1
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
2
|
Jeong YJ, Park SH, Park SC, Kim S, Kim TH, Lee J, Kim SW, Ryu YB, Jeong JC, Kim CY. Induced extracellular production of stilbenes in grapevine cell culture medium by elicitation with methyl jasmonate and stevioside. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00329-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractWe report the high production of stilbenes, including resveratrol and viniferin, in grapevine (Vitis labruscana L.) cell cultures through elicitation with methyl jasmonate (MeJA) and stevioside (STE). Methyl-β-cyclodextrin (MeβCD) is widely used as a solubilizer for resveratrol production. For the first time, we used STE as a solubilizer for stilbene production in plant cell cultures. MeJA was most effective elicitor in activating VvSTS expression and stimulating stilbene biosynthesis in grapevine cell cultures. The maximum concentration of δ-viniferin (892.2 mg/L) production with a small amount of trans-resveratrol (12.2 mg/L) was observed in the culture medium by co-treatment of cells with MeJA and STE, whereas the highest level of trans-resveratrol (371.9 mg/L) with a slight amount of δ-viniferin (11.5 mg/L) was accumulated in the culture medium of cells treated with MeJA and MeβCD. However, neither trans-resveratrol nor δ-viniferin were significantly elevated within the cells by the applications. Notably, predominant production of δ-viniferin and trans-resveratrol was observed in shake and static flask culture medium, respectively, by co-treatment of MeJA and STE. Furthermore, stilbene compounds of resveratrol, ε-viniferin, and δ-viniferin were mainly produced in a 3-L bioreactor culture following elicitation of cells with MeJA and STE. These results provide new strategies for conditional, high-level production of resveratrol and viniferin in cell cultures by utilizing the solubilizing properties of STE or MeβCD.
Collapse
|
3
|
Kiselev KV, Dubrovina AS. Overexpression of stilbene synthase genes to modulate the properties of plants and plant cell cultures. Biotechnol Appl Biochem 2020; 68:13-19. [PMID: 31925968 DOI: 10.1002/bab.1884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/30/2019] [Indexed: 12/26/2022]
Abstract
Plant stilbenes have attracted special attention as they possess valuable health benefits and improve plant resistance to environmental stresses. Stilbenes are synthesized via the phenylpropanoid pathway, where stilbene synthase (STS, EC 2.3.1.95) directly catalyzes the formation of t-resveratrol (monomeric stilbene). This review discusses the features of using STS genes in genetic engineering and plant biotechnology with the purpose to increase plant resistance to environmental stresses and to modify secondary metabolite production.
Collapse
Affiliation(s)
- Konstantin V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Alexandra S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
4
|
Liu M, Ma F, Wu F, Jiang C, Wang Y. Expression of stilbene synthase VqSTS6 from wild Chinese Vitis quinquangularis in grapevine enhances resveratrol production and powdery mildew resistance. PLANTA 2019; 250:1997-2007. [PMID: 31531782 DOI: 10.1007/s00425-019-03276-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
In grape (Vitis), stilbene phytoalexins can either be in situ synthesized or transported to the site of response during powdery mildew infection, enhancing disease resistance. Resveratrol is a phytoprotective stilbenoid compound that is synthesized by stilbene synthase (STS) in response to biotic and abiotic stresses, and is also known to have health benefits in the human diet. We have previously shown that transgenic Vitis vinifera cv. Thompson Seedless plants overexpressing a stilbene synthase gene, VqSTS6, from wild Chinese Vitis quinquangularis had a higher stilbenoid content, leading to an enhanced resistance to powdery mildew (Uncinula necator (Schw.) Burr). However, the biosynthesis and transportation in the plant tissue under powdery mildew infection are still unclear. Here, inhibitor and micro-grafting technologies were used to study the accumulation of resveratrol following powdery mildew infection. We observed that the levels of STS expression and stilbenoids increased in response to powdery mildew infection. Powdery mildew and inhibitor treatment on detached grape branches showed that resveratrol was in situ synthesized. Experiments with grafted plantlets showed that the abundance of stilbenoid compounds increased in the shoot during VqSTS6 overexpression in the root, while VqSTS6-Flag fusion was not tranported to the scions and only expressed in the transgenic rootstocks. Compared with wild-type Thompson Seedless plants, the non-transgenic/VqSTS6 transgenic (scion/rootstock) grafted Thompson Seedless plantlets exhibited increased resistance to powdery mildew. In addition, overexpression of VqSTS6 in roots led to increased levels of stilbenoid compounds in five other European grape varieties (V. vinifera cvs. Chardonnay, Perlette, Cabernet Sauvignon, Riesling and Muscat Hamburg). In conclusion, stilbenoid compounds can be either in situ synthesized or transported to the site of powdery mildew infection, and overexpression of VqSTS6 in the root promotes stilbenoids accumulation and disease resistance in European grapevine varieties.
Collapse
Affiliation(s)
- Mengqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuli Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengying Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changyue Jiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Biotechnological Advances in Resveratrol Production and its Chemical Diversity. Molecules 2019; 24:molecules24142571. [PMID: 31311182 PMCID: PMC6680439 DOI: 10.3390/molecules24142571] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
The very well-known bioactive natural product, resveratrol (3,5,4'-trihydroxystilbene), is a highly studied secondary metabolite produced by several plants, particularly grapes, passion fruit, white tea, and berries. It is in high demand not only because of its wide range of biological activities against various kinds of cardiovascular and nerve-related diseases, but also as important ingredients in pharmaceuticals and nutritional supplements. Due to its very low content in plants, multi-step isolation and purification processes, and environmental and chemical hazards issues, resveratrol extraction from plants is difficult, time consuming, impracticable, and unsustainable. Therefore, microbial hosts, such as Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum, are commonly used as an alternative production source by improvising resveratrol biosynthetic genes in them. The biosynthesis genes are rewired applying combinatorial biosynthetic systems, including metabolic engineering and synthetic biology, while optimizing the various production processes. The native biosynthesis of resveratrol is not present in microbes, which are easy to manipulate genetically, so the use of microbial hosts is increasing these days. This review will mainly focus on the recent biotechnological advances for the production of resveratrol, including the various strategies used to produce its chemically diverse derivatives.
