1
|
Zhao H, Zuo Z, Yang L, Zhang L, Lv T, Yu D, Wang Z. Similarities and differences in the physiological adaptation to water salinity between two life forms of aquatic plants in alpine and arid wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168449. [PMID: 37952678 DOI: 10.1016/j.scitotenv.2023.168449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Aquatic plants play a crucial role in freshwater ecosystems as primary producers, but their survival is threatened by salinization. Understanding the physiological responses of aquatic plants to increasing water salinity is important for predicting their adaptive strategies under future climate change scenarios. In this study, we measured 15 physiological traits of 49 aquatic plant species along a large environmental gradient in alpine and arid regions of western China to explore their physiological adaptations and compare the similarities and differences in adaptive strategies between emergent and submerged life forms. We found that water salinity and low temperature were key factors affecting aquatic plants in these regions. Aquatic plants adapted to saline habitats by accumulating proline and sulfur (S) concentrations, and to cold habitats by increasing ascorbate peroxidase activity. Plant trait network analysis revealed that S was the hub trait in emergent plants, while proline was the hub trait in submerged plants, indicating that emergent plants balanced osmoregulation and reactive oxygen metabolism through S-containing compounds, while submerged plants prioritized the regulation of osmotic balance through proline.
Collapse
Affiliation(s)
- Haocun Zhao
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhenjun Zuo
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Lei Yang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Liangjian Zhang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Tian Lv
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China.
| | - Zhong Wang
- The National Field Station of Freshwater Ecosystems of Liangzi Lake, College of Life Sciences, Wuhan University, 430072 Wuhan, China; Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, 850000 Lhasa, China.
| |
Collapse
|
2
|
Sandoval-Gil JM, Ruiz JM, Marín-Guirao L. Advances in understanding multilevel responses of seagrasses to hypersalinity. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105809. [PMID: 36435174 DOI: 10.1016/j.marenvres.2022.105809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Human- and nature-induced hypersaline conditions in coastal systems can lead to profound alterations of the structure and vitality of seagrass meadows and their socio-ecological benefits. In the last two decades, recent research efforts (>50 publications) have contributed significantly to unravel the physiological basis underlying the seagrass-hypersalinity interactions, although most (∼70%) are limited to few species (e.g. Posidonia oceanica, Zostera marina, Thalassia testudinum, Cymodocea nodosa). Variables related to photosynthesis and carbon metabolism are among the most prevalent in the literature, although other key metabolic processes such as plant water relations and responses at molecular (i.e. gene expression) and ultrastructure level are attracting attention. This review emphasises all these latest insights, offering an integrative perspective on the interplay among biological responses across different functional levels (from molecular to clonal structure), and their interaction with biotic/abiotic factors including those related to climate change. Other issues such as the role of salinity in driving the evolutionary trajectory of seagrasses, their acclimation mechanisms to withstand salinity increases or even the adaptive properties of populations that have historically lived under hypersaline conditions are also included. The pivotal role of the costs and limits of phenotypic plasticity in the successful acclimation of marine plants to hypersalinity is also discussed. Finally, some lines of research are proposed to fill the remaining knowledge gaps.
