1
|
Abbas MA, Iqbal A, Ahmed M, Rasool G, Awan MF, Khan MKA, Rao AQ, Shahid AA, Husnain T. Transformation of Rhodococcus Pigment Production Hydroxylase (PPH) gene into Camelina sativa: an alternative marker for the detection of transgenic plants. BRAZ J BIOL 2024; 84:e254973. [DOI: 10.1590/1519-6984.254973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Production of transgenic plants with desired agronomic and horticultural traits has gained great importance to fulfill demands of the growing population. Genetic transformation is also a fundamental step to study basics of plant sciences. Different transformation protocols have been developed and used which are reliable and efficient. These protocols used antibiotic or herbicide resistance genes incorporated along with gene of interest to identify transformed plants from non-transformed ones. These marker genes may pose a threat to human and environment. Use of visual markers enables direct and easier observation of transformed plants with more precision. In current study a gene cassette with ‘pigment production hydroxylase (PPH) gene under fiber specific promoter (GhSCFP) and downstream Nos-terminator was designed. After checking the structural and functional efficiency of codon optimized gene using bioinformatics tools, the cassette was sent for chemical synthesis from commercial source. The pigment gene cassette (PPH_CEMB), cloned in pCAMBIA-1301, was transformed into Agrobacterium through electroporation. Agrobacterium-mediated floral dip method was used to transform Camelina sativa inflorescence. After seed setting a total of 600 seed were observed for change in color and out of these, 19 seeds developed a reddish-brown coloration, while the remaining 581 seeds remained yellow. The transformation efficiency calculated on basis of color change was 1.0%. PCR analysis of leaves obtained after sowing reddish seeds confirmed the transformation of pigment production gene, while no PCR amplification was observed in leaves of plants from wild type seeds. From the results it is evident that Agrobacterium-mediated transformation of C. sativa inflorescence is very efficient and environment friendly technique not only for detection of transformed plants but also to study basic cellular processes.
Collapse
Affiliation(s)
- M. A. Abbas
- University of the Punjab Lahore, Pakistan; Govt. College of Science, Pakistan
| | - A. Iqbal
- University of the Punjab Lahore, Pakistan; National Research Institute, Poland
| | - M. Ahmed
- University of the Punjab Lahore, Pakistan; Govt. Boys College Sokasan, Pakistan
| | | | - M. F. Awan
- University of the Punjab Lahore, Pakistan; University of Management and Technology, Pakistan
| | | | - A. Q. Rao
- University of the Punjab Lahore, Pakistan
| | | | - T. Husnain
- University of the Punjab Lahore, Pakistan
| |
Collapse
|
2
|
Babbar R, Tiwari LD, Mishra RC, Shimphrui R, Singh AA, Goyal I, Rana S, Kumar R, Sharma V, Tripathi G, Khungar L, Sharma J, Agrawal C, Singh G, Biswas T, Biswal AK, Sahi C, Sarkar NK, Grover A. Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111639. [PMID: 36796649 DOI: 10.1016/j.plantsci.2023.111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Hsp101 chaperone is vital for survival of plants under heat stress. We generated transgenic Arabidopsis thaliana (Arabidopsis) lines with extra copies of Hsp101 gene using diverse approaches. Arabidopsis plants transformed with rice Hsp101 cDNA driven by Arabidopsis Hsp101 promoter (IN lines) showed high heat tolerance while the plants transformed with rice Hsp101 cDNA driven by CaMV35S promoter (C lines) were like wild type plants in heat stress response. Transformation of Col-0 plants with 4633 bp Hsp101 genomic fragment (GF lines) from A. thaliana containing both its coding and the regulatory sequence resulted in mostly over-expressor (OX) lines and a few under-expressor (UX) lines of Hsp101. OX lines showed enhanced heat tolerance while the UX lines were overly heat sensitive. In UX lines, silencing of not only Hsp101 endo-gene was noted but also transcript of choline kinase (CK2) was silenced. Previous work established that in Arabidopsis, CK2 and Hsp101 are convergent gene pairs sharing a bidirectional promoter. The elevated AtHsp101 protein amount in most GF and IN lines was accompanied by lowered CK2 transcript levels under HS. We observed increased methylation of the promoter and gene sequence region in UX lines; however, methylation was lacking in OX lines.