Collapse
|
6
|
Ma F, Wang L, Wang Y. Ectopic expression of VpSTS29, a stilbene synthase gene from Vitis pseudoreticulata, indicates STS presence in cytosolic oil bodies. PLANTA 2018; 248:89-103. [PMID: 29589146 DOI: 10.1007/s00425-018-2883-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/17/2018] [Indexed: 05/03/2023]
Abstract
Stilbene synthase (STS) and its metabolic products are accumulated in senescing grapevine leaves. Ectopic expression of VpSTS29 in Arabidopsis shows the presence of VpSTS29 in oil bodies and increases trans-piceid in developing leaves. Stilbenes are the natural antimicrobial phytoalexins that are synthesised via the phenylpropanoid pathway. STS is the key enzyme catalysing the production of stilbenes. We have previously reported that the VpSTS29 gene plays an important role in powdery mildew resistance in Vitis pseudoreticulata. However, the synthesis and accumulation of these stilbene products in plant cells remain unclear. Here, we demonstrate that VpSTS29 is present in cytosolic oil bodies and can be transported into the vacuole at particular plant-developmental stages. Western blot and high-performance liquid chromatography showed that STS and trans-piceid accumulated in senescent grape leaves and in pVpSTS29::VpSTS29-expressing Arabidopsis during age-dependent leaf senescence. Subcellular localisation analyses indicated VpSTS29-GFP was present in the cytoplasm and in STS-containing bodies in Arabidopsis. Nile red staining, co-localisation and immunohistochemistry analyses of leaves confirmed that the STS-containing bodies were oil bodies and that these moved randomly in the cytoplasm and vacuole. Detection of protein profiles revealed that no free GFP was detected in the pVpSTS29::VpSTS29-GFP-expressing protoplasts or in Arabidopsis during the dark-light cycle, demonstrating that GFP fluorescence distributed in the STS-containing bodies and vacuole was the VpSTS29-GFP fusion protein. Intriguingly, in comparison to the controls, over-expression of VpSTS29 in Arabidopsis resulted in relatively high levels of trans-piceid, chlorophyll content and of photochemical efficiency accompanied by delayed leaf senescence. These results provide exciting new insights into the subcellular localisation of STS in plant cells and information about stilbene synthesis and storage.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
7
|
Stempien E, Goddard ML, Wilhelm K, Tarnus C, Bertsch C, Chong J. Grapevine Botryosphaeria dieback fungi have specific aggressiveness factor repertory involved in wood decay and stilbene metabolization. PLoS One 2017; 12:e0188766. [PMID: 29261692 PMCID: PMC5737891 DOI: 10.1371/journal.pone.0188766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Grapevine trunk diseases: Eutypa dieback, esca and Botryosphaeria dieback, which incidence has increased recently, are associated with several symptoms finally leading to the plant death. In the absence of efficient treatments, these diseases are a major problem for the viticulture; however, the factors involved in disease progression are not still fully identified. In order to get a better understanding of Botryosphaeria dieback development in grapevine, we have investigated different factors involved in Botryosphaeriaceae fungi aggressiveness. We first evaluated the activity of the wood-degrading enzymes of different isolates of Neofusicoccum parvum and Diplodia seriata, two major fungi associated with Botryosphaeria dieback. We further examinated the ability of these fungi to metabolize major grapevine phytoalexins: resveratrol and δ-viniferin. Our results demonstrate that Botryosphaeriaceae were characterized by differential wood decay enzymatic activities and have the capacity to rapidly degrade stilbenes. N. parvum is able to degrade parietal polysaccharides, whereas D. seriata has a better capacity to degrade lignin. Growth of both fungi exhibited a low sensitivity to resveratrol, whereas δ-viniferin has a fungistatic effect, especially on N. parvum Bourgogne S-116. We further show that Botryosphaeriaceae are able to metabolize rapidly resveratrol and δ-viniferin. The best stilbene metabolizing activity was measured for D. seriata. In conclusion, the different Botryosphaeriaceae isolates are characterized by a specific aggressiveness repertory. Wood and phenolic compound decay enzymatic activities could enable Botryosphaeriaceae to bypass chemical and physical barriers of the grapevine plant. The specific signature of Botryosphaeriaceae aggressiveness factors could explain the importance of fungi complexes in synergistic activity in order to fully colonize the host.
Collapse
Affiliation(s)
- Elodie Stempien
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
| | - Mary-Lorène Goddard
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
- Université de Haute-Alsace, Laboratoire de Chimie Organique et Bioorganique, Mulhouse, France
| | - Kim Wilhelm
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
- Université de Haute-Alsace, Laboratoire de Chimie Organique et Bioorganique, Mulhouse, France
| | - Céline Tarnus
- Université de Haute-Alsace, Laboratoire de Chimie Organique et Bioorganique, Mulhouse, France
| | - Christophe Bertsch
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
| | - Julie Chong
- Université de Haute-Alsace, Laboratoire Vigne, Biotechnologies et Environnement, Colmar, France
| |
Collapse
|
8
|
Yin X, Huang L, Zhang X, Guo C, Wang H, Li Z, Wang X. Expression patterns and promoter characteristics of the Vitis quinquangularis VqSTS36 gene involved in abiotic and biotic stress response. PROTOPLASMA 2017; 254:2247-2261. [PMID: 28470373 DOI: 10.1007/s00709-017-1116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 04/23/2017] [Indexed: 05/13/2023]
Abstract
Resveratrol is a stilbene compound that is synthesized by plants in response to biotic stress and has been linked to health benefits associated with the consumption of certain foods and food products, such as grapes and wine. The final step in the biosynthesis of resveratrol is catalyzed by the enzyme stilbene synthase (STS). Here, we assessed the expression of two STS genes (VqSTS36 and VpSTS36) from the wild grape species Vitis quinquangularis (accession 'Shang-24'; powdery mildew (PM) resistant) and Vitis pseudoreticulata (accession 'Hunan-1'; PM susceptible) following infection by Uncinula necator (Schw.) Burr, the causal agent of PM disease. Some correlation was observed between the relative levels of STS36 transcript and disease resistance. We also cloned the 5' upstream sequence of both VpSTS36 and VqSTS36 and generated a series of 5' VqSTS36 promoter deletions fused to the GUS reporter gene in order to analyze expression in response to wounding, the application of exogenous stress-associated hormones, and biotic stress in tobacco leaves. The promoter was shown to be induced by the hormone salicylic acid (SA), inoculation with the fungal pathogen Erysiphe cichoracearum, and by wounding. These results suggest that VqSTS36 is regulated by biotic stresses and that it plays an important role in mediating disease resistance in grape.
