species in the genus, including Ludwigia adscendens, Ludwigia hyssopifolia, and Ludwigia prostrata. Three Ludwigia cp genomes ranged from 158,354 to 159,592 bp in size, and each contained 113 genes, including 79 unique protein-coding genes (PCGs), four rRNA genes, and 30 tRNA genes. A comparison of the Ludwigia cp genomes revealed that they were highly conserved in gene composition, gene orientation, and GC content. Moreover, we compared the structure of cp genomes and reconstructed phylogenetic relationships with related species in the Onagraceae family. Regarding contraction/expansion of inverted repeat (IR) region, two kinds of expansion IR region structures were found in Oenothera, Chamaenerion, and Epilobium genera, with primitive IR structures in Ludwigia and Circeae genera. The regions clpP, ycf2, and ycf1 genes possessed highly divergent nucleotides among all available cp genomes of the Onagraceae family. The phylogenetic reconstruction using 79 PCGs from 39 Onagraceae cp genomes inferred that Ludwigia (including L. adscendens, L. hyssopifolia, L. prostrata, and Ludwigia octovalvis) clade was monophyletic and well-supported by the bootstrap and posterior probability values. This study provides the reference cp genomes of three Ludwigia species, which can be used for species identification and phylogenetic reconstruction of Ludwigia and Onagraceae taxa.
Collapse
Affiliation(s)
- Hoang Danh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Minh Thiet Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Wang F, Liu P, Li J, Xu S, Chen H, Xie L. Effects of four antibiotics on the photosynthetic light reactions in the green alga Chlorella pyrenoidosa. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109927. [PMID: 38643813 DOI: 10.1016/j.cbpc.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.
Collapse
Affiliation(s)
- Feifan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jiajun Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Siting Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
8
|
Cao J, Wang H, Cao Y, Kan S, Li J, Liu Y. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats. Int J Mol Sci 2024; 25:2278. [PMID: 38396955 PMCID: PMC10888665 DOI: 10.3390/ijms25042278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The plastid genomes (plastomes) of angiosperms are typically highly conserved, with extreme reconfiguration being uncommon, although reports of such events have emerged in some lineages. In this study, we conducted a comprehensive comparison of the complete plastomes from twenty-two species, covering seventeen genera from three subfamilies (Fumarioideae, Hypecooideae, and Papaveroideae) of Papaveraceae. Our results revealed a high level of variability in the plastid genome size of Papaveraceae, ranging from 151,864 bp to 219,144 bp in length, which might be triggered by the expansion of the IR region and a large number of repeat sequences. Moreover, we detected numerous large-scale rearrangements, primarily occurring in the plastomes of Fumarioideae and Hypecooideae. Frequent gene loss or pseudogenization were also observed for ndhs, accD, clpP, infA, rpl2, rpl20, rpl32, rps16, and several tRNA genes, particularly in Fumarioideae and Hypecooideae, which might be associated with the structural variation in their plastomes. Furthermore, we found that the plastomes of Fumarioideae exhibited a higher GC content and more repeat sequences than those of Papaveroideae. Our results showed that Papaveroideae generally displayed a relatively conserved plastome, with the exception of Eomecon chionantha, while Fumarioideae and Hypecooideae typically harbored highly reconfigurable plastomes, showing high variability in the genome size, gene content, and gene order. This study provides insights into the plastome evolution of Papaveraceae and may contribute to the development of effective molecular markers.
Collapse
Affiliation(s)
- Jialiang Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Yanan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China;
| | - Jiamei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanyan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| |
Collapse
|
9
|
Wu J, Zhang J, Guo X, Yu N, Peng D, Xing S. Comprehensive analysis of complete chloroplast genome sequence of Plantago asiatica L. (Plantaginaceae). PLANT SIGNALING & BEHAVIOR 2023; 18:2163345. [PMID: 36592637 PMCID: PMC9809945 DOI: 10.1080/15592324.2022.2163345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. is a representative individual species of Plantaginaceae, whose high reputation is owed to its edible and medicinal values. However, the phylogeny and genes of the P. asiatica chloroplast have not yet been well described. Here we report the findings of a comprehensive analysis of the P. asiatica chloroplast genome. The P. asiatica chloroplast genome is 164,992 bp, circular, and has a GC content of 37.98%. The circular genome contains 141 genes, including 8 rRNAs, 38 tRNAs, and 95 protein-coding genes. Seventy-two simple sequence repeats are detected. Comparative chloroplast genome analysis of six related species suggests that a higher similarity exists in the coding region than the non-coding region, and differences in the degree of preservation is smaller between P. asiatica and Plantago depressa than among others. Our phylogenetic analysis illustrates P. asiatica has a relatively close relationship with P. depressa, which was also divided into different clades with Plantago ovata and Plantago lagopus in the genus Plantago. This analysis of the P. asiatica chloroplast genome contributes to an improved deeply understanding of the evolutionary relationships among Plantaginaceae.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
11
|
Winckler LI, Dissmeyer N. Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system. Biol Chem 2023; 404:499-511. [PMID: 36972025 DOI: 10.1515/hsz-2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Proteolysis is an essential process to maintain cellular homeostasis. One pathway that mediates selective protein degradation and which is in principle conserved throughout the kingdoms of life is the N-degron pathway, formerly called the ‘N-end rule’. In the cytosol of eukaryotes and prokaryotes, N-terminal residues can be major determinants of protein stability. While the eukaryotic N-degron pathway depends on the ubiquitin proteasome system, the prokaryotic counterpart is driven by the Clp protease system. Plant chloroplasts also contain such a protease network, which suggests that they might harbor an organelle specific N-degron pathway similar to the prokaryotic one. Recent discoveries indicate that the N-terminal region of proteins affects their stability in chloroplasts and provides support for a Clp-mediated entry point in an N-degron pathway in plastids. This review discusses structure, function and specificity of the chloroplast Clp system, outlines experimental approaches to test for an N-degron pathway in chloroplasts, relates these aspects into general plastid proteostasis and highlights the importance of an understanding of plastid protein turnover.
Collapse
Affiliation(s)
- Lioba Inken Winckler
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| |
Collapse
|
12
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
13
|
Zeng Q, Chen M, Wang S, Xu X, Li T, Xiang Z, He N. Comparative and phylogenetic analyses of the chloroplast genome reveal the taxonomy of the Morus genus. FRONTIERS IN PLANT SCIENCE 2022; 13:1047592. [PMID: 36507423 PMCID: PMC9729782 DOI: 10.3389/fpls.2022.1047592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Mulberry (genus Morus) is an economically important woody plant with an altered ploidy level. The variable number of Morus species recognized by different studies indicates that the genus is in need of revision. In this study, the chloroplast (CP) genomes of 123 Morus varieties were de novo assembled and systematically analyzed. The 123 varieties represented six Morus species, namely, Morus alba, Morus nigra, Morus notabilis, Morus rubra, Morus celtidifolia, and Morus serrata. The Morus CP genome was found to be 158,969~159,548 bp in size with 125 genes, including 81 protein coding, 36 tRNA, and 8 rRNA genes. The 87 out of 123 mulberry accessions were assigned to 14 diverse groups with identical CP genome, which indicated that they are maternally inherited and share 14 common ancestors. Then 50 diverse CP genomes occurred in 123 mulberry accessions for further study. The CP genomes of the Morus genus with a quadripartite structure have two inverted repeat (IR) regions (25,654~25,702 bp) dividing the circular genome into a large single-copy (LSC) region (87,873~88,243 bp) and small single-copy (SSC) region (19,740~19,994 bp). Analysis of the phylogenetic tree constructed using the complete CP genome sequences of Morus revealed a monophyletic genus and that M. alba consisted of two clades, M. alba var. alba and M. alba var. multicaulis. The Japanese cultivated germplasms were derived from M. alba var. multicaulis. We propose that the Morus genus be classified into six species, M. nigra, M. notabilis, M. serrata, M. celtidifolia, M. rubra, and M. alba with two subspecies, M. alba var. alba and M. alba var. multicaulis. Our findings provide a valuable resource for the classification, domestication, and breeding improvement of mulberry.