Collapse
Affiliation(s)
- Richa Babbar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Lalit Dev Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Rinchuila Shimphrui
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Aditya Abha Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India; Department of Botany, University of Lucknow, Lucknow-226007, India
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Vijyesh Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Gayatri Tripathi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Lisha Khungar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Jaydeep Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Chhavi Agrawal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Garima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Tanya Biswas
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anup Kumar Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, MP, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, MP, India
| | - Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
3
|
Kumar R, Tripathi G, Goyal I, Sharma J, Tiwari R, Shimphrui R, Sarkar NK, Grover A. Insights into genomic variations in rice Hsp100 genes across diverse rice accessions. PLANTA 2023; 257:91. [PMID: 36995438 DOI: 10.1007/s00425-023-04123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The Hsp101 gene is present across all sequenced rice genomes. However, as against Japonica rice, Hsp101 protein of most indica and aus rice contain insertion of glutamic acid at 907th position. The understanding of the heat stress response of rice plants is important for worldwide food security. We examined the presence/absence variations (PAVs) of heat shock proteins (Hsps)/heat shock transcription factor (Hsf) genes in cultivated rice accessions. While 53 Hsps/Hsfs genes showed variable extent of PAVs, 194 genes were the core genes present in all the rice accessions. ClpB1/Hsp101 gene, which is critically important for thermotolerance in plants, showed 100% distribution across the rice types. Within the ClpB1 gene sequence, 40 variation sites consisting of nucleotide polymorphisms (SNPs) and short insertion/deletions (InDels) were discerned. An InDel in ClpB1 leading to an in-frame insertion of 3 nucleotides (TCC) thereby an additional amino acid (glutamic acid) at 907th amino acid position was noted in most of the indica and aus as against japonica rice types. Three rice types namely Moroberekan (japonica), IR64 (indica) and N22 (aus) were further analyzed to address the question of ClpB1 genomic variations and its protein levels with the heat tolerance phenotype. The growth profiling analysis in the post heat stress (HS) period showed that N22 seedlings were most tolerant, IR64 moderately tolerant and Moroberekan highly sensitive. Importantly, the ClpB1 protein sequences of these three rice types showed distinct differences in terms of SNPs. As the ClpB1 protein levels accumulated post HS were generally higher in Moroberekan than N22 seedlings in our study, it is proposed that some additional gene loci in conjunction with ClpB1 regulate the overall rice heat stress response.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gayatri Tripathi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Jaydeep Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Ruchi Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rinchuila Shimphrui
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
4
|
Chiu HW, Hung SW, Chiu CF, Hong JR. A Mitochondrion-Targeting Protein (B2) Primes ROS/Nrf2-Mediated Stress Signals, Triggering Apoptosis and Necroptosis in Lung Cancer. Biomedicines 2023; 11:biomedicines11010186. [PMID: 36672696 PMCID: PMC9855812 DOI: 10.3390/biomedicines11010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The betanodavirus B2 protein targets mitochondria and triggers mitochondrion-mediated cell death signaling in lung cancer cells; however, its molecular mechanism remains unknown. In this study, we observed that B2 triggers hydrogen peroxide/Nrf2-involved stress signals in the dynamic regulation of non-small lung cancer cell (NSCLC)-programmed cell death. Here, the B2 protein works as a necrotic inducer that triggers lung cancer death via p53 upregulation and RIP3 expression, suggesting a new perspective on lung cancer therapy. We employed the B2 protein to target A549 lung cancer cells and solid tumors in NOD/SCID mice. Tumors were collected and processed for the hematoxylin and eosin staining of tissue and cell sections, and their sera were used for blood biochemistry analysis. We observed that B2 killed an A549 cell-induced solid tumor in NOD/SCID mice; however, the mutant ΔB2 did not. In NOD/SCID mice, B2 (but not ΔB2) induced both p53/Bax-mediated apoptosis and RIPK3-mediated necroptosis. Finally, immunochemistry analysis showed hydrogen peroxide /p38/Nrf2 stress strongly inhibited the production of tumor markers CD133, Thy1, and napsin, which correlate with migration and invasion in cancer cells. This B2-triggered, ROS/Nrf2-mediated stress signal triggered multiple signals via pathways that killed A549 lung cancer tumor cells in vivo. Our results provide novel insight into lung cancer management and drug therapy.