Collapse
Affiliation(s)
- Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Wang Y, Wang D, Wang F, Huang L, Tian X, van Nocker S, Gao H, Wang X. Expression of the Grape VaSTS19 Gene in Arabidopsis Improves Resistance to Powdery Mildew and Botrytis cinerea but Increases Susceptibility to Pseudomonas syringe pv Tomato DC3000. Int J Mol Sci 2017; 18:E2000. [PMID: 28926983 PMCID: PMC5618649 DOI: 10.3390/ijms18092000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 01/29/2023] Open
Abstract
Stilbene synthase (STS) is a key enzyme that catalyzes the biosynthesis of resveratrol compounds and plays an important role in disease resistance. The molecular pathways linking STS with pathogen responses and their regulation are not known. We isolated an STS gene, VaSTS19, from a Chinese wild grape, Vitis amurensis Rupr. cv. "Tonghua-3", and transferred this gene to Arabidopsis. We then generated VaSTS19-expressing Arabidopsis lines and evaluated the functions of VaSTS19 in various pathogen stresses, including powdery mildew, B. cinerea and Pseudomonas syringae pv. tomato DC3000 (PstDC3000). VaSTS19 enhanced resistance to powdery mildew and B. cinerea, but increased susceptibility to PstDC3000. Aniline blue staining revealed that VaSTS19 transgenic lines accumulated more callose compared to nontransgenic control plants, and showed smaller stomatal apertures when exposed to pathogen-associated molecular patterns (flagellin fragment (flg22) or lipopolysaccharides (LPS)). Analysis of the expression of several disease-related genes suggested that VaSTS19 expression enhanced defense responses though salicylic acid (SA) and/or jasmonic acid (JA) signaling pathways. These findings provide a deeper insight into the function of STS genes in defense against pathogens, and a better understanding of the regulatory cross talk between SA and JA pathways.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Dejun Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Fan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiaomin Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Li R, Xie X, Ma F, Wang D, Wang L, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. Resveratrol accumulation and its involvement in stilbene synthetic pathway of Chinese wild grapes during berry development using quantitative proteome analysis. Sci Rep 2017; 7:9295. [PMID: 28839259 PMCID: PMC5571159 DOI: 10.1038/s41598-017-10171-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
Attention has become focused on resveratrol not only because of its role in grapevine fungal resistance but also because of its benefits in human health. This report describes the Chinese wild grapevine Vitis quinquangularis accession Danfeng-2 in relation to the high resveratrol content of its ripe berries. In this study, we used isobaric tags for relative and absolute quantification (iTRAQ) tandem mass spectrometry strategy to quantify and identify proteome changes, resulting in the detection of a total of 3,751 proteins produced under natural conditions. Among the proteins quantified, a total of 578 differentially expressed proteins were detected between Danfeng-2 and Cabernet Sauvignon during berry development. Differentially expressed proteins are involved in secondary metabolism, biotic stress, abiotic stress and transport activity and indicate novel biological processes in Chinese wild grapevine. Eleven proteins involved in phenylpropanoid metabolism and stilbene synthesis were differently expressed between Danfeng-2 and Cabernet Sauvignon at the veraison stage of berry development. These findings suggest that Chinese wild V. quinquangularis accession Danfeng-2 is an extremely important genetic resource for grape breeding and especially for increasing the resveratrol content of European grape cultivars for disease resistance and for improved human nutritional benefits.
Collapse
Affiliation(s)
- Ruimin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Dan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Lan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, The People's Republic of China.
| |
Collapse
|
11
|
Wang C, Zhi S, Liu C, Xu F, Zhao A, Wang X, Ren Y, Li Z, Yu M. Characterization of Stilbene Synthase Genes in Mulberry (Morus atropurpurea) and Metabolic Engineering for the Production of Resveratrol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1659-1668. [PMID: 28168876 DOI: 10.1021/acs.jafc.6b05212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stilbenes have been recognized for their beneficial physiological effects on human health. Stilbene synthase (STS) is the key enzyme of resveratrol biosynthesis and has been studied in numerous plants. Here, four MaSTS genes were isolated and identified in mulberry (Morus atropurpurea Roxb.). The expression levels of MaSTS genes and the accumulation of trans-resveratrol, trans-oxyresveratrol, and trans-mulberroside A were investigated in different plant organs. A novel coexpression system that harbored 4-coumarate:CoA ligase gene (Ma4CL) and MaSTS was established. Stress tests suggested that MaSTS genes participate in responses to salicylic acid, abscisic acid, wounding, and NaCl stresses. Additionally, overexpressed MaSTS in transgenic tobacco elevated the trans-resveratrol level and increased tolerance to drought and salinity stresses. These results revealed the major MaSTS gene, and we evaluated its function in mulberry, laying the foundation for future research on stilbene metabolic pathways in mulberry.