Collapse
|
14
|
Chen C, Miao Y, Luo D, Li J, Wang Z, Luo M, Zhao T, Liu D. Sequence Characteristics and Phylogenetic Analysis of the Artemisia argyi Chloroplast Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:906725. [PMID: 35795352 PMCID: PMC9252292 DOI: 10.3389/fpls.2022.906725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 06/03/2023]
Abstract
Artemisia argyi Levl. et Van is an important Asteraceae species with a high medicinal value. There are abundant A. argyi germplasm resources in Asia, especially in China, but the evolutionary relationships of these varieties and the systematic localization of A. argyi in the family Asteraceae are still unclear. In this study, the chloroplast (cp) genomes of 72 A. argyi varieties were systematically analyzed. The 72 varieties originated from 47 regions in China at different longitudes, latitudes and altitudes, and included both wild and cultivated varieties. The A. argyi cp genome was found to be ∼151 kb in size and to contain 114 genes, including 82 protein-coding, 28 tRNA, and 4 rRNA genes. The number of short sequence repeats (SSRs) in A. argyi cp genomes ranged from 35 to 42, and most of them were mononucleotide A/T repeats. A total of 196 polymorphic sites were detected in the cp genomes of the 72 varieties. Phylogenetic analysis demonstrated that the genetic relationship between A. argyi varieties had a weak relationship with their geographical distribution. Furthermore, inverted repeat (IR) boundaries of 10 Artemisia species were found to be significantly different. A sequence divergence analysis of Asteraceae cp genomes showed that the variable regions were mostly located in single-copy (SC) regions and that the coding regions were more conserved than the non-coding regions. A phylogenetic tree was constructed using 43 protein-coding genes common to 67 Asteraceae species. The resulting tree was consistent with the traditional classification system; Artemisia species were clustered into one group, and A. argyi was shown to be closely related to Artemisia lactiflora and Artemisia montana. In summary, this study systematically analyzed the cp genome characteristics of A. argyi and compared cp genomes of Asteraceae species. The results provide valuable information for the definitive identification of A. argyi varieties and for the understanding of the evolutionary relationships between Asteraceae species.
Collapse
|
15
|
Comparative Plastome Analysis of Three Amaryllidaceae Subfamilies: Insights into Variation of Genome Characteristics, Phylogeny, and Adaptive Evolution. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3909596. [PMID: 35372568 PMCID: PMC8970886 DOI: 10.1155/2022/3909596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
In the latest APG IV classification system, Amaryllidaceae is placed under the order of Asparagus and includes three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, which include many economically important crops. With the development of molecular phylogeny, research on the phylogenetic relationship of Amaryllidaceae has become more convenient. However, the current comparative analysis of Amaryllidaceae at the whole chloroplast genome level is still lacking. In this study, we sequenced 18 Allioideae plastomes and combined them with publicly available data (a total of 41 plastomes), including 21 Allioideae species, 1 Agapanthoideae species, 14 Amaryllidoideae species, and 5 Asparagaceae species. Comparative analyses were performed including basic characteristics of genome structure, codon usage, repeat elements, IR boundary, and genome divergence. Phylogenetic relationships were detected using single-copy genes (SCGs) and ribosomal internal transcribed spacer sequences (ITS), and the branch-site model was also employed to conduct the positive selection analysis. The results indicated that all Amaryllidaceae species showed a highly conserved typical tetrad structure. The GC content and five codon usage indexes in Allioideae species were lower than those in the other two subfamilies. Comparison analysis of Bayesian and ML phylogeny based on SCGs strongly supports the monophyly of three subfamilies and the sisterhood among them. Besides, positively selected genes (PSGs) were detected in each of the three subfamilies. Almost all genes with significant posterior probabilities for codon sites were associated with self-replication and photosynthesis. Our study investigated the three subfamilies of Amaryllidaceae at the whole chloroplast genome level and suggested the key role of selective pressure in the adaptation and evolution of Amaryllidaceae.
Collapse
|
16
|
Dalla Costa TP, Silva MC, de Santana Lopes A, Gomes Pacheco T, de Oliveira JD, de Baura VA, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes. PLANTA 2022; 255:57. [PMID: 35113261 DOI: 10.1007/s00425-022-03841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The plastome of Melocactus glaucescens shows unique rearrangements, IR expansion, and unprecedented gene losses in Cactaceae. Our data indicate tRNA import from the cytosol to the plastids in this species. Cactaceae represents one of the richest families in keystone species of arid and semiarid biomes. This family shows various specific features comprehending morphology, anatomy, and metabolism, which allow them to grow under unfavorable environmental conditions. The subfamily Cactoideae contains the most divergence of species, which are highly variable in growth habit and morphology. This subfamily includes the endangered species Melocactus glaucescens (tribe Cereeae), which is a cactus endemic to the biome Caatinga in Brazil. Aiming to analyze the plastid evolution and develop molecular markers, we sequenced and analyzed in detail the plastome of M. glaucescens. Our analyses revealed that the M. glaucescens plastome is the most divergent among the species of the family Cactaceae sequenced so far. We characterized here unique rearrangements, expanded IRs containing an unusual set of genes, and several gene losses. Some genes related to the ndh complex were lost during the plastome evolution, while others have lost their functionality. Additionally, the loss of three tRNA genes (trnA-UGC, trnV-UAC, and trnV-GAC) suggests tRNA import from the cytosol to the plastids in M. glaucescens. Moreover, we identified high gene divergence, several putative positive signatures, and possible unique RNA-editing sites. Furthermore, we mapped 169 SSRs in the plastome of M. glaucescens, which are helpful to access the genetic diversity of natural populations and conservation strategies. Finally, our data provide new insights into the evolution of plastids in Cactaceae, which is an outstanding lineage adapted to extreme environmental conditions and a notorious example of the atypical evolution of plastomes.
Collapse
Affiliation(s)
- Tanara P Dalla Costa
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maria C Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - José D de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Valter A de Baura
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
17
|
Abdel-Ghany SE, LaManna LM, Harroun HT, Maliga P, Sloan DB. Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. PLANT MOLECULAR BIOLOGY 2022; 108:277-287. [PMID: 35039977 DOI: 10.1007/s11103-022-01241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Replacing the native clpP1 gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution. The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native clpP1 gene in tobacco (Nicotiana tabacum) with counterparts from another angiosperm genus (Silene) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic clpP1 replacement from a slowly evolving donor species (S. latifolia) to homoplasmy but that clpP1 copies from Silene species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco clpP1 gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Lisa M LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Haleakala T Harroun
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Escandón M, Bigatton ED, Guerrero-Sánchez VM, Hernández-Lao T, Rey MD, Jorrín-Novo JV, Castillejo MA. Identification of Proteases and Protease Inhibitors in Seeds of the Recalcitrant Forest Tree Species Quercus ilex. FRONTIERS IN PLANT SCIENCE 2022; 13:907042. [PMID: 35832232 PMCID: PMC9271950 DOI: 10.3389/fpls.2022.907042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 05/09/2023]
Abstract
Proteases and protease inhibitors have been identified in the recalcitrant species Quercus ilex using in silico and wet methods, with focus on those present in seeds during germination. In silico analyses showed that the Q. ilex transcriptome database contained 2,240 and 97 transcripts annotated as proteases and protease inhibitors, respectively. They belonged to the different families according to MEROPS, being the serine and metallo ones the most represented. The data were compared with those previously reported for other Quercus species, including Q. suber, Q. lobata, and Q. robur. Changes in proteases and protease inhibitors alongside seed germination in cotyledon and embryo axis tissues were assessed using proteomics and in vitro and in gel activity assays. Shotgun (LC-MSMS) analysis of embryo axes and cotyledons in nonviable (NV), mature (T1) and germinated (T3) seeds allowed the identification of 177 proteases and 12 protease inhibitors, mostly represented by serine and metallo types. Total protease activity, as determined by in vitro assays using azocasein as substrate, was higher in cotyledons than in embryo axes. There were not differences in activity among cotyledon samples, while embryo axis peaked at germinated T4 stage. Gel assays revealed the presence of protease activities in at least 10 resolved bands, in the Mr range of 60-260 kDa, being some of them common to cotyledons and embryo axes in either nonviable, mature, and germinated seeds. Bands showing quantitative or qualitative changes upon germination were observed in embryo axes but not in cotyledons at Mr values of 60-140 kDa. Proteomics shotgun analysis of the 10 bands with protease activity supported the results obtained in the overall proteome analysis, with 227 proteases and 3 protease inhibitors identified mostly represented by the serine, cysteine, and metallo families. The combined use of shotgun proteomics and protease activity measurements allowed the identification of tissue-specific (e.g., cysteine protease inhibitors in embryo axes of mature acorns) and stage-specific proteins (e.g., those associated with mobilization of storage proteins accumulated in T3 stage). Those proteins showing differences between nonviable and viable seeds could be related to viability, and those variables between mature and germinated could be associated with the germination process. These differences are observed mostly in embryo axes but not in cotyledons. Among them, those implicated in mobilization of reserve proteins, such as the cathepsin H cysteine protease and Clp proteases, and also the large number of subunits of the CNS and 26S proteasome complex differentially identified in embryos of the several stages suggests that protein degradation via CNS/26S plays a major role early in germination. Conversely, aspartic proteases such as nepenthesins were exclusively identified in NV seeds, so their presence could be used as indicator of nonviability.