Collapse
Affiliation(s)
- Jose Miguel Sandoval-Gil
- Universidad Autónoma de Baja California (UABC), Instituto de Investigaciones Oceanológicas (IIO), Marine Botany Research Group, Ensenada, Baja California, 22860, Mexico
| | - Juan M Ruiz
- Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/ Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain
| | - Lázaro Marín-Guirao
- Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/ Varadero s/n, 30740 San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
3
|
Maberly SC, Stott A, Gontero B. The differential ability of two species of seagrass to use carbon dioxide and bicarbonate and their modelled response to rising concentrations of inorganic carbon. FRONTIERS IN PLANT SCIENCE 2022; 13:936716. [PMID: 36388529 PMCID: PMC9648567 DOI: 10.3389/fpls.2022.936716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Seagrass meadows are one of the most productive ecosystems on the planet, but their photosynthesis rate may be limited by carbon dioxide but mitigated by exploiting the high concentration of bicarbonate in the ocean using different active processes. Seagrasses are declining worldwide at an accelerating rate because of numerous anthropogenic pressures. However, rising ocean concentrations of dissolved inorganic carbon, caused by increases in atmospheric carbon dioxide, may benefit seagrass photosynthesis. Here we compare the ability of two seagrass from the Mediterranean Sea, Posidonia oceanica (L.) Delile and Zostera marina L., to use carbon dioxide and bicarbonate at light saturation, and model how increasing concentrations of inorganic carbon affect their photosynthesis rate. pH-drift measurements confirmed that both species were able to use bicarbonate in addition to carbon dioxide, but that Z. marina was more effective than P. oceanica. Kinetic experiments showed that, compared to Z. marina, P. oceanica had a seven-fold higher affinity for carbon dioxide and a 1.6-fold higher affinity for bicarbonate. However, the maximal rate of bicarbonate uptake in Z. marina was 2.1-fold higher than in P. oceanica. In equilibrium with 410 ppm carbon dioxide in the atmosphere, the modelled rates of photosynthesis by Z. marina were slightly higher than P. oceanica, less carbon limited and depended on bicarbonate to a greater extent. This greater reliance by Z. marina is consistent with its less depleted 13C content compared to P. oceanica. Modelled photosynthesis suggests that both species would depend on bicarbonate alone at an atmospheric carbon dioxide partial pressure of 280 ppm. P. oceanica was projected to benefit more than Z. marina with increasing atmospheric carbon dioxide partial pressures, and at the highest carbon dioxide scenario of 1135 ppm, would have higher rates of photosynthesis and be more saturated by inorganic carbon than Z. marina. In both species, the proportional reliance on bicarbonate declined markedly as carbon dioxide concentrations increased and in P. oceanica carbon dioxide would become the major source of inorganic carbon.
Collapse
Affiliation(s)
| | - Andrew W. Stott
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
4
|
Feng X, Li G, Xu S, Wu W, Chen Q, Shao S, Liu M, Wang N, Zhong C, He Z, Shi S. Genomic insights into molecular adaptation to intertidal environments in the mangrove Aegiceras corniculatum. THE NEW PHYTOLOGIST 2021; 231:2346-2358. [PMID: 34115401 DOI: 10.1111/nph.17551] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Mangroves have colonised extreme intertidal environments characterised by high salinity, hypoxia and other abiotic stresses. Aegiceras corniculatum, a pioneer mangrove species that has evolved two specialised adaptive traits (salt secretion and crypto-vivipary) is an attractive ecological model to investigate molecular mechanisms underlying adaptation to intertidal environments. We assembled de novo a high-quality reference genome of A. corniculatum and performed comparative genomic and transcriptomic analyses to investigate molecular mechanisms underlying adaptation to intertidal environments. We provide evidence that A. corniculatum experienced a whole-genome duplication (WGD) event c. 35 Ma. We infer that maintenance of cellular environmental homeostasis is an important adaptive process in A. corniculatum. The 14-3-3 and H+ -ATPase protein-coding genes, essential for the salt homeostasis, were preferentially retained after the recent WGD event. Using comparative transcriptomics, we show that genes upregulated under high-salt conditions are involved in salt transport and ROS scavenging. We also found that all homologues of DELAY OF GERMINATION1 (DOG1) had lost their heme-binding ability in A. corniculatum, and that this may contribute to crypto-vivipary. Our study provides insight into the genomic correlates of phenotypic adaptation to intertidal environments. This could contribute not only within the genomics community, but also to the field of plant evolution.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guohong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nan Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Feng X, Xu S, Li J, Yang Y, Chen Q, Lyu H, Zhong C, He Z, Shi S. Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC PLANT BIOLOGY 2020; 20:178. [PMID: 32321423 PMCID: PMC7178616 DOI: 10.1186/s12870-020-02395-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/13/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mangroves have adapted to intertidal zones - the interface between terrestrial and marine ecosystems. Various studies have shown adaptive evolution in mangroves at physiological, ecological, and genomic levels. However, these studies paid little attention to gene regulation of salt adaptation by transcriptome profiles. RESULTS We sequenced the transcriptomes of Sonneratia alba under low (fresh water), medium (half the seawater salinity), and high salt (seawater salinity) conditions and investigated the underlying transcriptional regulation of salt adaptation. In leaf tissue, 64% potential salinity-related genes were not differentially expressed when salinity increased from freshwater to medium levels, but became up- or down-regulated when salt concentrations further increased to levels found in sea water, indicating that these genes are well adapted to the medium saline condition. We inferred that both maintenance and regulation of cellular environmental homeostasis are important adaptive processes in S. alba. i) The sulfur metabolism as well as flavone and flavonol biosynthesis KEGG pathways were significantly enriched among up-regulated genes in leaves. They are both involved in scavenging ROS or synthesis and accumulation of osmosis-related metabolites in plants. ii) There was a significantly increased percentage of transcription factor-encoding genes among up-regulated transcripts. High expressions of salt tolerance-related TF families were found under high salt conditions. iii) Some genes up-regulated in response to salt treatment showed signs of adaptive evolution at the amino acid level and might contribute to adaptation to fluctuating intertidal environments. CONCLUSIONS This study first elucidates the mechanism of high-salt adaptation in mangroves at the whole-transcriptome level by salt gradient experimental treatments. It reveals that several candidate genes (including salt-related genes, TF-encoding genes, and PSGs) and major pathways are involved in adaptation to high-salt environments. Our study also provides a valuable resource for future investigation of adaptive evolution in extreme environments.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jianfang Li
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haomin Lyu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cairong Zhong
- Hainan Dongzhai Harbor National Nature Reserve Administration, Haikou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Guo SM, Tan Y, Chu HJ, Sun MX, Xing JC. Transcriptome sequencing revealed molecular mechanisms underlying tolerance of Suaeda salsa to saline stress. PLoS One 2019; 14:e0219979. [PMID: 31335886 PMCID: PMC6650071 DOI: 10.1371/journal.pone.0219979] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022] Open
Abstract
The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In the present study, S. salsa seedlings were treated with 30‰ salinity and then leaves and roots were subjected to Illumina sequencing. Compared with the control, 68,599 and 77,250 unigenes were significantly differentially expressed in leaves and roots in saline treatment, respectively. KEGG enrichment analyses indicated that photosynthesis process, carbohydrate, lipid and amino acid metabolisms were all downregulated in saline treatment, which should inhibit growth of S. salsa. Expression levels of Na+/H+ exchanger, V-H+ ATPase, choline monooxygenase, potassium and chloride channels were upregulated in saline treatment, which could relieve reduce over-accumulation of Na+ and Cl-. Fe-SOD, glutathione, L-ascorbate and flavonoids function as antioxidants in plants. Genes in relation to them were all upregulated, suggesting that S. salsa initiated various antioxidant mechanisms to tolerate high salinity. Besides, plant hormones, especially auxin, ethylene and jasmonic acid signaling transduction pathways were all upregulated in response to saline treatment, which were important to gene regulations of ion transportation and antioxidation. These changes might comprehensively contribute to tolerance of S. salsa to salinity. Overall, the present study provided new insights to understand the mechanisms underlying tolerance to salinity in halophytes.
Collapse
Affiliation(s)
- Su-Ming Guo
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Ying Tan
- College of Architecture, Southeast University, Nanjing City, Jiangsu Province, P. R. China
| | - Han-Jie Chu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Mei-Xia Sun
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Jin-Cheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, P. R. China
| |
Collapse
|
7
|
Aboobucker SI, Suza WP. Why Do Plants Convert Sitosterol to Stigmasterol? FRONTIERS IN PLANT SCIENCE 2019; 10:354. [PMID: 30984220 PMCID: PMC6447690 DOI: 10.3389/fpls.2019.00354] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/07/2019] [Indexed: 05/11/2023]
Abstract
A direct role for cholesterol signaling in mammals is clearly established; yet, the direct role in signaling for a plant sterol or sterol precursor is unclear. Fluctuations in sitosterol and stigmasterol levels during development and stress conditions suggest their involvement in signaling activities essential for plant development and stress compensation. Stigmasterol may be involved in gravitropism and tolerance to abiotic stress. The isolation of stigmasterol biosynthesis mutants offers a promising tool to test the function of sterol end products in signaling responses to developmental and environmental cues.