Collapse
Affiliation(s)
- Chuanhong Wang
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Shuang Zhi
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Changying Liu
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Fengxiang Xu
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Aichun Zhao
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Xiling Wang
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Yanhong Ren
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| | - Zhengang Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences , Mengzi, Yunnan 661100, China
| | - Maode Yu
- College of Biotechnology, Southwest University , No. 2 Tiansheng Road, BeiBei District, Chongqing 400716, China
| |
Collapse
|
12
|
Huang L, Zhang S, Singer SD, Yin X, Yang J, Wang Y, Wang X. Expression of the Grape VqSTS21 Gene in Arabidopsis Confers Resistance to Osmotic Stress and Biotrophic Pathogens but Not Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2016; 7:1379. [PMID: 27695466 PMCID: PMC5024652 DOI: 10.3389/fpls.2016.01379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/30/2016] [Indexed: 05/25/2023]
Abstract
Stilbene synthase (STS) is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid), that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM) infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
| | - Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Jinhua Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| |
Collapse
|
13
|
Martínez-Márquez A, Morante-Carriel JA, Ramírez-Estrada K, Cusidó RM, Palazon J, Bru-Martínez R. Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1813-25. [PMID: 26947765 PMCID: PMC5069453 DOI: 10.1111/pbi.12539] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 05/23/2023]
Abstract
Grapevine stilbenes, particularly trans-resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of easily recoverable extracellular resveratrol when elicited with methylated cyclodextrins and methyl jasmonate. We devised this system as an interesting starting point of a metabolic engineering-based strategy to produce resveratrol derivatives using resveratrol-converting enzymes. Constitutive expression of either Vitis vinifera resveratrol O-methyltransferase (VvROMT) or human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) led to pterostilbene or piceatannol, respectively, after the engineered cell cultures were treated with the aforementioned elicitors. Functionality of both gene products was first assessed in planta by Nicotiana benthamiana agroinfiltration assays, in which tobacco cells transiently expressed stilbene synthase and VvROMT or HsCYP1B1. Grapevine cell cultures transformed with VvROMT produced pterostilbene, which was detected in both intra- and extracellular compartments, at a level of micrograms per litre. Grapevine cell cultures transformed with HsCYP1B1 produced about 20 mg/L culture of piceatannol, displaying a sevenfold increase in relation to wild-type cultures, and reaching an extracellular distribution of up to 45% of total production. The results obtained demonstrate the feasibility of this novel system for the bioproduction of natural and more bioactive resveratrol derivatives and suggest new ways for the improvement of production yields.
Collapse
Affiliation(s)
- Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Jaime A Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
- Biotechnology and Molecular Biology Group, Quevedo State Technical University, Quevedo, Ecuador
| | - Karla Ramírez-Estrada
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Rosa M Cusidó
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Javier Palazon
- Laboratory of Plant Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| |
Collapse
|
14
|
Jeong YJ, An CH, Woo SG, Park JH, Lee KW, Lee SH, Rim Y, Jeong HJ, Ryu YB, Kim CY. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway. PLANT MOLECULAR BIOLOGY 2016; 92:117-29. [PMID: 27338256 DOI: 10.1007/s11103-016-0497-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.
Collapse
Affiliation(s)
- Yu Jeong Jeong
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Chul Han An
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 305-806, Republic of Korea
| | - Su Gyeong Woo
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Ji Hye Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 331-801, Republic of Korea
| | - Sang-Hoon Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 331-801, Republic of Korea
| | - Yeonggil Rim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Hyung Jae Jeong
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Young Bae Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Cha Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea.
| |
Collapse
|
15
|
Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang Y. Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. PLANTA 2016; 243:1041-53. [PMID: 26781778 DOI: 10.1007/s00425-015-2459-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/22/2015] [Indexed: 05/09/2023]
Abstract
The stilbene synthase gene VqSTS6, from Chinese wild type Vitis quinquangularis accession Danfeng-2, increases the resveratrol content and pathogen resistance of transgenic plants of V. vinifera Thompson Seedless. This study successfully created transgenic plants of V. vinifera Thompson Seedless which overexpressed VqSTS6, cloned from Chinese wild type V. quinquangularis accession Danfeng-2. Western blot and qRT-PCR showed a variable range in transcript levels among transgenic lines. The resistance to powdery mildew (Uncinula necator) was particularly enhanced in lines most highly expressing VqSTS6. Compared with the non-transformed controls, trans-resveratrol and other stilbene compounds were significantly increased in the transgenic lines. The correlation between high resveratrol content and high pathogen resistance in transgenic grapes is discussed. We hypothesize that the fruit-specific, highly expressed gene VqSTS6 from Chinese wild V. quinquangularis accession Danfeng-2, is directly involved in the resveratrol synthesis pathway in grapes, and plays an important role in the plant's defense against pathogens. Genetic transformation of VqSTS6 explored the potential of the wild Chinese grape species for use in breeding, the results of which would raise both the disease resistance and the fruit quality of V. vinifera grapevines.
Collapse
Affiliation(s)
- Siyan Cheng
- College of Horticulture, Northwest A & F University, No.3, Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoqing Xie
- College of Horticulture, Northwest A & F University, No.3, Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, No.3, Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, No.3, Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, No.3, Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, No.3, Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, No.3, Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
16
|
Lygin AV, Hill CB, Pawlowski M, Zernova OV, Widholm JM, Hartman GL, Lozovaya VV. Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture. PHYTOPATHOLOGY 2014; 104:843-50. [PMID: 24502206 DOI: 10.1094/phyto-10-13-0287-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effects of resveratrol and pterostilbene on in vitro growth of three soybean pathogens were tested to determine whether these stilbenic compounds could potentially be targets to increase innate resistance in transgenic soybean plants. Growth of Macrophomina phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum was measured on solid and in liquid media amended with resveratrol and pterostilbene (concentration in the media of resveratrol at 100 μg/ml and pterostilbene at 25 μg/ml). All three fungi were very sensitive to pterostilbene in potato dextrose agar (PDA), which reduced colony area of each of the three pathogens to less than half of the control 3 days after incubation. The three fungal pathogens were less sensitive to resveratrol compared with pterostilbene; however, area under the curve (AUC) calculated from colony areas measured over 3 days was significantly (P < 0.05) less than the control for S. sclerotiorum and R. solani on PDA with resveratrol or pterostilbene. AUC for M. phaseolina on PDA with pterostilbene was significantly (P < 0.05) lower than the control whereas, on PDA with resveratrol, AUC for M. phaseolina was lower than the control but the difference was nonsignificant (P > 0.05). AUC for all three fungi was significantly lower (P < 0.05) on PDA with pterostilbene than with resveratrol. In potato dextrose broth (PDB) shake cultures, AUC for all three fungi was significantly (P < 0.01) lower in pterostilbene than in the control. AUC for R. solani and S. sclerotiorum was significantly lower (P < 0.01) in resveratrol than the control, whereas AUC for M. phaseolina in resveratrol was lower, but not significantly (P > 0.05) different from the control. AUC in pterostilbene was highly significantly (P < 0.01) lower than in resveratrol for M. phaseolina and significantly (P < 0.05) lower for R. solani but the difference for S. sclerotiorum was nonsignificant (P > 0.05). There was a trend for lower mass accumulation of all three fungi in either pterostilbene or resveratrol compared with the control during the course of the experiment; however, S. sclerotiorum appeared to recover from the effects of pterostilbene between days 2 and 4. Results of biochemical analyses of the PDB over time indicated that the three fungi degraded resveratrol, with nearly 75% reduction in concentration in M. phaseolina, 80% in S. sclerotiorum, and 60% in R. solani PDB cultures by day 4 of fungal growth. M. phaseolina and S. sclerotiorum were able to resume growth after early inhibition by resveratrol after its concentration was reduced in the cultures through degradation, whereas R. solani was less efficient in resveratrol degradation and was not able to overcome its inhibitory effects on growth. The capacity to degrade pterostilbene was lowest in M. phaseolina compared with S. sclerotiorum and R. solani and the recovery of M. phaseolina cultures after initial growth inhibition by pterostilbene was minimal. The potential products of resveratrol and pterostilbene degradation by fungi were identified to be dimers and various oxidation products.