Collapse
Affiliation(s)
- Monica Escandón
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Ezequiel D. Bigatton
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Agricultural Microbiology, Faculty of Agricultural Science, National University of Córdoba, CONICET, Córdoba, Argentina
| | - Victor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Maria-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Jesus V. Jorrín-Novo,
| | - Maria Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- *Correspondence: Maria Angeles Castillejo,
| |
Collapse
|
19
|
Raman G, Nam GH, Park S. Extensive reorganization of the chloroplast genome of Corydalis platycarpa: A comparative analysis of their organization and evolution with other Corydalis plastomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1043740. [PMID: 37090468 PMCID: PMC10115153 DOI: 10.3389/fpls.2022.1043740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 05/03/2023]
Abstract
Introduction The chloroplast (cp) is an autonomous plant organelle with an individual genome that encodes essential cellular functions. The genome architecture and gene content of the cp is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Methods Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Results Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. By contrast, the plastomes of its closely related subfamily Papaveroideae and other Ranunculales taxa are highly conserved. On the other hand, the synapomorphy characteristics of both accD and the ndh gene loss events happened in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The Corydalis-sub clade species (ndh lost) are distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The phylogenetic analysis and divergence time estimation were also employed for the Corydalis species. Discussion The divergence time of the ndh gene in the Corydalis sub-clade species (44.31 - 15.71 mya) coincides very well with the uplift of the Qinghai-Tibet Plateau in Oligocene and Miocene periods, and maybe during this period, it has probably triggered the radiation of the Corydalis species. Conclusion To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Gi-Heum Nam
- Plants Resource Division, Biological Resources Research Department, National Institute of Biological Resources, Seo-gu, Incheon, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| |
Collapse
|
20
|
Park S, Jun M, Park S, Park S. Lineage-Specific Variation in IR Boundary Shift Events, Inversions, and Substitution Rates among Caprifoliaceae s.l. (Dipsacales) Plastomes. Int J Mol Sci 2021; 22:ijms221910485. [PMID: 34638831 PMCID: PMC8508905 DOI: 10.3390/ijms221910485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/18/2022] Open
Abstract
Caprifoliaceae s.l. plastid genomes (plastomes) show that one inversion and two inverted repeat boundary shifts occurred in the common ancestor of this family, after which the plastomes are generally conserved. This study reports plastome sequences of five additional species, Fedia cornucopiae, Valeriana fauriei, and Valerianella locusta from the subfamily Valerianoideae, as well as Dipsacus japonicus and Scabiosa comosa from the subfamily Dipsacoideae. Combined with the published plastomes, these plastomes provide new insights into the structural evolution of plastomes within the family. Moreover, the three plastomes from the subfamily Valerianoideae exhibited accelerated nucleotide substitution rates, particularly at synonymous sites, across the family. The patterns of accD sequence divergence in the family are dynamic with structural changes, including interruption of the conserved domain and increases in nonsynonymous substitution rates. In particular, the Valeriana accD gene harbors a large insertion of amino acid repeat (AAR) motifs, and intraspecific polymorphism with a variable number of AARs in the Valeriana accD gene was detected. We found a correlation between intron losses and increased ratios of nonsynonymous to synonymous substitution rates in the clpP gene with intensified positive selection. In addition, two Dipsacoideae plastomes revealed the loss of the plastid-encoded rps15, and a potential functional gene transfer to the nucleus was confirmed.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Minji Jun
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - Sunmi Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea; (M.J.); (S.P.)
- Correspondence: ; Tel.: +82-53-810-2377
| |
Collapse
|
21
|
Wang ZF, Chang LW, Cao HL. The complete chloroplast genome of Rhododendron kawakamii (Ericaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2538-2540. [PMID: 34377822 PMCID: PMC8330798 DOI: 10.1080/23802359.2021.1959439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rhododendron kawakamii is endemic in Taiwan island and is a unique and epiphytic species. Here, we report its complete chloroplast genome. The length of the R. kawakamii chloroplast genome is 230,777 bp, with a large single-copy region of 146,155 bp, a small single-copy region of 72,082 bp, and a pair of inverted repeat regions (IRA) of 6,270 bp each. The genome contains 77 protein-coding genes, 29 transfer RNA genes, and four ribosomal RNA genes. In addition, the genome contains 81 simple sequence repeats. Phylogenetic analysis revealed that R. kawakamii is genetically related to R. datiandingense.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou
| | - Li-Wan Chang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei
| | - Hong-Lin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou
| |
Collapse
|
22
|
Li X, Zhao Y, Tu X, Li C, Zhu Y, Zhong H, Liu ZJ, Wu S, Zhai J. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers. PLANT DIVERSITY 2021; 43:281-291. [PMID: 34485770 PMCID: PMC8390927 DOI: 10.1016/j.pld.2021.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 06/13/2023]
Abstract
The wood sorrel family, Oxalidaceae, is mainly composed of annual or perennial herbs, a few shrubs, and trees distributed from temperate to tropical zones. Members of Oxalidaceae are of high medicinal, ornamental, and economic value. Despite the rich diversity and value of Oxalidaceae, few molecular markers or plastomes are available for phylogenetic analysis of the family. Here, we reported four new whole plastomes of Oxalidaceae and compared them with plastomes of three species in the family, as well as the plastome of Rourea microphylla in the closely related family Connaraceae. The eight plastomes ranged in length from 150,673 bp (Biophytum sensitivum) to 156,609 bp (R. microphylla). Genome annotations revealed a total of 129-131 genes, including 83-84 protein-coding genes, eight rRNA genes, 37 tRNA genes, and two to three pseudogenes. Comparative analyses showed that the plastomes of these species have minor variations at the gene level. The smaller plastomes of herbs B. sensitivum and three Oxalis species are associated with variations in IR region sizes, intergenic region variation, and gene or intron loss. We identified sequences with high variation that may serve as molecular markers in taxonomic studies of Oxalidaceae. The phylogenetic trees of selected superrosid representatives based on 76 protein-coding genes corroborated the Oxalidaceae position in Oxalidales and supported it as a sister to Connaraceae. Our research also supported the monophyly of the COM (Celastrales, Oxalidales, and Malpighiales) clade.