Collapse
Affiliation(s)
- Hsuan-Wen Chiu
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300, Taiwan
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2003082; Fax: +886-6-2766505
| |
Collapse
|
5
|
Zhang WM, Cheng XZ, Fang D, Cao J. AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. Int J Biol Macromol 2022; 214:290-300. [PMID: 35716788 DOI: 10.1016/j.ijbiomac.2022.06.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
AHL (AT-HOOK MOTIF NUCLEAR LOCALIZED) protein is an important transcription factor in plants that regulates a wide range of biological process. It is considered to have evolved from an independent PPC domain in prokaryotes to a complete protein in modern plants. AT-hook motif and PPC conserved domains are the main functional domains of AHL. Since the discovery of AHL, their evolution and function have been continuously studied. The AHL gene family has been identified in multiple species and the functions of several members of the gene family have been studied. Here, we summarize the evolution and structural characteristics of AHL genes, and emphasize their biological functions. This review will provide a basis for further functional study and crop breeding.
Collapse
Affiliation(s)
- Wei-Meng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiu-Zhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Kang Y, Lee K, Hoshikawa K, Kang M, Jang S. Molecular Bases of Heat Stress Responses in Vegetable Crops With Focusing on Heat Shock Factors and Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:837152. [PMID: 35481144 PMCID: PMC9036485 DOI: 10.3389/fpls.2022.837152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 05/09/2023]
Abstract
The effects of the climate change including an increase in the average global temperatures, and abnormal weather events such as frequent and severe heatwaves are emerging as a worldwide ecological concern due to their impacts on plant vegetation and crop productivity. In this review, the molecular processes of plants in response to heat stress-from the sensing of heat stress, the subsequent molecular cascades associated with the activation of heat shock factors and their primary targets (heat shock proteins), to the cellular responses-have been summarized with an emphasis on the classification and functions of heat shock proteins. Vegetables contain many essential vitamins, minerals, antioxidants, and fibers that provide many critical health benefits to humans. The adverse effects of heat stress on vegetable growth can be alleviated by developing vegetable crops with enhanced thermotolerance with the aid of various genetic tools. To achieve this goal, a solid understanding of the molecular and/or cellular mechanisms underlying various responses of vegetables to high temperature is imperative. Therefore, efforts to identify heat stress-responsive genes including those that code for heat shock factors and heat shock proteins, their functional roles in vegetable crops, and also their application to developing vegetables tolerant to heat stress are discussed.
Collapse
Affiliation(s)
- Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Kwanuk Lee
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Ken Hoshikawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | | | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|
7
|
Huang CH, Liu YC, Shen JY, Lu FI, Shaw SY, Huang HJ, Chang CC. Repairing TALEN-mediated double-strand break by microhomology-mediated recombination in tobacco plastids generates abundant subgenomic DNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111028. [PMID: 34763881 DOI: 10.1016/j.plantsci.2021.111028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Transcription activator-like effector nuclease (TALEN) technology has been widely used to edit nuclear genomes in plants but rarely for editing organellar genomes. In addition, ciprofloxacin, commonly used to cause the double-strand break of organellar DNA for studying the repair mechanism in plants, confers no organellar selectivity and site-specificity. To demonstrate the feasibility of TALEN-mediated chloroplast DNA editing and to use it for studying the repair mechanism in plastids, we developed a TALEN-mediated editing technology fused with chloroplast transit peptide (cpTALEN) to site-specifically edit the rpoB gene via Agrobacteria-mediated transformation of tobacco leaf. Transgenic plants showed various degrees of chlorotic phenotype. Repairing damaged plastid DNA resulted in point mutation, large deletion and small inversion surrounding the rpoB gene by homologous recombination and/or microhomology-mediated recombination. In an albino line, microhomology-mediated recombination via a pair of 12-bp direct repeats between rpoC2 and ycf2 genes generated the chimeric ycf2-rpoC2 subgenome, with the level about 3- to 5-fold higher for subgenomic DNA than ycf2. Additionally, the expression of chimeric ycf2-rpoC2 transcripts versus ycf2 mRNA agreed well with the level of corresponding DNA. The ycf2-rpoC2 subgenomic DNA might independently and preferentially replicate in plastids.