Collapse
|
17
|
Zhu F, Han J, Liu S, Chen X, Varshney RK, Liang X. Cloning, Expression Pattern Analysis and Subcellular Localization of Resveratrol Synthase Gene in Peanut (<i>Arachis hypogaea</i> L.). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.524378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Boue SM, Shih BY, Burow ME, Eggleston G, Lingle S, Pan YB, Daigle K, Bhatnagar D. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8412-8419. [PMID: 23931742 DOI: 10.1021/jf4020087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A new plant source, sugarcane, was used to produce the stilbenes piceatannol and resveratrol. Both stilbenes were identified in sugarcane billet stalks (12 mm) after incubation at room temperature for 3 days. Low concentrations of piceatannol (30.6 μg/g) and resveratrol (12.3 μg/g) were detected at day 3. At day 7 of incubation higher concentrations of piceatannol (1659 μg/g) and resveratrol (73 μg/g) were produced. Sugarcane juice obtained from billets that were incubated for 7 days contained high levels of piceatannol (8.5 mg/L) and resveratrol (1.2 mg/L). Although high stilbene concentrations were determined in the sugarcane variety L 97-128, two other varieties (Ho 95-988 and LCP 85-384) displayed lower stilbene concentrations after incubation for 7 days. The total phenolic content (TPC) and antioxidant activities of incubated sugarcane extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP). The TPC and antioxidant activities were highest in sugarcane extracts that were incubated for 7 days. This study details a postharvest method to produce stilbene-enriched sugarcane with increased levels of piceatannol and resveratrol.
Collapse
Affiliation(s)
- Stephen M Boue
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , New Orleans, Louisiana 70124, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Giovinazzo G, Ingrosso I, Paradiso A, De Gara L, Santino A. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:191-199. [PMID: 22777386 DOI: 10.1007/s11130-012-0299-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.
Collapse
Affiliation(s)
- Giovanna Giovinazzo
- Istituto di Scienze delle Produzioni Alimentari-CNR, Unit of Lecce, via Monteroni, Lecce, Italy.
| | | | | | | | | |
Collapse
|
20
|
Raju B, Ramesh M, Borkar RM, Srinivas R, Padiya R, Banerjee SK. In vivo metabolic investigation of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry in combination with online hydrogen/deuterium exchange experiments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1817-1831. [PMID: 22777784 DOI: 10.1002/rcm.6288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Tuberculosis is a leading cause of death from an infectious disease and moxifloxacin is an effective drug as compared to other fluoroquinolones. To date only two metabolites of the drug are known. Therefore, the present study on characterization of hitherto unknown in vivo metabolites of moxifloxacin using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is undertaken. METHODS In vivo metabolites of moxifloxacin have been identified and characterized by using LC/ESI-MS/MS in combination with an online hydrogen/deuterium (H/D) exchange technique. To identify in vivo metabolites, blood, urine and faeces samples were collected after oral administration of moxifloxacin to Sprague-Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation, liquid-liquid extraction followed by solid-phase extraction and LC/MS/MS analysis. RESULTS A total of nine phase I and ten phase II metabolites of moxifloxacin have been identified in urine samples including N-sulphated, glucuronide and hydroxylated metabolites which are also observed in plasma samples. In faeces samples, only the N-sulphated metabolite is observed. The structures of metabolites have been elucidated based on fragmentation patterns, accurate mass measurements and online H/D exchange LC/MS/MS experiments. Online H/D exchange experiments are used to support the identification and structural characterization of drug metabolites. CONCLUSIONS A total of 19 in vivo metabolites of moxifloxacin have been characterized using LC/ESI-MS/MS in combination with accurate mass measurements and online H/D exchange experiments. The main phase I metabolites of moxifloxacin are hydroxylated, decarbonylated, desmethylated and desmethylhydroxylated metabolites which undergo subsequent phase II glucuronidation pathways.
Collapse
Affiliation(s)
- B Raju
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | | | | | | | | | | |
Collapse
|
21
|
Yoshimatsu K, Kawano N, Kawahara N, Akiyama H, Teshima R, Nishijima M. [Current status in the commercialization and application of genetically modified plants and their effects on human and livestock health and phytoremediation]. YAKUGAKU ZASSHI 2012; 132:629-74. [PMID: 22687699 DOI: 10.1248/yakushi.132.629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Developments in the use of genetically modified plants for human and livestock health and phytoremediation were surveyed using information retrieved from Entrez PubMed, Chemical Abstracts Service, Google, congress abstracts and proceedings of related scientific societies, scientific journals, etc. Information obtained was classified into 8 categories according to the research objective and the usage of the transgenic plants as 1: nutraceuticals (functional foods), 2: oral vaccines, 3: edible curatives, 4: vaccine antigens, 5: therapeutic antibodies, 6: curatives, 7: diagnostic agents and reagents, and 8: phytoremediation. In total, 405 cases were collected from 2006 to 2010. The numbers of cases were 120 for nutraceuticals, 65 for oral vaccines, 25 for edible curatives, 36 for vaccine antigens, 36 for therapeutic antibodies, 76 for curatives, 15 for diagnostic agents and reagents, and 40 for phytoremediation (sum of each cases was 413 because some reports were related to several categories). Nutraceuticals, oral vaccines and curatives were predominant. The most frequently used edible crop was rice (51 cases), and tomato (28 cases), lettuce (22 cases), potato (18 cases), corn (15 cases) followed.