Collapse
Affiliation(s)
- Xiaoping Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yamei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiongde Tu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengru Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yating Zhu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Zhong
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Tian X, Guo J, Zhou X, Ma K, Ma Y, Shi T, Shi Y. Comparative and Evolutionary Analyses on the Complete Plastomes of Five Kalanchoe Horticultural Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:705874. [PMID: 34512691 PMCID: PMC8429837 DOI: 10.3389/fpls.2021.705874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/02/2021] [Indexed: 05/11/2023]
Abstract
Many species of the genus Kalanchoe are important horticultural plants. They have evolved the Crassulacean acid metabolism (CAM) photosynthetic pathway to allow them to be better adapted to dry environments. Despite their importance, it is still debating whether Kalanchoe is monophyletic, and understanding the past diversification of this genus requires a tremendous amount of effort and work being devoted to the studies of morphological and molecular characters of this genus. However, molecular information, plastic sequence data, in particular, reported on Kalanchoe species is scarce, and this has posed a great challenge in trying to interpret the evolutionary history of this genus. In this study, plastomes of the five Kalanchoe species, including Kalanchoe daigremontiana, Kalanchoe delagoensis, Kalanchoe fedtschenkoi, Kalanchoe longiflora, and Kalanchoe pinnata, were sequenced and analyzed. The results indicate that the five plastomes are comparable in size, guanine-cytosine (GC) contents and the number of genes, which also demonstrate an insignificant difference in comparison with other species from the family Crassulaceae. About 224 simple sequence repeats (SSRs) and 144 long repeats were identified in the five plastomes, and most of these are distributed in the inverted repeat regions. In addition, highly divergent regions containing either single nucleotide polymorphism (SNP) or insertion or deletion (InDel) mutations are discovered, which could be potentially used for establishing phylogenetic relationships among members of the Kalanchoe genus in future studies. Furthermore, phylogenetic analyses suggest that Bryophyllum should be placed into one single genus as Kalanchoe. Further genomic analyses also reveal that several genes are undergone positive selection. Among them, 11 genes are involved in important cellular processes, such as cell survival, electron transfer, and may have played indispensable roles in the adaptive evolution of Kalanchoe to dry environments.
Collapse
Affiliation(s)
- Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojiao Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Ke Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Qinghai Normal University, Xining, China
| | - Tuansheng Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yuhua Shi
| |
Collapse
|
24
|
Breman FC, Snijder RC, Korver JW, Pelzer S, Sancho-Such M, Schranz ME, Bakker FT. Interspecific Hybrids Between Pelargonium × hortorum and Species From P. Section Ciconium Reveal Biparental Plastid Inheritance and Multi-Locus Cyto-Nuclear Incompatibility. FRONTIERS IN PLANT SCIENCE 2020; 11:614871. [PMID: 33391328 PMCID: PMC7775418 DOI: 10.3389/fpls.2020.614871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/23/2020] [Indexed: 06/01/2023]
Abstract
The genetics underlying Cyto-Nuclear Incompatibility (CNI) was studied in Pelargonium interspecific hybrids. We created hybrids of 12 closely related crop wild relatives (CWR) with the ornamental P. × hortorum. Ten of the resulting 12 (F1) interspecific hybrids segregate for chlorosis suggesting biparental plastid inheritance. The segregation ratios of the interspecific F2 populations show nuclear interactions of one, two, or three nuclear genes regulating plastid function dependent on the parents. We further validated that biparental inheritance of plastids is common in section Ciconium, using diagnostic PCR primers. Our results pave the way for using the diverse species from section Ciconium, each with its own set of characteristics, as novel sources of desired breeding traits for P. × hortorum cultivars.
Collapse
Affiliation(s)
- Floris C. Breman
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Joost W. Korver
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Sieme Pelzer
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Freek T. Bakker
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Nawae W, Yundaeng C, Naktang C, Kongkachana W, Yoocha T, Sonthirod C, Narong N, Somta P, Laosatit K, Tangphatsornruang S, Pootakham W. The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091247. [PMID: 32967378 PMCID: PMC7570002 DOI: 10.3390/plants9091247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutintorn Yundaeng
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Nattapol Narong
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
- Correspondence: or
| |
Collapse
|
26
|
Pacheco TG, Lopes ADS, Welter JF, Yotoko KSC, Otoni WC, Vieira LDN, Guerra MP, Nodari RO, Balsanelli E, Pedrosa FDO, de Souza EM, Rogalski M. Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features. PLANT MOLECULAR BIOLOGY 2020; 104:21-37. [PMID: 32533420 DOI: 10.1007/s11103-020-01020-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana Fátima Welter
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Karla Suemy Clemente Yotoko
- Laboratório de Bioinformática e Evolução, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia Vegetal, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Onofre Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Balsanelli
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
27
|
Protective Roles of Cytosolic and Plastidal Proteasomes on Abiotic Stress and Pathogen Invasion. PLANTS 2020; 9:plants9070832. [PMID: 32630761 PMCID: PMC7412383 DOI: 10.3390/plants9070832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023]
Abstract
Protein malfunction is typically caused by abiotic stressors. To ensure cell survival during conditions of stress, it is important for plant cells to maintain proteins in their respective functional conformation. Self-compartmentalizing proteases, such as ATP-dependent Clp proteases and proteasomes are designed to act in the crowded cellular environment, and they are responsible for degradation of misfolded or damaged proteins within the cell. During different types of stress conditions, the levels of misfolded or orphaned proteins that are degraded by the 26S proteasome in the cytosol and nucleus and by the Clp proteases in the mitochondria and chloroplasts increase. This allows cells to uphold feedback regulations to cellular-level signals and adjust to altered environmental conditions. In this review, we summarize recent findings on plant proteolytic complexes with respect to their protective functions against abiotic and biotic stressors.
Collapse
|
28
|
Zhu X, Pan Y, Liu Z, Liu Y, Zhong D, Duan Z, Tian Z, Zhu B, Zhou G. Mutation of YL Results in a Yellow Leaf with Chloroplast RNA Editing Defect in Soybean. Int J Mol Sci 2020; 21:E4275. [PMID: 32560081 PMCID: PMC7348699 DOI: 10.3390/ijms21124275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/12/2023] Open
Abstract
RNA editing plays a key role in organelle gene expression. Little is known about how RNA editing factors influence soybean plant development. Here, we report the isolation and characterization of a soybean yl (yellow leaf) mutant. The yl plants showed decreased chlorophyll accumulation, lower PS II activity, an impaired net photosynthesis rate, and an altered chloroplast ultrastructure. Fine mapping of YL uncovered a point mutation in Glyma.20G187000, which encodes a chloroplast-localized protein homologous to Arabidopsis thaliana (Arabidopsis) ORRM1. YL is mainly expressed in trifoliate leaves, and its deficiency affects the editing of multiple chloroplast RNA sites, leading to inferior photosynthesis in soybean. Taken together, these results demonstrate the importance of the soybean YL protein in chloroplast RNA editing and photosynthesis.
Collapse
Affiliation(s)
- Xiaowei Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
- Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yi Pan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
| | - Deyi Zhong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
| | - Guoan Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (X.Z.); (Y.P.); (Z.L.); (Y.L.); (D.Z.); (Z.D.); (Z.T.)
| |
Collapse
|
29
|
Zou M, Mu Y, Chai X, Ouyang M, Yu LJ, Zhang L, Meurer J, Chi W. The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development. Nucleic Acids Res 2020; 48:3195-3210. [PMID: 32095829 PMCID: PMC7102989 DOI: 10.1093/nar/gkaa129] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. The formation of methylated nucleotides is performed by a variety of RNA-methyltransferases. Chloroplasts of plant cells result from an endosymbiotic event and possess their own genome and ribosomes. However, enzymes responsible for rRNA methylation and the function of modified nucleotides in chloroplasts remain to be determined. Here, we identified an rRNA methyltransferase, CMAL (Chloroplast MraW-Like), in the Arabidopsis chloroplast and investigated its function. CMAL is the Arabidopsis ortholog of bacterial MraW/ RsmH proteins and accounts to the N4-methylation of C1352 in chloroplast 16S rRNA, indicating that CMAL orthologs and this methyl-modification nucleotide is conserved between bacteria and the endosymbiont-derived eukaryotic organelle. The knockout of CMAL in Arabidopsis impairs the chloroplast ribosome accumulation and accordingly reduced the efficiency of mRNA translation. Interestingly, the loss of CMAL leads not only to defects in chloroplast function, but also to abnormal leaf and root development and overall plant morphology. Further investigation showed that CMAL is involved in the plant development probably by modulating auxin derived signaling pathways. This study uncovered the important role of 16S rRNA methylation mediated by CMAL in chloroplast ribosome biogenesis and plant development.