Collapse
Affiliation(s)
- Chih-Hao Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Chang Liu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jia-Yi Shen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Fu-I Lu
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shyh-Yu Shaw
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Chun Chang
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
8
|
Qin-Di D, Gui-Hua J, Xiu-Neng W, Zun-Guang M, Qing-Yong P, Shiyun C, Yu-Jian M, Shuang-Xi Z, Yong-Xiang H, Yu L. High temperature-mediated disturbance of carbohydrate metabolism and gene expressional regulation in rice: a review. PLANT SIGNALING & BEHAVIOR 2021; 16:1862564. [PMID: 33470154 PMCID: PMC7889029 DOI: 10.1080/15592324.2020.1862564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Global warming has induced higher frequencies of excessively high-temperature weather episodes, which pose damage risk to rice growth and production. Past studies seldom specified how high temperature-induced carbohydrate metabolism disturbances from both source and sink affect rice fertilization and production. Here we discuss the mechanism of heat-triggered damage to rice quality and production through disturbance of carbohydrate generation and consumption under high temperatures. Furthermore, we provide strong evidence from past studies that rice varieties that maintain high photosynthesis and carbohydrate usage efficiencies under high temperatures will suffer less heat-induced damage during reproductive developmental stages. We also discuss the complexity of expressional regulation of rice genes in response to high temperatures, while highlighting the important roles of heat-inducible post-transcriptional regulations of gene expression. Lastly, we predict future directions in heat-tolerant rice breeding and also propose challenges that need to be conquered in the future.
Collapse
Affiliation(s)
- Deng Qin-Di
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Jian Gui-Hua
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Wang Xiu-Neng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Mo Zun-Guang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Peng Qing-Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Chen Shiyun
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Mo Yu-Jian
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Zhou Shuang-Xi
- New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay,New Zealand
| | - Huang Yong-Xiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| | - Ling Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang,China
| |
Collapse
|
9
|
Huang CH, Huang TL, Liu YC, Chen TC, Lin SM, Shaw SY, Chang CC. Overexpression of a multifunctional β-glucosidase gene from thermophilic archaeon Sulfolobus solfataricus in transgenic tobacco could facilitate glucose release and its use as a reporter. Transgenic Res 2020; 29:511-527. [PMID: 32776308 DOI: 10.1007/s11248-020-00212-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/25/2020] [Indexed: 11/25/2022]
Abstract
The β-glucosidase, which hydrolyzes the β(1-4) glucosidic linkage of disaccharides, oligosaccharides and glucose-substituted molecules, has been used in many biotechnological applications. The current commercial source of β-glucosidase is mainly microbial fermentation. Plants have been developed as bioreactors to produce various kinds of proteins including β-glucosidase because of the potential low cost. Sulfolobus solfataricus is a thermoacidophilic archaeon that can grow optimally at high temperature, around 80 °C, and pH 2-4. We overexpressed the β-glucosidase gene from S. solfataricus in transgenic tobacco via Agrobacteria-mediated transformation. Three transgenic tobacco lines with β-glucosidase gene expression driven by the rbcS promoter were obtained, and the recombinant proteins were accumulated in chloroplasts, endoplasmic reticulum and vacuoles up to 1%, 0.6% and 0.3% of total soluble protein, respectively. By stacking the transgenes via crossing distinct transgenic events, the level of β-glucosidase in plants could further increase. The plant-expressed β-glucosidase had optimal activity at 80 °C and pH 5-6. In addition, the plant-expressed β-glucosidase showed high thermostability; on heat pre-treatment at 80 °C for 2 h, approximately 70% residual activity remained. Furthermore, wind-dried leaf tissues of transgenic plants showed good stability in short-term storage at room temperature, with β-glucosidase activity of about 80% still remaining after 1 week of storage as compared with fresh leaf. Furthermore, we demonstrated the possibility of using the archaebacterial β-glucosidase gene as a reporter in plants based on alternative β-galactosidase activity.