Collapse
Affiliation(s)
- Kayo Yoshimatsu
- Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J Biomed Biotechnol 2012; 2012:579089. [PMID: 22654481 PMCID: PMC3359829 DOI: 10.1155/2012/579089] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/04/2012] [Indexed: 02/06/2023] Open
Abstract
Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines.
Collapse
|
23
|
Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:269-83. [PMID: 21902799 DOI: 10.1111/j.1467-7652.2011.00657.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.
Collapse
Affiliation(s)
- Agnes M Rimando
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, MS, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pan LP, Yu SL, Chen CJ, Li H, Wu YL, Li HH. Cloning a peanut resveratrol synthase gene and its expression in purple sweet potato. PLANT CELL REPORTS 2012; 31:121-131. [PMID: 21932029 DOI: 10.1007/s00299-011-1145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 07/14/2011] [Accepted: 08/31/2011] [Indexed: 05/31/2023]
Abstract
A resveratrol synthase gene was cloned from the peanut plant (Arachis hypogaea) by RT-PCR and was transformed into purple sweet potato (Ipomoea batatas) by Agrobacterium-mediated transformation. Stem sections were infected with bacterial solution of OD(600) = 0.4 for 20 min and then cocultured for 2 days. Infected explants were cultured on MS media containing 50 mg/l kanamycin, 0.02 mg/l NAA and 1 mg/l 6-BA for bud induction or containing 75 mg/l kanamycin, 1.0 mg/l NAA and 0.1 mg/l 6-BA for root formation. The bud and root induction rates were 37.5 and 25.0%, respectively. 105 regenerated plants were obtained, with 11 positive plants by PCR and Southern blotting analyses. A high level of resveratrol glucoside (340 μg/g dry weight), but no resveratrol, was detected in the transformed plants by HPLC. This study also provides a stable genetic transformation and plant regeneration method for metabolic modification of purple sweet potato.
Collapse
Affiliation(s)
- Li-Ping Pan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
25
|
Liu Z, Zhuang C, Sheng S, Shao L, Zhao W, Zhao S. Overexpression of a resveratrol synthase gene (PcRS) from Polygonum cuspidatum in transgenic Arabidopsis causes the accumulation of trans-piceid with antifungal activity. PLANT CELL REPORTS 2011; 30:2027-36. [PMID: 21717185 DOI: 10.1007/s00299-011-1110-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/12/2011] [Accepted: 06/15/2011] [Indexed: 05/09/2023]
Abstract
Although resveratrol-forming stilbene synthase (STS) genes have been well characterized in many plant species, there are only a few descriptions about STS genes from Polygonum cuspidatum Sieb. et Zucc, an important medicinal crop in Asian countries. To evaluate the biological functions of a Polygonum cuspidatum resveratrol synthase gene (PcRS), the PcRS gene was expressed in Arabidopsis under the control of Cauliflower mosaic virus (CaMV) 35S promoter. Integration and expression of transgene in the plant genome of Arabidopsis was confirmed by Southern blot and Northern blot analyses. Transgenic plants accumulated a new compound in both the leaves and seeds, which was identified as trans-piceid by high-pressure liquid chromatography (HPLC) and electrospray mass spectrometry (HPLC-ESI-MS). Overexpression of PcRS in transgenic Arabidopsis caused restriction of Colletotrichum higginsianum colonization by inhibition of spore production, resulting in enhanced resistance against C. higginsianum. So, the PcRS gene could be deployed in other crop plants to significantly enhance resistance to fungal pathogens and improve the nutritional quality. In addition, altered seed coat pigmentation and significant reduction in anthocyanin levels were observed in transgenic Arabidopsis, while the expression of endogenous chalcone synthase (CHS) gene was not down-regulated. These results suggest that additional STS activities cause a lack of precursors for CHS which leads to the disturbance of the subsequent flavonoid biosynthesis steps in Arabidopsis.
Collapse
Affiliation(s)
- Zhongyu Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | | | | | | | | | | |
Collapse
|
26
|
Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y. Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2745-61. [PMID: 21504880 DOI: 10.1093/jxb/erq447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene encoding stilbene synthase (STS) plays a central role in many biochemical and physiological actions, and its metabolite resveratrol possesses broad-spectrum resistance to pathogens, as well as diverse pharmacological properties, notably an anticancer effect. Here, we report the expression analysis of the gene encoding STS and its promoter function from a powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata, and compare it with two PM-susceptible cultivated grapevines, Vitis vinifera cvs. Carignane and Thompson Seedless. We show an unusual expression pattern of STS in V. pseudoreticulata, which differs markedly from that of the cultivated species. Sequence comparisons reveal that the genomic DNA sequences encoding STS in the three grapevines are highly conserved, but a novel residue mutation within the key motif of STS is solely present in V. pseudoreticulata. Moreover, the STS promoter in V. pseudoreticulata displays a significantly different structure from that found in the two V. vinifera. The three promoter-driven GUS differential expression patterns in transformed tobacco plants induced with Alternaria alternata, methyl jasmonate, and wounding indicated that the structurally different STS promoter of V. pseudoreticulata is responsible for its specific regulatory function. We also demonstrate that the expression of STS genes from their native promoters are functional in transformed tobacco and retain pathogen inducibility. Importantly, the genomic DNA-2 of V. pseudoreticulata under its native promoter shows good induction and the maximum level of resveratrol content. These findings further our understanding of the regulation of STS expression in a resistant grapevine and provide a new pathogen-inducible promoter system for the genetic improvement of plant disease resistance.