Collapse
Affiliation(s)
- Meijuan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Mu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Zhou T, Ruhsam M, Wang J, Zhu H, Li W, Zhang X, Xu Y, Xu F, Wang X. The Complete Chloroplast Genome of Euphrasia regelii, Pseudogenization of ndh Genes and the Phylogenetic Relationships Within Orobanchaceae. Front Genet 2019; 10:444. [PMID: 31156705 PMCID: PMC6528182 DOI: 10.3389/fgene.2019.00444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Euphrasia (Orobanchaceae) is a genus which is widely distributed in temperate regions of the southern and northern hemisphere. The taxonomy of Euphrasia is still controversial due to the similarity of morphological characters and a lack of genomic resources. Here, we present the first complete chloroplast (cp) genome of this taxonomically challenging genus. The cp genome of Euphrasia regelii consists of 153,026 bp, including a large single-copy region (83,893 bp), a small single-copy region (15,801 bp) and two inverted repeats (26,666 bp). There are 105 unique genes, including 71 protein-coding genes, 30 tRNA and 4 rRNA genes. Although the structure and gene order is comparable to the one in other angiosperm cp genomes, genes encoding the NAD(P)H dehydrogenase complex are widely pseudogenized due to mutations resulting in frameshifts, and stop codon positions. We detected 36 dispersed repeats, 7 tandem repeats and 65 simple sequence repeat loci in the E. regelii plastome. Comparative analyses indicated that the cp genome of E. regelii is more conserved compared to other hemiparasitic taxa in the Pedicularideae and Buchnereae. No structural rearrangements or loss of genes were detected. Our analyses suggested that three genes (clpP, ycf2 and rps14) were under positive selection and other genes under purifying selection. Phylogenetic analysis of monophyletic Orobanchaceae based on 45 plastomes indicated a close relationship between E. regelii and Neobartsia inaequalis. In addition, autotrophic lineages occupied the earliest diverging branches in our phylogeny, suggesting that autotrophy is the ancestral trait in this parasitic family.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Jian Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Honghong Zhu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Wenli Li
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), School of Life Sciences, Northwest University, Xi’an, China
| | - Yucan Xu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Fusheng Xu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
31
|
Chen W, Sheng Z, Cai Y, Li Q, Wei X, Xie L, Jiao G, Shao G, Tang S, Wang J, Hu P. Rice Morphogenesis and Chlorophyll Accumulation Is Regulated by the Protein Encoded by NRL3 and Its Interaction With NAL9. FRONTIERS IN PLANT SCIENCE 2019; 10:175. [PMID: 30838015 PMCID: PMC6390494 DOI: 10.3389/fpls.2019.00175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Rice yield is closely related to plant leaf shape and chlorophyll content. In this study, we isolated and identified a narrow and rolled leaf mutant, temporarily named nrl3 with darker green leaves. Histological analysis showed that nrl3 has a reduced number of vascular bundles and undergoes abnormal abaxial sclerenchymatous cell differentiation. The NRL3 mutant phenotype was controlled by a single recessive gene, fine-mapped to a 221 kb interval between Indel3 and RM2322 on Chr3. There are 42 ORF in this interval. Sequencing identified an SNP mutant leading to a premature stop in ORF 18, the candidate gene. Bioinformation analysis indicated that NRL3 encodes a novel protein with unknown function. NRL3 is localized in cytoplasm, membrane and nucleus. Expression analysis of nrl3 showed that genes involved in chlorophyll synthesis were significantly up-regulated while those involved in chlorophyll degradation and programmed cell death (PCD) were significantly down-regulated. The expression levels of photosynthesis genes were also affected. Y2H and BIFC assays indicated that NRL3 interacts directly with NAL9/VYL to regulate leaf morphology in rice. Thus, NRL3 plays an important role in leaf morphogenesis and chlorophyll accumulation, and can be used as a new gene resource for constructing improved rice.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
- The Collaborative Innovation Center of Southern Grain and Oil Crops, Agricultural College of Hunan Agricultural University, Changsha, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Yicong Cai
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Qianlong Li
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
- The Collaborative Innovation Center of Southern Grain and Oil Crops, Agricultural College of Hunan Agricultural University, Changsha, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
| | - Jianlong Wang
- The Collaborative Innovation Center of Southern Grain and Oil Crops, Agricultural College of Hunan Agricultural University, Changsha, China
- *Correspondence: Jianlong Wang, Peisong Hu,
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Genetic Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, China
- The Collaborative Innovation Center of Southern Grain and Oil Crops, Agricultural College of Hunan Agricultural University, Changsha, China
- *Correspondence: Jianlong Wang, Peisong Hu,
| |
Collapse
|
32
|
Zhang X, Rong C, Qin L, Mo C, Fan L, Yan J, Zhang M. Complete Chloroplast Genome Sequence of Malus hupehensis: Genome Structure, Comparative Analysis, and Phylogenetic Relationships. Molecules 2018; 23:E2917. [PMID: 30413097 PMCID: PMC6278565 DOI: 10.3390/molecules23112917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Malus hupehensis belongs to the Malus genus (Rosaceae) and is an indigenous wild crabapple of China. This species has received more and more attention, due to its important medicinal, and excellent ornamental and economical, values. In this study, the whole chloroplast (cp) genome of Malus hupehensis, using a Hiseq X Ten sequencing platform, is reported. The M. hupehensis cp genome is 160,065 bp in size, containing a large single copy region (LSC) of 88,166 bp and a small single copy region (SSC) of 19,193 bp, separated by a pair of inverted repeats (IRs) of 26,353 bp. It contains 112 genes, including 78 protein-coding genes (PCGs), 30 transfer RNA genes (tRNAs), and four ribosomal RNA genes (rRNAs). The overall nucleotide composition is 36.6% CG. A total of 96 simple sequence repeats (SSRs) were identified, most of them were found to be mononucleotide repeats composed of A/T. In addition, a total of 49 long repeats were identified, including 24 forward repeats, 21 palindromic repeats, and four reverse repeats. Comparisons of the IR boundaries of nine Malus complete chloroplast genomes presented slight variations at IR/SC boundaries regions. A phylogenetic analysis, based on 26 chloroplast genomes using the maximum likelihood (ML) method, indicates that M. hupehensis clustered closer ties with M. baccata, M. micromalus, and M. prunifolia than with M. tschonoskii. The availability of the complete chloroplast genome using genomics methods is reported here and provides reliable genetic information for future exploration on the taxonomy and phylogenetic evolution of the Malus and related species.