Collapse
Affiliation(s)
- Chih-Hao Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tzu-Ling Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Chang Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ting-Chieh Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shyh-Yu Shaw
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Ching-Chun Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2069-2083. [PMID: 32573848 DOI: 10.1111/tpj.14883] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/04/2023]
Abstract
Heat shock protein 70 (Hsp70) chaperones are highly conserved and essential proteins with diverse cellular functions, including plant abiotic stress tolerance. Hsp70 proteins have been linked with basal heat tolerance in plants. Hsp101 likewise is an important chaperone protein that plays a critical role in heat tolerance in plants. We observed that Arabidopsis hsc70-1 mutant seedlings show elevated basal heat tolerance compared with wild-type. Over-expression of Hsc70-1 resulted in increased heat sensitivity. Hsp101 transcript and protein levels were increased during non-heat stress (HS) and post-HS conditions in hsc70-1 mutant seedlings. In contrast, Hsp101 was repressed in Hsc70-1 over-expressing plants after post-HS conditions. Hsc70-1 showed physical interaction with HsfA1d and HsfA1e protein in the cytosol under non-HS conditions. In transient reporter gene analysis, HsfA1d, HsfA1e and HsfA2 showed transcriptional response on the Hsp101 promoter. HsfA1d and HsfA2 transcripts were at higher levels in hsc70-1 mutant compared with wild-type. We provide genetic evidence that Hsc70-1 is a negative regulator affecting HsfA1d/A1e/A2 activators, which in turn regulate Hsp101 expression and basal thermotolerance.
Collapse
Affiliation(s)
- Lalit D Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Lisha Khungar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| |
Collapse
|
11
|
Panzade KP, Vishwakarma H, Padaria JC. Heat stress inducible cytoplasmic isoform of ClpB1 from Z. nummularia exhibits enhanced thermotolerance in transgenic tobacco. Mol Biol Rep 2020; 47:3821-3831. [PMID: 32367315 DOI: 10.1007/s11033-020-05472-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
Previously, we isolated CDS of Ziziphus nummularia isoform ZnJClpB1-C from heat stress-tolerant genotype Jaisalmer. To further functionally validate ZnJClpB1-C assumed function in tobacco and to generate novel germplasm for heat stress tolerance, this gene was transformed in the Nicotiana tabacum. ClpB proteins are the major key player required for basal and induced heat stress tolerance in plant cells under heat stress. In Ziziphus nummularia ClpB1-C transcript from genotype Jaisalmer was highly upregulated under heat stress conditions, as reported earlier. Nine transgenic lines (T1) from three transgenic tobacco events with single-copy integration (T0 stage) were taken for heat stress analysis at seedling stage. Mature tobacco transgenic plants did not show any deformity as compared to wild plants when grown under normal conditions. Overexpression of ZnJClpB1-C in tobacco significantly increased the tolerance to heat stress. Under heat stress conditions (42 °C), T1 transgenic tobacco seedlings showed higher photosynthetic rate, relative water content, membrane stability index and lower levels of MDA, compared to the wild type untransformed plants. The qRT-PCR analysis revealed different level of transgene expression (1.08 to 3.89 folds) in 9 T1 transgenic lines. In vitro roles of ZnJClpB1-C regulating thermotolerance is not reported so far. These results demonstrated the positive roles of ZnJClpB1-C in enhancing thermotolerance and its use as a genomic resource in the near future for developing heat stress-tolerant germplasm.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
12
|
Du X, Zhu X, Yang Y, Wang Y, Arens P, Liu H. De novo transcriptome analysis of Viola ×wittrockiana exposed to high temperature stress. PLoS One 2019; 14:e0222344. [PMID: 31550256 PMCID: PMC6759194 DOI: 10.1371/journal.pone.0222344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
Around the world, pansies are one of the most popular garden flowers, but they are generally sensitive to high temperatures, and this limits the practicality of planting them during the warmest days of the year. However, a few pansy germplasms with improved heat tolerance have been discovered or bred, but the mechanisms of their heat resistance are not understood. In this study, we investigated the transcript profiles of a heat-tolerant pansy inbred line, DFM16, in response to high temperatures using RNAseq. Approximately 55.48 Gb of nucleotide data were obtained and assembled into 167,576 unigenes with an average length of 959 bp, of which, 5,708 genes were found to be differentially expressed after heat treatments. Real-time qPCR was performed to validate the expression profiles of the selected genes. Nine metabolic pathways were found to be significantly enriched, in the analysis of the differentially expressed genes. Several potentially interesting genes that encoded putative transcription regulators or key components involving heat shock protein (HSP), heat shock transcription factors (HSF), and antioxidants biosynthesis, were identified. These genes were highlighted to indicate their significance in response to heat stress and will be used as candidate genes to improve pansy heat-tolerance in the future.