Collapse
Affiliation(s)
| | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Lv X, Yu P, Deng W, Li Y. Transcriptomic analysis reveals the molecular adaptation to NaCl stress in Zostera marina L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:61-68. [PMID: 29960892 DOI: 10.1016/j.plaphy.2018.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/16/2018] [Accepted: 06/16/2018] [Indexed: 05/25/2023]
Abstract
The seagrass Zostera marina L. shows optimal growth in marine water and reduced growth under low salinity conditions. However, little is known about the molecular mechanisms underlying its adaptation to high salinity in Z. marina. In this study, transcriptomic analyses were performed using RNA-seq of the following two groups with different NaCl content: the CK group (seagrasses grown in the absence of NaCl) and the NaCl group (seagrasses grown in the presence of 400 mM NaCl for 6 h). Approximately 316 million high-quality reads were generated, and 87.9% of the data were mapped to the reference genome. Moreover, differentially expressed genes between the CK and NaCl groups were identified. According to a functional analysis, the up-regulated genes after the NaCl treatment were significantly enriched in nitrogen metabolism, calcium signalling and DNA replication while the down-regulated genes were significantly enriched in photosynthesis. A comparative transcriptomic analysis detected many differentially expressed genes and pathways required for adaptation to NaCl stress, providing a foundation for future studies investigating the molecular mechanisms of salt adaptation in Z. marina. We discuss how molecular changes in these processes may have contributed to the NaCl adaptation.
Collapse
Affiliation(s)
- XinFang Lv
- Marine College, Shandong University, Weihai 264200, China
| | - Pei Yu
- Marine College, Shandong University, Weihai 264200, China
| | - WenHao Deng
- Marine College, Shandong University, Weihai 264200, China
| | - Yuchun Li
- Marine College, Shandong University, Weihai 264200, China.
| |
Collapse
|
9
|
Sablok G, Hayward RJ, Davey PA, Santos RP, Schliep M, Larkum A, Pernice M, Dolferus R, Ralph PJ. SeagrassDB: An open-source transcriptomics landscape for phylogenetically profiled seagrasses and aquatic plants. Sci Rep 2018; 8:2749. [PMID: 29426939 PMCID: PMC5807536 DOI: 10.1038/s41598-017-18782-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 12/04/2022] Open
Abstract
Seagrasses and aquatic plants are important clades of higher plants, significant for carbon sequestration and marine ecological restoration. They are valuable in the sense that they allow us to understand how plants have developed traits to adapt to high salinity and photosynthetically challenged environments. Here, we present a large-scale phylogenetically profiled transcriptomics repository covering seagrasses and aquatic plants. SeagrassDB encompasses a total of 1,052,262 unigenes with a minimum and maximum contig length of 8,831 bp and 16,705 bp respectively. SeagrassDB provides access to 34,455 transcription factors, 470,568 PFAM domains, 382,528 prosite models and 482,121 InterPro domains across 9 species. SeagrassDB allows for the comparative gene mining using BLAST-based approaches and subsequent unigenes sequence retrieval with associated features such as expression (FPKM values), gene ontologies, functional assignments, family level classification, Interpro domains, KEGG orthology (KO), transcription factors and prosite information. SeagrassDB is available to the scientific community for exploring the functional genic landscape of seagrass and aquatic plants at: http://115.146.91.129/index.php.
Collapse
Affiliation(s)
- Gaurav Sablok
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia.
| | - Regan J Hayward
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Peter A Davey
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Rosiane P Santos
- Laboratório de Recursos Genéticos, Universidade Federal de São João Del-Rei, Campus CTAN, São João Del Rei, Minas Gerais, 36307-352, Brazil
| | - Martin Schliep
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Anthony Larkum
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Rudy Dolferus
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia.