Collapse
Affiliation(s)
- Xin Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chunxiao Rong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ling Qin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chuanyuan Mo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lu Fan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jie Yan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Manrang Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
33
|
Zhang X, Zhou T, Yang J, Sun J, Ju M, Zhao Y, Zhao G. Comparative Analyses of Chloroplast Genomes of Cucurbitaceae Species: Lights into Selective Pressures and Phylogenetic Relationships. Molecules 2018; 23:E2165. [PMID: 30154353 PMCID: PMC6225112 DOI: 10.3390/molecules23092165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/20/2023] Open
Abstract
Cucurbitaceae is the fourth most important economic plant family with creeping herbaceous species mainly distributed in tropical and subtropical regions. Here, we described and compared the complete chloroplast genome sequences of ten representative species from Cucurbitaceae. The lengths of the ten complete chloroplast genomes ranged from 155,293 bp (C. sativus) to 158,844 bp (M. charantia), and they shared the most common genomic features. 618 repeats of three categories and 813 microsatellites were found. Sequence divergence analysis showed that the coding and IR regions were highly conserved. Three protein-coding genes (accD, clpP, and matK) were under selection and their coding proteins often have functions in chloroplast protein synthesis, gene transcription, energy transformation, and plant development. An unconventional translation initiation codon of psbL gene was found and provided evidence for RNA editing. Applying BI and ML methods, phylogenetic analysis strongly supported the position of Gomphogyne, Hemsleya, and Gynostemma as the relatively original lineage in Cucurbitaceae. This study suggested that the complete chloroplast genome sequences were useful for phylogenetic studies. It would also determine potential molecular markers and candidate DNA barcodes for coming studies and enrich the valuable complete chloroplast genome resources of Cucurbitaceae.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Jingjing Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Miaomiao Ju
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Yuemei Zhao
- College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo 726000, China.
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
34
|
de Santana Lopes A, Pacheco TG, Santos KGD, Vieira LDN, Guerra MP, Nodari RO, de Souza EM, de Oliveira Pedrosa F, Rogalski M. The Linum usitatissimum L. plastome reveals atypical structural evolution, new editing sites, and the phylogenetic position of Linaceae within Malpighiales. PLANT CELL REPORTS 2018; 37:307-328. [PMID: 29086003 DOI: 10.1007/s00299-017-2231-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 05/12/2023]
Abstract
The plastome of Linum usitatissimum was completely sequenced allowing analyses of evolution of genome structure, RNA editing sites, molecular markers, and indicating the position of Linaceae within Malpighiales. Flax (Linum usitatissimum L.) is an economically important crop used as food, feed, and industrial feedstock. It belongs to the Linaceae family, which is noted by high morphological and ecological diversity. Here, we reported the complete sequence of flax plastome, the first species within Linaceae family to have the plastome sequenced, assembled and characterized in detail. The plastome of flax is a circular DNA molecule of 156,721 bp with a typical quadripartite structure including two IRs of 31,990 bp separating the LSC of 81,767 bp and the SSC of 10,974 bp. It shows two expansion events from IRB to LSC and from IRB to SSC, and a contraction event in the IRA-LSC junction, which changed significantly the size and the gene content of LSC, SSC and IRs. We identified 109 unique genes and 2 pseudogenes (rpl23 and ndhF). The plastome lost the conserved introns of clpP gene and the complete sequence of rps16 gene. The clpP, ycf1, and ycf2 genes show high nucleotide and aminoacid divergence, but they still possibly retain the functionality. Moreover, we also identified 176 SSRs, 20 tandem repeats, and 39 dispersed repeats. We predicted in 18 genes a total of 53 RNA editing sites of which 32 were not found before in other species. The phylogenetic inference based on 63 plastid protein-coding genes of 38 taxa supports three major clades within Malpighiales order. One of these clades has flax (Linaceae) sister to Chrysobalanaceae family, differing from earlier studies that included Linaceae into the euphorbioid clade.
Collapse
Affiliation(s)
- Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Karla Gasparini Dos Santos
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Miguel Pedro Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Onofre Nodari
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Núcleo de Fixação Biológica de Nitrogênio, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
35
|
Fan WB, Wu Y, Yang J, Shahzad K, Li ZH. Comparative Chloroplast Genomics of Dipsacales Species: Insights Into Sequence Variation, Adaptive Evolution, and Phylogenetic Relationships. FRONTIERS IN PLANT SCIENCE 2018; 9:689. [PMID: 29875791 PMCID: PMC5974163 DOI: 10.3389/fpls.2018.00689] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/04/2018] [Indexed: 05/19/2023]
Abstract
In general, the chloroplast genomes of angiosperms are considered to be highly conserved and affected little by adaptive evolution. In this study, we tested this hypothesis based on sequence differentiation and adaptive variation in the plastid genomes in the order Dipsacales. We sequenced the plastid genomes of one Adoxaceae species and six Caprifoliaceae species, and together with seven previously released Dipsacales chloroplasts, we determined the sequence variations, evolutionary divergence of the plastid genomes, and phylogeny of Dipsacales species. The chloroplast genomes of Adoxaceae species ranged in size from 157,074 bp (Sinadoxa corydalifolia) to 158,305 bp (Sambucus williamsii), and the plastid genomes of Caprifoliaceae varied from 154,732 bp (Lonicera fragrantissima var. lancifolia) to 156,874 bp (Weigela florida). The differences in the number of genes in Caprifoliaceae and Adoxaceae species were largely due to the expansion and contraction of inverted repeat regions. In addition, we found that the number of dispersed repeats (Adoxaceae = 37; Caprifoliaceae = 384) was much higher than that of tandem repeats (Adoxaceae = 34; Caprifoliaceae = 291) in Dipsacales species. Interestingly, we determined 19 genes with positive selection sites, including three genes encoding ATP protein subunits (atpA, atpB, and atpI), four genes for ribosome protein small subunits (rps3, rps7, rps14, and rps15), four genes for photosystem protein subunits (psaA, psaJ, psbC, and pabK), two genes for ribosome protein large subunits (rpl22 and rpl32), and the clpP, infA, matK, rbcL, ycf1, and ycf2 genes. These gene regions may have played key roles in the adaptation of Dipsacales to diverse environments. In addition, phylogenetic analysis based on the plastid genomes strongly supported the division of 14 Dipsacales species into two previously recognized sections. The diversification of Adoxaceae and Caprifoliaceae was dated to the late Cretaceous and Tertiary periods. The availability of these chloroplast genomes provides useful genetic information for studying taxonomy, phylogeny, and species evolution in Dipsacales.
Collapse
|
36
|
Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, Ourari M, Aïnouche M, Salmon A, Cabello-Hurtado F, Aïnouche A. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res 2017; 24:343-358. [PMID: 28338826 PMCID: PMC5737547 DOI: 10.1093/dnares/dsx006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 01/21/2023] Open
Abstract
The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades.
Collapse
Affiliation(s)
- J Keller
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - M Rousseau-Gueutin
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France.,IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - G E Martin
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, F-34398 Montpellier, France
| | - J Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| | - J Boutte
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - E Coissac
- Laboratoire d'Ecologie Alpine, CNRS - Université de Grenoble 1 - Université de Savoie, 38041 Grenoble, France
| | - M Ourari
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie, Université Abderrahmane Mira, 06000 Bejaia, Algeria
| | - M Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Salmon
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - F Cabello-Hurtado
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| | - A Aïnouche
- UMR CNRS 6553 Ecobio, OSUR (Observatoire des Sciences de l'Univers de Rennes), Université de Rennes 1, 35042 Rennes, France
| |
Collapse
|
37
|
iTRAQ-based proteomics monitors the withering dynamics in postharvest leaves of tea plant (Camellia sinensis). Mol Genet Genomics 2017; 293:45-59. [DOI: 10.1007/s00438-017-1362-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
|
38
|
Moreno JC, Tiller N, Diez M, Karcher D, Tillich M, Schöttler MA, Bock R. Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2199-2218. [PMID: 28369470 PMCID: PMC5447895 DOI: 10.1093/jxb/erx066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein degradation in chloroplasts is carried out by a set of proteases that eliminate misfolded, damaged, or superfluous proteins. The ATP-dependent caseinolytic protease (Clp) is the most complex protease in plastids and has been implicated mainly in stromal protein degradation. In contrast, FtsH, a thylakoid membrane-associated metalloprotease, is believed to participate mainly in the degradation of thylakoidal proteins. To determine the role of specific Clp and FtsH subunits in plant growth and development, RNAi lines targeting at least one subunit of each Clp ring and FtsH were generated in tobacco. In addition, mutation of the translation initiation codon was employed to down-regulate expression of the plastid-encoded ClpP1 subunit. These protease lines cover a broad range of reductions at the transcript and protein levels of the targeted genes. A wide spectrum of phenotypes was obtained, including pigment deficiency, alterations in leaf development, leaf variegations, and impaired photosynthesis. When knock-down lines for the different protease subunits were compared, both common and specific phenotypes were observed, suggesting distinct functions of at least some subunits. Our work provides a well-characterized collection of knock-down lines for plastid proteases in tobacco and reveals the importance of the Clp protease in physiology and plant development.