Collapse
Affiliation(s)
- Weirong Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deluc LG, Decendit A, Papastamoulis Y, Mérillon JM, Cushman JC, Cramer GR. Water deficit increases stilbene metabolism in Cabernet Sauvignon berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:289-97. [PMID: 21128664 PMCID: PMC3015458 DOI: 10.1021/jf1024888] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 05/19/2023]
Abstract
The impact of water deficit on stilbene biosynthesis in wine grape (Vitis vinifera) berries was investigated. Water deficit increased the accumulation of trans-piceid (the glycosylated form of resveratrol) by 5-fold in Cabernet Sauvignon berries but not in Chardonnay. Similarly, water deficit significantly increased the transcript abundance of genes involved in the biosynthesis of stilbene precursors in Cabernet Sauvignon. Increased expression of stilbene synthase, but not that of resveratrol-O-glycosyltransferase, resulted in increased trans-piceid concentrations. In contrast, the transcript abundance of the same genes declined in Chardonnay in response to water deficit. Twelve single nucleotide polymorphisms (SNPs) were identified in the promoters of stilbene synthase genes of Cabernet Sauvignon, Chardonnay, and Pinot Noir. These polymorphisms resulted in eight changes within the predicted cis regulatory elements in Cabernet Sauvignon and Chardonnay. These results suggest that cultivar-specific molecular mechanisms might exist that control resveratrol biosynthesis in grapes.
Collapse
Affiliation(s)
- Laurent G. Deluc
- Department of Biochemistry and Molecular Biology, Mail Stop 200, University of Nevada, Reno, Nevada 89557, United States
| | - Alain Decendit
- Groupe d’Etudes des Substances Végétales à Activité Biologique, EA 3675, ISVV, Université de Bordeaux 2, 210 Chemin de Leysotte, CS50008, 33882 Villenave d’Ornon Cedex, France
| | - Yorgos Papastamoulis
- Groupe d’Etudes des Substances Végétales à Activité Biologique, EA 3675, ISVV, Université de Bordeaux 2, 210 Chemin de Leysotte, CS50008, 33882 Villenave d’Ornon Cedex, France
| | - Jean-Michel Mérillon
- Groupe d’Etudes des Substances Végétales à Activité Biologique, EA 3675, ISVV, Université de Bordeaux 2, 210 Chemin de Leysotte, CS50008, 33882 Villenave d’Ornon Cedex, France
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, Mail Stop 200, University of Nevada, Reno, Nevada 89557, United States
| | - Grant R. Cramer
- Department of Biochemistry and Molecular Biology, Mail Stop 200, University of Nevada, Reno, Nevada 89557, United States
- Corresponding author. Address: Department of Biochemistry and Molecular Biology University of Nevada, Reno/MS 200 Reno, Nevada 89557. E-mail: . Phone: (775) 784-4204. Fax: (775) 784-1650
| |
Collapse
|
28
|
Du Y, Chu H, Chu IK, Lo C. CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice. PLANT PHYSIOLOGY 2010; 154:324-33. [PMID: 20647377 PMCID: PMC2938165 DOI: 10.1104/pp.110.161042] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/18/2010] [Indexed: 05/18/2023]
Abstract
C-Glycosylflavones are ubiquitous in the plant kingdom, and many of them have beneficial effects on human health. They are a special group of flavonoid glycosides in which the sugars are C-linked to the flavone skeleton. It has been long presumed that C-glycosylflavones have a different biosynthetic origin from O-glycosylflavonoids. In rice (Oryza sativa), a C-glucosyltransferase (OsCGT) that accepts 2-hydroxyflavanone substrates and a dehydratase activity that selectively converts C-glucosyl-2-hydroxyflavanones to 6C-glucosylflavones were recently described. In this study, we provide in vitro and in planta evidence that the rice P450 CYP93G2 protein encoded by Os06g01250 is a functional flavanone 2-hydroxylase. CYP93G2 is related to the CYP93B subfamily, which consists of dicot flavone synthase II enzymes. In the presence of NADPH, recombinant CYP93G2 converts naringenin and eriodictyol to the corresponding 2-hydroxyflavanones. In addition, CYP93G2 generates 2-hydroxyflavanones, which are modified by O-glycosylation in transgenic Arabidopsis (Arabidopsis thaliana). Coexpression of CYP93G2 and OsCGT in Arabidopsis resulted in the production of C-glucosyl-2-hydroxyflavanones in the dibenzoylmethane tautomeric form. The same structure was reported previously for the in vitro OsCGT reaction products. Thus, CYP93G2 generates 2-hydroxyflavanone substrates from flavanones for C-glucosylation by OsCGT in planta. Furthermore, knocking down Os06g01250 in rice (O. sativa subsp. japonica 'Zhonghua 11') preferentially depleted the accumulation of C-glycosylapigenin, C-glycosylluteolin, and C-glycosylchrysoeriol but did not affect the levels of tricin, which is frequently present as O-glycosides in cereals. Taken together, our work conclusively assigned CYP93G2 as the first enzyme that channels flavanones to C-glycosylflavone biosynthesis in rice.
Collapse
|
29
|
He CN, Peng Y, Xu LJ, Liu ZA, Gu J, Zhong AG, Xiao PG. Three New Oligostilbenes from the Seeds of Paeonia suffruticosa. Chem Pharm Bull (Tokyo) 2010; 58:843-7. [DOI: 10.1248/cpb.58.843] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chun-Nian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education
| | - Yong Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education
| | - Zheng-An Liu
- Institute of Botany, the Chinese Academy of Sciences
| | - Jing Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education
| | - Ai-Guo Zhong
- Department of Pharmaceutical and Chemical Engineering, Taizhou College
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education
| |
Collapse
|
30
|
Delaunois B, Cordelier S, Conreux A, Clément C, Jeandet P. Molecular engineering of resveratrol in plants. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:2-12. [PMID: 19021877 DOI: 10.1111/j.1467-7652.2008.00377.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The grapevine phytoalexin resveratrol, the synthesis of which is achieved by stilbene synthase (STS), displays a wide range of biological effects. Most interest has centred, in recent years, on STS gene transfer experiments from grapevine to the genome of numerous plants. This work presents a comprehensive review on plant molecular engineering with the STS gene. Gene and promoter options are discussed, namely the different promoters used to drive the transgene, as well as the enhancer elements and/or heterologous promoters used to improve transcriptional activity in the transformed lines. Factors modifying transgene expression and epigenetic modifications, for instance transgene copy number, are also presented. Resveratrol synthesis in plants, together with that of its glucoside as a result of STS expression, is described, as is the incidence of these compounds on plant metabolism and development. The ectopic production of resveratrol can lead to broad-spectrum resistance against fungi in transgenic lines, and to the enhancement of the antioxidant activities of several fruits, highlighting the potential role of this compound in health promotion and plant disease control.