| |
Collapse
|
10
|
Larkum AWD, Davey PA, Kuo J, Ralph PJ, Raven JA. Carbon-concentrating mechanisms in seagrasses. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3773-3784. [PMID: 28911056 DOI: 10.1093/jxb/erx206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Seagrasses are unique angiosperms that carry out growth and reproduction submerged in seawater. They occur in at least three families of the Alismatales. All have chloroplasts mainly in the cells of the epidermis. Living in seawater, the supply of inorganic carbon (Ci) to the chloroplasts is diffusion limited, especially under unstirred conditions. Therefore, the supply of CO2 and bicarbonate across the diffusive boundary layer on the outer side of the epidermis is often a limiting factor. Here we discuss the evidence for mechanisms that enhance the uptake of Ci into the epidermal cells. Since bicarbonate is plentiful in seawater, a bicarbonate pump might be expected; however, the evidence for such a pump is not strongly supported. There is evidence for a carbonic anhydrase outside the outer plasmalemma. This, together with evidence for an outward proton pump, suggests the possibility that local acidification leads to enhanced concentrations of CO2 adjacent to the outer tangential epidermal walls, which enhances the uptake of CO2, and this could be followed by a carbon-concentrating mechanism (CCM) in the cytoplasm and/or chloroplasts. The lines of evidence for such an epidermal CCM are discussed, including evidence for special 'transfer cells' in some but not all seagrass leaves in the tangential inner walls of the epidermal cells. It is concluded that seagrasses have a CCM but that the case for concentration of CO2 at the site of Rubisco carboxylation is not proven.
Collapse
Affiliation(s)
- Anthony William D Larkum
- Plant Functional Biology and Global Climate Change Cluster, University of Technology Sydney, NSW 2009, Australia
| | - Peter A Davey
- Plant Functional Biology and Global Climate Change Cluster, University of Technology Sydney, NSW 2009, Australia
| | - John Kuo
- Electron Microscope Centre, University of Western Australia, WA 6900, Australia
| | - Peter J Ralph
- Plant Functional Biology and Global Climate Change Cluster, University of Technology Sydney, NSW 2009, Australia
| | - John A Raven
- Plant Functional Biology and Global Climate Change Cluster, University of Technology Sydney, NSW 2009, Australia
- University of Dundee at JHI, Invergowrie, Dundee, UK
| |
Collapse
|
11
|
The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics 2016; 16:465-80. [DOI: 10.1007/s10142-016-0501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 12/23/2022]
|
12
|
Comparative shotgun proteomic analysis of wild and domesticated Opuntia spp. species shows a metabolic adaptation through domestication. J Proteomics 2016; 143:353-364. [PMID: 27072113 DOI: 10.1016/j.jprot.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED The Opuntia genus is widely distributed in America, but the highest richness of wild species are found in Mexico, as well as the most domesticated Opuntia ficus-indica, which is the most domesticated species and an important crop in agricultural economies of arid and semiarid areas worldwide. During domestication process, the Opuntia morphological characteristics were favored, such as less and smaller spines in cladodes and less seeds in fruits, but changes at molecular level are almost unknown. To obtain more insights about the Opuntia molecular changes through domestication, a shotgun proteomic analysis and database-dependent searches by homology was carried out. >1000 protein species were identified and by using a label-free quantitation method, the Opuntia proteomes were compared in order to identify differentially accumulated proteins among wild and domesticated species. Most of the changes were observed in glucose, secondary, and 1C metabolism, which correlate with the observed protein, fiber and phenolic compounds accumulation in Opuntia cladodes. Regulatory proteins, ribosomal proteins, and proteins related with response to stress were also observed in differential accumulation. These results provide new valuable data that will help to the understanding of the molecular changes of Opuntia species through domestication. BIOLOGICAL SIGNIFICANCE Opuntia species are well adapted to dry and warm conditions in arid and semiarid regions worldwide, and they are highly productive plants showing considerable promises as an alternative food source. However, there is a gap regarding Opuntia molecular mechanisms that enable them to grow in extreme environmental conditions and how the domestication processes has changed them. In the present study, a shotgun analysis was carried out to characterize the proteomes of five Opuntia species selected by its domestication degree. Our results will help to a better understanding of proteomic features underlying the selection and specialization under evolution and domestication of Opuntia and will provide a platform for basic biology research and gene discovery.