Collapse
Affiliation(s)
- Juan C Moreno
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mercedes Diez
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Tillich
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
39
|
Yu J, Wang C, Gong X. Degeneration of photosynthetic capacity in mixotrophic plants, Chimaphila japonica and Pyrola decorata (Ericaceae). PLANT DIVERSITY 2017; 39:80-88. [PMID: 30159495 PMCID: PMC6112300 DOI: 10.1016/j.pld.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 05/25/2023]
Abstract
The evolution of photosynthesis is an important feature of mixotrophic plants. Previous inferences proposed that mixotrophic taxa tend to retain most genes relating to photosynthetic functions but vary in plastid gene content. However, no sequence data are available to test this hypothesis in Ericaceae. To investigate changes in plastid genomes that may result from a transition from autotrophy to mixotrophy, the plastomes of two mixotrophic plants, Pyrola decorata and Chimaphila japonica, were sequenced at Illumina's Genome Analyzer and compared to the published plastome of the autotrophic plant Rhododendron simsii, which also belongs to Ericaceae. The greatest discrepancy between mixotrophic and autotrophic plants was that ndh genes for both P. decorata and C. japonica plastomes have nearly all become pseudogenes. P. decorata and C. japonica also retained all genes directly involved in photosynthesis under strong selection. The calculated rate of nonsynonymous nucleotide substitutions and synonymous substitutions of protein-coding genes (dN/dS) showed that substitution rates in shade plants were apparently higher than those in sunlight plants. The two mixotrophic plastomes were generally very similar to that of non-parasitic plants, although ndh genes were largely pseudogenized. Photosynthesis genes under strong selection were retained in the two mixotrophs, however, with greatly increased substitution rates. Further research is needed to gain a clearer understanding of the evolution of autotrophy and mixotrophy in Ericaceae.
Collapse
Affiliation(s)
- Jiaojun Yu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, PR China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Kunming, PR China
| | - Chaobo Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, PR China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Kunming, PR China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, PR China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Kunming, PR China
| |
Collapse
|
40
|
Nishimura K, Kato Y, Sakamoto W. Essentials of Proteolytic Machineries in Chloroplasts. MOLECULAR PLANT 2017; 10:4-19. [PMID: 27585878 DOI: 10.1016/j.molp.2016.08.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 05/22/2023]
Abstract
Plastids are unique organelles that can alter their structure and function in response to environmental and developmental stimuli. Chloroplasts are one type of plastid and are the sites for various metabolic processes, including photosynthesis. For optimal photosynthetic activity, the chloroplast proteome must be properly shaped and maintained through regulated proteolysis and protein quality control mechanisms. Enzymatic functions and activities are conferred by protein maturation processes involving consecutive proteolytic reactions. Protein abundances are optimized by the balanced protein synthesis and degradation, which is depending on the metabolic status. Malfunctioning proteins are promptly degraded. Twenty chloroplast proteolytic machineries have been characterized to date. Specifically, processing peptidases and energy-driven processive proteases are the major players in chloroplast proteome biogenesis, remodeling, and maintenance. Recently identified putative proteases are potential regulators of photosynthetic functions. Here we provide an updated, comprehensive overview of chloroplast protein degradation machineries and discuss their importance for photosynthesis. Wherever possible, we also provide structural insights into chloroplast proteases that implement regulated proteolysis of substrate proteins/peptides.
Collapse
Affiliation(s)
- Kenji Nishimura
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
41
|
Yang J, Suzuki M, McCarty DR. Essential role of conserved DUF177A protein in plastid 23S rRNA accumulation and plant embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5447-5460. [PMID: 27574185 PMCID: PMC5049393 DOI: 10.1093/jxb/erw311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DUF177 proteins are nearly universally conserved in bacteria and plants except the Chlorophyceae algae. Thus far, duf177 mutants in bacteria have not established a function. In contrast, duf177a mutants have embryo lethal phenotypes in maize and Arabidopsis. In maize inbred W22, duf177a mutant embryos arrest at an early transition stage, whereas the block is suppressed in the B73 inbred background, conditioning an albino seedling phenotype. Background-dependent embryo lethal phenotypes are characteristic of maize plastid gene expression mutants. Consistent with the plastid gene expression hypothesis, quantitative real-time PCR revealed a significant reduction of 23S rRNA in an Escherichia coli duf177 knockout. Plastid 23S rRNA contents of duf177a mutant tissues were also markedly reduced compared with the wild-type, whereas plastid 16S, 5S, and 4.5S rRNA contents were less affected, indicating that DUF177 is specifically required for accumulation of prokaryote-type 23S rRNA. An AtDUF177A-green fluorescent protein (GFP) transgene controlled by the native AtDUF177A promoter fully complemented the Arabidopsis atduf177a mutant. Transient expression of AtDUF177A-GFP in Nicotiana benthamiana leaves showed that the protein was localized in chloroplasts. The essential role of DUF177A in chloroplast-ribosome formation is reminiscent of IOJAP, another highly conserved ribosome-associated protein, suggesting that key mechanisms controlling ribosome formation in plastids evolved from non-essential pathways for regulation of the prokaryotic ribosome.
Collapse
Affiliation(s)
- Jiani Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Donald R McCarty
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
42
|
Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). JOURNAL OF PLANT PHYSIOLOGY 2016; 201:85-94. [PMID: 27448724 DOI: 10.1016/j.jplph.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes.
Collapse
Affiliation(s)
- Sy Nguyen Dinh
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea; Institute of Environment and Biotechnology, Taynguyen University, 567 Le Duan Street, Buon Ma Thuot City, Daklak Province, Viet Nam
| | - Than Zaw Tun Sai
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ghazala Nawaz
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
43
|
Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat. FRONTIERS IN PLANT SCIENCE 2016; 7:929. [PMID: 27446158 PMCID: PMC4923199 DOI: 10.3389/fpls.2016.00929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/10/2016] [Indexed: 05/06/2023]
Abstract
A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat.
Collapse
Affiliation(s)
- Senthilkumar K. Muthusamy
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley ResearchKarnal, India
| | - Monika Dalal
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Kailash C. Bansal
- ICAR-National Research Centre on Plant BiotechnologyNew Delhi, India
- ICAR-National Bureau of Plant Genetic ResourcesNew Delhi, India
- *Correspondence: Kailash C. Bansal
| |
Collapse
|
44
|
Bhattacharyya D, Gnanasekaran P, Kumar RK, Kushwaha NK, Sharma VK, Yusuf MA, Chakraborty S. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5881-95. [PMID: 26113193 PMCID: PMC4566980 DOI: 10.1093/jxb/erv299] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Geminivirus infection often causes severe vein clearing symptoms in hosts. Recently a betasatellite has emerged as a key regulator of symptom induction. To understand the host-betasatellite interactions in the process of symptom development, a systematic study was carried out involving symptoms induced by a betasatellite associated with radish leaf curl disease (RaLCB) in Nicotiana benthamiana. It has been found that βC1 protein localized to chloroplasts of host cells, and RaLCB lacking βC1, which failed to produce symptoms, had no effect on chloroplast ultrastructure. Vein flecking induced by transiently expressed βC1 was associated with chloroplast ultrastructure. In addition, the betasatellite down-regulates expression of genes involved in chlorophyll biosynthesis as well as genes involved in chloroplast development and plastid translocation. Interestingly, the expression of key host genes involved in chlorophyll degradation remains unaffected. Betasatellite infection drastically reduced the numbers of active reaction centres and the plastoquinol pool size in leaves exhibiting vein clearing symptoms. Betasatellite-mediated impediments at different stages of chloroplast functionality affect the photosynthetic efficiency of N. benthamiana. To the best of the authors' knowledge, this is the first evidence of a chloroplast-targeting protein encoded by a DNA virus which induces vein clearing and structurally and functionally damages chloroplasts in plants.