Collapse
Affiliation(s)
- Xiaohua Du
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Xiaopei Zhu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Yaping Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Yanli Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
| | - Paul Arens
- Wageningen University & Research, Wageningen, The Netherlands
| | - Huichao Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, China
- * E-mail:
| |
Collapse
|
13
|
Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, Luo L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep 2016; 6:30264. [PMID: 27453463 PMCID: PMC4958981 DOI: 10.1038/srep30264] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/04/2016] [Indexed: 12/22/2022] Open
Abstract
A novel gene, OsAHL1, containing an AT-hook motif and a PPC domain was identified through genome-wide profiling and analysis of mRNAs by comparing the microarray of drought-challenged versus normally watered rice. The results indicated OsAHL1 has both drought avoidance and drought tolerance that could greatly improve drought resistance of the rice plant. Overexpression of OsAHL1 enhanced multiple stress tolerances in rice plants during both seedling and panicle development stages. Functional studies revealed that OsAHL1 regulates root development under drought condition to enhance drought avoidance, participates in oxidative stress response and also regulates the content of chlorophyll in rice leaves. OsAHL1 specifically binds to the A/T rich sequence region of promoters or introns, and hence directly regulates the expression of many stress related downstream genes.
Collapse
Affiliation(s)
- Liguo Zhou
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaochang Liu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yunhua Liu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Deyan Kong
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hanwei Mei
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiaoyan Xu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
14
|
Role of Heat Shock Proteins in Improving Heat Stress Tolerance in Crop Plants. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. PLANT, CELL & ENVIRONMENT 2015; 38:1881-95. [PMID: 24995670 DOI: 10.1111/pce.12396] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 05/21/2023]
Abstract
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Center of Membrane Proteomics, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| |
Collapse
|
16
|
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
17
|
Grover A, Mittal D, Negi M, Lavania D. Generating high temperature tolerant transgenic plants: Achievements and challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:38-47. [PMID: 23498861 DOI: 10.1016/j.plantsci.2013.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 05/17/2023]
Abstract
Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed.
Collapse
Affiliation(s)
- Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | | | | | | |
Collapse
|
18
|
A Dominant Major Locus in Chromosome 9 of Rice (Oryza sativa L.) Confers Tolerance to 48 C High Temperature at Seedling Stage. J Hered 2012; 104:287-94. [DOI: 10.1093/jhered/ess103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Yeh CH, Kaplinsky NJ, Hu C, Charng YY. Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:10-23. [PMID: 22920995 PMCID: PMC3430125 DOI: 10.1016/j.plantsci.2012.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 05/18/2023]
Abstract
Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This 'thermotolerance diversity' means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: (1) the heat stress regime used, (2) the developmental stage of the plants being studied, and (3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance.