Collapse
|
13
|
Piro A, Marín-Guirao L, Serra IA, Spadafora A, Sandoval-Gil JM, Bernardeau-Esteller J, Fernandez JMR, Mazzuca S. The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms. FRONTIERS IN PLANT SCIENCE 2015; 6:464. [PMID: 26167167 PMCID: PMC4482034 DOI: 10.3389/fpls.2015.00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/11/2015] [Indexed: 05/03/2023]
Abstract
Applying proteomics, we tested the physiological responses of the euryhaline seagrass Cymodocea nodosa to deliberate manipulation of salinity in a mesocosm system. Plants were subjected to a chronic hypersaline condition (43 psu) to compare protein expression and plant photochemistry responses after 15 and 30 days of exposure with those of plants cultured under normal/ambient saline conditions (37 psu). Results showed a general decline in the expression level of leaf proteins in hypersaline stressed plants, with more intense reductions after long-lasting exposure. Specifically, the carbon-fixing enzyme RuBisCo displayed a lower accumulation level in stressed plants relative to controls. In contrast, the key enzymes involved in the regulation of glycolysis, cytosolic glyceraldehyde-3-phosphate dehydrogenase, enolase 2 and triose-phosphate isomerase, showed significantly higher accumulation levels. These responses suggested a shift in carbon metabolism in stressed plants. Hypersaline stress also induced a significant alteration of the photosynthetic physiology of C. nodosa by means of a down-regulation in structural proteins and enzymes of both PSII and PSI. However we found an over-expression of the cytochrome b559 alpha subunit of the PSII initial complex, which is a receptor for the PSII core proteins involved in biogenesis or repair processes and therefore potentially involved in the absence of effects at the photochemical level of stressed plants. As expected hypersalinity also affects vacuolar metabolism by increasing the leaf cell turgor pressure and enhancing the up-take of Na(+) by over-accumulating the tonoplast specific intrinsic protein pyrophosphate-energized inorganic pyrophosphatase (H(+)-PPase) coupled to the Na(+)/H(+)-antiporter. The modulation of carbon metabolism and the enhancement of vacuole capacity in Na(+) sequestration and osmolarity changes are discussed in relation to salt tolerance of C. nodosa.
Collapse
Affiliation(s)
- Amalia Piro
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
| | - Lázaro Marín-Guirao
- Spanish Institute of Oceanography, Oceanographic Centre of MurciaMurcia, Spain
| | - Ilia A. Serra
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
| | - Antonia Spadafora
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
| | | | | | | | - Silvia Mazzuca
- Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della CalabriaRende, Italy
- *Correspondence: Silvia Mazzuca, Laboratorio di Biologia e Proteomica Vegetale, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Bucci 12C, 87036 Rende, Italy,
| |
Collapse
|
14
|
Kong F, Li H, Sun P, Zhou Y, Mao Y. De novo assembly and characterization of the transcriptome of seagrass Zostera marina using Illumina paired-end sequencing. PLoS One 2014; 9:e112245. [PMID: 25423588 PMCID: PMC4244107 DOI: 10.1371/journal.pone.0112245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Background The seagrass Zostera marina is a monocotyledonous angiosperm belonging to a polyphyletic group of plants that can live submerged in marine habitats. Zostera marina L. is one of the most common seagrasses and is considered a cornerstone of marine plant molecular ecology research and comparative studies. However, the mechanisms underlying its adaptation to the marine environment still remain poorly understood due to limited transcriptomic and genomic data. Principal Findings Here we explored the transcriptome of Z. marina leaves under different environmental conditions using Illumina paired-end sequencing. Approximately 55 million sequencing reads were obtained, representing 58,457 transcripts that correspond to 24,216 unigenes. A total of 14,389 (59.41%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. 45.18% and 46.91% of the unigenes had significant similarity with proteins in the Swiss-Prot database and Pfam database, respectively. Among these, 13,897 unigenes were assigned to 57 Gene Ontology (GO) terms and 4,745 unigenes were identified and mapped to 233 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). We compared the orthologous gene family of the Z. marina transcriptome to Oryza sativa and Pyropia yezoensis and 11,667 orthologous gene families are specific to Z. marina. Furthermore, we identified the photoreceptors sensing red/far-red light and blue light. Also, we identified a large number of genes that are involved in ion transporters and channels including Na+ efflux, K+ uptake, Cl− channels, and H+ pumping. Conclusions Our study contains an extensive sequencing and gene-annotation analysis of Z. marina. This information represents a genetic resource for the discovery of genes related to light sensing and salt tolerance in this species. Our transcriptome can be further utilized in future studies on molecular adaptation to abiotic stress in Z. marina.