Collapse
Affiliation(s)
- Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Reddy Kishore Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Veerendra Kumar Sharma
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Mohd Aslam Yusuf
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110 067, India
| |
Collapse
|
45
|
Wei J, Qiu X, Chen L, Hu W, Hu R, Chen J, Sun L, Li L, Zhang H, Lv Z, Shen G. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5809-20. [PMID: 26085677 DOI: 10.1093/jxb/erv286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The caseinolytic peptidase (Clp) core proteins are essential for plant growth and development, especially for chloroplast function. Antisense or overexpression of ClpP4, which is one of the Clp core subunits, causes chlorotic phenotypes in Arabidopsis. An E3 ligase gene, AtCHIP, has previously been found to ubiquitylate ClpP4 in vitro. ClpP4 antisense and overexpressing plants that also overexpressed AtCHIP were constructed to explore the effect of AtCHIP on ClpP4. Overexpression of AtCHIP was found to rescue the chlorotic phenotypes of both ClpP4 antisense and overexpressing plants. The unbalanced levels of Clp core proteins in ClpP4 antisense and overexpressing plants with overexpression of AtCHIP were similar to wild-type levels, suggesting that AtCHIP regulates Clp core proteins. The results also show that AtCHIP can interact with ClpP3 and ClpP5 in yeast and ubiquitylate ClpP3 and ClpP5 in vitro. This suggests that AtCHIP is directly related to ClpP3 and ClpP5. Given these results, the inference is that through selective degradation of Clp subunits, AtCHIP could positively regulate homeostasis of Clp proteolytic subunits and maximize the production of functional chloroplasts. Similar results were obtained from transgenic tobacco plants, suggesting that regulation of the Clp protease by AtCHIP is conserved.
Collapse
Affiliation(s)
- Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Xiaoyun Qiu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Wenjun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Rongbin Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jian Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, New York 14853, USA and Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhiqiang Lv
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| |
Collapse
|
46
|
Williams AV, Boykin LM, Howell KA, Nevill PG, Small I. The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene. PLoS One 2015; 10:e0125768. [PMID: 25955637 PMCID: PMC4425659 DOI: 10.1371/journal.pone.0125768] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/26/2015] [Indexed: 11/25/2022] Open
Abstract
Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease complex.
Collapse
Affiliation(s)
- Anna V. Williams
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Laura M. Boykin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Katharine A. Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Paul G. Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia, Australia
- School of Plant Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, Australia
- Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
47
|
Ali MS, Kim KW, Dhakal R, Choi D, Baek KH. Accumulation of high contents of free amino acids in the leaves of Nicotiana benthamiana by the co-suppression of NbClpC1 and NbClpC2 genes. PLANT CELL REPORTS 2015; 34:355-65. [PMID: 25433858 DOI: 10.1007/s00299-014-1714-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/29/2014] [Accepted: 11/20/2014] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE We report the significant increase of the content of free amino acids in Nicotiana benthamiana by the co-suppression of the ClpC1 and ClpC2 genes, which are translated to be the chaperonic part in the Clp protease at plastids. Clp protease with ClpC1 and ClpC2 proteins as the chaperonic part degrades denatured or improperly folded protein in plastids. Nicotiana benthamiana ClpC1 and ClpC2 genes (NbClpC1 and NbClpC2: NbClpC1/C2) share 93% similarities; therefore, co-suppression of the NbClpC1/C2 was possible using a single virus-induced silencing vector. Co-suppression of NbClpC1/C2 resulted in a pleiotropic phenotype including disappearance of apical dominance and formation of chlorotic leaves. NbClpC1/C2 co-suppressed leaves accumulated 11.9-fold more free amino acids than the GFP-silenced leaves. The co-suppression of NbClpC1/C2 did not change the expression levels of some selected genes in the biosynthetic pathways for the free amino acids, but reduced the total protein amounts to 32.5%, indicating that co-suppression affected the incorporation of free amino acids in proteins during translation. The loosely packed mesophyll cells and abnormal vascular bundles in the leaves suggested structural problems associated with translocation of free amino acids to sink tissues. NbClpC1/C2 co-suppression can offer a novel strategy for accumulation of free amino acids though it results in stunted growth.
Collapse
Affiliation(s)
- Md Sarafat Ali
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Korea
| | | | | | | | | |
Collapse
|
48
|
Bock R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:211-41. [PMID: 25494465 DOI: 10.1146/annurev-arplant-050213-040212] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The small bacterial-type genome of the plastid (chloroplast) can be engineered by genetic transformation, generating cells and plants with transgenic plastid genomes, also referred to as transplastomic plants. The transformation process relies on homologous recombination, thereby facilitating the site-specific alteration of endogenous plastid genes as well as the precisely targeted insertion of foreign genes into the plastid DNA. The technology has been used extensively to analyze chloroplast gene functions and study plastid gene expression at all levels in vivo. Over the years, a large toolbox has been assembled that is now nearly comparable to the techniques available for plant nuclear transformation and that has enabled new applications of transplastomic technology in basic and applied research. This review describes the state of the art in engineering the plastid genomes of algae and land plants (Embryophyta). It provides an overview of the existing tools for plastid genome engineering, discusses current technological limitations, and highlights selected applications that demonstrate the immense potential of chloroplast transformation in several key areas of plant biotechnology.
Collapse
Affiliation(s)
- Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany;
| |
Collapse
|
49
|
Rogalski M, do Nascimento Vieira L, Fraga HP, Guerra MP. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. FRONTIERS IN PLANT SCIENCE 2015; 6:586. [PMID: 26284102 PMCID: PMC4520007 DOI: 10.3389/fpls.2015.00586] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/15/2015] [Indexed: 05/20/2023]
Abstract
During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100-220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field.
Collapse
Affiliation(s)
- Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Brazil
| | - Leila do Nascimento Vieira
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Hugo P. Fraga
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Miguel P. Guerra
- Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
- *Correspondence: Miguel P. Guerra, Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal, Programa de Pós-graduação em Recursos Genéticos Vegetais, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 Florianópolis, SC 88034-000, Brazil,
| |
Collapse
|
50
|
Organization, function and substrates of the essential Clp protease system in plastids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:915-30. [PMID: 25482260 DOI: 10.1016/j.bbabio.2014.11.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 01/21/2023]
Abstract
Intra-plastid proteolysis is essential in plastid biogenesis, differentiation and plastid protein homeostasis (proteostasis). We provide a comprehensive review of the Clp protease system present in all plastid types and we draw lessons from structural and functional information of bacterial Clp systems. The Clp system plays a central role in plastid development and function, through selective removal of miss-folded, aggregated, or otherwise unwanted proteins. The Clp system consists of a tetradecameric proteolytic core with catalytically active ClpP and inactive ClpR subunits, hexameric ATP-dependent chaperones (ClpC,D) and adaptor protein(s) (ClpS1) enhancing delivery of subsets of substrates. Many structural and functional features of the plastid Clp system are now understood though extensive reverse genetics analysis combined with biochemical analysis, as well as large scale quantitative proteomics for loss-of-function mutants of Clp core, chaperone and ClpS1 subunits. Evolutionary diversification of Clp system across non-photosynthetic and photosynthetic prokaryotes and organelles is illustrated. Multiple substrates have been suggested based on their direct interaction with the ClpS1 adaptor or screening of different loss-of-function protease mutants. The main challenge is now to determine degradation signals (degrons) in Clp substrates and substrate delivery mechanisms, as well as functional interactions of Clp with other plastid proteases. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|