Collapse
Affiliation(s)
- Bertrand Delaunois
- Laboratory of Oenology and Applied Chemistry, Research Unit 'Vines and Wines of Champagne-Stress and Environment', UPRES EA 2069, Faculty of Sciences, University of Reims, PO Box 1039, 51687 Reims cedex 02, France
| | | | | | | | | |
Collapse
|
31
|
Yu CKY, Shih CH, Chu IK, Lo C. Accumulation of trans-piceid in sorghum seedlings infected with Colletotrichum sublineolum. PHYTOCHEMISTRY 2008; 69:700-706. [PMID: 17963800 DOI: 10.1016/j.phytochem.2007.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/03/2007] [Accepted: 09/12/2007] [Indexed: 05/25/2023]
Abstract
Sorghum SbSTS1, a pathogen inducible gene, was previously demonstrated to encode an enzyme with stilbene synthase activity. In this study, we attempt to identify the stilbene derivatives that accumulate in infected sorghum seedlings after inoculation with the anthracnose pathogen Colletotrichum sublineolum. Scanning for precursor ions that produced the common stilbene aglycones as diagnostic ions was performed in a triple quadrupole mass spectrometer. It was found that infected sorghum seedlings accumulated trans-piceid as the major stilbene metabolite together with an unknown resveratrol derivative. Time-course accumulation of trans-piceid was examined in two sorghum cultivars, DK18 and DK77, which are resistant and susceptible to C. sublineolum, respectively. In both cultivars, trans-piceid was not detected until 48h after inoculation, consistent with the late induction of SbSTS1 reported previously in infected sorghum plants. The levels of trans-piceid detected in DK77 seedlings were approximately three times the levels detected in DK18 seedlings at 120h after inoculation. In vitro assays demonstrated that trans-piceid did not exhibit significant toxicity on conidial germination and mycelial growth of C. sublineolum. Hence trans-piceid alone may not represent an important defense component against the anthracnose pathogen in sorghum seedlings.
Collapse
Affiliation(s)
- Christine K Y Yu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
32
|
Lo C, Le Blanc JCY, Yu CKY, Sze KH, Ng DCM, Chu IK. Detection, characterization, and quantification of resveratrol glycosides in transgenic arabidopsis over-expressing a sorghum stilbene synthase gene by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:4101-8. [PMID: 18023075 DOI: 10.1002/rcm.3316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Transgenic Arabidopsis plants were analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) to investigate the glycosylation patterns of resveratrol derived from expression of a sorghum stilbene synthase gene. In negative ionization mode, the different resveratrol derivatives fragmented to yield the diagnostic deprotonated resveratrol ion at m/z 227.2. The use of precursor ion scanning led to the identification of precursor ions for different resveratrol glycosides through rapid differentiation from other phytochemical constituents. Structural information was generated simultaneously from the low-collision-energy product ion spectra using hybrid linear ion-trap mass spectrometry. Three additional resveratrol-related metabolites - a resveratrol diglucoside (M1) and trans- and cis-resveratrol acetylhexosides (M2 and M3) - were detected in the crude plant extracts. The identities of M1, M2, and M3 were confirmed by accurate mass analysis on a quadrupole time-of-flight mass spectrometer as well as beta-glucosidase digestion or UV-induced isomerization. Quantitative analyses by LC/MS in multiple reaction monitoring mode revealed that resveratrol diglucoside and cis-resveratrol acetyhexoside accumulated up to 2.79 and 10.38 microg/g, respectively, while trans-resveratrol acetylhexoside was barely detectable. This study demonstrated the power of the hybrid linear ion-trap technology for simultaneous profiling and structural characterization of stilbene-related metabolites, which would be useful to understand how resveratrol is modified in sorghum and other plants.
Collapse
Affiliation(s)
- Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
33
|
Buiarelli F, Coccioli F, Jasionowska R, Merolle M, Terracciano A. Analysis of some stilbenes in Italian wines by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2955-64. [PMID: 17676713 DOI: 10.1002/rcm.3174] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stilbenes from grapes and wines play a central role in the human diet because of their antioxidant, antimutagenic and anticarcinogenic properties. We describe a method for the direct determination of some stilbenes (cis- and trans-resveratrol, cis- and trans-resveratrol glucoside, cis- and trans-piceatannol, and cis- and trans-piceatannol glucoside) in wine by high-performance liquid chromatography/mass spectrometry using a triple quadrupole (QqQ) mass spectrometer, in multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from the chosen precursor. All the target analytes were separated on a C-18 column using gradient elution, in a single run. Electrospray ionization (ESI) in negative ion mode gives higher sensitivity for all the target compounds than atmospheric pressure chemical ionization (APCI). For the identification of piceatannol glucoside (astringin), because of the lack of a suitable standard, an HPLC/TOFMS method was used. The method permits direct injection of samples and it is time-saving, removing the need for sample pre-treatment. The detection limits were 48.0 ng mL(-1) for cis- and trans-resveratrol and for cis- and trans-resveratrol glucoside, and 50.0 ng mL(-1) for cis- and trans-piceatannol. The procedure proved to be simple and suitable for routine and confirmatory purposes. A total of 19 red and 3 white Italian wines were analyzed and differences in the stilbene composition were found among these samples.
Collapse
Affiliation(s)
- Francesca Buiarelli
- Department of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|