Collapse
Affiliation(s)
- Fanna Kong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail:
| | - Hong Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peipei Sun
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Two types of ATPases from the Pacific white shrimp, Litopenaeus vannamei in response to environmental stress. Mol Biol Rep 2012; 39:6427-38. [DOI: 10.1007/s11033-012-1461-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
16
|
Li J, Chen G, Wang X, Zhang Y, Jia H, Bi Y. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii. PHYSIOLOGIA PLANTARUM 2011; 141:239-50. [PMID: 21077901 DOI: 10.1111/j.1399-3054.2010.01429.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low-concentration NaCl (100 mM) stimulated plasma membrane (PM) H+-ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high-concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl-induced hydrogen peroxide (H₂O₂) accumulation was abolished. Exogenous application of H₂O₂ increased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl-induced H₂O₂ accumulation, decreased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H₂O₂, and blocked by DPI. Taken together, G6PDH is involved in H₂O₂ accumulation under salt stress. H₂O₂, as a signal, upregulated PM H+-ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.
Collapse
Affiliation(s)
- Jisheng Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | |
Collapse
|
17
|
Garciadeblás B, Haro R, Benito B. Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis mediate potassium uptake in bacteria. PLANT MOLECULAR BIOLOGY 2007; 63:479-90. [PMID: 17103013 DOI: 10.1007/s11103-006-9102-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Two cDNAs isolated from Cymodocea nodosa, CnSOS1A, and CnSOSIB encode proteins with high-sequence similarities to SOS1 plant transporters. CnSOS1A expressed in a yeast Na+-efflux mutant under the control of a constitutive expression promoter mimicked AtSOS1 from Arabidopsis; the wild type cDNA did not improve the growth of the recipient strain in the presence of Na+, but a cDNA mutant that expresses a truncated protein suppressed the defect of the yeast mutant. In similar experiments, CnSOS1B was not effective. Conditional expression, under the control of an arabinose responsive promoter, of the CnSOSIA and CnSOS1B cDNAs in an Escherichia coli mutant defective in Na+ efflux was toxic, and functional analyses were inconclusive. The same constructs transformed into an E. coli K+-uptake mutant revealed that CnSOS1A was also toxic, but that it slightly suppressed defective growth at low K+. Truncation in the C-terminal hydrophilic tail of CnSOS1A relieved the toxicity and proved that CnSOS1A was an excellent low-affinity K+ and Rb+ transporter. CnSOS1B mediated a transient, extremely rapid K+ or Rb+ influx. Similar tests with AtSOS1 revealed that it was not toxic and that the whole protein exhibited excellent K+ and Rb+ uptake characteristics in bacteria.
Collapse
Affiliation(s)
- Blanca Garciadeblás
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
18
|
Alemzadeh A, Fujie M, Usami S, Yoshizaki T, Oyama K, Kawabata T, Yamada T. ZMVHA-B1, the gene for subunit B of vacuolar H+-ATPase from the eelgrass Zostera marina L. Is able to replace vma2 in a yeast null mutant. J Biosci Bioeng 2006; 102:390-5. [PMID: 17189165 DOI: 10.1263/jbb.102.390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/24/2006] [Indexed: 11/17/2022]
Abstract
A vacuolar H(+)-ATPase (VHA) gene (ZMVHA-B1) was isolated from an eelgrass (Zostera marina) leaf cDNA library and was characterized to be approximately 1.4 kbp in length and to encode the B subunit protein of VHA comprising 488 amino acids. ZMVHA-B1 was highly expressed in all organs of eelgrass; the expression level was highest in the leaves. On transformation of a yeast vma2 null mutant with ZMVHA-B1, yeast cells became able to grow at pH 7.5, accompanied by the vesicular accumulation of LysoSensor green DND-189. Thus, ZMVHA-B1 expressed in yeast cells produced a functional B subunit that was efficiently incorporated into the VHA complex and eventually restored vacuolar morphology and activity. This success expedites the application of heterologous expression in yeast mutant cells to the screening of eelgrass genes involved in salt-resistance mechanisms, which are to be utilized in improving important crops.