Collapse
Affiliation(s)
- Ching-Hui Yeh
- Department of Life Sciences, National Central University, Taiwan 32001, ROC
| | | | - Catherine Hu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan 11529, ROC
| | - Yee-yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan 11529, ROC
- Corresponding author: ; FAX: 886-2-26515600
| |
Collapse
|
20
|
Zou J, Liu C, Chen X. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice. PLANT CELL REPORTS 2011; 30:2155-65. [PMID: 21769604 DOI: 10.1007/s00299-011-1122-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 05/09/2023]
Abstract
Rice is the most important food crop worldwide. Global warming inevitably affects the grain yields of rice. Recent proteomics studies in rice have provided evidence for better understanding the mechanisms of thermal adaptation. Heat stress response in rice is complicated, involving up- or down-regulation of numerous proteins related to different metabolic pathways. The heat-responsive proteins mainly include protection proteins, proteins involved in protein biosynthesis, protein degradation, energy and carbohydrate metabolism, and redox homeostasis. In addition, increased thermotolerance in transgenic rice was obtained by overexpression of rice genes and genes from other plants. On the other hand, heterologous expression of some rice proteins led to enhanced thermotolerance in bacteria and other easily transformed plants. In this paper, we review the proteomic characterization of rice in response to high temperature and achievements of genetic engineering for heat tolerance in rice.
Collapse
Affiliation(s)
- Jie Zou
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Furong District, Changsha, 410128, Hunan, China
| | | | | |
Collapse
|
21
|
Lu SW, Wang KC, Liu HJ, Chang CD, Huang HJ, Chang CC. Expression of avian reovirus minor capsid protein in plants. J Virol Methods 2011; 173:287-93. [PMID: 21354211 DOI: 10.1016/j.jviromet.2011.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
Abstract
The minor coat protein of the avian reovirus (ARV), σC, encoded by the S1 genome segment, is one of the major candidates for the development of a subunit vaccine against ARV infection. To develop a plant-based vaccine to immunize poultry against ARV infection, we constructed 4 plant nuclear expression vectors with or without codon modification of the S1 gene, and their expression was driven by a CaMV 35S promoter or rice actin1 promoter. In addition, the expressed σC proteins were targeted subcellularly to cytosol or chloroplasts, respectively. Agrobacterium containing the S1 expression constructs was used to transform tobacco leaf disks, and transformants were selected with kanamycin (100 μg/ml). The integration of the S1 transgene into the tobacco chromosome was confirmed by PCR and Southern blot analysis. Western blot analysis with antiserum against σC was performed to determine the expression of σC protein in transgenic tobacco plants. The highest expression levels of σC protein in the cellular extracts of selected p35S1, pActS1 and p35UmS1 transgenic lines were 0.013%, 0.021% and 0.0013% of the total soluble protein, respectively, but the protein was barely detectable in p35TmS1 transgenic lines. However, the level of σC protein expression was not associated with the level of corresponding RNA transcripts in selected transgenic lines. Taken together, the results suggest that the major limiting factor for the expression of σC protein in plants might be at the post-transcriptional level.
Collapse
MESH Headings
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Blotting, Southern
- Blotting, Western
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Genetic Vectors
- Mutagenesis, Insertional
- Orthoreovirus, Avian/genetics
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Polymerase Chain Reaction
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombination, Genetic
- Rhizobium/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Transformation, Genetic
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Shih-Wei Lu
- Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
22
|
Singh A, Grover A. Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. PLANT MOLECULAR BIOLOGY 2010; 74:395-404. [PMID: 20811767 DOI: 10.1007/s11103-010-9682-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/20/2010] [Indexed: 05/21/2023]
Abstract
ClpB/Hsp100 proteins act as chaperones, mediating disaggregation of denatured proteins. Recent work shows that apart from cytoplasm, these proteins are localized to nuclei, chloroplasts, mitochondria and plasma membrane. While ClpB/Hsp100 genes are essentially stress-induced (mainly heat stress) in vegetative organs of the plant body, expression of ClpB/Hsp100 proteins is noted to be constitutive in plant reproductive structures like pollen grains, developing embryos, seeds etc. With global warming looming large on the horizon, ways to genetically engineer plants against high temperature stress are urgently needed. Yeast mutants unable to synthesize active ClpB/Hsp100 protein show a clear thermosensitive phenotype. ClpB/Hsp100 proteins are implicated in high temperature stress tolerance in plants. We herein highlight the selected important facets of this protein family in plants.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|