Collapse
Affiliation(s)
- Abbas Alemzadeh
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Debashish G, Malay S, Barindra S, Joydeep M. Marine enzymes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:189-218. [PMID: 16566092 DOI: 10.1007/b135785] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Marine enzyme biotechnology can offer novel biocatalysts with properties like high salt tolerance, hyperthermostability, barophilicity, cold adaptivity, and ease in large-scale cultivation. This review deals with the research and development work done on the occurrence, molecular biology, and bioprocessing of marine enzymes during the last decade. Exotic locations have been accessed for the search of novel enzymes. Scientists have isolated proteases and carbohydrases from deep sea hydrothermal vents. Cold active metabolic enzymes from psychrophilic marine microorganisms have received considerable research attention. Marine symbiont microorganisms growing in association with animals and plants were shown to produce enzymes of commercial interest. Microorganisms isolated from sediment and seawater have been the most widely studied, proteases, carbohydrases, and peroxidases being noteworthy. Enzymes from marine animals and plants were primarily studied for their metabolic roles, though proteases and peroxidases have found industrial applications. Novel techniques in molecular biology applied to assess the diversity of chitinases, nitrate, nitrite, ammonia-metabolizing, and pollutant-degrading enzymes are discussed. Genes encoding chitinases, proteases, and carbohydrases from microbial and animal sources have been cloned and characterized. Research on the bioprocessing of marine-derived enzymes, however, has been scanty, focusing mainly on the application of solid-state fermentation to the production of enzymes from microbial sources.
Collapse
Affiliation(s)
- Ghosh Debashish
- Environmental Science Programme and Department of Life Science & Biotechnology, Jadavpur University, 700 032 Kolkata, India
| | | | | | | |
Collapse
|
20
|
Watanabe Y, Oshima N, Tamai Y. Co-expression of the Na/H-antiporter and H-ATPase genes of the salt-tolerant yeast in. FEMS Yeast Res 2005; 5:411-7. [PMID: 15691746 DOI: 10.1016/j.femsyr.2004.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 10/21/2004] [Accepted: 11/09/2004] [Indexed: 11/15/2022] Open
Abstract
We cloned two genes from the salt-tolerant yeast Zygosaccharomyces rouxii: ZrSOD2 for the cell membrane Na(+)/H(+)-antiporter and ZrPMA1 for the cell membrane H(+)-ATPase. The products of these genes play cooperative roles in the salt-tolerance of Z. rouxii, and the function of the ZrPMA1 product is regulated at the transcription level. We constructed a yeast expression vector that is able to co-express the ZrSOD2 and ZrPMA1 genes. Single expression of ZrSOD2 was effective in conferring salt-tolerance, and although a slight synergic effect was observed with co-expression of ZrSOD2 and ZrPMA1, the usefulness of this co-expression is likely to be minimal with regard to salt-tolerance.
Collapse
Affiliation(s)
- Yasuo Watanabe
- Department of Biological Resources, Faculty of Agriculture, National University Corporation Ehime University, Matsuyama, Ehime 790-8566, Japan.
| | | | | |
Collapse
|
21
|
Sakurai M, Pak JY, Muramatsu Y, Fukuhara T. Integrin-like protein at the invaginated plasma membrane of epidermal cells in mature leaves of the marine angiosperm Zostera marina L. PLANTA 2004; 220:271-277. [PMID: 15316778 DOI: 10.1007/s00425-004-1348-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 06/29/2004] [Indexed: 05/24/2023]
Abstract
By immunoblotting with anti-human integrin beta polyclonal antibodies (beta1, beta3 or beta5), a single distinct band of about 60 kDa was detected in total protein extracts from mature leaves of the seagrass Zostera marina L., but no band was detected in total protein extracts from immature seagrass leaves, freshwater grass leaves or Arabidopsis thaliana (L.) Heynh. leaves. This integrin-like protein was detected by indirect immunofluorescence microscopy on the surface of non-spherical protoplasts of epidermal cells isolated from mature seagrass leaves using an anti-integrin beta3 polyclonal antibody. Electron-microscopic analyses with the same antibody indicated that this integrin-like protein was localized specifically in the invaginated plasma membrane of epidermal cells in mature seagrass leaves. Therefore, this integrin-like protein of about 60 kDa may be involved in the developmentally regulated invagination of the plasma membrane in epidermal cells of the seagrass Z. marina.
Collapse
Affiliation(s)
- Minako Sakurai
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, 183-8509 Tokyo, Japan
| | | | | | | |
Collapse
|